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On the Rank of a Finite Product of Two /̂ -Groups 

Bernhard Arnberg and Lev S. Kazarin* 

1. Introduction 

If the finite p-group G = AB is the product of two subgroups A and Β whose Prüfer 
ranks are bounded by r, then the Prüfer rank of G is bounded by a polynomial function 
of r; see [S] and [1]. Although no bound is given there explicitly, the analysis of the 
proof of this theorem leads to polynomial bounds of relatively high degree (see [1]). 
In the following we shall give better bounds. A natural way to do this is to obtain first 
a bound for the normal rank of G = AB which will immediately give a bound for the 
Prüfer rank of G by Lemma 2.6 below. Our bound for the normal rank of G = AB 
depending on the Prüfer ranks of A and Β is close to being linear. Even if this result 
may not be best possible, it will be useful in the study of the structure of finite products 
of groups with low rank. 

Recall that a group X has Prüfer rank r = r(X) if every finitely generated 
subgroup of X can be generated by r elements and r is the least such integer. The 
normal rank rn(X) of X is the maximum of the minimal number of generators of 
each normal subgroup of X. 

Our main result is the following. 

Theorem 1.1. Let the finite p-group G = AB be the product of two of its subgroups 
A and B. Let ro = min{r(A), r{B)} and π = r(A) + r(B). Then the normal rank 
rn(G) satisfies the following inequality: 

rn(G) < ro(riogprn(G) 1 + 1 + Rogp r0l Rog22r0l + hp) + Π-

The inequality in this theorem may look unusual, but it shows that for any € > 0 
and for sufficiently large ro we have the following almost linear bound 

/•„(G)1"6 < r 0 ( 3 + riogproiriog22rol) + ri. 

If the two subgroups A and Β are abelian, Theorem 1.1 can be improved as follows. 
*The authors like to thank the Departments of Mathematics of the Universities of Mainz and 

Yaroslavl for their excellent hospitality during the preparation of this paper 
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Theorem 1.2. Let thefinite ρ-group G = AB be the product oftwo abelian subgroups 
A and B. Let ro = min{r(A), r(2?)} and r\ = r(A) + r(B). Then the normal rank 
rn(G) of G satisfies the inequality 

rn(G)<r 0 r iog p r„ (G) l+r 1 . 

If the finite p-group G = A Β is the product of two cyclic subgroups A and B, 
then it follows from Theorem 1.2 that rn = rn(G) < [logpr„l + 2. This implies 
rn <3 and even rn < 2 for ρ > 3. Note however that there exists a finite 2-group of 
normal rank 3 which is a product of two of its cyclic subgroups, (see [2], Aufgabe 28, 
p. 341). 

The notation is standard and can be found in [2] and [1]. If X is a finite p-group, 
we note in particular 

Ω, (X) = subgroup generated by all elements g in X such that gp' = 1. 

13i (X) = subgroup generated by all gp' with g e X. 

The exponent exp(X) of X is the largest order of its elements. If a minimal generating 
system of X consists of m elements then we write d(X) = m. If α is a real number, 
then fa] = m is the smallest integer such that a < m. 5,-y denotes the Kronecker 
symbol. 

2. Preliminaries 

The first lemma is well-known. 

Lemma 2.1. If G is a finite p-group with nilpotency class c, then the derived length 
of G does not exceed Tlog2 c \ + 1. 

Proof. See [4], 5.1.12. 

Lemma 2.2 (Alperin). Let G be a finite p-group, η be an integer such that pn φ 2 and 
let Abe a maximal element in the set of all abelian normal subgroups with exponent 
< pn. I f x € Cg(A) andxP" = 1, then χ e A. 

Proof See [2], p. 341. 

Lemma 2.3. Let G be a regular finite p-group with Prüfer (or normal) rank r > 1 
and exponent pv. Then 

| G | < pvr(riog2(i--l)l+2) 

Furthermore, if ρ = 2 then |G| < 2vr. 
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Proof. It is obvious that for each i the group Η = l3i (G)/ü,+i (G) has exponent less 
or equal to p. If A = (A) is an abelian self-centralizing normal subgroup of Η with 
rank less or equal to r, then H/Ais isomorphic to a subgroup of Aut(A) c GL(r, p). 
If ρ = 2, then G is abelian (see [2], p. 327) and Η = A. By Theorem 16.3 of [2], 
p. 382, H/A has nilpotency class at most r — 1. By Lemma 2.1 the derived length of 
H/A does not exceed Rog2(r — 1)1 + 1· Therefore the derived length of Η does not 
exceed riog2(r — 1)1 + 2, since A is abelian. By [2], Theorem on p. 327, we have 
that Uv+i (G) = 1. The lemma is proved. 

Lemma 2.4 (Thompson). Let G be a finite p-group where ρ φ 2 is a prime. If 
every abelian normal subgroup of G can be generated by s elements, then a minimal 
generating system of G contains at most s(s + l ) /2 elements. 

Proof See [2], p. 343. 

Lemma 2.5. Let G be a finite p-group. Suppose that if ρ > 2 then every element of 
order ρ of G lies in its center, and if ρ = 2 then every element of order <4 of G lies 
in its center. Then the following holds: 
(i) d(G)<d(Z(G)) = d(nl(G)), 
(ii) |G| < pvr where r is the Prüfer (or normal) rank of G and pv = exp(G). 

Proof. We use an idea of Blackburn to prove both statements simultaneously (see [2], 
p. 342). 

Suppose that A = ß i (G) if ρ > 2 and A = fi2(G) if ρ = 2. Let Β be an 
element with maximal order among the normal subgroups X of G containing A with 
elementary abelian factor group X/A. If b € Β and g e G, then bg = be for some 
CGB. AS bP € A < Z(G), we have bP = φΡ)« = (b8)p = (bc)P = bPcP[c, b]©. 
It follows that if ρ > 2 then (£) = 0 {mod p) and [c, fc]^) = 1. In this case we have 
also cp = 1 and c € A. If ρ = 2 then c2[c, b] = 1. We prove now that c4 = 1. As 

X2y = yx2 = x;yx[;y, x] = yx2[y, χ]2 

for each pair x,y e B, we have Β' c Ωι(Α). Hence it follows from c2[c, b] = 1 
that c4 = 1 and so c € Z(G). Therefore [B, G] c Ωι (A) in each case and Β/ Ωι (A) 
is an abelian group of exponent ρ for ρ > 2 and a group of exponent 4 for ρ — 2. 
Furthermore, this group is not contained in any larger abelian normal subgroup of 
exponent ρ (for ρ > 2) or of exponent 4 (for ρ = 2) of the group G/fl i(A). By 
Lemma 2.2 we have 

5 /Ωι (Α) = Ωι(σ/Ωι(Α)) c Ζ(σ/Ωι(Α)) if ρ > 2 and 

5 /Ωι (Α) = n 2 (G/f i i (A)) c Ζ(ϋ/Ωι(Α)) if ρ = 2. 

If ρ > 2 then by Theorem 12.2 of [2], p. 342, we have 

d(B) < Λ(Ωι(5)) = <ί(Ωι(Α)) = d(&i(G)). 
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As e x p ( G ^ i ( G ) ) < pv~l it is easy to prove by induction that |G| < pvr 

For the remainder of the proof we may suppose now that ρ = 2. If G is abelian, 
it is easy to see that both statements of Lemma 2.5 hold. Assume now that Lemma 
2.5 holds for all groups whose order is less than the order of G. If Β φ G then 
d{B) < d(Qi(B)) = d{Z{G)) and exp(G/Ωι (Β)) = exp(G/ßi(G)) < 2v~l by 
induction. Since 5/Ωχ(2ϊ) = Β/Ωχ (A) plays the same role as A = Ω2(G) in G for 
G/ΩχίΑ), then | G ^ x ( G ) ) | < wherer = > d(G/^i(G)). This 
proves (ii). Ι ίΩχ(Β) = Ωχ(Α) c <I>(G),then<i(G^x (G))=d(G) and so (i) is also 
proved. 

Now suppose that Ωι (Β) = Ωι(Α) = Ωχ(σ) % <I>(G). Then there exists a 
maximal subgroup Μ of G such that ΜΩ1 (A) = G with Ωι (A) £ M. Obviously we 
have Μ Π Ωχ (A) = {x\x € Μ, χ 2 = 1} = Ωι(Ζ(Μ)). By induction 

d(M) < d{Z(M)) = ί /(Ωι(Ζ(Λ/)) = d(M Π Ζ ) < d(Z(G)) - 1. 

Therefore d(G) < d(M) + 1 < d(Z(G)), and we are done. 
Suppose now that Β = G. As (jty)4 = x4y4 for each pair of elements x, y of G, 

then the map g g 4 is a homomorphism from G into Ωι (G) = Ωχ (A). It is easy to 
see that the kernel of this homomorphism is A = Ω2(β). By [2], p. 272, we have that 
Ωι(G) = <D(G) andif Ωι (σ) = A then d(G) = d{G/A) < <ί(Ωι(Α)) = d{Z{G)). 
Hence Ωι (G) Φ A and in particular there exists an element of Ωι (A) which does not 
have a root of degree 4 in G. 

The set of all elements of Ωχ (A) having a root of degree 4 in G is a subgroup D of 
G which has a complement C in Ωι(Α) such that A = Αχ χ A2 where Ωχ (Αχ) = D 
and Ωχ(Α2) = C = A2. If g4 G A2 for some g 6 G then g 4 G C and so g4 = 1. 
Hence Ω 2 ^ / Α 2 ) = Α/Αι c Z(G/A2). By induction we have 

d(G/A2) < <*(ßi(Z(G/A2))) = «/(Αι). 

It follows that d(G) < d{A\) + d(A2) = d(Z(G)). This proves Lemma 2.5. 

Lemma 2.6. If every abelian normal subgroup of the finite p-group G can be gener-
ated by at most s elements, then the Prüfer rank ofG is at most 1 /2{s + s2) for ρ > 2 
and at most 3/2(s2 + s)for ρ = 2. 

Proof. For ρ > 2 this is a theorem of Thompson (see [2], Satz 12.3, p. 343). If 
ρ = 2 the proof follows from a slight modification of this theorem. One has only to 
use Lemma 2.2 for pn = 4 and the arguments of Thompson. 

Next we will obtain a bound for the order of a finite p-group in terms of its rank 
and its exponent. 

Lemma 2.7. Let G be a finite p-group with Prüfer rank r and exponent pv. Then the 
following inequalities hold. 
(i) If ρ >2 then |G| < p ^ r i o g ^ i x r i o g ^ r ^ 
(ii) If ρ = 2 then |G| < 2^+r+r(nog2rl)(riog22rl) 
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Proof. Let A be the largest abelian normal subgroup of G of exponent Ρ for Ρ > 2 
and of exponent < 4 for Ρ = 2. Suppose first that exp(A) = p. Then clearly the 
factor group Η = G/CQ{A) can be embedded into Aut(A) < GL(R, p). Since G 
is a ρ-group it is isomorphic to a subgroup of a Sylow p-subgroup of GL(r, p). By 
Theorem 16.3 of [2], p.382, the group Η has nilpotency class less or equal to r — 1 
and its derived length is less or equal to Π°β2(Γ — 1)1 + 1· Since every ρ-element 
a e GL(R, p) has a normal Jordan form with Jordan matrices of size less or equal 
to r then a — 1 is a nilpotent element and (a — l)r = 0. If ftogp Ί = m, then 
(a — l)pm = 0 which implies apM = 1. Hence the exponent of Η does not exceed 
pm. Each factor of the commutator series of Η has order not exceeding 
pmr and so\H\ < p""-(nog2(r-i)l+i) S i n c e cG(A) contains each element of order Ρ 
in its center by Lemma 2.2, then by Lemma 2.5(i) we have |Cc(A)| < pvr and so the 
first assertion is proved. 

Suppose now that exp(A) = 4. Then Η = G/CG(A) is isomorphic to a subgroup 
of a group of invertible (r, r)-matrices with entries in Z4. Let U be the subgroup of 
this group consisting of all matrices (α,-j) such that α,-y = <5,j mod 2. It is easy to see 
that the inverse image V of U in G is normal in G and the group U = VJCC{A) 
is abelian. Since u2 = 1 for each matrix u = {αφ in U we have \U\ < 2r Now 
G/V c GL(R, 2) and we may use the previous arguments. Hence 

\G\ < \G/V\\U\\CG{A)\ < 2'<I"K>G2'INOG22RL)+R+VR 

Corollary 2.8. Let G be a finite p-group with Prüfer rank r and exponent pv. Then 
\G\ < pvr(2+^0S2^)+rhp 

This result corresponds to Lemma 2.3 for regular ρ-groups. Note that there is a 
similar formula in [5], but its proof is not correct. 

3. Some Special Cases 

The proofs of our theorems will be reduced to the following special situation of a triply 
factorized group. 

Lemma 3.1. Let the finite p-group G = AN = BN = AB be the product of two 
subgroups A and Β and an elementary abelian normal subgroup Ν of G such that 
ΑΠ Ν = Β Π Ν = 1. If the Prüfer rank of one of the subgroups A and Β is bounded 
by r, then 

d(N) < r(riogprf(iV)l + 1 + riogpririog22rl +S2p). 

Proof Obviously we have |G| = |A||5||A Π B p 1 = \A\\N\ = |B||W|. Hence 
|A| = |£ | = \N\\A η B\. Let \N\ = pn = m and let the elements of Ν be c; = αφ ι 
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with a,· 6 A and b, e Β where 1 < i < m. We show first that [α,·|1 < i < m) 
(respectively {&,· 11 < ί < m}) is a full system of representatives of A (respectively of 
Β) with respect to the subgroup Η = Α Π Β. Assume that on the contrary for some 
1 < ι φ j < m we have a , / / = ajH with i φ j. Then c~1 cy = b~xά~λajbj e 
Ν Π Β = 1, so that c, = cy, a contradiction. Similarly, biH φ bjH if i φ j. As 
m = IA H\ = \B H\ the assertion about the representatives is proved. 

It is easy to see that for each choice of a system of representatives ... ,am 

of A for the subgroup Η there is a system of representatives b\, b2,..., bm of Β such 
that Ν = {α,-6,-|1 < ι < m}. The subgroup D = CA(N) is normal in A, so that DH 
is a subgroup of A. We may choose a system of representatives a\, ai,..., am in A 
such that (Ji=i a, / / = DH for some k <m. 

Let c, = αφϊ and cj = ajbj be elements in Ν where 1 < i, j < k. It is easy 
to see that [α,·, c] = [aj, c] = 1 for each c e N. Hence [λ,·, = [ay, bj] = 1 for 
1 < i, j < k. As cp = 1 for each c e Ν and c,cy = c;c,· for each pair i, j then 
we have afbf = 1 and so aibiajbj = ajaibibj = ajbj αφ,· = aiajbjbi for each 
1 < i, j < k. Therefore af € H, [ay, a,·] = [b~\b~l] € Η for 1 < i, j < k. 
By [2], p. 272, it follows that R = Φ(Ζ)) c H. Obviously R is normal in G and 
G/R ~ (AR/R)(BR/R) ~ (A/R)(NR/R) ~ (B/R)(NR/R), where G/R satisfies 
the conditions of Lemma 3.1. Without loss of generality we may suppose now that 
D = CA(N) is an elementary abelian group of rank at most r , and Ä = A/D is 
isomorphic to a subgroup of Aut(jV) ~ GL(n, p). Consider now Ν as a natural Ä-
module over F = GF{p). Let exp(A) = pv Then pv~l < exp(Ä) < pv Therefore 
the minimal polynomial of each ä € A divides x? - 1 = (x - iy In this case 
u = a — 1 is a nilpotent element. It is not difficult to see that ud = 0 for some 
d < dim;? Ν = η. Hence if an integer a satisfies the inequality pa~l < η < pa then 
we have (1 + u)p" = äp = 1 . Thus — 1 4- ν < a. Since a = \\ogp η] by Lemma 
2.7 we have the inequality 

η = \ogp\N\=logp\A H\<\ogp\A\ 
< vr+r [logp r] |"log2 2r~\ + rfop 

< Rogp n]r + r [logp r~\ \log2 2r] + rS2p + r 
= ([logp «1 + 1 + [logp r 1 [log2 2rl + 82p)r. 

The lemma is proved. 

Lemma 3.2. Let the finite p-group G = AN — BN = AB be the product of two 
subgroups A and Β and an elementary abelian normal subgroup Ν of G. Let the 
Prüfer rank of A be bounded by r and each element of order ρ of A lie in its center 
for ρ > 2 and each element of order < 4 of A lie in its center for ρ = 2. Then 
d(N) < r([logp J(iV)] + 1). 

For the proof one only has to replace Lemma 2.7 by Lemma 2.5 in the proof of 
Lemma 3.1. 

The following lemma is obvious. 
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Lemma 3.3. Let G = AB be the product of two normal p-subgroups A and B. If the 
Prüfer rank of A is r\ and the Prüfer rank of Β is then the Prüfer rank ofG does 
not exceed r\ + r2. 

4. Proof of the Main Results 

4.1. Proof of Theorem 1.1 

Assume that Theorem 1.1 is false, and let the finite ρ-group G = AB be a coun-
terexample with minimal order. Let ro = min{r(A), r(B)} and r\ = r(A) + r(B). 
Let Ν be a normal subgroup of G with maximal rank. The subgroup Ν = Ν/Φ(Ν) 
of the factor group G = GJ<P(N) has the same rank as N. Clearly r(A) < r(A) 
and r(B) < r(B) where Λ = ΑΦ(Ν)/Φ(Ν) and Β = ΒΦ(Ν)/Φ(Ν). Hence 
min{r(Ä), r(B)} = r0 < r0 and r\ - r(A) + r(B) < n . If Φ(ΛΤ) φ 1 then 
r(N) = r(N) satisfies the inequality 

r„(G) = r(N) < ?0Wogp r(N)] + 1 + \\ogp F01 riog2 2r0l + 82p) + r\. 

Since ro < ro and r\ < r\ then r(N) = rn(G) satisfies the required inequality in 
Theorem 1.1. 

Hence we may assume that Φ (Ν) = 1 and so Wis an elementary abelian normal 
subgroup of G. Now suppose that AN = Η φ G or BN = Η φ G. It is clear that 
Η = (Α Π H)(B Π Η), r(A Γ\Η) + r(B Γ\Η)<η and min{r(A Π Η), r(B Π Η)} < 
ro- Thus rn(G) = r(N) satisfies the conclusion of Theorem 1.1, a contradiction. 
Therefore we may assume that AN = BN = AB = G. Since Ν is abelian, the 
subgroups Α Π Ν and Β Π Ν are normal in G, so that also C = (Α Π N)(B Π Ν) is 
normal in G. By Lemma 3.3 r((Α η Ν)(Β Π Ν) < r(A) + r(B) = rt. If G = G/C, 
then G = ÄB = AN = BN where A = AC/C, Β = BC/C, Ν = NC/C and 
Är\N = I = Β Π N. In particular Ä ~ Β ~ G/N. By Lemma 3.1 we have 

d(N) < r0(\\ogp d(N) 1 + 1 + {\ogp rQ] flog2 2r0l + hp)· 

Furthermore, we have 

rn{G) = r{N) = d(N) < d{N) + r(C) < d(N) + n . 

Since riogp d(N)~[ < Hogpi/(^V)l = flogpr„(G)l the theorem follows. 

4.2. Proof of Theorem 1.2 

Assume that Theorem 1.2 is false, and let the finite p-group G = A Β be a min-
imal counterexample where the two subgroups A and Β are abelian. Let ro = 
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min{r(A), r(2?)} and r\ = r(A) + r(B). As in the proof of Theorem 1.1 it is easy 
to reduce the proof to the case G = AN = BN = AB where Ν is an elementary 
abelian normal subgroup of G with maximal rank. Since C(N) = N(C(N) Π Λ) is 
also abelian then C(N) Π A < Ν and C(N) = N. Hence G/N is isomorphic to a 
subgroup of Aut(N) = GL(n, ρ) where π = r(N) = d(N). Moreover, the subgroups 
ΑΠΛΤ, Β Γ\Ν and ΑΠ Β are central in G so that D = ΑΓ\Β = ΑΠΝΓ\(ΒΠΝ). From 
|G| = |A| |ß | / |D| = |A||W|/|A C\N\ = \B\\N\/\B Π N\ it follows that \G/N\2 = 
(|A|/|A η η ν|) = |G||z>|/(|A η jviib η ν|). if ζ = (α η νχβ η ν), 
then \Z\\G/N\ = \N\. Hence if |Z| = px then the Jordan form of each element of 
the group G/N = Α/(Α Π N) has at least χ Jordan matrices. Now the maximal size 
of a Jordan matrix is less than η — χ + 2. It follows from the proof of Lemma 3.1 
that logp(exp(G/N)) does not exceed [logp (η — χ +1)1. By Lemma 2.5 this implies 
logp(\G/N\) < r0riogp(n - jc + 1)1 and η - χ < r0riogp(n - * + 1)1. We have 
η < ro Tlogp (π — *+1)] with χ < r\. Now the function ft = roriogp(n— jc-hl)"|-hjc 
is increasing in the interval 0 < χ <r\. Thus π < max(fi) = roriogp(n—γι + 1)1+γι. 
This proves Theorem 1.2. 
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Locally Soluble Products of Two Mfnimax 
Subgroups 

Bernhard Arnberg and Yaroslav P. Sysak* 

1. Introduction 

Lennox and Roseblade in [4] and Zaitsev in [13] have shown that a soluble group 
G = AB, which is the product of two polycyclic subgroups A and B, is likewise 
polycyclic. Moreover, Wilson in [11] and independently Sysak in [9] proved that 
a soluble product of two minimax subgroups is likewise a minimax group. These 
authors obtained similar theorems for the finiteness conditions "finite Prüfer rank" 
and "finite abelian section rank" (see [9] and [12]). 

The question arises whether these results can be extended to locally soluble prod-
ucts of two subgroups (see [2], Question 10). Obviously by the theorem of Lennox, 
Roseblade and Zaitsev also locally soluble products of two polycyclic groups are poly-
cyclic. But even locally finite-soluble products of two subgroups with finite abelian 
section rank need not have finite abelian section rank (see [8], Theorem 1, p. 4). 

In this note we consider locally soluble products of minimax groups. Recall that a 
group G is a minimax group if it has a finite series whose factors satisfy the minimum 
or the maximum condition for subgroups. 

Theorem 1.1. If the locally soluble group G = AB is the product of two minimax 
subgroups A and B, then G is a soluble minimax group 

The proof of Theorem 1.1 will be reduced to the case when G is hyperabelian by 
the following result. Recall that a group G if residually of bounded finite Prüfer 
rank if there exist normal subgroups Ni of G with N, = 1 and a positive integer 
k such that the Prüfer ranks r, of the factor groups G/Ni satisfy r,· < k for every i 
in the index set I. Here a group is said to have finite Prüfer rank r if all its finitely 
generated subgroups can be generated by r elements and r is the least positive integer 
with this property. 

*The second author likes to thank the Department of Mathematics of the University of Mainz, 
Germany, for its excellent hospitality during the preparation of this paper in 1993. He would also like 
to thank the International Science Foundation for the possibility to attend the Conference "Groups -
Korea 1994" 
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Theorem 1.2. If the locally soluble group G is residually of bounded finite Prüfer 
rank, then G is hyperabelian. 

The proof of Theorem 1.2 depends on the following proposition about the en-
domorphism ring of an abelian group of finite Prüfer rank, which is of independent 
interest. 

Proposition 1.3. Let Μ be an abelian group of finite Prüfer rank r. Then the endo-
morphism ring End Μ satisfies the standard polynomial of degree 2r 

The results of this note have earlier been published as Preprint No. 2 (November 
1993) of the Preprint-Reihe des Fachbereichs Mathematik der Johannes Gutenberg-
Universität Mainz. The notation is standard and can be found in [2], [5], [7] and [6]. 
In particular the Prüfer rank of the group G will be denoted by r(G). 

2. Proof of Proposition 1.3 

Recall that the standard polynomial of degree η is the polynomial 

Sn(xi, ...,*„) = 5ZjT€Syin(n)(s8n7r)*wl '" "**«· 

The ring R satisfies the standard polynomial of degree η if 5 n ( n , . . . , rn) = 0 for 
all elements r\, Γ2,..., rn of R. It is easy to see that the property that a ring satisfies 
the standard polynomial for some degree η is inherited by subrings, factor rings and 
cartesian products. The theorem of Amitsur and Levitzki says that the ring Mn(R) 
of η χ η-matrices with coefficients in the commutative ring R satisfies the standard 
polynomial of degree 2η (see [6], Theorem 1.4.1). 

Proof of Proposition 1.3. Assume first that the abelian group of finite Prüfer rank 
Af is radicable. If Μ is a p-group or torsion-free, then End Af is isomorphic to the 
ring of matrices Mr(K) over the field Κ of p-adic numbers or of rational numbers, 
respectively. Hence End Μ satisfies the standard polynomial of degree 2r by the the-
orem of Amitsur and Levitzki. Clearly if Μ is periodic, then End Μ also satisfies this 
polynomial identity. Therefore we may suppose that the maximal periodic subgroup 
Τ of Μ satisfies 1 c Τ c M. 

The endomorphism rings End Τ and End M/T satisfy the standard polynomials 
of degree m and η respectively, where m = 2r(T) and η = 2r(M/T). We will show 
that End Μ satisfies the standard polynomial of degree η + m. The restriction of an 
endomorphism α of Μ onto Τ is an endomorphism of 7\ the subring Hom(M, Τ) is an 
ideal of End Μ and the factor ring End M/ Hom(M, T) is isomorphic with End M / T 
Therefore if a\,..., am, a m + i , . . . , am+n are arbitrary endomorphisms of Μ and t 
is an element in Γ, it follows that Sm(a\,..., am)(t) = 0 and S „ ( a m + i , . . . , am+n) 
belongs to Hom(M, T). Hence for every element a in Μ we have 
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SM(A\,..., a m ) (S„ (a m + i , . . . , am + n)(a)) = 0. 

This implies SM+N(Ai,..., AM, AM+I,..., AM+N) = 0, since 

•Sm+n(*l» · · · . *m+«) = 2Zjres(s£n π)$ηι(ΧπΙ» · · · . •**«)·$/» (*jr(m+l)» · · ·« *JT(m+n))> 

where S is the set of all permutations of the symmetric group Sym(m + n) such 
that for every subset of Ν = {1, . . . , m + η} with m elements ι ' ι , . . . , i m there is 
a permutation π in S with π 1 = i\,..., πm — im and n(m + i) is the minimal 
number in the complement set of {π 1 , . . . , πm, π(m + 1 ) , . . . , π(ητ + 1 — 1)} in Ν. 
Since r(M) = r(T) + r(M/T), it follows that the ring End Μ satisfies the standard 
polynomial of degree m + η = 2 r(T) + 2 r(M/T) = 2 (Γ(Γ) + r(M/T)) = 2 r. This 
concludes the proof of Proposition 1.3 for radicable groups. 

Suppose now that Μ is arbitrary and let Μ be the radicable hull of M. Then 
r(M) = r(M). By a theorem of Dlab (see [3], Satz 5) 

End Μ ~ EndM(M, M)f End 0 (^ , M), 

where Endm(M, Μ) is the subring of all endomorphisms of Μ which map Μ into 
itself and Endo(M, M) is the ideal of EndA/(M, M) consisting of all endomorphisms 
of Μ which map Μ onto 0. We have shown above that the ring End Μ satisfies the 
standard polynomial of degree 2r. In particular the subring Endjvf(M, M) and so also 
its factor ring Endm(M, M)f Endo(M, Μ) ~ End Μ satisfy the standard polynomial 
of degree 2r. This proves Proposition 1.3. 

3. Proof of Theorem 1.2 

For the proof of Theorem 1.2 we need the following lemmas. 

Lemma 3.1. Let the group G be the cartesian product of hyperabelian groups of 
bounded Prüfer rank. Then there exists a normal subgroup Μ of G which is nilpotent 
of class at most 2 such that the factor group G/M is embedded in the multiplicative 
group of a ring with the standard polynomial identity. 

Proof Let Η be a hyperabelian group and let Ν be a maximal normal subgroup 
of G with class at most 2. Then Z(N) = CH(N) (see for example [7], Chapter 2, 
proof of Proposition 3). The intersection CH(Z(N)) Π Ch(N/Z(N)) is a nilpotent 
normal subgroup of G with class at most 2 by a lemma of Kaluznin (see [7], Chapter 
1, Proposition 10). Since Ν = CH(N/Z(N)) Π CH(Z(N)), the factor group H/N is 
a subgroup of the direct product of the groups H/Ch(N/Z(N)) and H/Ch(Z(N)). 
Now these groups are embedded in End Ν/Ζ (Ν) and End Ζ (Ν), respectively. If 
r(H) < r , then the rank of the abelian groups N/Z(N) and Z(N) is likewise at most 
r. By Proposition 1.3 the rings End Ν/Z(N) and End Z(N) and therefore also their 
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direct product satisfy the standard polynomial of degree 2r. Thus the factor group 
H / N is embedded in the multiplicative group of a ring which satisfies the standard 
polynomial of degree 2r. 

Now let G = CrisJ Hi be the cartesian product of hyperabelian groups Hi with 
r(Hi) < r, and let A/, be a maximal nilpotent normal subgroup of //, with class at 
most 2. Then Μ = Cr<ey Af, is a nilpotent normal subgroup of G of class at most 2 
such that the factor group G/M has the desired property. 

Lemma 3.2. A locally soluble subgroup of the multiplicative group of a ring with 
polynomial identity is hyperabelian. 

Proof. Let R be a ring with polynomial identity. By Proposition 1.6.25 of [6] the nil 
radical Ν = N(R) of R contains a non-zero nilpotent ideal of R or Ν = 0. If / is a 
nilpotent ideal of R, then 1 + / is a nilpotent normal subgroup of the multiplicative 
group R* of R (see [7], Chapter 1, Proposition 9). Hence 1 + Ν is anormal subgroup 
of R* which has an ascending invariant series of R* with abelian factors. By Theorem 
1.6.27 of [6] the factor ring R/N is embedded in the ring of matrices Mr(Z[*]) for 
some degree r, as it has trivial nil radical. Since the factor group R*/(\ +N) is a linear 
group of degree r over the noetherian commutative ring Z[x], every locally soluble 
subgroup of R*/( 1 + N) is soluble (see [10], 13.12). It follows that every locally 
soluble subgroup of R* is hyperabelian. 

Proof of Theorem 1.2. Let the locally soluble group G be residually of bounded finite 
Prüfer rank. Every locally soluble group with finite Prüfer rank is hyperabelian (see 
[5], Vol. 2, p. 179). Therefore the group G is isomorphic with a subgroup Η of a 
cartesian product C of hyperabelian groups with bounded finite Prüfer rank. It follows 
from Lemma 3.1 that C contains a nilpotent normal subgroup Μ such that C/M is 
embedded in the multiplicative group of a ring with a polynomial identity. By Lemma 
3.2 the locally soluble subgroup HM/M ~ H/(H Π Μ) of C/M is hyperabelian. 
Since Η Π Μ is nilpotent, also Η and its isomorphic copy G are hyperabelian. This 
proves Theorem 1.2. 

4. Proof of Theorem 1.1 

A group G satisfies the weak minimum condition for subgroups if every descending 
chain of subgroups 51, has only finitely many infinite indices |S;+i The weak 
minimum condition for normal subgroups is defined accordingly. 

Lemma 4.1 (Amberg [1], Theorem 2.5). If the group G = AB is the product of two 
subgroups A and Β with weak minimum condition for subgroups, then G satisfies the 
weak minimum condition for normal subgroups. 
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Proof. Let U and V be normal subgroups of G such that U C V and the indices 
IAV AU I and |(Λ η V) (Λ Π £/)| are finite. Then the following indices are finite: 

\V U(AHV)\ = \V (V Π AU)\ = \AV : AU\ 

and 

\U(ADV) L/| = | ( A n V ) (Λ Π l/) | . 

Therefore the following index is also finite as a product of two finite indices: 

\V U\ = \V U (Α Π V)| |Z7 (Α Π V) U\ = \AV AC/||(ADV) (Α Π £/) |. 

It is now easy to derive the lemma from this fact. 

Proof of Theorem 1.1. It suffices to show that the locally soluble group G is hyper-
abelian, since then G is a minimax group by [9], Corollary A. Since every epimorphic 
image of G is likewise a locally soluble product of two minimax subgroups we only 
need to show that the group G φ 1 has a non-trivial abelian normal subgroup. By 
Lemma 4.1 the group G satisfies the weak minimum condition for normal subgroups. 
Therefore there exists a normal subgroup Ν of G such that either 

(1) Ν is a minimal normal subgroup of G, or 

(2) for all normal subgroups Μ of G contained i Ν the factor group N/M is finite 
and the intersection of all these normal sul groups Μ is trivial. 

In case (1) the minimal normal subgroup Ν of the locally soluble group G is 
abelian (see [5], Vol. 1, Corollary 1 to Theorem 5.27). Therefore we may suppose 
that Ν satisfies condition (2). The factorizer of Ν has the triple factorization 

X = X(N) = Ν Αι = ΝΒι = A\B\ 

where A\ = Α Π BN and B\ = Β Π AN are minimax groups. Let Μ be a normal 
subgroup of G such that Μ <~ Ν and N/M is finite. Then 

X = X/M = NÄ ι = ΝΒί = ΑλΒλ 

where Ν = N/M, A\ = A\M/M and B\ = B\M/M. Here Ν is a finite normal 
subgroup of X. Since Äj_ and B\ are soluble minimax groups and in particular have 
finite Prüfer ranks, also X has finite Prüfer rank bounded by a function of the Prüfer 
ranks of A and B\ see [2], Theorem 4.3.5. Therefore every such factor group X/M 
has bounded Prüfer rank. Hence X is residually of bounded finite Prüfer rank. By 
Theorem 1.2 the group X is hyperabelian and so by the Theorem of Sysak and Wilson 
it is a soluble minimax group; see [9], Corollary A. This implies that Ν contains a 
non-trivial abelian normal subgroup of G. Theorem 1.1 is proved. 



14 Β. Amberg and Y. P. Sysak 

References 

[1] Amberg, Β., Factorizations of infinite groups, Habilitationsschrift, Univ. Mainz (1973). 
[2] Arnberg, Β., Franciosi, S., and de Giovanni, F., Products of groups, Clarendon Press, 

Oxford (1992). 
[3] Dlab, V., Die Endomorphismenringe abelscher Gruppen und die Darstellung von Ringen 

durch Matrizenringe, Czech. Math. J. 7 (1957), 485-519. 
[4] Lennox, J. C., and Roseblade, J. E., Soluble products of polycyclic groups, Math. Ζ. 

170 (1980), 153-154. 
[5] Robinson, D. J. S., Finiteness conditions and generalized soluble groups, Vol. 1 and 2, 

Springer, Berlin (1972). 
[6] Rowen, L. H., Polynomial identities in ring theory, Academic Press, New York (1980). 
[7] Segal, D., Polycyclic groups, Cambridge University Press, New York (1980). 
[8] Sysak, Y. P., Products of periodic groups, Preprint 82.53, Akad. Nauk Ukrain. Inst. Mat. 

Kiev (1982). 
[9] Sysak, Y. P., Radical modules over groups of finite rank, Preprint 89.18, Akad. Nauk 

Ukrain. Inst. Mat. Kiev (1989). 
[10] Wehrfritz, B. A. F., Infinite linear groups, Springer, Berlin (1973). 
[11] Wilson, J. S., Soluble products of minimax groups and nearly suijective derivations, J. 

Pure Appl. Algebra 53 (1988), 297-318. 
[12] Wilson, J. S., Soluble groups which are products of groups of finite rank, J. London 

Math. Soc. (2) 40 (1989), 405^19. 

[13] Zaitsev, D. I., Factorizations of polycyclic groups, Mat. Zametki 29 (1981), 481-490. 



A Group-Theoretic Reduction of 
J. H. C. Whitehead's Asphericity Question 

W. A. Bogley and Μ. N. Dyer 

Abstract. J. H. C. Whitehead asked in 1941 whether subcomplexes of aspherical two-
complexes are aspherical. The question remains unanswered as of this writing. In this note 
we use a theorem of J. Howie to show that Whitehead's question can be reduced to two 
problems in combinatorial group theory. Some partial results are surveyed. 
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1. Introduction 

This article is concerned with group-theoretic aspects of the following topological 
question, which was posed by J. H. C. Whitehead in 1941 [W41]: "Is any subcomplex 
of an aspherical, 2-dimensional complex itself aspherical?" A 2-dimensional complex 
is a CW complex in which each cell has dimension at most two; in short, what we 
will call a two-complex. A connected space is aspherical if its universal covering 
is contractible. For a connected two-complex X, this is equivalent to saying that the 
second homotopy group πιΧ is trivial. 

A survey of the extensive work that has been done on Whitehead's question appears 
in [B93]. The purpose of this article is to publicize the fact that Whitehead's question 
can be reduced to a pair of problems in combinatorial group theory. It is hoped that 
the group-theoretic formulations that are presented here will stimulate further work 
on the problem. 

Interest in Whitehead's question can be motivated by the fact that the complement 
of any tame knot in the three-sphere has the homotopy type of a two-complex that can 
be embedded in a finite contractible two-complex. A positive solution to Whitehead's 
question therefore holds the promise of a (new) proof of the asphericity of knot com-
plements. A footnote included in the midst of Whitehead's original question [W41, 
Footnote 30] suggests that this prospect may have been uppermost in Whitehead's 
mind at the time. 

Our group-theoretic reduction of Whitehead's question is based on a topological 
reduction of the problem that appears in the following theor^.n due to J. Howie. 
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Theorem 1 ([H83]). If the answer to Whitehead's question is NO, then there exists a 
connected two-complex L such that either 
1. L is finite and contractible and L — e is not aspherical for some open two-cell e 

of L, or 
2. L is the union of an infinite ascending chain of finite connected nonaspherical sub-

complexes KQ C K\ C where each inclusion KJ-\ C KI is nullhomotopic. 
• 

The situation in 1.1 will be referred to as the finite case; 1.2 will be called the infinite 
case. Of course, there is a converse to Howie's theorem in the sense that if there 
is a two-complex L with the properties described in either the finite or the infinite 
case, then the answer to Whitehead's question is NO. In addition, it has been shown 
by E. Luft [L94] that if there is a two-complex L of the sort described in the finite 
case, then there is also an example of the sort described in the infinite case. Thus, 
Whitehead's question actually reduces to the infinite case. This does not detract from 
the finite case however, which is still very interesting. 

We will show that each of the two cases in Theorem 1 can be reduced to a problem in 
combinatorial group theory. The finite case leads to a problem (Theorem 3) concerning 
intersections of normal subgroups in finitely generated free groups. A partial result 
(Theorem 4) essentially solves the problem modulo the central series, and leads to a 
question about residual nilpotence of certain groups. In the infinite case, we reduce 
Whitehead's question to one that concerns the existence of groups admitting certain 
ascending chains of normal subgroups. The particulars are given in Theorem 2. 

Following this introductory section, the infinite case is discussed in Section 2. Sec-
tion 3 treats the finite case. All spaces in this paper will be connected two-complexes. 
Basepoints for homotopy groups will be suppressed from the notation, but will always 
be taken to be a fixed zero-cell. If A and Β are subgroups of a group G, then [A, Β] 
denotes the subgroup of G that is generated by all commutators [a,b](a € A, b € B), 
where [a, b] = aba~lb~l If A and Β are normal in G, then so is [A, ß], and in this 
case we also have [A, B] C Α Π Β. The lower central series is defined inductively by 
Gi = G and G„+i = [G, Gn]. All homology groups will be computed with integer 
coefficients. 

2. The Infinite Case 

The possibility of constructing an example as in the infinite case has been considered 
by M. Dyer [D92]. Suppose that a connected two-complex L is given as a union 
K0 C Κι C C U; Ki = ^ as in 1.2. Replacing each Kt by Kt U L(1), where L(1) 

denotes the one-skeleton of L, we have that for each i > 1, Ki is obtained from 
by attaching two-cells (so that the inclusion-induced homomorphism π\ if, _i —> π\ Ki 
is surjective) and the inclusion-induced map π^ΑΓ,-ι is trivial. 
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For an inclusion of two-complexes, the triviality of the induced map on second 
homotopy modules can be formulated in terms of the subgroup structure of the fun-
damental group of the subcomplex. Following [BD81], let X be a connected two-
complex and let Ν < π ι X. The two-complex X is N-Cockcroft if the lifted Hurewicz 
map π^Χ —• HiXn is trivial, where Xn X is the covering corresponding to N. 
This property derives its name from its earliest consideration by W. H. Cockcroft in his 
work on Whitehead's question [C51]. Note that if X is Ν-Cockcroft and Ν' <π\Χ 
contains some 7TiX-conjugate of N, then X is //'-Cockcroft. Also, X is Cockcroft Ο-
Χ is 7Γι X-Cockcroft, while X is aspherical X is {l}-Cockcroft. Our interest in the 
Cockcroft properties comes from the following elementary observation. 

Lemma 1. Suppose that X is a subcomplex of a connected two-complex Y. The 
inclusion-induced map π2Χ it^Y is trivial if and only if X is ker i#-Cockcroft, 
where i# πιΧ —> π\ Y is the inclusion-induced homomorphism of fundamental 
groups. 

Proof Let ρ Ϋ Y be the universal covering and let X be a connected component 
of ρ~λ(Χ)\ the restriction of ρ then determines the covering X X corresponding 
to ker i# < π\Χ. Since π-χΥ -*• HiY and H^X H^Y are both injective, it readily 
follows that πιΧ πιΥ Ο πιΧ fyX. • 

Quite a lot of work has been done on Cockcroft properties in recent years. Of 
particular group-theoretic interest is the fact, due independently to J. Harlander [H94] 
and to N. Gilbert and J. Howie [GH94], that for any two-complex X, there is a minimal 
subgroup Η of π\ X such that X is //-Cockcroft. Such minimal subgroups are referred 
to as Cockcroft thresholds for X. Informally, it is appropriate to say that if X has a 
"small" Cockcroft threshold, then X is "nearly" aspherical. 

If X is any topological space, it is obvious that a spherical map S2 X can be 
rendered nullhomotopic by attaching a three-cell to X: One simply uses the spherical 
map to attach the three-cell! Somewhat less obvious is the fact that essential spherical 
maps into two-complexes can be rendered nullhomotopic simply by adding two-cells. 
The following sort of example is fairly well known. Let X be the real projective plane, 
modeled on the presentation (a a2) for the cyclic group of order two. Thus, X is 
constructed by attaching a disc to a circle S^ by a two-fold wrap of the boundary 
circle of the disc onto Sj. One has that H2X = 0 and that π^Χ is infinite cyclic, 
since X is covered by the two-sphere. Let Y be the two-complex modeled on the 
presentation (a : a2, a) for the trivial group. Thus, Y is obtained from X by attaching 
another disc to X, this time using a homeomorphism of the boundary circle in the 
disc with Si. Now Y is simply connected (in fact Y has the homotopy type of the 
two-sphere), and so the Hurewicz homomorphism ττ2Y —• HiY is an isomorphism 
(of infinite cyclic groups). It follows that the inclusion-induced map πιΧ —• πιΥ 
factors through H2X = 0, and so this map is trivial. (Thus, X is π\ X-Cockcroft.) 
However, this process can not be repeated in any fashion, for if Y is a subcomplex of 
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any two-complex Z, then j ^ F = HiY φ 0 embeds in HiZ, and so it^Y -> π^Ζ is 
nontrivial. In other words, Y is not it\ F-Cockcroft. 

Coupled with this example, Lemma 1 reveals the main difficulty in attempting 
to construct a two-complex L = (J;>o ^ e sort described in the infinite case. 
Having constructed ÄT,-_ι, one must add (two-)cells in such a way that the resulting 
adjunction space AT,· has a suitable Cockcroft property. We examine the requirements 
from a group-theoretic perspective. 

Suppose that X is a connected two-complex and that 

F = X U | J c* and Z = K u ( J ^ 
azA βεΒ 

are obtained from X by attaching two-cells. Set G = π\Χ. For each a g A, let 
aa g G denote the (based) homotopy class of an attaching map for the two-cell 
The element aa is well-defined up to conjugacy in G. In the same way, let bß g G be 
the based homotopy class for an attaching map of dp. We set 

A = ker(7TiX πι Y) and Β = ker(;riX π\ Ζ) 

so that A < Β < G where Λ and Β are normal subgroups of G. Note that A is 
normally generated in G by {aa a g A) and Β is normally generated in G by 
{aa a g A} U {bß β G Β). We have that π\Υ = G/A and τη Ζ = G/B. The 
abelianized group Hi A = A/[A, A] is a (left) ZG/A-module under conjugation in 
G: 

ga[A,A]=gag-l[A,A] 

for all g G G and for all α € A. This module is ZG/A-generated by {αα[Α, A] : a g 
.A}. Killing the action of the subgroup BfA of G/A, the group 

A/[A,B] = Z®b/aHxA 

is a ZG/ß-module with generators {aa[A, Β]: a e A}. 

Lemma 2. If πιΧ πιΥ, then %ιΥ 7Γ2Ζ if and only if both of the following 
conditions are satisfied. 
1. A/[A, Β] is a free XG/Β-module with indexed basis {aa[A, 5 ] : a G A). 
2. HiB —> HjB/A is injective. 

Proof Let X, Y, and Ζ denote the universal covering complexes for X, Y, and Z, re-
spectively. As shown in the following diagram of inclusions and covering projections, 
let X and X denotethe preimages of X in Κ and Z, respectively, and let Y denote the 
preimage of Y in Z. All of these spaces are connected. The covering complexes X 
and X of X are those corresponding to the subgroups A and Β of G = π\ X, respec-
tively. The covering complex Y of Y is that corresponding to the subgroup B/A of 
G/A = π\ Y. Assuming the 7Γ2Χ π%Υ is trivial, it follows that it^X —• H^X is 
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trivial by Lemma 1. This implies that π2Χ —> H2X is the zero map, and it follows 
that the natural surjection H2X Η2π\Χ = H2B is an isomorphism. 

X 
1 

X c Y 

1 \ 
X c Y 

Ul 

1 1 1 
X c Y C z 

By Lemma 1, the map π2Y —> π2Ζ is trivial if and only if π2Υ -> H2Y is the 
zero map. Using the fact that H2X H2Y is injective and H2X H2B is an 
isomorphism, a chase in the following commutative diagram (which has exact rows 
and columns) shows that π2Υ —• π2Ζ is trivial if and only if H2B —• H2B/A is 
injective and the composite {π2Υ H2Υ H2{Y, X)) is the zero map. 

π2Υ —• H2(Y,X) —* HiX 

H2X —• H2Y —* H2(Y,X) —• HiX 

H2B —* H2B/A 

It remains to show that the latter condition is equivalent to Precondition 1 of the 
lemma. To see this, note that the boundary map H2(Y, X) H\X can be identified 
with the ZG/A-module epimorphism 

0(ZG/A)ia^ A / [ A , A ] - > 0 
οt&A 

that carries the basis element ta to aa[A, A]. This follows by excision since Y is 
obtained from X by attaching one two-cell for each element a e A and the covering 
Υ Y has automorphism group G/A. In addition, the map H2(Y, X) -> H2(Y, X) 
can be identified with the map 

1 <8> - 0(ZG/A) ta Ζ ®b/a 0(ZG/A) ta = 0(ZG/B) ta. 
aeA aeA aeA 

( V _ 

This is because the covering Υ -> Y has automorphism group Β/A. 
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With these identifications, consider the effect of applying the right exact functor 
Ζ ®b/a — to the exact sequence 

π2Υ H2(y, Χ) H\X 0. ___ 

We find that the composite (π2Υ H2Y —• H2(Y, X)) is the zero map if and only 
if the map 

Ζ ®b/a H2(Y, Χ) -> Ζ ®B/A ΗιΧ = A/[A, Β] 

is an isomorphism, as in the condition 1 of Lemma 2. This completes the proof of the 
lemma. • 

Theorem 2. If there is a two-complex L as described in Theorem 1.2, then there 
exists a finite connected nonaspherical two-complex Κ and an infinite ascending 
chain {1} = No < N\ < N2 < < π\Κ of normal subgroups ofn\ Κ such that the 
following two properties hold. 
1. Κ is Ν ι -Cockcroft. 
2. There are subsets r, c π\Κ (i > 1) such that r, 6 r,·} normally 

generates Ni/Ni-1 in πι K/Nj-\ and such that the following two conditions are 
satisfied for each positive integer i. 
(a) Ni/Ni-i[Ni, Ni+i] is a free Z j r \ K / Ν - m o d u l e with indexed basis 

{riNi-i[Ni+i,Ni-i] η 6 r,}. 
(b) H2(Ni+i/Nl^) -* H2(Ni+i/Ni) is injective. 

Conversely, if such a two-complex Κ exists, then the answer to Whitehead's ques-
tion is NO. 

Proof. Suppose that we are given Ko c Κ ι c c (J l > 0 AT,· = L as in Theorem 1.2. 
Replace each of the subcomplexes AT, by the union AT, U L1, where L1 denotes the one-
skeleton of L. Let Κ = Kq\ this two-complex is not aspherical. Each AT, is obtained 
from Κι-1 by attaching two-cells and the inclusion-induced map π2Κϊ-\ -> π2Κι 
is trivial. For each positive integer i, let Ν ι be the kernel of the inclusion-induced 
epimorphism π\Κ π\Κι and let r, be a subset of π\Κ consisting of one based 
homotopy class of an attaching map for each two-cell of AT, — i. Then {1} = 
Nq < N\ < N2 < < n\Kis an ascending chain of normal subgroups of π\ Κ and 

: rf e r,·} normally generates Ni/Ni-1 in ττιΑΓ/_ι = jt\K/Ni-\. 
Now Κ = Kq is Ν ι -Cockcroft by Lemma 1, since π2Κο π2Κ\ is the zero map. 

Fixing a positive integer i, consider the triple 

Ki-l ^ Ki C Ki+i 

and set G = it\Ki-\ = πχΚ/Νι-u A = Ni/Ni-1, and Β = Ni+i/Ni-\. Note 
that A/[A, ß] = Ni/Ni-\[Ni, /V(+i] is a module over the integral group ring of 
G/B = π\Κ/Νΐ+\ and that B/A = Ν,+i/TV,. Since both of these inclusions induce 
the trivial map in second homotopy, Lemma 2 implies that the conditions 2(a) and 
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2(b) of Theorem 2 are satisfied. 
For the converse, suppose that we are given K, Ni and r,· that satisfy the conditions 

1 and 2 in Theorem 2. The two-complex Κ is not aspherical. We will show that the 
answer to Whitehead's question is NO by embedding Κ in an aspherical two-complex 
L. Let KQ — K. For each i > 1 let KI be obtained from KI-\ by attaching two-cells 
along based loops representing the elements r, e r, C π\Κο. By Lemma 1, condition 
1 of Theorem 2 implies that the inclusion-induced map π̂ ΑΓο —• π^ΑΓ] is trivial. 
Arguing inductively, given that π ^ ί - ι —• π̂ ΑΤ, is the zero map, the conditions 2(a) 
and 2(b) of Theorem 2 imply that π̂ ΑΓ,· π^ΑΓ,+ι is trivial by Lemma 2. We set 
L = Uz>o · where L is given the weak topology with respect to the closed subspaces 
KI. The nonaspherical two-complex Κ is thus a subcomplex of the two-complex L, 
and L is aspherical by compact supports. For each spherical map S2 L has its 
image in a finite subcomplex of L, and hence in one of the subcomplexes Kj. This 
spherical map is then nullhomotopic in Kl+\, and hence in L. This shows that the 
answer to Whitehead's question is NO, and so completes the proof of the theorem. • 

We remark that in light of the result of E. Luft that was mentioned in the Intro-
duction [L94], the answer to Whitehead's question is NO if and only if there is a 
two-complex Κ of the sort described in Theorem 2. If one is trying to construct such 
an example, then one seeks a group that contains an infinite ascending chain of normal 
subgroups with certain properties. Theorem 2 indicates that one need only look among 
finitely presented groups; this is because the two-complex Κ is finite. However, if 
one could find a two-complex Κ, not necessarily finite but which otherwise satisfies 
the conditions of the theorem, then the proof of the theorem shows how to embed Κ 
in an aspherical two-complex. 

Before moving to the finite case, we may as well admit that the statement of 
Theorem 2 is not purely group-theoretic. This can be remedied artificially by defining 
a group G to be Ν-Cockcroft (where Ν is a subgroup of G) if there is a two-complex 
with fundamental group isomorphic to G and which is Ν-Cockcroft. In search of 
a nonaspherical subcomplex of an aspherical two-complex via the infinite route, we 
would then be asking for a (finitely presented) group G with an ascending chain 
{1} = No < Νι < Ν2 < · · · of normal subgroups satisfying the conditions 2 and 2 
of Theorem 2, and where G is N\ -Cockcroft but is not {l}-Cockcroft. Less formally, 
one seeks a group G that is not "aspherical" (i.e. is not {l}-Cockcroft), but which 
is "very nearly aspherical" in the sense that it contains a Cockcroft threshold that is 
small enough to sit underneath an ascending chain of a certain restricted type. 

3. The Finite Case 

If L is a finite contractible two-complex and Κ = L — e is obtained by removing 
an open two-cell e from L, then the fundamental group G = π\Κ is a group of 
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deficiency one that has weight one. In other words, G has a finite presentation with 
one fewer relator than generators, and G is normally generated in itself by a single 
element. Moreover, it is not difficult to show that all such groups arise in this way. It 
can be shown that the finite case of Whitehead's question is equivalent to the question 
of whether finitely presented groups having deficiency and weight one must have 
cohomological dimension at most two. See [BDS83] for further discussion. 

Another algebraic approach to the finite case of Whitehead's question leads to the 
study of groups of the form F/[R, 5] where R and S are normal subgroups of a finitely 
generated free group F. In order to state this reduction of the problem, we need some 
terminology. 

Let F be a finitely generated free group with basis χ and let r, s, and t be finite 
subsets of F. Let R, S, and Τ be their normal closures in F, respectively. Let Kr, Ks, 
and Kt be the two-complexes modeled on the group presentations (x : r), (x : s), and 
(x : t), respectively. Let Κ = Kr\JKs and L = Κ U Kt. These are all finite connected 
two-complexes. Now L is simply connected if and only if F = RST Further, L is 
contractible if and only if F = RST and |r | -I- |s| -I- |t| = rank F. In this case we say 
that F = RST is an efficient factorization of F. The following result is proved in 
[B91] and in [B93]. 

Theorem 3 ([B91]). The following two statements are logically equivalent. 
1. Connected subcomplexes of finite contractible two-complexes are aspherical. 
2. I f R and. S are distinct factors from an efficientfactorization of a finitely generated 

free group, then RC\S £[R,S]. 

• 

We shall not reprove this result here, but it is worth mentioning the main ingredient. 
If x, r, and s are arbitrarily given as above and if corresponding two-complexes are 
constructed in the manner indicated, then by [GR81, Theorem 1] there is an exact 
sequence 

RCiS 
π2Kr Θ π2Ks π2Κ -» —— 0. 

At a fundamental level, this is the result that explains our interest in the group Q = 
F/[R, S]. Note that the subgroup Θ = (R Π S)/[R, 5] is naturally a module over the 
integral group ring of F/RS, via conjugation in F. This module has been studied in 
[B84] and in [HK91], to name two sources. 

Returning to Whitehead's question, in the finite case there is a partial result on the 
group-theoretic problem. 

Theorem 4 ([B91]). If R and S are distinct factors from an efficient factorization of 
a finitely generated free group F, then 

RnS^f)[R,S]Fn. 
n> 1 
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It follows easily that the quotient (R Π S)/[R, 5] embeds naturally in β ω = 
Ππ>ι Qn- The proof of Theorem 4 essentially amounts to a determination of the 
structure of the Lie algebra that is built out of the lower central series of Q [B91, 
Theorem 2]. In particular it is shown that Qn/Qn+1 is finitely generated and free 
abelian for all η > 1. Little seems to be known about β ω however. With Theorem 4, 
one might be led to ask for conditions under which the group Q is residually nilpotent 
(i.e. ζ)ω = 1). 

There are many test cases to consider in the finite case. The model of any finite 
balanced presentation for the trivial group is a finite contractible two-complex. A 
large and interesting class of examples arises as follows. Let Γ be a finite tree with 
vertices VT and (geometric) edges £Γ Assume that each edge of Γ is oriented and 
is labeled by a vertex of Γ (Thus Γ is a labeled oriented tree or LOT.) Associated to 
Γ is a group presentation 

7>(Γ) = (Vr i(e)\(e)t(e)~~x\(e)~x(e € ΕΓ)). 

Here, i (e), λ (e) and t (e) denote the initial vertex, label and terminal vertex of the edge 
e € ΕΓ, respectively. Let /if (Γ) denote the two-complex modeled on V{T). 

It is not difficult to show that upon adding a single relation of the form ν = 1, (υ € 
VT), there results a finite balanced presentation for the trivial group. If we denote the 
cellular model of the presentation Ρ(Γ) by ΑΤ(Γ) (so that ΑΓ(Γ) is an LOT complex), 
then ΑΤ(Γ) is a connected subcomplex of a finite contractible two-complex. If one 
wishes to prove that there are no examples of the sort described in the finite case, one 
must therefore prove that LOT complexes are aspherical. J. Howie has proved some 
partial results in this area [H85]. Notably, if an LOT Γ has diameter less than four, 
then Α"(Γ) is aspherical. A crucial element in Howie's proof is the fact that a tree of 
diameter three has at most two nonextremal vertices. The structure of larger trees can 
be far more varied. The complexes ΑΤ(Γ) therefore provide a wide open playing field. 

This area includes the connection to knots that was mentioned in the introduction, 
for the complement of any tame knot in the three-sphere has the homotopy type of an 
LOT complex. See [H83, H85] for references and further discussion. It is an open 
question whether each proper subcomplex of a finite contractible two-complex has 
the homotopy type of a subcomplex of an LOT complex. 

We close with the following problem, which is seen to contain a large and inter-
esting portion of Whitehead's question. Let Γ be a labeled oriented tree. Let F be the 
free group on the set of vertices of Γ and let r U s be a nontrivial partition of the set of 
edges of Γ. Let R (resp. S) be the normal closure of the set of all element of the form 
» » Λ Φ Ί Ί Β ) " ^ * ) " 1 , where e E r (resp. e G S). Is R Π S = [/?, 5]? Equivalently, 
does Q = F/[R, S] embed in F/R χ F/Sl If not, then the answer to Whitehead's 
question is NO. 



24 W. A. Bogley and Μ. Ν. Dyer 

References 

[B91] W. A. Bogley, An embedding for JT2 of a subcomplex of a finite contractible two-
complex, Glasgow Math. J. 33 (1991), 365-371. 

[B93] W. A. Bogley, On J. H. C. Whitehead's asphericity question, in: Two-dimensional 
Homotopy and Combinatorial Group Theory (C. Hog-Angeloni, W. Metzler, and 
A. J. Sieradski, eds.), London Math. Soc. Lecture Note Ser. 197, Cambridge Uni-
versity Press, 1993, 309-334. 

[BD81] J. Brandenburg and Μ. N. Dyer, On J. H. C. Whitehead's aspherical question I, 
Comment. Math. Helv. 56 (1981), 431-446. 

[BDS83] J. Brandenburg, Μ. N. Dyer and R. Strebel, On J. H. C. Whitehead's aspherical 
question Π, in: Low Dimensional Topology (S. Lomonaco, ed.), Contemp. Math. 
20 (1983), 65-78. 

[B84] R. Brown, Coproducts of crossed -modules: Applications to second homotopy 
groups and to the homology of groups, Topology 23 (1984), 337-345. 

[C51 ] W. H. Cockcroft, Note on a theorem by J. H. C. Whitehead, Quart. J. Math. Oxford 
Ser. (2) 2 (1951), 159-160. 

[D92] Μ. N. Dyer, Cockcroft 2-complexes, preprint, University of Oregon, 1992. 

[GH94] N. D. Gilbert and J. Howie, Threshold subgroups for Cockcroft 2-complexes, 
Comm. Algebra, to appear. 

[GR81 ] M. A. Gutierrez and J. G. Ratcliffe, On the second homotopy group, Quart. J. Math. 
Oxford Ser. (2) 32 (1981), 45-55. 

[H94] J. Harlander, Minimal Cockcroft subgroups, Glasgow Math. J. 36 (1994), 87-90. 

[HK91 ] Β. Hartley and Yu. V. Kuz' min, On the quotient of a free group by the commutator 
of two normal subgroups, J. Pure Appl. Algebra 74 (1991), 247-256. 

[H83] J. Howie, Some remarks on a problem of J. H. C. Whitehead, Topology 22 (1983), 
475-485. 

[H85] J. Howie, On the asphericity of ribbon disc complements, Trans. Amer. Math. Soc. 
289 (1985), 281-302. 

[L94] E. Luft, On 2-dimensional aspherical complexes and a problem of J. H. C. White-
head, preprint, University of British Columbia, 1994. 

[W41] J. H. C. Whitehead, On adding relations to homotopy groups, Ann. of Math. 42 
(1941), 409-428; Note on a previous paper, Ann. of Math. 47 (1946), 806-809. 



Efficiency and Direct Products of Groups 

Melanie J. Brookes, Colin M. Campbell 
and Edmund F. Robertson 

Abstract We extend techniques introduced in [3] to obtain effici '.nt presentations for certain 
direct products and give some general results. 

1991 Mathematics Subject Classification: 20F05 

1. Introduction 

Let V be the finite presentation (X \ R). The deficiency ofV is |/?| - |X| and, ifV 
defines a finite group, the deficiency of V is non-negative. The deficiency of a group 
G, def G, is the minimum of the deficiencies of all finite presentations of G. It is well 
known that def G > rk(M(G)) where M(G) is the Schur multiplier of G. A group 
G is said to be efficient if def G = rk(M(G)). 

The efficiency of finite groups has been studied over many years; see for example 
[5], [11]. In particular the efficiency of direct products of groups, stimulated by 
questions asked by Wiegold in [11], has been studied by several authors; see for 
example [5], [7], and [8]. Recently a new approach to finding efficient presentations 
for certain direct products was suggested by Izumi Miyamoto and is used in [3] to show 
that, for ρ a prime, PSL(2, ρ) χ SL(2, p) and PSLil, ρ) χ PSL(2, ρ) χ PSL(2, p) 
are efficient. 

In this paper we extend Miyamoto's method and prove a more general theorem. 
We then apply the theorem to obtain other classes of efficient direct products of groups. 
The key idea in Miyamoto's method is contained in the following easily proved result: 

Lemma 1.1 (Lemma 2.1 of [3]). Let G be a group with a,b e G satisfying a€ = 
where e,S = ±1, m and η integers. Then {a, b) is a cyclic subgroup of G 

and ae~mn = bSn. 
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2. Some Direct Products of Groups Having Trivial 
Multiplier with Those Having Cyclic Multiplier 

Our first result on efficient direct products generalises the efficiency of the group 
PSL{2, ρ) χ SL(2, p). 

Theorem 2.1. Let G\, G2 be finite perfect groups with trivial centres, G\ having 
multiplier C2 and Gi having trivial multiplier Let G\, G2 have presentations of the 
form 

(a, b I aai = ba2 = (ab)a* = w(a, b) = 1) 
<*, y\xßl= yßl = (xy)ß3 = u(x, y) = l> 

with the α,, βι satisfying the congruences ßj = ±\ (mod a\), ß2 = ±1 (mod «3), 
«2 ξ ±1 (mod ^i), 013 ξ i l (mod β\). Let the group G, given by the presentation 
below, be perfect: 

(a, b,x, y I (xy^dxy^^a)01' = y**(ylfcMI<nab)a* = 
(ab)±l((ab)^iyßix)ßi = = α~αιχν(α, b)v(x, y) = 1). 

(The four congruences decide the choice of ± and ψ in each of the four relations so 
that all of the powers within the relations are integer powers. In each relation one is 
chosen to be + and the other —.) 

Let G1 be such that in the group presented by 

(a, b I ααχ — s, bai — (ab)a3 = u, w(a, b) = t\ s, u, t central involutions) 

we have s — t and let Gj be such that 

(x, y I xßl = yßl = u, (xy)ß3 = s, v(x, y) = 1; u, s central involutions) 

is perfect. Then G = G1 x Gj and so this direct product is efficient. 

Proof By Lemma 1.1, the following relations hold in G: 

[ab, y] = [ab, χ] = [b, χ] = [a, xy] = 1, 
ba2 = (ab)a3 = χ~βι = y-h, a0" = (xy)~ß\ 

Let Η = {a, b), Κ = (χ, y). From the relations [ab, χ] = 1 and [b, *] = 1 we have 
[a, x] = 1. Similarly we have [a, y] = 1 and [b, y] = 1. Hence [//, AT] = 1. Let 
D = (xß\ (xy)h, v(x, y)). Clearly D < ΗΠΚ < Z{G) and, since G/D = G\xG2 
which has trivial centre, we must have that D = Η Π Κ = Z(G). G is perfect with 
D central and G/D = Gi χ Gi so, by Lemma 4.1 of [12], D must be an epimorphic 
image of M(G\ χ G2). Therefore D is either trivial or cyclic of order two. We also 
have that G/H = K/D = G2 and G/K = H/D = G\. Now, in Η the following 


