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Preface 

This volume is the proceedings of the conference on Automorphic Representations, 
L-functions and Applications: Progress and Prospects, held at the Department of 
Mathematics of The Ohio State University, March 27-30,2003, in honor of the 60th 
birthday of Steve Rallis. 

The term proceedings is used here in the sense that these 14 contributed papers reflect 
many of the main themes and directions of the conference. Among the topics covered 
are: 

Rankin-Selberg L-functions (Bump, Ginzburg-Jiang-Rallis, Lapid-Rallis) 
the relative trace formula (Jacquet, Mao-Rallis) 
automorphic representations (Gan-Gurevich, Ginzburg-Rallis-Soudry) 
representation theory of p-adic groups (Baruch, Kudla-Rallis, Mceglin, 
Cogdell-Piatetski-Shapiro-Shahidi) 
p-adic methods (Harris-Li-Skinner, Vigneras) 
and arithmetic applications (Chinta-Friedberg-Hoffstein). 

The continuing vigor and diversity of research on automorphic representations and 
their applications to arithmetic are clearly reflected here. Also reflected are the depth 
and breadth of Rallis's influence. His vision and energy have been a remarkable 
source of inspiration for many other researchers. We hope that he will enjoy the har-
vest of results contained in this volume. 

We gratefully acknowledge the financial support of the National Science Foundation, 
the Institute for Mathematics Applications (IMA), the Office of the Vice-President 
for Research of The Ohio State University, and the Mathematics Research Institute 
of the Department of Mathematics of The Ohio State University. Also, we want to 
recognize the skilled staff of the Department, Ms. Karen Blessing, Ms. Denise Clark 
and Ms. Marilyn Radcliff, whose professional expertise made possible the smooth 
functioning at the conference. 

The Organizing Committee: 

James Cogdell 
Dihua Jiang 
Steve Kudla 
David Soudry 
Robert J. Stanton 
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Bessel functions for GL(n) over a p-adic field 

Ehud Moshe Baruch 

Abstract. We attach Bessel functions to generic representations of GLn(F) 
where F is a p-adic field and show that they are given locally by orbital 
integrals. 

1. Introduction and main results 

Let F be a non-archimedean local field. In [3] we attached Bessel functions 
to every generic representation of a quasi-split reductive group over F using a 
distribution approach similar to Harish-Chandra's approach for the character 
functions. In the present paper we attach Bessel functions to generic repre-
sentations of GLn(F) using a Whittaker integral method similar to the one 
in [6],[13],[1], [5] and generalizing the results in [4]. As in [4] we show that 
these Bessel functions are given locally by orbital integrals. Hence it follows 
from [12] that they have an asymptotic expansion in terms of the Jacquet-Ye 
germs. 

Acknowledgments. I thank J . Cogdell, H. Jacquet, I. Piatetski-Shapiro, 
and S. Rallis for sharing their insight with me and their constant encourage-
ment. 

1.1. Main results We state here our main theorems. We shall only consider 
here the main Bessel function of a representation which is the one attached to 
the open Bruhat cell. Other Bessel functions are described in Section 8. 

Let G = GLn(F) and let Β be the Borel subgroup of upper triangular 
matrices, A the subgroup of diagonal matrices and Ν the subgroup of upper 
unipotent matrices. Let V be a non-degenerate character of N. Let W = 
Ν {A)/A be the Weyl group where Ν (A) is the normalizer of A. We identify 
W with the set of permutation matrices in Ν (A). This set is also identified 
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with Sn, the symmetric group on η-letters in a natural way. Let 

/ 1\ 

Wo = ( 1 ) 

V 1 / 

be the longest Weyl element in W. Let (π, V) be an irreducible admissible 
representation of G. We say that π is generic if there exists a nonzero functional 
L : V —y C such that 

L(n(n)v) = φ(η)1,(υ) η € Ν, υ € V. 

It is well known that such a functional is unique up to scalar multiples. We 
call this functional a φ Whittaker functional. Now define 

Wv(g) = L(ir(g)v) veV,g<=G. (2) 

and let G act on the space of these functions by right translations. That is, if 
gi € G and W is a function on G then we define 

(p(9iW)(g) = W(g9l), g€G. (3) 

Then the map υ —» Wv gives a realization of π on a space of Whittaker 
functions satisfying 

W{ng) = i>{n)W{g) neN, g e G. 

We denote this space by >ν(π, φ). In Section 3 we define the subspace φ) 
of νν(π, φ). In the case where 7r is supercuspidal we have that >ν°(π, φ) — 
>ν(π, φ). Let α ϊ , . . . , αη_χ be the positive roots realized as functions on A 
(See (19)). Let Μ > 0 be a constant and let 

AM = a M ( W q ) = { a € j 4 . a<(a) < M , i = 1,2, . . . , n - l } . (4) 

Our first main theorem is the following. 

Theorem 1.1. Let W € W°(7r, φ) and Μ a positive constant. Then the func-
tion 

(α, η) ι—• W(awon) 

defined on the set AM xN is compactly supported in N. That is, if W(aw^n) φ 
0 and a € a m 

, η € Ν then η is in some compact set independent of a. 

Since AM cover A as Μ —• oo we get the following corollary. 
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Corollary 1.2. Let π be a supercuspidal representation ofG and W G W(7r, φ) 
a Whittaker function associated to Π. Fix g € BWQB. Then the Junction 

η ι—> W(gn) 

is compactly supported in N. 

Proof. Write g = n\awoU2 and choose Μ large enough such that a € 
Since W(gn) = ·ψ(ηι)\ν(awo^n) the result follows from Theorem 1.1 • 

This result allows us to define Bessel functions for supercuspidal representa-
tions (See Section 6). In order to treat ail irreducible admissible representa-
tions we will need the following result which allows us to move from W(7T, φ) 
tO W°(7T,V). 

Theorem 1.3. Let W e W(n,φ). There exists a compact open subgroup 
N0 = N0(W) of Ν such that the function WNoii> e >νο(π,·0). 

Here defined by 

WNO,M = F W{gn^~\n)dn. 
JN0 Ι NO 

Corollary 1.4. 

W W ) Φ {0} . 

Proof Let W e W(tt, V) be such that W{e) φ 0. Then WNo^(e) φ 0 for 
every compact open subgroup NQ in N. • 

Let Ni C N2 C N3 C . . . be a filtration of Ν with compact open subgroups 
Ni, ΐ = 1 ,2 , . . . , such that Ν = |J~ 1 Nt. We denote this filtration by ΛΛ Let 
f : Ν —* C be a locally constant function. 

Definition 1.5. 
r* 

/ f{n)dn = lim I f{n)dn 
J Ν M->OO JNM 

if this limit exists. 

Corollary 1.6. Let Μ - {Ni,i > 0} be a filtration of Ν as above. Let g € 
Bw0B and W e νν(π,·0). Then 

rM 
/ W{jgn)^-\n)dn 

JN 

is convergent, and the value is independent of the choice of filtration λί. 
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Proof. Let No = NQ(W) be a compact open subgroup of Ν as in Theorem 1.3. 
There exists an integer Μ such that No C Nm for all m > Μ. Let τη > M. 
We have 

—Ϊ7ΓΓΤ I WN a^{gn)i)- \n)dn (5) 
vol(JVb) JNm 

= —Γ7ΤΓΤ I I W(gn1n2)i}{nin2)dnidn2. vol{N0) JNrn JNo 

Applying Fubini and changing variables η = Πιίΐ2 we get that the last integral 
is the same as 

I W{gn)\l)~x{n)dn. 
J Nm 

By Theorem 1.1 the function η *-* is compactly supported in N, 
hence we can take the limit m —> oo in (5) to get the value 

ifNo) In Wn°·^971^ 1(n)dn· vol(Wo) 
It is clear that this value is independent of the filtration M. • 

Let g G Βwq Β and define the linear functional Lg : V —* C by 
rM 

Lg(v)= [ Wv(gn)ip~l(n)dn. 
Jn 

It is easy to see that Lg is a Whittaker functional, hence it follows from the 
uniqueness of Whittaker functionals that there exists a scalar such that 

Lg(v) = J*,+(9)m (6) 
for all ν € V. We call jn = the Bessel function of π. (See Section 8 for 
other Bessel functions). The Bessel function is defined on the set BWQB 
and we will prove that it is locally constant there. It is clear that j^ig) satisfies 

= il>{nin2)jit(g), ni,n2 e N, g e Bw0B, 

hence it is determined by its values on the set Awo. As is the case with the 
character of the representation [7], the Bessel function is expected to be 
locally integrable on G. Harish-Chandra's proof of the local integrability of 
the character depended on certain relations between the asymptotics of the 
character and certain orbital integrals. In this paper we establish that the 
asymptotics of jn are the same as the asymptotics of certain orbital integrals 
which were studied by Jacquet and Ye [12]. We now describe the relation 
between the Bessel functions and orbital integrals. 

Let C™(G) be the space of locally constant and compactly supported func-
tions on G. Let Ζ be the center of G and let ω be a quasi character on Z. 
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For φ € C^°(G) and g € Bw0B we define the orbital integral (see [12], (6)) 

.JxZxN 

It follows from [12] that this integral converges absolutely and defines a locally 
constant function on BWQB. 

Theorem 1.7. Let π be an irreducible admissible representation of G with 
central character ωπ. Let χ € G. There exists a neighborhood Ux of χ in G 
and a function φ € C%°(G) such that 

for all g € Ux. 

Remark 1.8. Since j a n d J-Ψ,ω* are only defined on BWQB we are really 
asserting the equality on BWQB Π Ux. Another option is to define these func-
tions as having value zero outside of BWQB in which case the equality above 
does hold. In any case, the equality is true up to a set of measure zero. 

Corollary 1.9. If g ^ J-ψ,ω* (g, Φ) is locally integrable as a function on G for 
every φ e C^°(G) then is locally integrable on G. 

Hence the question of local integrability of the Bessel function reduces to the 
question of the local integrability of the orbital integral. 

Our paper is divided as follows. In Section 2 we introduce some notations 
including roots, weights and Bruhat ordering. In Section 3 we study some 
cones and dual bases in a Euclidean space. These will be applied later for 
different bases of roots and weights. In Section 4 we describe the method of 
proof used for our main results and prove a result which is needed later using 
this method. In Section 5 we prove a more general version of Theorem 1.1. 
In Section 6 we define Bessel functions for supercuspidal representations. In 
Section 7 we prove Theorem 1.3. In Section 8 we define Bessel functions for 
general generic representations, including Bessel functions attached to other 
Weyl elements. In Section 9 we prove Theorem 1.7 and in Section 10 we 
indicate how to generalize our results to simply laced groups. 

2. Notations and preliminaries 

Let F be a non-archimedean local field. Let Ο be the ring of integers in F and 
let Ρ be the maximal ideal in F. Let w be a generator of P. We denote by 
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|x| the normalized absolute value of χ e F. Let q = \0/P\ be the order of the 
residue field of F. Then \w\ = q~l. Let G = GLn(F) and let A be the group 
of diagonal matrices in G consisting of matrices of the form 

d ( a i , a 2 , . . . , a n ) = 

Ol 
θ2 

\ 

a n / 

We let 

Z = Z(G) = {d(a, a , . . . , a ) : a € F*}. (7) 

Let X(A) = Homf(j4, F) be the group of rational homomorphisms. Then 
each α € X { A ) is of the form 

a(d(ai ,a2,..., an)) = ... a 

with ki,k2,...tkn G Z. We view X(A) as a group under addition where the 
addition is defined by 

(ot + ß)(a)=a(a)ß(a), α, β ζ Χ (A), a € A. (8) 

We let \X\ = X(A) <8>R. Then we shall identify with the vector space of 
functions |α| = Μλ^λ*,· · ·Λ„ from A to R of the form 

| a | ( d ( a i , a 2 l . . . ) a n ) ) = |α ι | λ ι |α2 |λ 2 · · · |α η | λ" (9) 

where λ ι , λ 2 , . . . , λ η 6 R . Here addition is defined as in (8) and scalar multi-
plication is defined by 

(λ|α|)(α) = ( |α | (α) ) \ |α| € \X\,a € Α, λ € R 

We define an inner product on by 

< λ„ ,<* 7 ΐ ι 7 ί , . . . , 7 „ > = ] Γ λ . (10) 
ι=1 

For i, j € { 1 , 2 , . . . , π } , ϊφ j we let a^j : A —> F be the functions defined by 

<n 
<Xi,j{d(ai,a,2,.. · ,an)) = — 

Oj 

and |a| j i : ;(a) = |α^(α) | . Let Φ = { a ^ } . Then |Φ| = { H i , j } is a root system 
in We have that Φ = Φ + U Φ~ where Φ + = { a ^ j : i < j} is the set 
of positive roots and Φ " is the set of negative roots. Let E ^ j be the matrix 
whose (i,j)th entry is 1 and all other entries are zero. For α = a i t j <E Φ and 
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for b € F we let 

xa(b) = Xi,j(b) = 1 + bEij 
ha(b) = hij(b) = bEiti - b~1Ejij. 

For each α e Φ we let Na = {xa(b) : b e F}. Let W = Ν (A)/A be the Weyl 
group of G. We shall identify W with 5n , the symmetric group. In particular 
if σ € Sn then we let wa be the associated permutation matrix. In particular, 
vj(itj) is the permutation matrix having Is in the (i,j) and (j,i) entries and in 
the (k, k) entries for k φ i, j. W acts on Φ and |Φ| in a natural way. We have 
that if i Φ j then 

αζα(6)α_1 = xQ(a(a)b), a € A,b € F, (11) 
xa(b)x-a(-b-1)xa(b) = waha(b)> b<=F, (12) 

wXaitfw'1 = Xw(a){b), w£W,b€ F. (13) 
Also, if α, β e Φ and α Φ ±β then 

Xa(bi)xß(b2) = xa+ß(ebib2)xß(b2)xa(bi) (14) 

where e = ±1 and xa+ß(r) = e if a + β & Φ. Let Ν be the subgroup of upper 
unipotent matrices. Then every η G Ν can be written uniquely in the form 

n = E M M 
i>j 

where bij e F and the order of the product is fixed. (Any fixed order is fine). 

2.1. Roots, and weights The root system |Φ| spans a subspace |V| of \X\ 
given by 

Μ = {Ηλ,,λ2,..·,λ„ : λ! + λ2 + . . . + λη = 0}. (15) 
Then Δ = {|o:|iii+i : t = 1,.. . ,η — 1} is a basis for |V| consisting of simple 
roots. If ß is a basis for \V\ then we denote by B* the dual basis (up to 
positive scalars) with respect to (10). In particular, the fundamental weights 
Λχ,..., λη_ι give Δ*, the basis dual to Δ where 

Αι = ΙαΙη-ΐ,-ΐ,-ΐ,.,.,-ΐ, λ2 = |α|η_2,η-2,-2,-2,...,-2, λη_ι = |α|ι,ι 1,1—η· 
(16) 

We write at — \ α|, ) ί+ι. Then 

Δ = {αι , . . . ,α η _ι} (17) 

and 

Δ* = {λι , . . . , Λη_ι}. (18) 
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Notice that we have chosen λi so that < c*i,\j > = 0 if i φ j and that 
< α», Aj > > 0. We now recall the three different notations that we have for 
the simple roots for future reference: 

a» = Mm+i = Mo,....o,i ,-i,o,—o· (19) 

Remark 2.1. It is easy to see that if α € Φ is a negative root and if r € F 
is such that |r| > D for some constant D > 0 then there exists a constant 
C = Co > 0 such that 

X(ha(r)) < C (20) 

for all Λ € Δ*. Moreover, if |r| > 1 then 

A ( M 0 ) < I- (21) 

Each positive root α € Φ can be written as a positive integral combination of 
simple roots, that is, 

η-1 
a = y > q w 

t=l 
with Ci is a non negative integer. We define the height of the positive root α 
to be 

η-1 
height(a) = 

k=1 
If α is a negative root then we define height(a) = height(—a). It is easy to 
check that for j > i 

height(QiiJ) = j - i. 

2.2. Bruhat ordering For each α € Φ we let wa € W be the reflection 
associated with a. That is, wa i j = w^j) Since W is generated by the simple 
reflections tü(i>i+1) it follows that each w e W can be written as a product of 
simple reflections. Let w € W and write 

w = Wßl wp2 · · · Wßt, ßi G Δ, i = 1 , . . . , k. (22) 

If (22) is a minimal expression for w, then we define 

l(w) = I, (23) 
S(w) = {ß1,...,ßi}CA. (24) 

It is well known (see [10]) that l(w) and S(w) are independent of the the 
minimal decomposition (22). We define the Bruhat partial order on W by 
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w' < w <=> w' can be written as a subexpression of w, i.e, 

w' = wßil wßi2 '' ' wßit 1<ΐι<Ϊ2<·.·<ΰ<1. 
This Bruhat ordering does not depend on the choice of minimal expression in 
(22) (see [10]). 

It is clear that if w\ < W2 then S(wi) C S(w2). It is well known that wq is 
the longest Weyl element in W and that wq>w for all w G W. Also, by ([10] 
5.9, example 3) we have that 

101 < 102 W1W0 > W2WQ. 

It will be convenient to use the following notation: 

Definition 2.2. 

S°(w) = S(ww0). 

It follows from the above discussion that 

Wi < w2 S°(w 1) 2 s°{w2). (25) 

We define 

S~(w) — {a e Φ+ : w(a) < 0}, S+(w) = { a € Φ + : w{a) > 0}. (26) 
Let 5 be a subset of simple roots, that is, S C Δ . Let Φ(5) c Φ be the set 

of roots in Φ which are in the span of S. It is well known that Φ(5) is itself 
a root system. We say that a root in Φ ^ ) has support in S. We let W5 be 
the Weyl group associated with S and we identify W5 as the subgroup of W 
generated by the simple reflections wa, a € S. We let ws be the longest Weyl 
element in W s-

Let w = Witi+1 be a simple reflection. It is easy to see that w sends 
a = Λ»,i+i to —a and that a permutes all the other positive roots. The 
following lemma is well known. 

L e m m a 2.3. 
(a) w permutes the positive roots which do not have support in S(w). 
(b) S~(w) C Φ(5(ω)). 
(c) I f a e Φ (S (w) ) then w(a) e Φ { S { w ) ) . 

Proof, (a) Write w as a minimal product of simple reflections. It is clear 
from the above remark on the simple reflections u>i,t+i that each simple 
reflection in the decomposition of w permutes the positive roots with support 
not in S. Hence w also permutes the positive roots with support not in S. 
(b) If α is positive and w(ot) is negative then it follows from part (a) that o: 
is supported on 5. 
(c) Since w e Ws and α € Φ(β) it is clear that w(a) e Φ ( S ) . • 



10 Ehud Moshe Baruch 

Let S0(iü) be defined as in (2.2). 

Corollary 2.4. Let a e Φ+ be such that w(a) > 0 then w(a) G Φ(50(ΐϋ)). 

Proof. Let w' = WWQ. Since = e we have u/(ω0(a)) = WWQWO(Q) = w(A) > 
0. Since w0(a) < 0, it follows from Lemma 2.3 (b) that w0(a) G <£(S(ti/))- It 
follows from Lemma 2.3 (c) that w'(wo(a)) G $(S(w')). Since W'WQ = W we 
get that w(a) G Φ(5(ω')) = Φ(5(ωίί/0)) = Φ(5°(ιυ)). • 

Corollary 2.5. Let a € Φ+ be such that w(a) < 0. Let w\ = wwQ then 
w(a) € Φ(5°(ΐϋ1)). 

Proof. We have that tui(a) = —ty(a) > 0. Since iui(a) > 0 it follows from 
Corollary 2.4 that ωι(α) € 

2.3. B r u h a t decomposi t ion We define 

κ = Π N°> Π (2?) 
A€S~(W) AES+(W) 

It is well known that |S~(tt/)| = l(w) and that Ν = N+N~. The Bruhat 
decomposition of G is given by 

G= (J BwB. 
u>€W 

Moreover, we have, BwB = NAwN~ with uniqueness of expression. That is, 
every g 6 BwB can be uniquely written in the form g = U\awn2 with πι € Ν, 
a e A and ri2 € N~. Hence, if S~(w) = { α ϊ , . . . , a/} then every g G BwB can 
be written uniquely in the form 

g = nawxQl ( n ) · · · xa, (rj) 

with a € A,η e Ν and r\,... ,ri G F. The following lemma will play a crucial 
role in the proofs of our main results in this paper. It supplies us with a tool 
to move from smaller Bruhat cells to larger Bruhat cells and to cover G in an 
inductive way. 

Lemma 2.6. Let w G W and assume that S~(w) = { α ϊ , . . . ,α*}. Assume 
also that height{oci) > height(al+i) for i = 1,... ,ί — 1. Let g G BwB and 
assume that 

g = nawxai{ri) • • • xai(rt) 

with t < I. Assume also that rt φ 0. Let 

gi = gx-ai(-l/rt). 
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Then gi € Bw\B with w\ = wwQt and in particular w\ < w. Moreover, if 
gi = niaiWiTi2 is the unique decomposition of g\ with n\ G N, a\ € A and 
n2 6 then 

αχ = a/ iw( a t)(r t) . 

Proof. By (12) we have x Q t ( r t ) : r _ a t ( - l / r t ) = waihQl(rt)xai(-rt). Hence 

gi = nawxai(ri) • • • xat-Art-i)v)aihat(rt)xat(-rt) (28) 

Since w a i = it follows from (13) that 

Since height (a,) > height (at) for i < t we have that wat(ai) > 0. (To see 
this, write at = aa,b, <*i = <*c,d and wai = wa,b- Since height(ai) > height(a () 
it follows that d — c > b — a. The claim now follows from a case by case 
computation.) Hence by conjugating wathai across the expression in (28) we 
get that 

g = naiW\nz 

with αϊ and w\ as defined above and n$ e N. Hence it is clear that g € Bw\B. 
To get the unique form of g we decompose 713 = ri^n^ with «3 € and 
n 3 ^ ^wi · We can move n j across a \W\ by conjugating to get the unique 
form of <7ι· It is clear that a\ gives the required torus part. • 

3. Bases and cones in a Euclidean space 

We recall some facts about dual bases and cones in a Euclidean space. We 
shall apply these facts to the base Δ of |V| defined in Section 2. Let Ε be an 
m dimensional vector space over Μ equipped with an inner product < u ,v >. 
If S = {t>i,..., υΓ} is a set of linearly independent vectors in Ε then we let 
S* = {vf,..., vi?} where v f , i = 1 , . . . , r , is in the linear subspace spanned by 
S and is determined by the following equations 

< vf,Vj >= Stj, j = l,...,r. (29) 

R e m a r k 3.1. In most cases we will be satisfied by finding a vector Wi in the 
linear span of S satisfying < Wi,νj > = 0 for i Φ j and <Wi , v l > > 0. It is 
clear that Wi is a positive multiple of vf and we will not bother normalizing 
Wi. 
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Remark 3.2. ([9], pg. 72 ex.7 and ex.8) Write vf = Σ°*,3ν3· Then ati > 0. 
Moreover, if S is an obtuse set of vectors, that is, < Vi, ν j > < 0 for i φ j then 
d j > 0 and < v f , vf > > 0 for every i and j. 

Let Δ = {ι>ι,..., um} be a fixed base of E. For υ € Δ we denote ν* — υΔ . 
Let 5 C Δ. 

Definition 3.3. We denote by Δ(5) the set of m vectors where we replaced 
ν with ν* when a & S, That is, Δ(5) = {tui, w?,..., tym} is given by 

Lemma 3.4. 

(α) Δ(5) is a basis for E. 
(b) The dual basis Δ(5)* = {u\,..., um} is given up to positive scalar mul-

tiplications (see Remark 3.1) by 

Proof, (a) Assume that w = Σ ctWi = 0 where c* € R. Write w — x\ + X2 
where x\ = (kVi and X2 = Σν es cJvj- ^ clear that < xi,x2 > = 0 
and since w = 0 we have < x\,w > = < X2,w >= 0. Hence < χι,χι > = 0 and 
< > = 0 so x\ = X2 = 0. Since both Δ and Δ* form a basis we get that 
Ci = 0 for all i. 

(b) Assume Vi € S and let itj = vf. Then it» is in the linear span of S 
hence (U{,vj) = 0 for all Vj & S. By definition (ux,Vj) = 0 for all Vj e S, 
Vj Φ Vi and (uit vl) = 1 

If Vi & S then Ui — v f u i s in the linear span of So (ux,v*) = 0 
for all Vj £ S U {i>i}. If Vj e S then by definition (Ui, Vj) = 0. 

Since Δ(5) is a basis, and u; / 0 we must have < Ui, ν* >Φ 0. If we write 
Ui — cvi + Συ &scjvj f°r c>c j e R- then we have that < Ui,v* > = c and by 
Remark 3.2, c > 0. • 

3.1. Polyhedral cones Let 5 be a finite set of vectors in E. We define the 
cones 

Vi if Vi e 5; 
ν* if Vi & S. 

(30) 

C*(S) = {u 6 Ε : < u,v > > 0,υ € S}. 
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If S is minimal then S is called a basis for C(S). It is a well known theorem that 
these two representations of polyhedral cones are equivalent, that is, for every S 

there exist finite sets TUT2 C Ε such that C(S) = C*{TX) and C*{S) = C{T2). 

When S = A is a basis of Ε, this theorem is easy to prove and is summarized 
in the following lemma: 

Lemma 3.5. 

σ (Δ ) = 0 · (Δ · ) , C* (Δ) = C(A*). 

We now assume that Δ = {υχ,..., um } is an obtuse base of E, that is, 

< V i , U j > < 0 , ιφ]. 

Notice that our base Δ of |V| of simple roots defined in (17) is obtuse. 
By Remark 3.2 it follows that if Δ is an obtuse base then Δ* is an acute 

base and 

C(Am) C C(A). (31) 

We will also need the following Lemma: 

Lemma 3.6. Let A be an obtuse base of Ε and let S C Δ. Then 

C*(S υ Δ*) = σ* (Δ (5 ) ) = C(A(5) · ) . 

Proof. The second equality follows from the fact that Δ (5) is a basis for Ε 
(see Lemma 3.4 (a)) and from Lemma 3.5. Here we do not need Δ to be an 
obtuse basis. 

Since S U Δ* D A(S) it follows that 

C*(S U Δ*) C C*{A(S)). 

To finish the proof will show that 

C(A(S)*) C C*(5 U A*). 

Let Δ = { v l t ...,vm ) and Δ ^ ) * = {ux,..., um} where by (30) 

jvf if Vi e 5; 
fU{vi} if V i ? S . 

Let u e C(A(S)*). Then u = Σ ^ ί w i t h Q > 0 for all i. To show that 
u G C*(S U Δ*) it is enough to show that < it*,χ > > 0 for all χ e S U Δ*. 

(i) Assume that Vi e S, hence ut = ιif. 
If χ = Vj e S then 

< ui} χ >=< vf, Vj >= 5ij > 0. 
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If χ = vj € A* and Vj & S then 

< uiyx >=< vf,v* >= 0 

since vf is in the span of 5. If ι = υ* € Δ ' and Vj € S then we write 
m = vf = Y2Vtes dtVt- Since 5 is a set of linearly independent obtuse vectors 
it follows from Remark 3.2 that dt > 0. Hence 

< ut, χ > = < vf,vj >= < vt,v* >= dj < vj,v* > > 0. 
vt6 s 

(ii) Assume u, = ^f where v^ £ S. Similar arguments as above will show 
that < Ui,x >> 0 for all χ e S U Δ* hence we are done. • 

4. Method of proof 

The main method of proof in this paper is to use the Bruhat decomposition 
for a cell by cell analysis of the functions that we are interested in. It is 
important to understand how the Bruhat decomposition compares with the 
Iwasawa decomposition. 

We present an explicit method of obtaining such information which follows 
a simple pattern. The idea is to analyze the Bruhat cells inductively going 
from the closed cell up to the open cell. The induction is on the height of the 
respective Weyl element. Another induction takes place inside an individual 
cell where we "peel" the root groups one by one. For this process we shall 
appeal repeatedly to Lemma 2.6 which allows us to obtain information on a 
larger cell from a smaller cell. 

The main results in this paper are proved using this method. In this section 
we illustrate the method by proving a result that we will need later. This result 
is probably known to experts. For the case of GLz{F) see ([4], Section 3). 

4.1. Iwasawa decomposition Let Κ = GLn(0). It is well known that 

G = NAK. 

For every |a| € we extend |ct| (see [11]) to G by defining 

H(<?) = M(a) (32) 
where g = nak, η 6 Ν, a G A, k € Κ, is an Iwasawa decomposition of g. It is 
easy to see that |a| is independent of the choice of decomposition. 
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Recall that Δ* = { λ ι , . . . , λ η } is the set of fundamental weights where 
λ» = |a|n-t,...,n-i,t,...,t (See (9).) We view Xi as a function on G as above. The 
main theorem of this section is the following: 

T h e o r e m 4.1 . Let Xe Δ* and w € W. Then 

X(wn) < 1 

for every τι € N~. 

R e m a r k 4.2. Since every η € Ν can be written in the form η = n + n _ for 
n+ e N+ and n_ € N~ it follows that 

wn = um+n_ = 

where = w~1n+w € N. Hence X(wn) = X(wn-). It follows that the 
statement in the above Theorem is equivalent to the statement X(wn) < 1 for 
all η € Ν and Λ e Δ*. 

Proof. We will proceed with two inductions. The first induction is on l(w). 

l(w) - 0: 

In this case w = e, N~ = {e}. Hence, wn — e. Since X(e) = 1 we are done. 
Now let w G W be such that l(w) > 0 and assume that the Theorem is true 

for all wi e W such that l(wi) < l(w). 
We order the roots in 

S'(w) = {α e Φ+ : w(a) < 0} = {αι , . . . ,α*} 

as in Lemma 2.6 so that height(aj) > height(c*i+i) for i = 1 , . . . , I — 1. If 
η e N~ then we can write 

η = x a i ( r i ) x a 2 ( r 2 ) · · · x Q l ( r t ) (33) 

with r i , . . . , Γ( € F and t < I. Notice that we can always take t = I at the cost 
of having the last 7\s being zeroes. However, we are interested in having t as 
small as possible. We would like to prove that Xi(wn) < 1. We shall do so by 
induction on t. 

Since w is a permutation matrix whose entries are 0 or 1 it follows that 
w ζ Κ . Hence if t = 0 then wn = w and Xi(w) = 1. So assume that η is of 
the form (33) with t > 0 and assume that the Theorem is true for ί — 1. We 
divide into two cases. 

If |r<| < 1 then Xa t( rt) € Κ hence 

λ (wn) = X ( w x a i ( r i ) • • • xai_x(rt-\)zei(rt)) = X ( w x a i ( r i) · · • x0ct_1 ( r t _i ) ) . 

Hence we can use our second induction assumption to conclude that X(wn) < 1. 
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If |r t | > 1 then x _ a t ( - r t
 1) G K. Hence we have 

X(wn) = X(wnx-ai(—Ti1)) = A(ioxQl(ri) · · · x0 l(r t)a;_Q t(-r t
_ 1)) . 

By Lemma 2.6 we have that wnx-Ql(—rf1) = n\aiwin2 with w\ < W2, 
πι,ri2 € Ν and αχ = hw(ai)(rt). Hence 

X(wn) = \{hw(ai)(rt))\(win2). 

By Remark 2.1, we have X(hw(ai)(rt)) < 1. By our first induction assumption 
we have X(w\Ti2) < 1. Hence we get the result. • 

5. Spaces of Whittaker functions 

In this section we define a subspace of the space of Whittaker functions on G 
and prove some properties of this subspace. In particular we prove Theorem 5.7 
which asserts that certain functions on unipotent subgroups are compactly 
supported. This is one of our main theorems in this paper. 

5.1. Whi t t ake r funct ions Let φ ρ be a character of F and assume that φ ρ 
is identically one on Ο and nontrivial on P~1. For a unipotent matrix y E i V 
we set 

Φ(Ν) = 1>F(VI,2 + 2/2,3 + . · • + VN-l.n), (34) 

where yij are the entries of y. We let W = W(G, φ) be the set of functions 
W : G —> C such that W is smooth on the right and 

W(ng) = φ{η)νν{9), neN,geG. 

Examples of such functions are Whittaker functions associated with generic 
representations of G. Other examples are given by projecting compactly sup-
ported and locally constant functions to this space as follows. 

Wf(g)= ί /(η9)φ-ι(η)άη, f e Cc°°(G). 
J Ν 

we shall study the space of such functions {WF : f 6 C£°(G)} in Section 9. 
For every |a| € we extend |a| to G as in (32). 
For WE. W we let S°(W) be the set of simple roots defined in (2.2). That 

is, S°(w) = S(WWQ), where S(wwo) is defined in (24). 
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Definition 5.1. Let W = W(G, φ) be the space of Whittaker functions de-
fined above. We define W° = W°(G, ψ) CW to be the set of functions W € W 
such that for every w € W and every α € S°(w) there exist positive constants 
Da < Ea such that if g € BwB then 

W(g) φ 0 Da < |a|(<?) < Ea, a € S°(w). (35) 

In other words, W € W° if for each w € W and each a 6 the support 
of W in BwB has bounded image under a. 

Remark 5.2. The condition |c*|(p) < Ea, a € SQ{w) that appears in (35) is 
redundant since by [11] the support of W is contained in the set {<;: |α|(<;) < 
C, a € Δ } for some positive number C. Moreover, if W is a Whittaker function 
in the Whittaker model of a supercuspidal representation of G then it follows 
from [11] that W is compactly supported mod NZ. Hence it follows that W 
satisfies condition (35) for every α € Δ and every g € G and in particular 
W e 

Definition 5.3. Let a 6 Δ. We define the sets 

Xc1,c2(cc) = {geG\C1<\a\(g)<C2}, 
^ c „ c 2 ( a ) = {aeA\Ci< |α|(α) < C2} 

and the sets 

Xcuc2 = Π xci,c2(a), Acuc2 = Π ACl,c2(oc). 

Lemma 5.4. Let a e Δ, C\ < positive numbers and R a compact set in 
G. Then 
(a) There exist constants C[ < C2 such that 

Xcuc2(a)R C XC'ltci(a)· 

(b) Let Y be a subset of G and assume that for every y € Y there exists 
r e R such that yr € Xc1,c2(a)· Then there exist positive constants C[ < C'2 

such that Y C ΛΓ^,σ^ 0) · 

Proof, (a) We can write Xcltc2{(*) = ΝACx,c2(ot)K. It is clear that 
Μ(Χσ :,θ2(α)-β) — lal(^c,,c2(a))|Q:|(-ft'-R)· Since KR is a a compact set in 
G and |a| is continuous the result follows. 
(b) Let y € Y and let y = no<2o&o be an Iwasawa decomposition for y. If 
r e R then |a|(yr) = |a|(i/)||a!|(fcor). Since KR is a compact set, there exist 
positive constants < D2 such that D\ < |o:(/cor)| < D2 for all ko € Κ and 
r e R. By our assumption, there exists ro e R such that C\ < |a|(yro) < C2. 
Hence C\jD2 < |a|(j/) < C2/D\ and we can choose C[ - C\/D2 and 
C'2 = C2/DX. • 
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Corollary 5.5. 
(a) The set W° is invariant under right translations by B, i.e, if W e W° 
then for every b € B, Wj, € VV° where Wb(g) = W(gb). 
(b) W° is invariant under right integration by compact open subset of closed 
subgroups of Β, i.e, if Η is a closed subgroup of Β and X C Η is open and 
compact in Η then for every W e W°, Wx € VV° where 
Wx(9) = fx W(gh)dh. 

Proof, (a) We take Η to be the Singleton, R = { 6 - 1 } , where be B. By 
Lemma 5.4, X c u c 2 ( a ) b ~ l C Thus if W restricted to the set 
BwB is supported on Xcx ,c2 (α) n BwB then Wb restricted to BwB will be 
supported on the set Xc^c^i**) ^ BwB. 
(b) Since W is smooth on the right, Wx is a finite linear combination of W^ 
for some bi € B, hence (b) follows from (a). • 

For each w G W we let A(S°(w)) be the basis of |V| defined in (3.3) and let 
A(S°(w))* be the dual basis (up to scalars) that we fixed in Lemma 3.4 (b). 
Let Μ be a positive constant. We define the cone AM(w) C A to be 

Am(W) = {A € Α : \β\(α) < Μ, for all β <Ξ Δ(5°(ΐϋ))*}. 

Lemma 5.6. Let wi,w € W and Μ > 0. If u'i < w then there exists a 
constant M\ > 0 such that 

Am(W) C AMi(Wi). 

Proof. By (25) and Lemma 3.6 

C ( A ( S ° K ) n c σ(Δ(5°(«,))·) . 

Hence every Λ e A(S°(wi))* can be written as a non-negative linear combi-
nation of elements in A(S°(w))*. Thus there exists a constant Mi > 0 such 
that |λ|(α) < for all a € AM(w) and λ 6 Δ(5°(ωι))* . • 

Our first main theorem of this paper is the following: 

Theorem 5.7. Let W € W° and Μ a positive constant. Then the function 

(α, η) ι—• W(awn) 

defined on the set AM(w) χ N~ is compactly supported in N~. That is, if 
W(awn) / 0 and a € AM(w),n € N~ then η is in some compact set indepen-
dent of a. 

Note that if w = w0 then S°(w) = 0 hence A{S°(w)) = A* and Δ(5°(ω))* = 
Δ. It follows that AM(w) = AM as defined in (4). Since N~ = Ν in that 
case, Theorem 1.1 follows from the above Theorem. 
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Proof. Our proof will use a double induction argument as in the proof of 
Theorem 4.1. We begin by induction on l(w). 

l(w) = 0: That is, w = e. 

In this case, N~ = {e} and there is nothing to prove. Now let w 6 W and 
assume the Theorem is true for all w\ 6 W such that l(wi) < l(w). 

We order the roots in 

S~(w) = {αϊ,... ,a/} 

as in Lemma 2.6 so that height(ai) > he igh t (a j + i ) for i = 1 , . . . , I — 1. If 
η € N~ then we can write 

η = xQ i (rι )xa2 (r2) · · • xQl (rt) (36) 

with ri,... ,rt € F and t < I. Here we will use induction on t. The precise 
induction statement is the following: Fix W Ε W° and Μ a positive constant. 
Let ne N~ be written as in (36) and a € AM(w). If 

W(awn) φ 0 

then there exists a constant C = C(W, w, M) > 0 independent of a such that 
|r<| < C for i = l , . . . , i . 

Assume t = 1. Then we can write η = xai (n ) · We assume W{awn) φ 0 
with a € AM{w). Since W is smooth on the right, there exists D > 0 so that 

W{gx.ai{-r^)) = W{g) 

for every r\ e F such that |ri | > D and every g eG. Hence if \ri\> D then 

W(awn) = W(awxai(ri)x-ai(—rfx)) ψ 0. 

By Lemma 2.6 we have that a i u x a i ( r i ) x _ a i ( - r f x ) ) = nia\w\ri2 with w\ = 
wwai, a\ = a/iw(a i)(ri) and n\,n2 € Ν. More precisely, it is easy to see that 
in this case 

a i ü X a j i r O x - a ^ - r f 1 ) ) = η3α/ιω(αι )(Γι)ΐϋι 

for some n j € N. Set 

a 0 = ω(αι)· 

We get that W(awn) φ 0 implies that 

W{ah^{rx)wx) φ 0. 

Set Si = S°(wi). Since w\ e Κ and since W € W° we have that for every 
ß e C(Sx) there exists a positive constant Dß such that 

ß(ahw(ai){ri)) > Dß. (37) 
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Since a G AM(w) and since w\ < w it follows from Lemma 5.6 that there exists 
Mi > 0 such that a G ΛΜ ι(iui). Hence for every 7 G C(A(Si)*) = C*(A(Si)) 
there exists ΕΊ > 0 depending only on M\ and 7 such that 

7(a) < E y (38) 

By Corollary 2.5 we have that ao € Φ(5ι). Since Qo is negative it follows that 

α ο = Σ Ca<* ( 3 9 ) 
aesl 

with cQ < 0 for all a G Si. If 7 G C*(A(Si)) then it follows from the definition 
of Δ(5 ι ) that 

< 7 , α > > 0, for all a e Si. 

Hence it follows from (39) that for all 7 G C*(A(Si)) 

< 7. <*o > < 0. 

Since C*(A(Si)) = C(A(Si)*) contains the basis A(Si)* and since α 0 φ 0 it 
follows that there exists 70 € C(A(S 1)*) such that 

< 7o,(*o > < 0. (40) 

Let Δ(5ι)* = {7 i , . . . , 7 n - i } where 7» is defined by (30). Then we can write 

To = Σ <U 7i 

with di > 0. Since αο € Φ (Si) it follows that < ao,7z > = 0 for all i such 
that oii £ S\. Hence we can (and will) assume that di — 0 for i such that 
Qi & Si. (That is, we are replacing 70 with 70 = ά ιη ι . It is clear that 
70 G C(A(Si)*) and that < 70, a0 > < 0). 

Since Si is an obtuse set we get that 7 t = a f 1 is in C(5i) for all i such 
that oci G Si. Hence 70 G C(Si). Hence by (37) 

7o(a/iQo)(ri)) > Ό Ί ο . 

Since 

7o(a/iao(ri)) = jo(a)j0(haci(n)) 

and since 70(a) < Eya by (38) we get that 

7 0 (h a o (n ) ) > £2». 

Write 70 = |α|λι,...,λ» ( s e e (9)) a n d α ο = Η*,; (see (19)). Then by (40) 

< 7o, Qo > = < Μλι a„, \<*\i,j > = Xi- Xj < 0. 
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On the other hand 

7 o ( ^ 0 ( r i ) ) = 7 0 ( Μ η ) ) = N * ' " * ' > 

Hence there exists C > 0 depending on W,w,aι and Μ but not on α € AM(w) 
such that 

W(awxai (π)) Φ 0 =Φ |ri| < C. 

We now prove the general case. Let t > 1. Assume that our second induc-
tion hypothesis holds for t — 1. Let S~(w) = { α ϊ , . . . , a /} with height (a*) > 
height(a i + i) and let η € N~ be of the form 

η = xai(ri)x<*2(r2) • • ·χαι(η)· 

Let a 6 AM (w) and assume that 

W{awn) φ 0. 

Let D > 0 be such that if \rt\> D then 

W(gx-ai(-rr1)) = W(g) 

for all g G G. Assume |r ( | > D. Then 

W(awn) = W(awnx-ott(—r^1)) Φ 0. 

Let gi = awnx-ai (—r t
-1). and aco — w(at). Then by Lemma 2.6 

gi = niahao{rt)wiri2 

with ni € N, w\ = wwat and ri2 € N^· Since W(g\) φ 0 we get that 

W(ahao(rt)win2) φ 0 

with l(wi) < l(w). We wish to invoke our first induction assumption for 
w\. Notice that we have assumed that a e AM(w) and that | r t | > D. To 
use the induction assumption we need to show that a/iQ o(r t) € A M i (w i ) for 
some constant Μ2 > 0 which depends only on D and Μ. By Lemma 5.6, 
AM(w) C AMl (wi) for some constant Mi > 0. 

Let Si = 50(it;i). Let 7 ξ. A(Si)*. By the same arguments as in the t = 1 
case we have that 

< 7, Q0 > < 0. 

Hence, (see t — 1 case) 7 ( h a o ( r t ) ) = | r t | p with ρ < 0. It follows that 

7(hao(rt)) < Ό*. 

Now since 

l(ahao(rt)) = 7 ( a ) 7 ( ^ 0 ( r t ) ) < M\DV 



22 Ehud Moshe Baruch 

it follows that there exists Μ<ι > 0 such that aha„(rt) € AM2(wi) for all 
α ζ AM(w) and \rt \ > D. 

Now it follows from our induction hypothesis that η ι is inside a compact 
set in N~ independent of a and r t . 

Since W 6 W° it follows that for every α € Si there exist positive constants 
Da < Ea such that 

Da < a(ahao(rt)win2) < Ea. 

Since ri2 is in a fixed compact set it follows from Lemma 5.4 (a) that there 
exist positive constants D'a < E'a such that 

D'a < a(ahao(rt)) < E'a. 

Hence if β € C(S\) there exists a positive constant D'ß such that 

^ < / 3 ( a / i e o ( r t ) ) . 

The proof now follows word for word the t — 1 case. That is, we find 70 € 
C*(A(Si)) Π C{Si) such that < 70, a 0 > < 0. Since a G AMl (wi) there exists 
M~f0 > 0 such that 

By (37) 

hence 

70(a) < ΜΊο. 

7o{aha o(r t)) = Ίο(Φο^αο{η)) > D'Ίίί 

7o(hao(rt)) > 
m1o 

Since < 70, ao > < 0 we have that 70 (h a o (r t ) ) = | r t |p with ρ < 0 hence |r t | is 
bounded. 

To summarize, we have just proved that if 

W(awn) φ 0 

with a e AM(w) and η written as in (36) then there exists Ct > 0 independent 
of a and n , . . . ,rt-1 so that |r t | < Ct. 

It remains to prove that r\,..., rt-i are also bounded. Consider the space 
{p(xai{rt))W : | r t | < C t } where 

p(xai(.rt))W)(g) = W(gxai(rt)). 

Since W is smooth on the right it follows that this space is spanned by a finite 
number of functions W\,..., Wp. By Corollary 5.5 (b), each such function is 
in W°. Let a € AM(w) and n' = xQ , (r i) • · · ZQ^J (r t_i). It follows from 
our induction assumption on t that for each such function Wi there exists a 
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constant Ai such that 

Wi(awri) Φ 0 ==> \rj\<Ai,j = l,...,t-l. (41) 

Let A — max{>li,... ,AP}. Then it is clear that (41) holds with A replacing 
Ai. We now write 
W(awn) = W(awxai (ri) · Ott (rt)) 

= ci(rt)Wi(awxai ( n ) • •xai_l ( r t _ i ) ) +... +cp(rt)lVl(awzQl ( η ) · ·χαι_λ ( r t _ i ) ) 

for every rt such that \rt\ < Ct. If W{awn) φ 0 then at least one of the 
summands does not vanish and we can conclude that |ri| < A for i = 1,..., t — 1. 
Now taking C = max{-A, Ct} we get our result. • 

6. Bessel functions for supercuspidal representations 

In this section we attach Bessel functions to irreducible supercuspidal repre-
sentations of G = GLn(F). This section is not needed in the sequel since we 
will later attach Bessel function to every irreducible generic representation of 
GLn(F). The reason we include this section is that the situation for supercus-
pidal representations is nicer than the general situation and both the formulas 
and proofs are simpler. 

L e m m a 6 . 1 . Let (π, V) be a supercuspidal representation ofG and let W(tt, ψ) 
be the Whittaker model of π (see (2)). Then ,φ) C W°(G, V)· 

Proof. Let W e W(-7r, ψ). Then by [11], W is compactly supported mod NZ. 
It follows that for every α 6 Δ and every w € W the support of W in BwB has 
bounded image under a. (Since the support of W in G already has bounded 
image under a.) Hence W € VV°. • 

The main result that allows the definition of the Bessel functions is the follow-
ing: (For the proof see Corollary 1.2). 

C o r o l l a r y 6 . 2 . Let (π, V) be a supercuspidal representation ofG and let W € 
>ν(π, φ). Let w G W and fix g G BwB. Then the function 

η —> W(gn) 

from N~ to C is compactly supported in N~. 

Let w G W. We define the subtorus Aw to be 

Aw = {a G A : φ{η) = φ(ηαυ>), for all η G N+}. (42) 
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Here η9 = gng 1. It is easy to see that Ae = Z(G) and that AWa = A. 

Definition 6.3. We say that ω is a relevant Weyl element if Aw φ 0. 

It is well known (see [12]) that w is relevant if and only if w = WQWs where 
S C Δ and ws is the longest Weyl element in the standard parabolic subgroup 
given by S. The set of relevant Weyl elements is the set of Weyl element of 
the form 

/ Ι τ η Λ 

Im 2 

\ I m i 

where I m is identity matrix of order m and τηχ + τη,2 + •••+ mi = n. 
Fix a relevant Weyl element w and fix g € N A w w N = N A w w N ~ . Let 

(π, V) be an irreducible supercuspidal representation of G. Let W e W(n, -φ). 
Define 

L g { W ) = [ W { g n ) i > - l { n ) d n . 

By Corollary 6.2 this integral is absolutely convergent. Let G act on W ( n , i p ) 

by right translations as in (3). 

Lemma 6.4. 

L g ( p ( n ) W ) = i l > ( n ) L g ( W ) , τι € Ν . 

P r o o f . This is obvious if η € N ~ . Assume n \ £ 7V+. Then for η G N ~ and 
g = h i a w n z with τΐ2 € Ν , a € A w and n^ € N ~ we have 

W ( g n n i ) = W { n z a w n z n n i ) 

= ^ { n 2 ) W { a w r C l % n n z n i ) 

= i l f t o W n ^ W i a w m r n ) 

= ^ { n \ ) W ( n , 2 a w n 3 n ) 

= r p ( n i ) W ( g n ) 

Here we have used that N ~ normalizes N + and that ψ ( η ~ 1 η + η ) = φ ( η + ) 

for every η € N ~ and n + € ΛΓ+. Writing ( p ( n { ) W ) ( g n ) = W ( g n n \ ) and 
computing the integral defining L g ( p ( n i ) W ) we get our result for η € iV+. 
Since every η € Ν can be written in the form η = η + π_ for some n + e iV+ 
and n_ G iV~ we get our result for a general η G JV. • 

It follows that L s is a Whittaker functional on π. Hence by the uniqueness of 
the Whittaker functional we get that there exists a scalar j n ^ ^ i g ) £ C such 
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that 

Lg(W) = j*,i,tro(g)W(e), W e W(ir, V). (43) 

ϊ-π,ψ,υι is a function on NAwwN which we call the Bessel function associated to 
7Γ and w. We shall show in Section 8 that j-n,ip,w is locally constant on NAwwN. 

When w — wq we set - ]π<ψ = To get a formula for jw.^.w we 
notice that since π is supercuspidal there exists a function W G W(7r, i/>) such 
that W(e) = 1. (This follows from the existence of a nontrivial Whittaker 
functional on π.) Hence we get from (43) that 

Corollary 6.5. Let π be a supercuspidal representation of G and let w be a 
relevant Weyl element. Then there exists W G W(7r, ψ) such that 

3π,·ψ,χ»(9)= W(gn)ip~1(n)dn, g e NAwwN. 
Jn~ 

7. Projection into W°(G, φ) 

In this section we shall show that every W Ε W(G, ψ) can be projected into 
W°(G, φ) by integrating it on a compact unipotent group versus a character 
of that group. We start with some preliminary results about Howe vectors. 
The proofs can be found in ([4], Section 5). 

7.1. Howe vectors For a positive integer m we denote by Km the congruence 
subgroup of Κ given by Km — e + Mn(Pm). We let Am = Α Π Km. Let 

/I \ 

d = 

w 
VÜ 

\ J 

Let Jm — dmKmd m. Notice that Jm is expanding above the main diagonal 
and shrinking on and below the main diagonal. Let 

Nm = NnJm. (44) 

Let Nm = Ν Π Jm and Bm = Bf]Jm· Using similar properties of Km, it is 
easy to see that 

Jm — NmAjnNfn — BmNn 
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Moreover, for a G Φ+ let 

Jq — Να Π Jm = {xQ(r) : |r| < gl™**")-*)™} ( 4 5 ) 

and for α € Φ" let 

Ja = Na Π Jm = {xa(r) : |r| < ^ W + ' l » } . (46) 

Then 

Nm = Π = Π J*· (4?) 
α€Φ+ αζφ~ 

We fix a character φρ on F as in Section 3. In particular φρ — 1 identically on 
the ring of integers Ο and φρ(Ρ~1) Φ 1· Let φ be a character of Ν obtained 
from φρ as in (34). For m > 1 we define a character r/»m on J m by 

Φτηϋ) = Φ{ηί) 

where j — bjUj, bj € Bm, rij 6 Nm is the unique decomposition of j. It is 
easy to see that Vm is a character on J m . For each W e W(G, φ) we define 
Wm = WNm<t by 

Wm(g) = WN„^(g) = ί Ψ{9η)φ-\η)άη. (48) 
JNm 

Since Nm+i D Nm it is a simple application of Fubini to show that if τη > k 
then 

Wm{g) = vo\(Nk)~l f Wk{ffn)rl>-\n)dn. (49) 
JNm 

For gi 6 G we let (p(gi)VK)(g) = W(ggi). The proof of the following Lemma 
is the same as the proof of Lemma 5.1 in [4]. 

Lemma 7.1. Let Μ be such that p(Km)W = W and let m be an integer such 
that m > 3 Μ . Then 

Jm.· (50) 

Formulating Lemma 7.1 for functions we get that for m > 3Μ 

Wm(gj) = Vm(j)Wm(p) for all g € G,j e J m . (51) 

We call a vector W in a representation space of G satisfying (50) (or (51)) 
a Howe vector. The above Lemma shows that if the representation space 
affords a nontrivial Whittaker functional then non-zero Howe vectors exist. 
This property and some uniqueness properties of Howe vectors for irreducible 
admissible representations of GLn(F) were established in [8]. We now continue 
to study the behavior of Whittaker functions satisfying (51). 
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Lemma 7.2. Let w e W, α € A and a € S°(w). Assume W e W satisfies 
(51) for some m > 1. Then 

W(aw) φ 0 a(a) el + Pm. 

Proof. We divide into two cases. First assume that w is not relevant (see 
Definition 6.3) , that is, tu is not of the form w = wswo for some subset S 
of simple roots. (Notice that {1051̂ 0 : S C Δ} = {wows : S C Δ}.) Then 
by [14] Lemma 89, there exists a simple root β such that α = w(ß) > 0 but 
w(ß) is not a simple root. Let r Ε P~m. Then 

\l)F{r)W{aw) = W(awx0(r)) = W{xa{a(a)r)aw) = W(aw). (52) 

By our assumptions on the conductor of φ there exists r € P~m, such that 
4>f(t) φ 0. Hence W(aw) = 0 and our statement is trivially true. 

Assume w = wsw0· Then 5 = S°(w). (See [10], Section 1.8, ex.2). Let 
a € S and let β = wqws{q). β is a positive simple root. Arguing as in (52) 
we get 

ipp(r)W(aw) = xpF(a(a)r)W(aw) 

for all |r| < q~m. Hence W(aw) φ 0 implies that α(α) - 1 € Pm which is the 
required conclusion. • 

Our main theorem of this section is the following. It implies (and in fact is 
equivalent to) Theorem 1.3 in the introduction. 

Theorem 7.3. Let W 6 W(G, ψ). Then there exists a positive integer Μ 
such that Wm = € W°(G, φ) for every m> Μ. 

Proof. We need to show that there exists Μ such that for every fixed m> Μ 
and every w € W, the support of Wm in BwB has bounded image under every 
|a| € S°(w). In other words, the statement of the theorem is equivalent to the 
following statement: 

(A) Fix w e W and α € S°(w). Then there exists an integer Μ > 0 and 
constants C < D (depending on τη) such that if g e BwB and Wm(g) φ 0 
then C < |a(s)| < D. 

We shall prove statement (A) by induction on l(w). 

l(w) - 0: That is, w — e. 

In this case BwB = Β = ΝΑ. By Lemma 7.1 there exists a positive integer 
Μ such that Wm satisfies (51) for every τη> M. Let m> Μ and assume that 
g = na is in the support of Wm. Then Wm(g) = Wm(na) = ip(n)Wm(a) Φ 0. 
Hence Wm(a) φ 0 and by Lemma 7.2, a(a) el+Pm for every a e S°(e) = Δ. 
Since a(g) — a(a) we get statement (A) for w = e. 
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For the general case, fix w e W, w Φ e. Let 

S~(w) = {αι,.,.,α;} 

and assume that height(aj) > height(ai+i) for i = 1 , . . . , / — 1. We can write 
every g 6 BwB uniquely in the form 

g = nawni = nawxai (ri)xa 2(r2) · • · xai(ri) (53) 

with τι € N, a € A, r i , . . . , r / Ε F. Here 

" ι = xai (ri)xa2(r2) • • • xat{rt)· (54) 

First case: Fix α € S°(w). Assume Wm(g) φ 0 and assume that n\ e Nm. 
Then Wm(g) = i}{ni)Wm{gn^1) hence if we let g\ = gn^1 we get that 
Wm(0i) φ 0. Now Wm{gi) = Wm(naw) = ip(n)Wm{aw). Hence W^aw) φ 0 
and by Lemma 7.2, α(α) is in a compact set. Since w e Κ we have that 
α(<7ι) = a(a). Hence we proved that if g is of the form (53) with rii € Nm 
and W(g) φ 0 then there exists rg € R = Nm such that a(grg) is in a fixed 
compact set. By Lemma 5.4 (b), a(g) is in a fixed compact set. 

We shall now consider the second case where n\ & Nm. If n\ & Nm then 
there exists i such that xQj (r*) & Nm. This is equivalent to rt = r, (g) satisfying 
M s ) | > q{2j+1)m where j = h e i g h t ^ ) . (See (45)). 

L e m m a 7.4. Let m be a positive integer and assume that g 6 BwB is of the 
form 

g = nawni — nawxai(ri)xa2(r2) · · · xai(ri) 

with i < I and x a <(r j) ^ Nm. Let η2 G Nm and let g\ = gn2. Then in the 
decomposition of g\ into (53) we have |rj(<7i)| = |ri(^)| = |. 

Proof. We can write 

n2 = n3Xai(bi)xai+l(bi+i) • • • χαι(η) 

with Ti3 a product over the positive root subgroups that are different than 
ct i , . . . ,a t . This decomposition of n2 is unique and xaj(bj) 6 Nm for j = 
i,... ,1. It follows from (14) that r j ( g \ ) = bj for j = i + 1,... ,1 and that 
ri(gi) = rt+bi. Since |Γ»| > 9(2height(A,) + l)m a n d s i n c e |fe.| < g(2height(A,) + l)m 

we get that |r<(pi)| = • 

Fix α € S°(w). To finish the proof we need to show that there exists a positive 
integer Μ such that if m > Μ and if Wm(g) φ 0 for g of the form (53) with 
nx & Nm then a(g) is in a fixed compact set. Since n\ £ Nm there exists a 
maximal i in the decomposition of n\ in (54) such that xQi{ri) & Nm. We 
shall prove our Theorem by downward induction on this maximal i. That is, 
our second induction statement is the following: 
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(B ) Fix i, 1 < i < I. There exists an integer Μ > 0 such that if πι > Μ 
and if Wm(g) φ 0 with g of the form (53) with xai (fi) Nm and i is the 
maximal such index than a(g) is in a fixed bounded set (depending on m, w 
and W but not on such g). 

We consider the case i — I. Let Mi be such that for m > Mi, Wm satisfies 
(51) and such that Wm satisfies the induction assumption (A) for every wi € W 
such that l(wi) < l{w) and for every αϊ G S°(wi). That is, we assume that 
if g € Bw\B and if Wm{g) φ 0 then αι(ρ) is in a fixed compact set. We 
can enlarge this fixed compact set to be good for every such Wi and every 
such αϊ- Let Μ = 3 Mi. Assume TO > Μ and assume that Wm(g) Φ 0 
where g is of the form (53) with xa,(ri) & Nm. By our assumption that 
height(aJ+i) < height(a_j) we have that ai is a simple root and |r/| > qm. By 
(49) we have 

Wm{g) = "~t7tt r / WMl{gn)i>-\n)dn. vo l (N M l ) JNni 

Since Wm(g) φ 0 there exists i\2 € Nm such that Wm1 (gn^) Φ 0. Let pi = gu2. 
By Lemma 7.4 we have that 

\n(gi)\ = \n(g)\ > gm > g3Mi. 

It follows that χ_α,(—l/n(pi)) e Jmi, hence by (51) 

W^igix-at-l/nigi))) = WMl(g 1) φ 0. 

Let 02 = 9iX-at{—l/ri(pi))· By Lemma 2.6, 52 € Bw\B with Z(ti>i) < l(w). 
Moreover, by (25), α (Ξ S°(w 1). Hence by our assumptions on M\ above, 
Wmi (92) Φ 0 implies that a(g2) is in a fixed compact set. Hence we proved that 
for every g satisfying the conditions above such that Wm(g) φ 0 there exists 
rg Ε R = NmJMi such that a(gr) is in a fixed compact set. By Lemma 5.4 
(b), cx(g) is in a fixed compact set. 

We now prove the general case. Fix 1 > i < I. Let Mi be as in the case 
i = I. By our induction assumption (B) we can also assume (by enlarging 
Mi) that if m > Mi and if Wm(g) φ 0 and if g is of the form (53) with 
x a j ( r j ) & Nm for some j > i then a(g) is in a fixed compact set. 

Let Μ - 3Mi and let m > M. Assume that Wm(g) φ 0 where g is in the 
form (53) with xai(ri) ^ Nm and xaj (rj) € Nm for j > i. Then 

Wm(p) = lMri+1) · · · ^F(n)Wm(nawxai{rx)) • • • χαί(η)) φ 0. 

Let 712 = Xat{—ri)) · • · Xai+1 (~π ) ) Then η2 Ε Nm and the above equation im-
plies that for pi = gn2 = nawxQl(ri)• • • xai(ri) we have Wm (pi) = WmG?^) Φ 
0. We also have 

Wm(pi) = —Tri—r/ WMl(9in)^~1(n)dn. vo l {NM l ) JNm 
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Since Wm(g\) φ 0 it follows that there exists «3 € Nm such that Wmx (01^3) φ 
0. Let <72 = By Lemma 7.4 we have that |τ\(02)| = lrt(<?)| = lrt|· 
We divide into two cases. First assume that there exists j > i such that 
x a i { f j { g 2 ) ) Nm1. Then it follows by our assumptions on M\ that 0(02) is 
in a fixed compact set. Since 52 = 9rg for r € ß = Nm we get that a(g) is in 
a fixed compact set. 

Next assume that xaj (7^(02)) € ΝΜύ for every j > i. Using (51) as above 
we get that (03) φ 0 where 

93 = nawxai{n(g2)) · · · xai(ri(g2)) 

and 03 = 02^4 with n4 € NM1 Since 
ki(02)| = |r,(0)| > 9(2height(Qi) + l)m > 9(2height(a<) + l)3M, 

it follows from (46) that x_Q|(—1/^(02)) € JMx hence by the same arguments 
as in the case i = I we get that 0(0) is in a fixed compact set. • 

8. Bessel functions 

In this section we attach Bessel functions to irreducible generic representation 
of G = GLn{F). The definition of these functions depend on Theorem 5.7 and 
Theorem 7.3 and is identical to the definition of the Bessel functions in [4]. 
Since the proofs are the same as in ([4], Section 6) we shall omit them. Given 
an irreducible generic representation of G we will attach a Bessel function 
for each relevant Weyl element w. This Bessel function will be defined on 
a subset of BwB and will be locally constant there. If the representation 
is supercuspidal then our definition here will coincide with the definition in 
Section 6 making Section 6 redundant. We are primarily interested in the 
Bessel function which is attached to the longest Weyl element wo which we 
call the main (or principal) Bessel function. We shall provide full proofs in 
this case for the sake of completeness. 

Let tu £ W be a relevant Weyl element. That is, there exists 5 C Δ such 
that w = wswo- Let N+ and N~ be the subgroups of Ν as defined in (27). 
We define the subtorus Aw as in Section 6 to be 

Aw = {α € A : ψ(η) = ψ{ηα%υ), for all η e N+}. 

Here η9 = gng~l. Let (π, V) be an irreducible generic representation of G and 
let W € νν(π, φ). By Theorem 7.3 there exists a positive integer Μ such that 
if m > Μ then Wm e W° (See (48) for the definition of Wm.) Fix m > Μ 
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and let g G NAwwNw. We define 

= ^ Γ Τ f Wm{gn)rX{n)dn. (55) 

By writing g = n\awu2 and using Theorem 5.7 it follows that the integral 
above converges. (See also Corollary 6.2). The main result of this section is 
the following: 

Proposition 8.1. 

(a) LgtW(W) is independent of m> M. 
(b) Lgw is a Whittaker functional on W(7r, ψ), that is, for every η 6 Ν, 
LgtW{ir(n)W) = ^(n)Lg,w(W). 
(c) If W <E W° then 

WW)= / W(gn)il>-l(n)dn. 
JN~ 

The proof is the same as in ([4] Proposition 6.1.) We will prove the Proposition 
for the case W = WQ. (see also the introduction for the case w = WQ.) 

Proof. In that case N~ = Ν, N+ = {e} and Aw = A. Using of the Pubini 
theorem, it is easy to see that if mi > m > Μ then 

* , [ Wm(gn)^-l(n)dn= f W{gn)i>~\n)dn. vol(JVm) J N m i JNm^ 

Since Nmi cover Ν when mi —* oo it follows that 

= ~T7T7 \ / WmfonW-^nJAi voi(iym) J n 

— lim — . f Wm(gri)Tb~x(n)dn mi-oo wo\(Nm) JNmi
 mvy >ψ K ' 

= Iim I W{gn)ij)~l(n)dn. mi-»oo J N 

Now (a) and (c) follow from the last line of the above equation. For part (b) 
we fix ni G Ν and consider the above limit for p(n\)W. Since Nm cover Ν we 
have that there exists Mi such that n\ € Nm for all TO > M\. Now a simple 
change of variable in the integral above will give the result. • 

By (b), Lg<w is a Whittaker functional, hence by the uniqueness of Whittaker 
functional it follows that there exists a scalar jn,i>,w(g) such that 

LgAw) = h,i>,w{9)W(e) g € NAwwN, W € W(n, φ). (56) 
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We call jv^.wig) the Bessel function attached to w and denote by — 
3·κ,ψ,υ>ο(9) the Bessel function attached to π. It is easy to see that 

= Ψ(ηι)φ(η2)^,ψ,ν,(9), 9 € NAwwN,ni,n2 € N. (57) 

Lemma 8.2. There exists W e W°(ir,ip) such that 

Proof. It follows from Theorem 7.3 that there exists W e >ν°(π, ψ) (where 
>ν0(π, φ) = >ν(π, η W°(G, φ)) such that W(e) = 1. The result now follows 

Corollary 8.3. j-n-.v.xo(p) w locally constant on NAwwN. 

Proof. By (57) it is enough to prove that jn,ip,w{g) is locally constant on Aww. 
Let W be as in Lemma 8.2. By Theorem 5.7 η ι—• W(awn) is compactly 
supported on the set (AM(w) Π Aw) χ N~. It follows from Lemma 8.2 that 
j-π,φ,ιυ is locally constant on AM(w) Π Aw). Since AM(w) cover Aw) when 
Μ —» oo we get our result. • 

We end this section by describing the Bessel functions attached to the contra-
gredient representation. 

Lemma 8.4. Let π be a generic representation of G and π the representation 
contragredient to π. Then 

Proof. Let r be the involution of G defined by r(g) = w^g 1wq For each 
W e \ν(π,φ) we define WT(g) = W{r{g)). By [11] the mapping W ^ WT 

is a bijection between \ν(π,φ) and ν\?(π,φ~ ι). If g € G is written in the 
Iwasawa decomposition in the form g = nak where η is upper triangular a is 
diagonal and k € GLn(0) then 

is an Iwasawa decomposition for r(g). Hence, if W 6 W°(7r, ψ) then we get 
that WT e νν°(π,ψ~ ι) . Using Lemma 8.2 we get that 

Now t(w) = w0ww0 and we claim that jv,i,,w0ww0{T(9)) ~ jn^.wowwoig'1) for 
all g 6 NAwwN.. Since both functions satisfy (57) with φ-1 replacing φ it is 
enough to show that they coincide on the set Aww. Since r(g) = g~l for all 

from Proposition 8.1 (c). • 

jir,φ-^,wig) = j*,ii>,w0wwo(9 9 € NAwwN. 

r(g) = (wqU 1w0)(w0a 1tu0)(wok 1w0) 

j*,1>-l,w(9) = j*,ii>,T(w)(r(g)) g e NAwwN. 

g € Aww we get our result. • 
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Corollary 8.5. Let = ϊ-π,-ψ,-w0 be the Bessel function attached to π. Then 

= 9 6 BWQB. 

9. Orbital integrals 

In this section we show that the Bessel functions for the longest Weyl el-
ement (the main Bessel function) defined in Section 8 are given locally by 
orbital integrals. These integrals were studied in [12]. We will do this in two 
steps. We will show that the Bessel function restricted to a compact set in 
G is given by an integral of a Whittaker function which is compactly sup-
ported mod Ν. That is, if we restrict ourselves to this small neighborhood, 
we can replace a Whittaker function in the representation space with a dif-
ferent Whittaker function (not necessarily in the representation space) which 
is compactly supported mod NZ. Then we use the fact that each Whittaker 
function which is compactly supported mod Ν Ζ comes from an integral of a 
function in C%°(G). We will start from the second part. Let ω be a character 
of Ζ and let WU(G, φ) C W(G, φ) be the subspace of functions W e W(G, φ) 
satisfying 

W(gz) = u{z)W{g) geG,zeZ. (58) 

Let C£°(G) be the space of locally constant functions on G with compact 
support. For each / e C£°(G) we let 

Wf(g) = Wf(g) = [ f{ng)i>~\n)dn. 
JN 

It is clear that Wf e W(G, ψ). We also define 

Wf,M= [ f ί(ηζ9)φ-1(η)ω-1(ζ)άηάζ, f e Cc°°(G). (59) 
J Z J Ν 

It is clear that W/)ta> € Ww(G, -φ). The image of these maps is well known. 
(See for example [4], Lemma 7.1). It is given in the following Lemmas: 

Lemma 9.1. Let f G C£°(G). Then Wf is compactly supported mod Ν and 
the map f ·—> Wf is a linear map onto the space of compactly supported func-
tions mod Ν in W(C?, φ). 

Lemma 9.2. Let f € S(G). Then WfiU) is compactly supported mod Ν Ζ and 
the map f > Wf^ is a linear map onto the space of compactly supported 
functions mod Ν in Ww(G,φ). 
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Let |V| be the subspace of \X\given by |V| = {|α|Γι>Γ2,...,Γη : r i+ r 2 + . . .+ r n = 
0}. (see (15)). Let Q = {ßu... ,βη-\} be a basis for \V\. Let Cx < C2 be 
positive constants and define 

AQ(CUC2) = { a e A : CR < ß ( a ) < C 2 , * = 1 , . . . , n - 1}. 

Lemma 9.3. A function W on G is compactly supported mod Ν Ζ if and only 
if there exist constants C\,C2 such that W is supported on Ν AQ{C\,C2)K . 

Proof. We can write AQ(CI,C2) = Ζ A' where A! = {d(ai,a2, . . . ,an_i, 1) € 
AQ(CUC2)}. Since Q is a basis, it is clear that A' is compact. Hence if W is 
supported on Ν AQ{CI,C2)K then it is compactly supported mod NZ. Now 
assume W is compactly supported mod NZ. Then W is supported on a set 
of the form NZR for some compact set R. Since the sets NAQ(C\,C2)K for 
different choices of C\ and C2 are open sets that cover G we get that the sets 
of the form NAQ(C\, C2)K cover R. Since R is compact there exist constants 
C[,C'2 so that R C NAQ{C[,C'2)K. Hence NZR C NAQ{C[,C'2)K. • 

For each w e W w e define the set M(w) C Δ* as follows: 

M(w) = {α*|α € Δ, α i S°(w)}. 

Remark 9.4. If wi < w then by (25), S°(wi) D S°(w), hence M(wi) C M(w). 

Let Ε be a positive constant. We let 

AW(E) = {ae Α : |λ|(α) > Ε for every λ € M(w)}. 

Theorem 9.5. Let W 6 VV0. w ζ W and Ε > 0. There exists a function 
W\ 6 W(G, φ) compactly supported mod Ν Ζ such that 

W\(n\awn2) = W(n\awn2) (60) 

for all a € AW(E) and ηι,η2 € N. 

Remark 9.6. Let < C2 be positive constants and let ACUC2 = A&{C\, C2)· 
By Lemma 9.3 we have that W\ being compactly supported mod Ν Ζ is equiv-
alent to WI being supported on a set of the form NAc1,C2K for some CI,C2. 
Hence we can find W\ e W compactly supported mod Ν Ζ such that (60) 
holds if and only if we can find constants C\, C2 such that the function 

10, otherwise. 

satisfies (60). Hence, we shall use (61) to define the desired W\. Notice that 
if we define W\ by (61) then W(g) — 0 =Φ· Wi(g) — 0 hence we only need to 
prove (60) for g — n\awn2 such that a € AW(E) and W(g) φ 0. 
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Proof. We shall prove this theorem by an induction on l(w) as in the proof of 
Theorem 4.1, Theorem 5.7 and Theorem 7.3. 

l(w) = 0 
In this case w = e, S°(w) = Δ, M(w) = 0 and AW(E) = A. We need 

to show the existence of a Whittaker function W\, compactly supported mod 
Ν Ζ such that Wx = W on B. Since W 6 W° it follows that the support of W 
on ß is contained in a set of the form NAcltc2· Define W\ as in (61). Then 
W\ satisfies the requirements of the Theorem. 

We turn to the general case: l(w) > 1. Fix w € W such that l(w) > 1. 

Remark 9.7. By the induction assumption, and by Remark 9.6, if we are 
given a set of positive constants {EWl : l(w\) < l(w)} then there exists a 
Whittaker function Wi compactly supported mod Ν Ζ such that (60) holds 
for every w\ such that l(w\) < l(w) and every a 6 Awl(Em). 

Fix Ε > 0 and let a e AW(E). We need to show the existence of a function 
Wy as above such that 

W\ (awn) = W(awn) (62) 

for all α 6 AW(E) and all η e N~. Let S~ = {« i , . . . ,α/}. We can assume 
that height(aj) > height(α1+ι), i — 1 , . . . , / — 1. Every η 6 N~ can be written 
(not uniquely) in the form 

η = xQl(ri) • • • xaj{rj) (63) 

for 0 < j < I. We shall prove by an induction on j that there exists a Whittaker 
function W\ as above such that (62) holds for every a € AW(E) and every η 
of the form (63). 

j = 0. 
For j = 0 we need to show the existence of W\ as above such that 

W\(aw) — W(aw) 

for all a 6 AW(E). By the remark above it is enough to consider the case where 
a e AW(E) and W(aw) Φ 0. Since every β 6 Δ* is a positive linear combi-
nation of positive simple roots (see Remark 3.2), it follows from Remark 5.2 
that for every β e M(w) C Δ* there exists a constant Dß such that 

lß(a)l < Dß. (64) 
Since a € AW(E) it follows that for every β € M(w) we have 

Ε < \β(α)\. (65) 

It is possible that the set of such a is empty in which case we take W\ = 0 (or 
W\ given by (61) for any constants Ci < C2.) By Lemma 7.2, we have that 
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for every α G S°(W) there exist constants Ca < Da such that 

Ca < |α(α)| < Da. (66) 

Putting together (64), (65), (66) and using that M(w) U S°(w) is a basis for 
|V| (see Lemma 3.4 (a)) we get by Lemma 9.3 that a satisfying the conditions 
above is in a set of the form Acuc2 f° r some constants C\ < Ci- Hence we 
can use (61) to define W\. 

The general case: Assume j > 1 and let η G iV+ be in the form (63) 
Since W is smooth on the right, there exists a positive constant D such that 
if \r\ > D then 

W{gx-ai{-r-l)) = W(g), g G G. 

Assume that η is of the form (63) with a G AW(E) and > D. We have 

W{awn) = W(awnx-atj(-rJ1)). (67) 

By Lemma 2.6, g = awnx-aj(—rjl) £ Bw\B with w\ < w. Moreover, if 
we write g = n\a\W\n2 for πι 6 Ν, αϊ € A and Π2 G TV" then we have 
Oi = o,hw(aj){rj). Let β € M{w\). Since > D it follows from Remark 2.] 
that there exists Cß,o > 0 such that \ß(hw(aj)(rj))\ > Cßto· By Remark 9.4 
we have that β € M(w) hence |/?(α)| > E. Hence we get that for every |r j \ > C 
and every a £ AW(E) 

\ß(a1)\ = \ß(ahw(a.)(rj))\>ECßtD. 

It follows that if we take Ei = mva.{ECßtD '• ß € M(w)} then αχ € AWl(E\). 

Remark 9.8. If M(w) — 0 then M(w\) = 0 and AWl(E\) = A for everj 
Ει > 0. Hence, in that case, we can take any E\ that we like and αϊ will be 
in Λωι(£α). 

It follows from our first induction assumption that there exists a function 
given by (61) so that 

Wi(niaitüiri2) - W(niaiii;in2) (68) 

for every ni e Ν, α ι G AWl(E\) and τΐ2 G N~i. Since W\ is also smooth or 
the right it follows that there exists a constant D\> D such that 

Wi (awnx-aj (-rj1)) = Wx (awn) (69) 

when |r*j| > Dx. Combining (67), (68) and (69) we get that 

W\ (awn) — W(awn) 

for every α G AW(E) and every η of the form (63) with |r, | > D\. We now 
consider the case |r j | < D\. Fix r such that |r| < D\ and let W' G W° be 


