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Preface

This book by Jakob Nielsen (1890-1959) and Werner Fenchel (1905-1988) has had
a long and complicated history. In 1938-39, Nielsen gave a series of lectures on
discontinuous groups of motions in the non-euclidean plane, and this led him - during
World War II - to write the first two chapters of the book (in German). When Fenchel,
who had to escape from Denmark to Sweden because of the German occupation,
returned in 1945, Nielsen initiated a collaboration with him on what became known
as the Fenchel-Nielsen manuscript. At that time they were both at the Technical
University in Copenhagen. The first draft of the Fenchel-Nielsen manuscript (now
in English) was finished in 1948 and it was planned to be published in the Princeton
Mathematical Series. However, due to the rapid development of the subject, they felt
that substantial changes had to be made before publication.

When Nielsen moved to Copenhagen University in 1951 (where he stayed until
1955), he was much involved with the international organization UNESCO, and the
further writing of the manuscript was left to Fenchel. The archives of Fenchel now
deposited and catalogued at the Department of Mathematics at Copenhagen Univer-
sity contain two original manuscripts: a partial manuscript (manuscript 0) in Ger-
man containing Chapters I-II (§§1-15), and a complete manuscript (manuscript 1) in
English containing Chapters I-V (§§1-27). The archives also contain part of a corre-
spondence (first in German but later in Danish) between Nielsen and Fenchel, where
Nielsen makes detailed comments to Fenchel's writings of Chapters III-V. Fenchel,
who succeeded N. E. N0rlund at Copenhagen University in 1956 (and stayed there
until 1974), was very much involved with a thorough revision of the curriculum in al-
gebra and geometry, and concentrated his research in the theory of convexity, heading
the International Colloquium on Convexity in Copenhagen 1965. For almost 20 years
he also put much effort into his job as editor of the newly started journal Mathematica
Scandinavica. Much to his dissatisfaction, this activity left him little time to finish the
Fenchel-Nielsen project the way he wanted to.

After his retirement from the university, Fenchel - assisted by Christian Sieben-
eicher from Bielefeld and Mrs. Obershelp who typed the manuscript - found time to
finish the book Elementary Geometry in Hyperbolic Space, which was published by
Walter de Gruyter in 1989 shortly after his death. Simultaneously, and with the same
collaborators, he supervised a typewritten version of the manuscript (manuscript 2) on
discontinuous groups, removing many of the obscure points that were in the original
manuscript. Fenchel told me that he contemplated removing parts of the introductory
Chapter I in the manuscript, since this would be covered by the book mentioned above;
but to make the Fenchel-Nielsen book self-contained he ultimately chose not to do
so. He did decide to leave out §27, entitled The fundamental group.



vi Preface

As editor, I started in 1990, with the consent of the legal heirs of Fenchel and
Nielsen, to produce a TpX-version from the newly typewritten version (manuscript 2).
I am grateful to Dita Andersen and Lise Fuldby-Olsen in my department for hav-
ing done a wonderful job of typing this manuscript in AMS-T^X. I have also had
much help from my colleague J0rn B0rling Olsson (himself a student of Kate Fenchel
at Aarhus University) with the proof reading of the TpX-manuscript (manuscript 3)
against manuscript 2 as well as with a general discussion of the adaptation to the style
of TgX. In most respects we decided to follow Fenchel's intentions. However, turning
the typewritten edition of the manuscript into TpX helped us to ensure that the notation,
and the spelling of certain key-words, would be uniform throughout the book. Also,
we have indicated the beginning and end of a proof in the usual style of TjtX.

With this TpX-manuscript I approached Walter de Gruyter in Berlin in 1992, and
to my great relief and satisfaction they agreed to publish the manuscript in their series
Studies in Mathematics. I am most grateful for this positive and quick reaction. One
particular problem with the publication turned out to be the reproduction of the many
figures which are an integral part of the presentation. Christian Siebeneicher had at
first agreed to deliver these in final electronic form, but by 1997 it became clear that he
would not be able to find the time to do so. However, the publisher offered a solution
whereby I should deliver precise drawings of the figures (Fenchel did not leave such
for Chapters IV and V), and then they would organize the production of the figures in
electronic form. I am very grateful to Marcin Adamski, Warsaw, Poland, for his fine
collaboration concerning the actual production of the figures.

My colleague Bent Fuglede, who has personally known both authors, has kindly
written a short biography of the two of them and their mathematical achievements,
and which also places the Fenchel-Nielsen manuscript in its proper perspective. In
this connection I would like to thank The Royal Danish Academy of Sciences and
Letters for allowing us to include in this book reproductions of photographs of the two
authors which are in the possession of the Academy.

Since the manuscript uses a number of special symbols, a list of notation with short
explanations and reference to the actual definition in the book has been included. Also,
a comprehensive index has been added. In both cases, all references are to sections,
not pages.

We considered adding a complete list of references, but decided against it due to
the overwhelming number of research papers in this area. Instead, a much shorter
list of monographs and other comprehensive accounts relevant to the subject has been
collected.

My final and most sincere thanks go to Dr. Manfred Karbe from Walter de Gruyter
for his dedication and perseverance in bringing this publication into existence.

Copenhagen, October 2002 Asmus L. Schmidt
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Life and work of the Authors

Jakob Nielsen1 was born on October 15, 1890 in the village Mjels in Northern
Schleswig (then under Germany), where his father owned a small farm. After at-
tending the village school Jakob was taken to Rendsburg in 1900, where he went to
the Realgymnasium. In 1908 he entered the University of Kiel and attended lectures
in physics, chemistry, geology, biology, and literature. Only after some terms did
mathematics take a prominent place. When Max Dehn was attached to the university
at the end of 1911 he introduced Jakob Nielsen to topology and group theory at the
level of current research. Their contact developed into a lifelong friendship.

In the summer of 1913 Nielsen graduated from the university with the doctor's the-
sis "Kurvennetze auf Flächen", which already points towards his later achievements.
But shortly afterwards he was called up for service in the German navy, attached to
the coast defence artillery. The war had broken out, and he was sent first to Belgium
and then in April 1915 to Constantinople as one of the German officers functioning
as advisers to the Turkish government on the defence of the Bosporus and the Dar-
danelles. He found time to write two short papers, published in 1917 and 1918, in
continuation of his thesis and dealing with finitely generated free groups.

Back in Germany after the war had ended, Nielsen spent the summer term of 1919
in Göttingen, where he met Erich Hecke and later accompanied him to Hamburg as his
assistent and "Privatdozent"; they too became close friends. From that period we have
two papers of Nielsen both dealing with the fixed point problem for surface mappings.

Already in 1920 Jakob Nielsen was appointed professor at the Institute of Tech-
nology in Breslau, where he resumed contact with Dehn. In lectures here Nielsen
formulated clearly the central problem he had set himself to solve: to determine and
investigate the group of homotopy classes of homeomorphisms of a given surface. One
link of this investigation, namely the proof that every automorphism of the fundamen-
tal group of a closed surface is induced by a homeomorphism, had been communicated
to him by Dehn, who never published it. It is characteristic of Nielsen that whenever
he needed this theorem, or merely some idea resembling its proof, he would stress his
debt to Dehn.

The stay in Breslau became a brief one, for later in 1920 North Schleswig was
reunited with Denmark after a referendum, and Jakob Nielsen opted for Denmark. He
moved to Copenhagen the year after together with his wife Carola (nee von Piever-
ling), and here he became a lecturer at the Royal Veterinary and Agricultural College.
Quickly he became a treasured member of the Danish mathematical community. He
met frequently with Harald Bohr and Tommy Bonnesen, and they followed each other's
work with keen interest.

'What is written above about Jakob Nielsen and his work is largely an extract of Werner Fenchel's
comprehensive memorial address at a meeting in the Danish Mathematical Society on 7 December 1959,
printed in Acta Mathematica 103 (1960), vii-xix.
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In a purely group theoretic paper by Nielsen, from 1921, a major result is that
every subgroup of a finitely generated free group is likewise free. His proof is based
on an ingenious method of reduction of systems of generators. In 1927 the theorem
was extended by Otto Schreier to arbitrary free groups, and under the name of the
Nielsen-Schreier theorem it contributes now one of the bases of the theory of infinite
groups. Two other papers, from 1924, continue earlier investigations of the group of
automorphisms of a given group.

Along with these and other investigations Jakob Nielsen took up the study of
discontinuous groups of isometries of the non-euclidean plane and devoted several
papers (1923, 1925, 1927) to this subject. His interest in it arose from the fact that
the fundamental group of a surface of genus greater than 1 admits representations by
such discontinuous groups.

These apparently somewhat desultory investigations turned out to be stones that
went to the erection of an impressive building. Hints of this are to be found in some
lectures given by Nielsen in Hamburg in 1924 and in Copenhagen in 1925, at the 6th
Scandinavian Congress of Mathematicians. But in its final form it appeared in three
long memoirs (300 pages in all) from the years 1927, 1929, and 1932 in Acta Mathe-
matica under the common title "Untersuchungen zur Topologie der geschlossenen
zweiseitigen Flächen". Here we find again the notions and methods he had previously
used or developed: the universal covering surface interpreted as the non-euclidean
plane, the latter represented by the conformal model in the interior of the unit circle;
the fundamental group as a discontinuous group of isometries of the non-euclidean
plane; the mappings of the latter onto itself which lie over a given surface mapping,
and the automorphisms induced by them. As an essential new tool comes here the
following theorem: Every mapping of the non-euclidean plane onto itself which lies
over some surface mapping can be extended continuously to the points of the unit
circle, representing the points at infinity of the non-euclidean plane, and the mapping
of the circumference which arises in this way depends only on the homotopy class
of the surface mapping. A two-dimensional problem is hereby reduced to a one-
dimensional one. - With these memoirs Jakob Nielsen had broken new ground, and
they gave him great international reputation.

In 1925 Nielsen became professor of theoretical mechanics at the Technical Univer-
sity in Copenhagen. Here he worked out his textbook on that subject in two volumes,
published in 1933-34, in which he exploited more recent mathematical tools. A third
volume about aerodynamics was added later. Nielsen's lectures demanded much of
his students; he had an unusual power of expressing himself with great lucidity, but
also with great terseness.

It is not possible here to mention the many papers, about 20, among them several
comprehensive ones, which Jakob Nielsen published in the years after 1935, most of
them carrying on his investigations on surface mappings. By means of the powerful
tools developed in the previous papers, he succeeded in solving a series of related
problems. In 1937 he gave a complete classification of the periodic mappings of a
surface onto itself, and in 1942 a fourth great memoir, "Abbildungsklassen endlicher
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Ordnung", was published in Acta Mathematica. It deals with a problem to which he
had been led in the third of the above mentioned Acta papers, and which he had solved
there in some special cases: Does every homotopy class of surface mappings which
is of finite order, in the sense that a certain power of it is the class of the identity
mapping, contain a periodic mapping, that is, a mapping the same power of which is
the identity? The proof that this is the case is extremely difficult and makes up all the
90 pages long paper. One cannot but admire the intellectual vigour with which this
investigation is carried out. Finally I shall mention one more large paper: "Surface
transformation classes of algebraically finite type" from 1944, in which more general
classes of surface mappings are thoroughly investigated.

On several occasions Jakob Nielsen lectured at the Mathematical Institute of
Copenhagen University to a small circle of young mathematicians on subjects that
occupied him in connection with his research. Of special interest is a series of lectures
on discontinuous groups of isometries of the non-euclidean plane, given in the year
1938-39; here he took up the theory for a certain class of these groups for its own sake.
He realized the need for investigating the theory of discontinuous groups of motions
in the non-euclidean plane in its full generality and from the bottom, in view of its
many important fields of applications. Gradually it became clear, however, that this
task, which Jakob Nielsen took up together with Werner Fenchel, was considerably
more extensive than anticipated.

Although his heart was at this project, Jakob Nielsen could only devote to it
a moderate part of his great working power, for since the end of the 1939-1945
war he was deeply engaged in international cooperation, especially the work of
UNESCO, where he was a highly esteemed member of the Executive Board from 1952
to 1958.

In 1951 Jakob Nielsen was nominated Harald Bohr's successor at the University
of Copenhagen. Here he lectured with delight and zeal to young mathematicians on
subjects close to his heart. But the growing demands made upon him by his UNESCO
work, with frequent journeys abroad, which interrupted his lectures, caused him in
1955 to resign his professorship; and after finishing his UNESCO work he could
devote himself wholeheartedly to the work on the monograph with Fenchel. Jakob
Nielsen succeeded in surmounting a difficulty which had long prevented a satisfactory
conclusion. But already in January 1959 he was stricken with the disease which carried
him off on the 3rd of August.

Werner Fenchel was born on the 3rd of May 1905 in Berlin, son of a representative.
Already in highschool his deep interest in physics led him into mathematical studies
far beyond the school curriculum. Aged eighteen he entered the University of Berlin,
where he attended lectures by Einstein among others. With the growing demands
of mathematical knowledge needed to understand the theory of relativity, Fenchel
eventually concentrated foremost on mathematics. Towards the end of his study he
succeeded in proving that the total curvature of a closed curve in space is at least 2π.
He presented his result in the mathematics colloquium, and afterwards Erhard Schmidt
decided right away that this would be suitable for a doctoral thesis.
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Soon after graduating from the university in 1928 Fenchel was lucky to become
assistent of Edmund Landau in Göttingen. At this leading centre of mathematics,
counting Hubert among its professors, Werner Fenchel met Harald Bohr, who was
guest lecturing, and also briefly Jakob Nielsen for the first time. A Rockefeller stipend
allowed Fenchel to spend a semester in Rome, studying differential geometry with
Levi-Civitä, and also to visit Bohr in Copenhagen in the spring of 1931. Here he
also met Bonnesen, with whom he wrote in the following years the Ergebnisse tract
"Theorie der konvexen Körper", published in 1934. Reprinted in 1976, it has become
a classic in convexity theory.

In 1933 Werner Fenchel, like so many others, had to leave Germany. Invited
by Harald Bohr he went to Copenhagen with his wife Kate (nee Sperling), a group
theorist. Here he continued assisting Otto Neugebauer in editing the Zentralblatt für
Mathematik. He also translated and adapted Jakob Nielsen's textbook on theoretical
mechanics to German. Inspired by Bohr's theory of almost periodic functions Fenchel
wrote with him a paper on stable almost period motions (1936); and in a paper with
Jessen (1935) he showed that every almost periodic motion on certain types of surfaces
can be deformed continuously and almost periodically into a periodic motion. A
paper by Fenchel from 1937 deals with motions in a euclidean space which are almost
periodic modulo isometries. Retrospectively, these investigations of almost periodic
motions may be seen as forerunners to the theory of dynamical systems.

The cooperation with Bonnesen led Fenchel to new contributions to the theory
of convex bodies as developed by Brunn and Minkowski. He succeeded in solving a
long standing problem about extension of Minkowski's inequalities for mixed volumes
(1936). The Brunn-Minkowski theory had been developed in two extreme cases, the
convex body being either smoothly bounded or a polytope. In a memoir from 1938
Fenchel and Jessen succeeded, independently of A. D. Alexandrov, in extending the
theory to general convex bodies.

The German occupation of Denmark during the 1939-45 war forced in 1943 Werner
and Kate to leave their new home country. Helped by Marcel Riesz they found refuge
in Lund, together with their little son Tom. After the end of the war they returned
to Denmark, where Fenchel in 1947 had his first tenure position, at the Technical
University in Copenhagen, and here he succeeded in 1951 Jakob Nielsen as professor
of theoretical mechanics.

Werner Fenchel visited the United States with his family in 1950-51, staying at
U.S.C. in Los Angeles with his close friend Herbert Busemann, next at Stanford with
Polya and Szegö, and finally in Princeton at the Institute for Advanced Study and
Princeton University. In a short paper from 1949 Fenchel had sketched ideas which
were to lead to a far-reaching development in convexity theory. He associated with
each convex function on a euclidean space a conjugate function, likewise convex,
and established the basic properties of this concept of duality. This theory entered
naturally in a series of lectures he gave at Princeton University, and mimeographed
notes were written. These certainly ought to have been properly published, but copies
soon began to circulate widely and had a great impact on research in this field.
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Back in Denmark, Werner Fenchel seems to have put the duality theory aside,
his publications from the 1950's dealing with other aspects of convexity and with
geometrical and topological topics. In the light of the development in the theory
of topological vector spaces it was, however, clear to Fenchel that it was desirable
to extend his theory of conjugate convex functions to these very general spaces, and
thereby widen its applicability. Thus encouraged, one of his students, Arne Br0ndsted,
carried out that project in a comprehensive paper published in 1964.

In a pioneering monograph "Convex Analysis" from 1970, R. T. Rockafellar ap-
plied the duality theory to create a theory of convex optimization based on the ideas of
Kühn and Tucker. This aspect of mathematical optimization has become an integral
part of theoretical economics. Earlier, the author had spent a year in Copenhagen
with Fenchel. In the preface to his book Rockafellar emphasizes the great impact
Fenchel's lecture notes from Princeton had on his own perception of convexity theory,
and he writes: " It is highly fitting, therefore, that this book be dedicated to Fenchel
as honorary co-author".

In 1956 Fenchel had succeeded N.E. N0rlund as professor at the University of
Copenhagen. He was an inspiring lecturer, with a delightful ability of vizualizing his
subject. The newly started Journal Mathematica Scandinavica had Fenchel as a very
dedicated editor during nearly twenty years. Likewise for many years he was secretary
of the Danish Mathematical Society, and from 1958 to 1962 its chairman. In 1965 he
organized a big international colloquium on convexity theory in Copenhagen.

After the war Werner Fenchel had joined Jakob Nielsen in pursuing the study of
discontinuous groups of isometries of the hyperbolic plane. This led to a joint paper
in 1948, and in the same year Fenchel published two more articles on that topic. As
described in the above outline of Nielsen's work, their project of developing the theory
from its basis with the aim of giving a comprehensive presentation of it turned out to
be much bigger than foreseen. Provisional sketches of their work had circulated in a
few copies among researchers in the field and excited keen interest.

After Jakob Nielsen's death in 1959 Werner Fenchel continued the project alone -
no less so after his retirement from the university in 1974. In periods he was assisted
by younger colleagues: Asmus Schmidt, Nils Andersen, Troels J0rgensen (then in
Copenhagen), and Christian Siebeneicher in Bielefeld. And late in his life Fenchel
succeeded in completing the body of the manuscript.

While working on the Nielsen project, Werner Fenchel had realized the need for
a comprehensive exposition of the underlying hyperbolic geometry, also in higher
dimensions and based on the conformal model. And shortly before his death on
24 January 1988 he had completed the manuscript to the monograph "Elementary
Geometry in Hyperbolic Space", which was published the year after in the de Gruyter
Studies.





Chapter I
Möbius transformations and non-euclidean
geometry

§1 Pencils of circles - inversive geometry

1.1 Notations. The following considerations are based on the plane of all complex
numbers, this plane being closed as usual by a point at infinity, in other words on
Riemann's sphere of complex numbers. In general, the points of the plane as well as
the corresponding complex numbers are denoted by small Latin letters, real numbers
by Greek letters. The straight lines of the plane are considered as circles passing
through the point at infinity; even single points will occasionally be included among
the circles and are then spoken of as zero-circles. The circles of the plane in this
general sense - as well as other subsets of the plane - will be denoted by calligraphic
capitals. In this paragraph some definitions and theorems concerning pencils of circles
are enumerated for subsequent use.

1.2 Three kinds of pencils. An elliptic pencil consists of all circles passing through
two different points u and v, the common points of the pencil. Each point of the plane

Figure 1.1

other than u and v lies on exactly one circle of the pencil. If one of the common points,

'Editor's note: the names elliptic and hyperbolic pencil have been switched as compared with the first
edition of the Fenchel-Nielsen manuscript. It is now in accordance with common usage, cf. [15], [31],
[55]. Earlier the expression coaxal circles were in use, cf. [25], [45]
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in the sequel usually u, is termed the negative and the other the positive, the pencil is
said to be directed. It is often appropriate to think of a directed elliptic pencil as made
up of circular arcs joining u and and directed from « towards v.

A. parabolic pencil consists of all circles touching each other in some definite point
u, the common point or zero-circle of the pencil. A direction of the circles in u is
called the direction of the pencil. Each point of the plane other than u lies on exactly
one circle of the pencil.

Figure 1.2

A hyperbolic pencil consists of all circles which are orthogonal to all circles of an
elliptic pencil. The common points u and v of the elliptic pencil are included in the
hyperbolic pencil as zero-circles. If none of these is at infinity, the hyperbolic pencil
is made up of all apollonian circles for the points u and v, i.e. each circle of the pencil
is the locus of all points whose distances from u and v are in a fixed ratio. If one of
the zero-circles is at infinity, the pencil consists of all circles with the other zero-circle
as their common centre. The two zero-circles are separated by every other circle of
the pencil. Each point of the plane lies on exactly one circle of the pencil. If one of
the zero-circles is termed the negative and the other the positive, the pencil is said to
be directed. In that case the circles of the pencil are directed in accordance with the
usual orientation of the complex plane when seen from the positive zero-circle.

1.3 Determination of pencils. The hyperbolic and elliptic pencil based on two
different points u and v are called conjugate. The conjugate of a parabolic pencil is a
parabolic pencil with the same common point and with a direction at right angles to
the direction of the first pencil. Two different circles determine exactly one pencil of
which they are members. This pencil is elliptic, parabolic, or hyperbolic according as
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Figure 1.3

the two given circles intersect, touch, or have no point in common. (In this connection
a zero-circle touches another circle if the point lies on the circle.)

Two different circles determine exactly one pencil of circles to which they are
orthogonal. This pencil is hyperbolic, parabolic, or elliptic, according as the two
given circles intersect, touch, or have no point in common. This pencil is conjugate to
the pencil of which the two given circles are members. In this connection a zero-circle
is orthogonal to another circle, if the point lies on the circle.

If three circles do not belong to one and the same pencil, the necessary and sufficient
condition for the existence of exactly one circle orthogonal to all three is the following:
If at least two of the circles intersect, the pair of intersection points of the first circle
with the second are not separated on the first circle by the pair of its intersection
points (if any) with the third. (In this connection a zero-circle has to be considered as
orthogonal to itself.)

1.4 Inverse points. Two points are called inverse with respect to a circle X, which
is not a zero-circle, if they are the zero-circles of a hyperbolic pencil to which X
belongs; in other words if they are the common points of an elliptic pencil orthogonal
to JC. To every point χ not on X there exists exactly one inverse, the second zero-
circle of the hyperbolic pencil determined by the zero-circle χ and the circle X. Two
points inverse with respect to X are separated by X. The inverse of a point on X is,
by definition, the point itself. The mapping which assigns to a point of the plane its
inverse with respect to X is called the inversion with respect to X.
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§2 Cross-ratio

2.1 Definition and identities. The cross-ratio of two pairs of points x\, y\ and
*2, 3>2 (thus of four points x\ , y\ , x%, yi given in this order) is denoted by (x\y\X2j2)
and defined as the complex number

, , - y\)(x\y\X2j2) = ·y\ y2-y\ fa - y\)(y2 - χ\)
This definition has a meaning if no three among the four points coincide. The cross-
ratio assumes the special values 0, oo and 1 in the following cases respectively, and
in these cases only: If the two first or the two second points of the pairs coincide; if
the first point of one pair coincides with the second of the other; if the two points of
one pair coincide. Given any three different points x\,y\, X2 there exists exactly one
point j2 such that the cross-ratio assumes a prescribed value. The following relations
hold:

= (y\x\y2X2) = (xiywyi) 0)
1

(y\X\X2j2) = (x\y\j2X2) = 7 - - (2)

= (y2y\x2x\) = ι - (x\y\x2y2) (3)
(4)

2.2 Amplitude and modulus. First, let the four points x\,y\,X2,y2 be different
and none of them at infinity. Let x\ and y\ be joined by two circular arcs passing
through X2 and j2 respectively, and let the half-tangents y\s and y\t of these circular
arcs at y\ by drawn (see Fig. 2. 1 ). Counting the sign of angles in accordance with the

Figure 2.1
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orientation of the complex plane, Fig. 2.1 illustrates the following relation:

sy\t =
y\x\xi + yix\y\ =

V2-y\ , x2-x\ , .= amp -- h amp - = amp(x \y\X2y2).X2 - y\ y2- χι
Hence the amplitude of the cross-ratio of two pairs of points equals the angle between
the two circular arcs joining the points of one pair and passing each through one point
of the other pair. In particular, the condition for the cross-ratio being real is that all
four points are on one circle, the cross-ratio being negative or positive according as
the pairs x\ , y\ and X2, y2 separate or do not separate each other on that circle.

Moreover, \X2 — x\\l\X2 — y\\ and \y2 — x \ \ / \ y 2 — y\\ equals the ratio of distances
of the points X2 and y2 respectively from the points x\ and y\ . The first ratio remains
unaltered if ^2 is displaced on the apollonian circle for x\ and y\ passing through X2,
thus on a circle of the hyperbolic pencil determined by x\ and y\ as zero-circles; and
equally for y2. In particular, X2 and y2 may be replaced by the intersection points x2
and 3/2 of these two circles with any circular arc joining x\ and y\ . Hence

\(x\y\x2yi)\ =

this cross-ratio being positive. The condition for

\(xiyi*2V2)\ = 1

is that X2 and j2 are on the same apollonian circle for x\ and y\ .
The necessary and sufficient conditions for these special cases may be so formu-

lated: The cross-ratio for two pairs of points is real (in particular: positive) if the
points of one pair are situated on one circle (in particular: circular arc) of the elliptic
pencil which is determined by the other pair as common points; in this case the two
pairs are called concyclical. The cross-ratio for two pairs of points has modulus 1 ,
if the points of one pair are situated on one circle of the hyperbolic pencil which is
determined by the other pair as zero-circles.

It is easily seen that this holds even if the point at infinity or coincidences of points
are admitted, with the restriction that coincident points of one pair cannot, of course,
play the role of common points or zero-circles of the above pencils.

2.3 Harmonic pairs. Two pairs of points are called harmonic, if

-\. (5)

If x\ and y\ are chosen as common points of an elliptic and as zero-circles of a
hyperbolic pencil the necessary and sufficient condition for the validity of (5) is that
X2 and y2 are the intersection points of a circle of one pencil with a circle of the other.
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Now, conjugate pencils are orthogonal. Hence, if JC is the circle passing through
two harmonic, and thus concyclical pairs x\ , y\ and xi, yi and JC\ and JC2 are circles
orthogonal to JC and passing through x\ and y\ and through X2 and y2 respectively,
then JCi and JC2 are mutually orthogonal. x\ and y\ are inverse with respect to JC2,
and so are ΧΊ and >2 with respect to JCi . Conversely, if three circles are mutually
orthogonal, each of them cuts the two others in harmonic pairs.

If the points χ and x' are inverse with respect to the circle JC, every circle through
χ and x' will cut JC in a pair of points which is harmonic with the pair x, x f .

If none of the four points is at infinity, equation (5) may by written

or
2(x\y\ + X2yi} - (x\ +y\)(x2 + yi) = 0.

This equation obviously holds in the case when three of the four points coincide, in
which case no cross-ratio is defined. In the sequel it is appropriate to include this case
in the term harmonic pairs.

§3 M bius transformations, direct and reversed

3.1 Invariance of the cross-ratio. The set of linear fractional transformations

x^x,= ax_ + b_^ ad-bc^O (1)
ex +d

with complex coefficients constitute a group of bijective mappings of the closed com-
plex plane onto itself. Multiplication of the matrix A = (^ ^) of coefficients of the
transformation (1) by a factor ^ 0 does not affect the transformation, and so by a
suitable choice of such a factor the determinant ad — be can be given the value 1.

It is easily seen that all angles are preserved under the mapping by the M bius
transformation (1): If x — Λ (τ) is a parametric representation of some differentiable
curve, amp jt is equal to the angle from the real axis to the tangent of the curve directed
in the sense of the increase of τ. For the image of the curve the corresponding angle
is

dx' d ax +b dx ad — be
amp — = amp = amp — + amp -=·. (2)K dt dt cx + d dt (cx + d)2

Thus amp ̂  is increased by an amount which depends on the point considered but
which is independent of the direction of the curve at that point. Hence the angle
subtended at the intersection point of two curves remains unaltered by the mapping
both in magnitude and in sign. This remains valid for the point at infinity if angles are
measured at the point x = 0 after performing the transformation x t->- x' = j.
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Let jc i , y\,X2, J2 be any four points, no three of which coincide, and x'}, y [ ,
x'2, y'2 their images under the M bius transformation (1). If none of the four points is
— 7 or oo, then

/ / αΛ2-\-υ ax]-\-h ,
*2 ~ χ\ ^+d ~ ^+3 ΧΙ ~ x\ cy\ + d
x' - y( °*?+b _ °yi+h X2 - y\ cxi + d '2 y| cx2+d cyi+d

and likewise, since the second factor of the right-hand member does not depend on
X2,

y'2 — x( y2 — x\ cy\ + d
y'i-y\ j 2 - y \ cx\+d'

Hence
(x(y(x!

2y'2) = (x\y \X2yi),
showing the invariance of the cross-ratio under the transformation (1). Continuity
then shows this even holds in the special cases excluded above.

Since the reality of the cross-ratio characterizes the concyclical disposition of four
points, any M bius transformation maps circles onto circles. Combining this property
with the property of isogonality, it follows that the circles of a pencil are mapped onto
the circles of a pencil of the same kind. In particular, two points inverse with respect
to some circle are mapped onto two points which are inverse with respect to the image
of that circle.

3.2 Determination by three points. Let jci , ΧΙ , XT, and x\,x2, x'^ be any two triples
each made up of three different points. Then there is exactly one M bius transforma-
tion (1) carrying χ ι into x\ , Χ2 into x'2 and XT, into x'3: Denoting by x' the image-point
of an arbitrary point x, the invariance of the cross-ratio yields the equation

from which x' is calculated as a linear fractional function of χ with the required
property; the determinant of this transformation is

(x\ ~ X2)(x\ - *3)(*2 - Xl)(x\ ~ χ'2)(χ{ - Χτ)(χ2 ~ x'?>)

and thus does not vanish in virtue of the conditions stated. Consequently, a M bius
transformation leaving three points fixed is the identical transformation.

3.3 Reversed transformations. Transformations like

x H» x' = — - , ad-bc^Q, (3)
ex +d

x denoting the conjugate of x, produce bijective mappings of the closed complex
plane onto itself reversing orientation. They are the composition of an inversion
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with respect to the real axis and a M bius transformation and may be called reversed
M bius transformations. Angles are left unaltered in magnitude but are reversed in
sign. Cross-ratios are replaced by their conjugate values. Circles are mapped onto
circles and pencils of circles onto pencils of the same kind. Since the product of
two reversed M bius transformations is a direct M bius transformation, the set of all
M bius transformations, direct and reversed, constitute a group.

For any two prescribed triples JC] , x2, XT, and x [ , x ' 2 , -£3 each consisting of three
different points there exists exactly one reversed M bius transformation carrying χ ι
into jcj , ΧΊ into x'2 and ^3 into x'^, this transformation being calculated from the equation

(x(x2x^x') = (χ]Χ2χ3χ). (4)

3.4 Inversions. If the transformation (4) leaves fixed the points x\ , Χ2, x$, i.e. if
x\ = x [ , X2 = x2, *3 = -*3, each point of the circle C passing through these three
points remains fixed; for if χ is a point on this circle the cross-ratios in (4) are real and
hence

This equation implies xf = x. In consequence of the properties of reversed transfor-
mations described above, every circle orthogonal to G is mapped onto itself. The pair
of common points u and v of the pencil must then be mapped onto itself. Now, u
and v cannot be left fixed individually, since in that case every point of every circle
of the pencil would be invariant, and the transformation cannot be identical since it
is reversed. Hence u and v are interchanged. The transformation thus carries every
point of the plane into its inverse with respect to G and is called inversion with respect
toC.

A reversed M bius transformation leaving three points fixed is the inversion with
respect to the circle passing through these three points.

§4 Invariant points and classification of M bius
transformations

4.1 The multiplier. The invariant points of a M bius transformation (3.1) with
matrix A = (" ̂ ) are determined by the equation

ax + b
γ —— cx + d

or
cx2 + (d-a)x -b = Q.

In case c = 0 the point χ = oo has to be included among its roots. In case c =
d — a — b = 0, the transformation is the identity; this case needs no consideration.
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The equation then has one or two roots according as

D = (d-a)2 +4bc = ( t rA) 2 -4de tA

is equal to zero or different from zero. Let u and v denote the invariant points of the
mapping (different or equal), χ any other point and jc' its image. In virtue of (3.3) and
the fact that u = u', v = v', a short calculation yields

d + a -
k = (uvxx1) = — - = (1)

d + a + VD

(or the reciprocal value dependent on the choice of u and v after a definite value for
Λ/D has been fixed). Thus k is an invariant of the transformation. It is called the
multiplier of the transformation (3.1). One has:

.
det A

Moreover, from (3.2) one can calculate the increase of the amplitude in an invariant
point:

ad — be ad — be
amP ' 2(CM + dy (cv + dy

4.2 Two invariant points. At first, let D be different from zero, thus u and ι; dif-
ferent. In virtue of the invariance of the cross-ratio one has

QX') = (UVXQX).

On multiplying by (UVXXQ) one gets from (4) in §2

(uvxx') — (UVXQX'Q),

showing once more the invariance of k. This constant is neither 0 nor 1 nor oo, since all
four points are different, χ not being invariant. Conversely, under the same conditions
the equation

(uvxx') = k (3)

determines a M bius transformation with two different invariant points u and v. Obvi-
ously, the multiplier of the product of two such transformations with the same invariant
points is the product of the corresponding multipliers.

The image of any circular arc joining u and υ is a circular arc joining u and
υ; hence the circular arcs of the elliptic pencil with u and v as common points are
interchanged. In consequence of the isogonality this also holds for the circles of the
conjugate hyperbolic pencil with u and v as zero-circles. As stated in §2 and confirmed
by calculation in Section 1 , the amplitude of k measures the angle through which the
circular arcs of the elliptic pencil are rotated about u or υ; likewise the modulus of k
characterizes the displacement of the circles of the hyperbolic pencil.
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The necessary and sufficient condition for k being positive is that χ and x' are on
the same circular arc of the elliptic pencil; each of these circular arcs is then mapped
onto itself. These transformations are called hyperbolic. The elliptic pencil with u and
v as common points is called the fundamental pencil of the hyperbolic transformation.

The necessary and sufficient condition for the modulus of k being 1 is that χ and
x' are on the same circle of the hyperbolic pencil; each of these circles is then mapped
onto itself. These transformations are called elliptic. The hyperbolic pencil with u and
v as zero-circles is called the fundamental pencil of the elliptic transformation. Among
these elliptic transformations is included the particular case k — — 1, in which u, ν and
x, x' are harmonic; in the two conjugate pencils determined by u and v the two circles
passing through x intersect again in x''. Thus this transformation is involutory since it
interchanges the intersection points. It will be called the involution with respect to the
pair of points u, v. A transformation (3.1) with two invariant points u and v, which
interchanges two different points x and x' is the involution with respect to u, υ. For
the equation

k = (uvxx') = (uvx'x) = -k
yields k = — 1, since k φ l.

If neither k > 0 nor \k\ = 1, no circular arc of the elliptic pencil and no circle of the
hyperbolic pencil is mapped onto itself and the transformation is called loxodromic.

4.3 One invariant point. Secondly, let D be zero, thus u and υ coincide. These
transformations with only one invariant point, u, are called parabolic. Since in this
case D = (tr A)2 — 4 det A = 0 one gets tr Α φ 0 and (1) yields k = 1, amp k = 0.
Thus the directions in u are left unaltered. Hence any circle through u is mapped onto
a circle touching the former in u. Any parabolic pencil with u as common point is
mapped onto itself.

Let x be any point other than u and x' its image, and draw the circle through u, x
and x'. Its image must touch it in u and pass through x' and therefore coincides with
the circle itself. Hence every point other than u lies on a circle which passes through u
and coincides with its image. Two such circles have only u in common, since a second
common point obviously would be invariant. These circles therefore form a parabolic
pencil with u as common point. Thus there exists exactly one parabolic pencil with u
as common point, whose circles are mapped onto themselves individually. It is called
the fundamental pencil of the parabolic transformation. The direction of this pencil in
u is called the fundamental direction of the parabolic transformation. Conversely, a
M bius transformation which reproduces the circles of a parabolic pencil individually,
is parabolic, or the identity. For the common point u of the pencil is invariant, and
if there is another invariant point v the circles of the elliptic pencil with u and v as
common points are reproduced individually, since the directions in u either remain
fixed or are reversed. Every other point of the plane is the intersection of a circle of
the parabolic pencil and a circle of the elliptic pencil and thus remains fixed. The
transformation, therefore, is the identity.
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A parabolic transformation is uniquely determined by the invariant point u, another
point χ and its image x'. For the image / of any other point y is situated both on the
circle through x' which touches the circle through u, χ and y in u and on the circle
through y which touches the circle through u, x and x' in M; the latter belongs to the
fundamental pencil. - If, in particular, y is on the circle through u, x and x', one may
first construct the image z' of an arbitrary point z outside that circle, and then let z and
z' play the role of Λ and x'.

No parabolic transformation can interchange two points. For if u is the invariant
point, x any other point, and x' its image, the circle through u, x and x' is mapped
onto itself in such a way that all its points are displaced in a definite direction without
passing through u. Hence the image of x' is separated from x by x' and u and, therefore,
cannot coincide with x. In reviewing the different types investigated it comes out that
the involution with respect to a pair of points is the only type of transformation which
interchanges two points.

4.4 Transformations with an invariant circle. Which are the M bius transforma-
tions (other than the identity) which map a prescribed circle X onto itself and each of
the two regions determined by JC in the plane onto itself?

First, let it be assumed that JC contains no invariant point of the transformation.
Let u be an invariant point and denote by v its inverse with respect to JC. Since JC is
mapped onto itself, a pair of inverse points with respect to JC are mapped onto a pair
of inverse points with respect to JC. Since u is left fixed, v must be so too. So there
is one invariant point in each of the two regions. K belongs to the hyperbolic pencil
with u and v as zero-circles and, since JC is mapped onto itself, the transformation is
elliptic.

Secondly, let JC contain two invariant points. JC belongs to the elliptic pencil de-
termined by these points as common points. Since JC is mapped onto itself, so is every
other circle of this pencil. Moreover, since the regions are reproduced individually,
the same holds for every circular arc of the pencil. The transformation, therefore, is
hyperbolic, k > 0.

Thirdly, let JC contain one invariant point. If there were another outside JC, its
inverse with respect to JC would be invariant too and there would be more than two in
all, which is impossible. The transformation, therefore, is parabolic, and JC together
with the invariant point as zero-circle determines the parabolic pencil whose circles
are mapped onto themselves individually.

These three cases form a complete list of direct M bius transformations of the
required nature. In each case the circle JC belongs to the fundamental pencil of
the transformation. As far as reversed transformations are concerned, these can be
characterized in the following way: Since each of the regions is mapped onto itself
with orientation reversed, JC must be so too. Hence there are exactly two invariant
points u and ι; on JC. Let G denote the circle through u and v at right angles to JC.
In virtue of the isogonality and of the invariance of u and v, C is mapped onto itself
and, in particular, in consequence of the conservation of the regions, each of the two
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arcs into which it falls by u and v is mapped onto itself. Let A; be a point on such
an arc and x! its image. If one combines the hyperbolic transformation which has u
and as invariant points and carries into x' with the inversion with respect to G,
one gets a reversed Möbius transformation which maps the three points u, , in the
same way as the transformation considered and therefore is that transformation itself.
In the particular case x = x' the hyperbolic transformation is the identity and the
transformation considered is the inversion with respect to G.

4.5 Perinutable transformations. In the sequel Möbius transformations, both di-
rect and reversed, will by denoted by small gothic characters except for the identity
for which the symbol 1 is generally used. For products of such symbols it is under-
stood that the transformation indicated by the last symbol is the first performed, then
the preceding one and so on. The inverse of a Möbius transformation f is a Möbius
transformation of the same kind; it is denoted by f"1. Let f and g be two such trans-
formations and u an invariant point for f. Then the transformation 0f0 ' evidently has
gw as invariant point, i.e. the image of u by 0. From this is inferred:

If two transformations commute then each maps the set of invariant points of the
other onto itself. D

There are several possibilities for two transformations to commute:
Let first both be direct Möbius transformations. If one is parabolic, the other

must be so too and with the same invariant point; for a parabolic transformation can
neither leave the invariant points of a non-parabolic fixed individually nor interchange
them. If both are non-parabolic, each must leave the invariant points of the other fixed
individually or interchange them. In the first case they have their invariant points in
common; in the second case both must be involutions with respect to pairs of points,
and these pairs must be harmonic.

These above necessary conditions prove also to be sufficient: For two parabolic
transformations, f and 0, with the same invariant point u but with different fundamental
directions this is inferred from the above mentioned invariance of the parabolic pencils
with u as common point under the transformations f and 0 (cf. Fig. 4.1): The image
G[ of the circle through u, x and fjt by g contains QX and gfjc; since C] belongs to the
fundamental pencil for f, and thus is mapped onto itself by f, it also contains fgjc.

The circle (?2 through u and f* which belongs to the fundamental pencil of 0, and
thus is mapped onto itself by 0, contains 0f;c. As it is the image of the circle through
w, x and QX by f, it also contains f0*. Hence 0fjc and f0jc coincide with the intersection
of G\ and <?2· In addition it is seen that the product f0 = 0f is again parabolic, since
for every point u the points jc and fg;t lie on two different circles which touch at u
and thus cannot coincide. If f and g have the same fundamental direction and thus the
same fundamental pencil, it is evident that fg and gf are parabolic, since they reproduce
individually the circles ofthat pencil. Now, let h be a parabolic transformation with the
same invariant point u but with another fundamental direction; f) is thus permutable
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with f and g. Then ff) ' and hg are parabolic with u as invariant point, and their
fundamental directions are different, since for χ φ u (cf. Fig. 4.2) the points x, hgx
and fy~[(t)Qx) = fg* are not situated on a circle through u. They are, therefore,

ffl* = flf*

Figure 4.1

ffl*

Figure 4.2

permutable in consequence of the case already dealt with and it follows that



14 I M bius transformations and non-euclidean geometry

That two direct non-parabolic transformations f and g with the same invariant points
are permutable, is inferred from the fact that in consequence of (3) the multipliers of
fg and gf are both equal to the product of the multipliers of f and g and that a direct
transformation is uniquely determined by its multiplier and its invariant points. -That
two involutions f and g with respect to two pairs of harmonic points are permutable can
be seen as follows: Since fg interchanges the invariant points of g, fg is involutory,
hence fgfg = 1. In virtue of f = f"1, g = g"1 this can be written fgf^g"1 = 1, thus
ffl = flf-

As far as reversed transformations are concerned, only inversions with respect to
circles are taken into account. If the inversion with respect to a circle G is to be
permutable with a direct transformation, the latter must map G onto itself, since G
consists of invariant points of the inversion. This necessary condition is also sufficient
for the permutableness, since the direct transformation then carries any two points
which are inverse with respect to G into two points which are also inverse with respect
to G. - The inversions with respect to two different circles G and G' can only be
permutable if the circle G' which consists of the invariant points of the second inversion,
is reproduced by the inversion with respect to G, i.e. if G and G' are orthogonal. On the
other hand, this is sufficient; for the inversions with respect to G and G' are involutory,
and their product is the involution with respect to the pair of intersection points of G
and G', hence also involutory. - In all, the following result is obtained, the indicated
conditions being necessary and sufficient:

Two direct M bius transformations are permutable if they have their invariant
points in common, or if they are involutions with respect to harmonic pairs of points.
A direct transformation is permutable with the inversion with respect to a circle if it
maps that circle onto itself. The inversions with respect to two circles are permutable
if the circles are mutually orthogonal. D

§5 Complex distance of two pairs of points
5.1 Definition. Let any two pairs of points Jt, y and χ', y' be given in this order, the
points of the single pairs likewise being given in the indicated order. It is first assumed
that the two pairs have no point in common, whereas coincidence of the points of the
single pairs is not excluded. It will first be shown that there exists exactly one pair of
points M, v which is harmonic with both of the given pairs; in the case of coincidences
harmonicity is taken in the generalized sense indicated at the end of §2. If χ φ y,
there exists exactly one direct M bius transformation carrying χ into y, y into χ
and Jt' into y'. Since that transformation interchanges two points, it is the involution
with respect to a certain pair of points u, v (§4.3); therefore it also carries y' into jt'.
In case xr = y', this point will at the same time be one of the points u and v. - If
jc = y but x' φ. y', one can start with x', y' in an analogous way. - If both χ = y and
jt' = y, the required solution is found by putting Jt = y = u and jt' = y' = υ, or
conversely.
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In all cases u and v are different. Since the two pairs x, y and x', y' are assumed
without common point, in such expressions as e.g. (uvxx') no three points coincide,
and the cross-ratio therefore has a meaning.

First, consider the normal case of no coincidence, thus x, y, x', y' being four
different points. Then

(uvxx') = (uvyx)(uvxx')(uvx'y') = (uvyy'),

since the two factors added in the intermediate term assume the value — 1 in conse-
quence of harmonicity. This expression is the multiplier (4.3) of the M bius transfor-
mation with u, v as invariant points which carries x into x'; that it also carries y into
y' is also evident from the fact that it must carry two points which are harmonic with
u, v into two points which again are harmonic with u, v.

The logarithm, taken with reversed sign, of this multiplier is called the complex
distance of the pair of points x, y and x', y', given in this order:

a = δ + φι — — log (uvxx') = — log (uvyy'). (1)

After a fixed choice of the notation u and v has been made, a is uniquely determined
except for multiples of 2πϊ. If the pairs or the points u and v are interchanged, the
sign of a is reversed. From the relations

(uvxy') = (uvxy)(uvyy) = - (uvyy')
(uvyx') = (uvyx)(uvxx') = — (uvxx')

it is seen that a is increased by πι if the points of one pair are interchanged.
The values of δ and φ may be deduced from the equation

log (uvxx') = log | uvxx' | + / amp(uvxx')

using the results of §2.2:
Draw through x and x' the circles JC and K' of the hyperbolic pencil with u and

v as zero-circles and the circular arcs £ and £' of the conjugate elliptic pencil, and
draw an arbitrary arc $0 of the latter cutting JC and JC' at points XQ and x'Q (Fig. 5.1).
Then

δ = - \og(uvxQXQ),

and φ is the angle from £ to Si' when measured in u (not in v as in §2.2 because of
the reversed sign).

If coincidence takes place in at least one pair, x = y say, this point is at the same
time M or υ, and there is no transformation with u and v as invariant points carrying
the first pair into the second. But the cross-ratios in (1) exist and evidently take the
values 0 or oo. Accordingly one has to put a = 0 or a = oo.

The definition of complex distance has to be extended to the case, hitherto excluded,
where the two pairs have at least one point in common. Let for instance x = x'. If
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Figure 5.1

both w and v are chosen in this point the condition of common harmonicity (in the
generalized sense of §2) is maintained; this is true whether y and y' coincide or
not. In this case the symbol (uvxx') is devoid of meaning, but another cross-ratio in
(1), (uvyy') = (uuyy'\ exists provided y and y' do not coincide with χ — χ' = u = v
and it takes the value 1. Thus a =0: If the two first points or the two second points
of the pairs coincide, the distance is zero. - If the first point of one pair coincides
with the second of the other, χ = y' or y = x', and if again both u and v are chosen
in this common point in order to fulfill the condition of common harmonicity, both
cross-ratios in (1) are devoid of meaning. This case may be treated by the remark that
it reduces to the former case by the interchange of the points of one pair. According
to a previous statement the distance then has to be α = πι. These are the only
cases in which the distances 0 and πι occur. In both cases they may be justified by
considerations of continuity.

5.2 Relations between distances. Let five pairs of points x\,y\ : X2, yi '· *3, yi, '·
;c4, j4 : *5, j>5 : be given. The order of the two points in the single pairs is as
indicated. As to the succession of the pairs, only their cyclical order matters. This
order is indicated by the subscripts these being, in the sequel, only taken into account
modulo 5. Let furthermore any two neighbouring pairs be harmonic; this is expressed
by the equation

(xvyvxv+\yv+i) = -1 (3)

or
2(xvyv + xv+\yv+i) - (xv + yv)(xv+\ + yv+\) = 0, (4)

ν ranging over all values modulo 5. Now, the complex distance of the two pairs next
to the pair xv, yv is, according to Section 1

av = -\og(xvyvxv-ixv+i) = - \og(xvyvyv-\yv+\).
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The relations governing these five distances av will now be established. Since cross-
ratios and, therefore, the relations looked for are invariant under M bius transforma-
tions, it can be assumed that *3 = 0, yj — oo.

From (3), taken for v — 2 and v = 3, it is inferred that

ΧΙ + y2 = o, *4 + y4 = o.
This together with (4), taken for v = 1 and v = 4 yields

x\y\ =*f· x$ys = X4· (5)
Now, from the definition of av,

*?
e~"3 = (*3)?3*2*4) = (0 00*2*4) = — ,

*4

hence from (4), taken for v = 5, and (5)

e"*+e-a3 *2+*4 *ι?ι + x$ys x\+y\ *5 + yscosh 03 = - - - = — - = — - - = — --- - - .
2 2*2*4 2*2*4 2*2 2*4

On the other hand

— «2 0) =
*2 +X\

hence from (5)

£02 _ e αϊ 2*ι*2 2*2

Likewise
e'"4 = (X4V4X3X5) = (X4 ~*4θ*5) = ,

*4 -*5

hence from (5)

ea* + e~a* -*4
2+*52 xs+ys

C0tho4 = = = .
e"4 — e~"4 2*4*5 2*4

From these formulae one gets

cosh 03 = — coth«2 cotha4.

Since all distances are defined by cross-ratios, the result is independent of the above
special choice of *3, y$ hence one gets generally by permutation of subscripts

cosh ay = — coth p-ΐ cotha,,+i (υ mod 5). (6)


