
de Gruyter Textbook
Deuflhard/Hohmann • Numerical Analysis

Peter Deuflhard
Andreas Hohmann

Numerical Analysis
A First Course in Scientific Computation

Translated from the German by F. A. Potra and F. Schulz

w
DE

G
Walter de Gruyter
Berlin • New York 1995

Authors
Peter Deuflhard
Andreas Hohmann
Konrad-Zuse-Zentrum für
Informationstechnik Berlin
Heilbronner Str. 10
D-10711 Berlin
Germany

and Freie Universität Berlin
Institut für Mathematik
Amimallee 2—6
D-14195 Berlin
Germany

-01 1991 Mathematics Subject Classification: Primary: 65-
Secondary: 65 Bxx, 65 Cxx, 65 Dxx, 65 Fxx, 65 Gxx

Title of the German original edition: Numerische Mathematik I, Eine algorithmisch
orientierte Einfuhrung, 2. Auflage, Walter de Gruyter • Berlin • New York, 1993

With 62 figures and 14 tables.

© Printed on acid-free paper which falls within the guidelines of the ANSI to ensure permanence and durability.

Library of Congress Cataloging-in-Publication-Data

Deuflhard, P. (Peter)
[Numerische Mathematik I. English]
Numerical analysis : a first course in scientific computation / Peter

Deuflhard, Andreas Hohmann ; translated by F. A. Potra and F. Schulz,
p. cm.

Includes bibliographical references (p. -) and index.
ISBN 3-11-014031-4 (cloth : acid-free). -
ISBN 3-11-013882-4 (pbk. : acid-free)

1. Numerical analysis - Data processing. I. Hohmann, Andreas,
1964- . II. Title.
QA297.D4713 1995
519.4—dc20 94-46993

CIP

Die Deutsche Bibliothek — Cataloging-in-Publication-Data

Numerical analysis / Peter Deuflhard ; Andreas Hohmann. Transl. by
F. A. Potra and F. Schulz. — Berlin ; New York : de Gruyter.

(De Gruyter textbook)
Bd. 2 verf. von Peter Deuflhard und Folkmar Bornemann

NE: Deuflhard, Peter; Hohmann, Andreas; Bornemann, Folkmar
1. A first course in scientific computation. - 1995

ISBN 3-11-013882-4 kart.
ISBN 3-11-014031-4 Pp.

© Copyright 1995 by Walter de Gruyter & Co., D-10785 Berlin.
All rights reserved, including those of translation into foreign languages. No part of this book may be
reproduced in any form or by any means, electronic or mechanical, including photocopy, recording or
any information storage and retrieval system, without permission in writing from the publisher.
Printing in Germany. - Printing: Gerike GmbH, Berlin. - Binding: Liideritz & Bauer GmbH, Berlin.

Preface

The topic of Numerical Analysis is the development and the understand-
ing of computational methods for the numerical solution of mathematical
problems. Such problems typically arise from areas outside of Mathemat-
ics — such as Science and Engineering. Therefore Numerical Analysis is
directly situated at the confluence of Mathematics, Computer Science, Nat-
ural Sciences, and Engineering. A new interdisciplinary field has been evolv-
ing rapidly called Scientific Computing. Driving force of this evolution is
the recent vigorous development of both computers and algorithms, which
encouraged the refinement of mathematical models for physical, chemical,
technical or biological phenomena to such an extent that their computer
simulations are now describing reality to sufficient accuracy. In this process,
the complexity of solvable problems has been expanding continuously. New
areas of the natural sciences and engineering, which had been considered
rather closed until recently, thus opened up. Today, Scientific Computing is
contributing to numerous areas of industry (chemistry, electronics, robotics,
automotive industry, air and space technology, etc.) as well as to important
problems of society (balance of economy and ecology in the use of primary
energy, global climate models, spread of epidemics).

The movement of the entire interdisciplinary net of Scientific Computing
seizes each of its knots, including Numerical Analysis, of course. Conse-
quently, fundamental changes in the selection of the material and the pre-
sentation in lectures and seminars have occurred — with an impact even to
introductory courses. The present book takes this development into account.
It is understood as an introductory course for students of mathematics and
natural sciences, as well as mathematicians and natural scientists working
in research and development in industry and universities. Possible readers
are assumed to have basic knowledge of undergraduate Linear Algebra and
Calculus. More advanced mathematical knowledge, say about differential
equations, is not a required prerequisite, since this elementary textbook is
intentionally excluding the numerics of differential equations. As a further
deliberate restriction, the presentation of topics like interpolation or inte-
gration is limited to the one-dimensional case. Nevertheless, many essential
concepts of modern Numerical Analysis, which play an important role in

vi Preface

numerical differential equation solving, are treated on the simplest possible
model problems.

The aim of the book is to develop algorithmic feeling and thinking. After
all, the algorithmic approach is historically one of the roots of todays Math-
ematics. That is why historical names like Gauss, Newton and Chebyshev
are found in numerous places of the subsequent text together with contem-
porary names. The orientation towards algorithms should by no means be
misunderstood. In fact, the most efficient algorithms do require a substantial
amount of mathematical theory, which will be developed in the text. As a
rule, elementary mathematical arguments are preferred. Wherever meaning-
ful, the reasoning appeals to geometric intuition — which also explains the
quite large number of graphical representations. Notions like scalar product
and orthogonality are used throughout — in the finite dimensional case as
well as in function spaces. In spite of the elementary presentation, the book
does contain a significant number of rather recent results, some of which
have not been published elsewhere. In addition, some of the more classical
results are derived in a way, which significantly differs from more standard
derivations.

Last, but not least, the selection of the material expresses the scientific
taste of the authors. The first author has taught Numerical Analysis courses
since 1978 at different German institutions such as the University of Technol-
ogy in Munich, the University of Heidelberg, and now the Free University
of Berlin. Over the years he has co-influenced the dynamic development
of Scientific Computing by his research activities. Needless to say, he has
presented his research results in numerous invited talks at international con-
ferences and seminars at renowned university and industry places all over
the world. The second author rather recently entered the field of Numerical
Analysis, after having graduated in pure mathematics from the University
of Bonn. Both authors hope that this combination of a senior and a junior
has had a stimulating effect on the presentation in this book. Moreover, it
is certainly a clear indication of the old dream of unity of pure and applied
mathematics.

Of course, the authors stand on the shoulders of others. In this respect,
the first author remembers with gratitude the time, when he was a graduate
student of Roland Bulirsch. Numerous ideas of the colleagues Ernst Hairer
and Gerhard Wanner (University of Geneva) and intensive discussions with
Wolfgang Dahmen (Technical University of Aachen) have influenced our pre-
sentation. Cordial thanks go to Folkmar Bornemann for his many stimulat-
ing ideas and discussions especially on the formulation of the error analysis
in Chapter 2. We also want to thank our colleagues at the Konrad Zuse
Center Berlin, in particular Michael Wulkow, Ralf Kornhuber, Ulli Nowak
and Karin Gatermann for many suggestions and a constructive atmosphere.

Preface vii

This book is a translation of our German textbook "Numerische Mathe-
matik I (Eine algorithmisch orientierte Einführung)", second edition. Many
thanks to our translators, Florian Potra and Friedmar Schulz, and to Erlinda
Cadano-Körnig for her excellent work in the final polishing of the English
version. May this version be accepted by the Numerical Analysis students
equally well as the original German version.

Peter Deuflhard and Andreas Hohmann Berlin, May 1994

Teaching Hints

The present textbook addresses students of Mathematics, Computer Science
and Science covering typical material for introductory courses in Numerical
Analysis with clear emphasis towards Scientific Computing.

We start with Gaussian elimination for linear equations as a classical algo-
rithm and discuss additional devices such as pivoting strategies and iterative
refinement. Chapter 2 contains the indispensable error analysis based on the
fundamental ideas of Wilkinson. The condition of a problem and the sta-
bility of algorithms are presented in a unified framework and exemplified by
illustrative cases. Only the linearized theory of error analysis is presented
— avoiding, however, the typical "e-battle". Rather, only differentiation is
needed as an analytical tool. As a specialty we derive a stability indicator
which allows for a rather simple classification of numerical stability. The
theory is then worked out for the case of linear equations, thus supplying a
posteriori a deeper understanding of Chapter 1. In Chapter 3 we deal with
methods of orthogonalization in connection with linear least squares prob-
lems. We introduce the extremely useful calculus of pseudoinverses, which is
then immediately applied in Chapter 4. There, we consider iterative meth-
ods for systems of nonlinear equations (Newton's method), nonlinear least
squares problems (Gauss-Newton method) and parameter-dependent prob-
lems (continuation methods) in close mutual connection. Special attention is
given to the affine invariant form of the convergence theory and the iterative
algorithms. A presentation of the power method (direct and inverse) and
the QR-algorithm for symmetric eigenvalue problems follow in Chapter 5.
The restriction to the real symmetric case is motivated from the beginning
by a condition analysis of the general eigenvalue problem. In this context
the singular value decomposition fits perfectly, which is so important in ap-
plications.

After the first five rather closely connected chapters the remaining four
chapters also comprise a closely connected sequence. The sequence begins in
Chapter 6 with an extensive treatment of the theory of three-term recurrence
relations, which play a key role in the realization of orthogonal projections in
function spaces. Moreover, the significant recent spread of symbolic comput-
ing has renewed interest in special functions also within Numerical Analysis.

Teaching Hints ix

The condition of three-term recurrences is presented via the discrete Green's
function. Numerical algorithms for the computation of special functions are
exemplified for spherical harmonics and Bessel functions. In Chapter 7 clas-
sical interpolation and approximation in the one-dimensional special case are
presented first, followed by non-classical methods like Bezier techniques and
splines, which nowadays play a central role in CAD (Computer Aided De-
sign) or CAGD (Computer Aided Geometric Design), i.e. special disciplines
of computer graphics. Our presentation in Chapter 8, which treats iterative
methods for the solution of large symmetric linear equations, is conveniently
based on Chapter 6 (three-term recurrences) and Chapter 7 (min-max prop-
erty of Chebyshev polynomials). The same is true for the Lanczos algorithm
for large symmetric eigenvalue problems. The final Chapter 9 turns out to be
a bit longer: it carries the bulk of the task to explain principles of the numer-
ical solution of differential equations by means of the simplest problem type,
which here is numerical quadrature. After the historical Newton-Cotes for-
mulas and the Gauss quadrature, we progress towards the classical Romberg
quadrature as a first example of an adaptive algorithm, which, however, only
adapts the approximation order. The formulation of the quadrature prob-
lem as an initial value problem opens the possibility of working out a fully
adaptive Romberg quadrature (with order and stepsize control) and at the
same time a didactic first step into extrapolation methods, which play a
prominent role in the solution of ordinary differential equations. The alter-
native formulation of the quadrature problem as a boundary value problem
is exploited for the derivation of an adaptive multigrid algorithm: in this
way we once more present an important class of methods for ordinary and
partial differential equation in the simplest possible case.

For a typical university term the contents of the book might be too rich.
For a possible partitioning of the presented material into two parts we rec-
ommend the closely connected sequences Chapter 1 - 5 and Chapter 6 - 9 .
Of course, different "teaching paths" can be chosen. For this purpose, we
give the following connection diagram:

X Teaching Hints

As can be seen from this diagram, the chapters of the last row (Chapters
4, 5, 8, and 9) can be skipped without spoiling the flow of teaching —
according to the personal scientific taste. Chapter 4 could be integrated
into a course on "Nonlinear optimization", Chapters 5 and 8 into a course
on "Numerical linear algebra" or Chapter 9 into "Numerical solution of
differential equations".

At the end of each chapter we added exercises. Beyond these explicit
exercises further programming exercises may be selected from the numerous
algorithms, which are given informally (usually as pseudocodes) throughout
the textbook. All algorithms mentioned in the text are internationally ac-
cessible via the electronic library eLib of the Konrad Zuse Center. In the
interactive mode eLib can be reached via:

Datex-P: +45050331033 (WIN) +2043623331033 (IXI)
INTERNET: elib.ZIB-berlin.de (130.73.108.11)
login: elib (no password necessary)

In addition, there is the following e-mail access:

X.400: S=eLib;OU=sc;P=ZIB-Berlin;A=dbp;C=de
INTERNET: elib@elib.ZIB-Berlin.de
BITNET: eLib@sc.ZIB-Berlin.dbp.de
UUCP: unidolsc. ZIB-Berlin.dbp.de!eLib

Especially for users of Internet there is an "anonymous ftp" access (elib.ZIB-
Berlin.de - 130.73.108.11) .

Contents

1 Linear Systems 1
1.1 Solution of Triangular Systems 2
1.2 Gaussian Elimination 4
1.3 Pivoting Strategies and Iterative Refinement 7
1.4 Cholesky's Method for Symmetric Positive Definite Matrices . 15
1.5 Exercises 18

2 Error Analysis 23
2.1 Sources of Errors 23
2.2 Condition of Problems 25

2.2.1 Norm-wise condition analysis 28
2.2.2 Component-wise condition analysis 33

2.3 Stability of Algorithms 37
2.3.1 Stability concepts 38
2.3.2 Forward analysis 40
2.3.3 Backward analysis 45

2.4 Application to Linear Systems 48
2.4.1 A closer look at solvability 48
2.4.2 Backward analysis of Gaussian elimination 50
2.4.3 Assessment of approximate solutions 53

2.5 Exercises 56

3 Linear Least Squares Problems 62
3.1 Least Squares Method of Gauss 62

3.1.1 Formulation of the problem 62
3.1.2 Normal equations 65
3.1.3 Condition 67
3.1.4 Solution of normal equations 70

3.2 Orthogonalization Methods 72
3.2.1 Givens rotations 74
3.2.2 Householder reflections 76

3.3 Generalized Inverses 81
3.4 Exercises 85

xii Contents

4 Nonlinear Sys tems and Least Squares Problems 89
4.1 Fixed Point Iterations 89
4.2 Newton's Method for Nonlinear Systems 94
4.3 Gauss-Newton Method for Nonlinear Least Squares Problems 101
4.4 Nonlinear Systems Depending on Parameters 108

4.4.1 Structure of the solution 109
4.4.2 Continuation methods I l l

4.5 Exercises 124

5 Symmetr ic Eigenvalue Problems 129
5.1 Condition of General Eigenvalue Problems 129
5.2 Power Method 133
5.3 Qii-Algorithm for Symmetric Eigenvalue Problems 136
5.4 Singular Value Decomposition 143
5.5 Exercises 149

6 Three-Term Recurrence Relat ions 151
6.1 Theoretical Foundations 152

6.1.1 Orthogonality and three-term recurrence relations . . 153
6.1.2 Homogeneous and non-homogeneous recurrence relations 156

6.2 Numerical Aspects 159
6.2.1 Condition numbers 161
6.2.2 Idea of the Miller algorithm 167

6.3 Adjoint Summation 170
6.3.1 Summation of dominant solutions 171
6.3.2 Summation of minimal solutions 174

6.4 Exercises 178

7 Interpolation and Approximation 182
7.1 Classical Polynomial Interpolation 183

7.1.1 Uniqueness and condition number 183
7.1.2 Hermite interpolation and divided differences 187
7.1.3 Approximation error 196
7.1.4 Min-max property of Chebyshev polynomials 198

7.2 Trigonometric Interpolation 201
7.3 Bezier Techniques 209

7.3.1 Bernstein polynomials and Bezier representation . . . 210
7.3.2 De Casteljau's algorithm 217

7.4 Splines 225
7.4.1 Spline spaces and B-splines 226
7.4.2 Spline interpolation 234
7.4.3 Computation of cubic splines 238

Contents xiii

7.5 Exercises 242

8 Large Symmetr ic Systems of Equations and Eigenvalue
Problems 245
8.1 Classical Iteration Methods 247
8.2 Chebyshev Acceleration 253
8.3 Method of Conjugate Gradients 258
8.4 Preconditioning 266
8.5 Lanczos Methods 272
8.6 Exercises 277

9 Definite Integrals 281
9.1 Quadrature Formulas 282
9.2 Newton-Cotes Formulas 286
9.3 Gauss-Christoffel Quadrature 292

9.3.1 Construction of the quadrature formula 292
9.3.2 Computation of knots and weights 298

9.4 Classical Romberg Quadrature 301
9.4.1 Asymptotic expansion of the trapezoidal sum 301
9.4.2 Idea of extrapolation 303
9.4.3 Details of the algorithm 310

9.5 Adaptive Romberg Quadrature 313
9.5.1 Principle of adaptivity 314
9.5.2 Estimation of the approximation error 315
9.5.3 Derivation of the algorithm 319

9.6 Hard Integration Problems 325
9.7 Adaptive Multigrid Quadrature 329

9.7.1 Local error estimation and refinement rules 329
9.7.2 Global error estimation and details of the algorithm . 333

9.8 Exercises 337

References 341

Notat ion 347

Index 349

1 Linear Systems

We start with the classical Gaussian elimination method for solving sys-
tems of linear equations. Carl Friedrich Gauss (1777-1855) describes the
method in his 1809 work on celestial mechanics "Theoria Motus Corporum
Coelestium" [33] by saying "the values can be obtained with the usual elim-
ination method". The method was used there in connection with the least
squares method (cf. Section 3). In fact the method had been used previ-
ously by Lagrange in 1759 and had been known in China as early as the first
century B.C. The problem is to solve a system of n linear equations

an^i + a\2X2 + ••• + ainxn = b\

a2\X\ + a22X2 + • • • + a2n.Xn = i>2

flnl^l + On 2X2 + • • • + a,nnXn = bn

or, in short form
Ax = b,

where A € Mat„(R) is a real (n, n)-matrix and b, x E R™ are real n-vectors.
Before starting to compute the solution x, we should ask ourselves whether
or not the system is solvable or not? From linear algebra, we know the
following result which characterizes solvability in terms of the determinant
of the matrix A.

T h e o r e m 1.1 Let A € Mat r a(R) be a real square matrix with det / I / O and
b £ R™. Then there exists a unique x <G R™ such that Ax = b.

Whenever det A / 0, the solution x = A~lb can be computed by Cramer's
rule. Here we already see a general property of a "good" algorithm, namely
the connection of existence and uniqueness of the solution with a numerical
method for computing it. The cost of computing det A amounts to n • n\
arithmetic operations when the Leibniz representation

d e t A = X] S g n ' • " an,a(n)
<r£Sn

2 1 Linear Systems

of the determinant as a sum of all permutations <7 £ Sn of the set { 1 , . . . ,n }
is used. Even with the recursive scheme involving development in sub-
determinants according to Laplace's rule

n

det A = ^ (- l ^ + V i det Au

i=1
there are 2™ arithmetic operations to be carried out, where An € Mat„_i(R)
is the matrix obtained from A by crossing out the first row and the ¿-th
column. As we will see, all methods to be described in what follows are
more efficient than Cramer's rule for n > 3 so that the latter is interesting
only for n = 2.

Remark 1.2 Of course, we expect that a good numerical method solves
a given problem at minimal cost (in terms of arithmetic operations). Intu-
itively there is a minimal cost for each problem which is called the complexity
of the problem. The closer the cost of an algorithm is to the complexity of
the problem, the more efficient that algorithm is. The cost of a concrete
algorithm is therefore always an upper bound for the complexity of the prob-
lem it solves. Obtaining lower bounds is in general much more difficult —
for details see the monograph of T R A U B and WOZNIAKOWSKI [75].

The notation x = A~lb could suggest the idea of computing the solution
of Ax = b by first computing the inverse matrix A_1 and then applying it
to b. However the computation of A~l inherently contains all difficulties
related to solving Ax = b for arbitrary right hand sides b. We will see in the
second chapter that the computation of A c a n be "badly behaved", even
when for special b the solution of Ax = b is "well behaved", x = A~lb is
therefore meant only as a formal notation which has nothing to do with the
actual computation of the solution x. One should therefore avoid talking
about "inverting matrices", when in fact one is concerned with "solving
linear systems".

Remark 1.3 There has been a long standing bet by an eminent colleague,
who wagered a significant amount, that in practice the problem of "inverting
a matrix" is always avoidable. As far as we know he has won the bet in all
cases.

1.1 Solution of Triangular Systems

In the search for an efficient solution method for arbitrary linear systems
we will first consider cases that are particularly easy to solve. Simplest is

1.1 Solution of Triangular Systems 3

obviously the case of a diagonal matrix A, where the corresponding system
consists of n independent scalar equations. The method that transforms a
general system into a diagonal one is called the Gauss-Jordan method. How-
ever we will omit it here, since it is less efficient than the method described
in Section 1.2. Next, in terms of difficulty, is the case of a triangular system

r u x i + r 1 2x 2 + . . . + r i n x n = zi

r2 2X2 + ••• + r2nxn = z2

Tnn%n ~ Zn i

and in matrix notation
Rx = z , (1.1)

where R is an upper triangular matrix , i.e. = 0 for all i > j. Obviously
the components of x can be obtained recursively starting with the n ' th row:

xn := zn/rnn , if rnn ^ 0 ,

: = (Zn—l T n — l , n — 1 ; if l,n—1 ^ 0 >

Xi := (z1 -ri2x2 - ... - rinxn)/rn , if r n ^ 0 .

Now, the determinant of the upper triangular matrix R is det R = r n • • • rnn,
and therefore

det Ry^ 0 ru ^ 0 for allz = 1 , . . . , n .

The above defined algorithm is therefore applicable (as in the case of Cra-
mer's rule) if and only if det R ^ 0, i.e. under the hypothesis of the existence
and uniqueness theorem. The computational cost amounts to:

a) for the ¿-th row: n — i additions and multiplications, and one division

b) for rows n through 1 together:

i=1

multiplications and as many additions.

4 1 Linear Systems

Here the notation "=" stands for "equal up to lower order terms", i.e. we
consider only the term containing the highest power of n, which dominates
the cost for large values of n.

The solution of a triangular system of the form

Lx = z, (1.2)

with a lower triangular matrix L, is completely analogous, if one starts now
with the first row and works through to last one. This way of solving tri-
angular systems is called backward substitution in case of (1.1) and forward
substitution in case of (1.2). The name substitution or replacement is used
because each component of the right hand side vector is successively replaced
by the solution, as indicated in the following scheme describing the content
of the vector stored in the memory of the machine (memory scheme) at each
step:

(zi

, Z2, • • • , Zn—i, Zn)

, Z2, ... , Zn— J , X„)

(zi, X2 5 • • • , Xn—1 > xn)

(xi, X2y • • • , Xn— \ , Xn) .

1.2 Gaussian Elimination

We now return to the general linear system Ax = b,

anXi + ai2x2 +...+ alnxn = b\

a21X1 + a 22X2 + • • • + a,2nXn = b2
(1-3)

anix\ + an2x2 + • • • +

1.2 Gaussian Elimination 5

and try to transform it into a triangular one. The first row does not have
to be changed. We want to manipulate the remaining rows such that the
coefficients in front of x\ vanish, i.e. the variable X\ from rows 2 through n
is eliminated. Thus we produce a system of the form

anXi + ai2X2 + . . . + a\nxn = b\

a22xZ + • • • + o,2nxn = b2

(1.4)

an2x2 + . . . + a n n x n = bn .

Having achieved this we can apply the same procedure to the last n — 1 rows
in order to recursively obtain a triangular system. Therefore it is sufficient
to examine the first elimination step from (1.3) to (1.4). We assume that
a n 0. In order to eliminate the term an%i in row i (i = 2 , . . . , n), we
subtract from row i a multiple of row 1 (unaltered), i.e.

new row i := row i — In • row 1

or explicitly

(an - l a a n) + (a i 2 - ¿¿1*112) x2 H h (a i n - k i a l n) xn = bi - Inbi

= 0 = a. %i = b.

From an — Inan = 0 it follows immediately that In = an / a n . Therefore
the first elimination step can be performed under the assumption a n ^ 0.
The element a n is called a pivot element and the first row a pivot row. After
this first elimination step there remains an (n — 1, n — l)-submatrix in rows
2 through n. By applying repeatedly the elimination procedure we obtain a
sequence

A = AW - > . . . - A<n> =: R

of matrices of the special form

a (!) J 1)
11 1 2

ï (2)
x 2 2

I (1) In

1 (2)
2n

A w =
Ak)
1kk

Ak)
kn

(1.5)

(it)
2nk a { k) "nn

6 1 Linear Systems

with an (n — fc+1, n — fc+l)-submatrix, to which we can apply the elimination
step

1ik •— aik /akk for i = k + 1 , . . . , n

.— C h k a k j for i,j = k + l,...,n

b(k+1) for i = k + 1 , . . . , n

(k)
whenever the pivot akf; does not vanish. Since every elimination step is a
linear operation applied to the rows of A, the transformation from A^ and
b<k> into A(k+V> and can be represented as a premultiplication by a
matrix Lk € Mat„(R), i.e.

= LkA{k) and b ^ = Lkb™ .

(In case of operations on columns one obtains an analogous postmultiplica-
tion). The matrix

Lk =

—h+l,k 1

ln,k

is called a Frobenius matrix; It has the nice property that its inverse L'kl

is obtained from Lk by changing the signs of the lik s. Furthermore the
product of the 1 !s satisfies 1

hi 1

hi ¿32 1 L := L -l
• KU =

Inl ln,n—1 1

In this way we have reduced the system Ax = b to the equivalent triangular
system Rx = z with

R = L~1A and z = L^b .

1.3 Pivoting Strategies and Iterative Refinement 7

A lower (resp. upper) triangular matrix, whose main diagonal elements are
all equal to one is a called a unit lower (resp. upper) triangular matrix.
The above representation A — LR of the matrix A as a product of a unit
lower triangular matrix L and an upper triangular matrix R is called the
Gaussian triangular factorization, or briefly LR factorization of A. In the
English literature the matrix R is often denoted by U (from upper triangular)
and the corresponding Gaussian triangular factorization is called the LU
factorization. If such a factorization exists, then L and R are uniquely
determined (cf. Exercise 1.2).

Algori thm 1.4 Gaussian Elimination.

a) A = LR Triangular Factorization, R upper and L lower triangular
matrix

b) Lz = b Forward Substitution

c) Rx = z Backward Substitution.

The memory scheme for the Gaussian elimination is based upon the repre-
sentation (1.5) of the matrices In the remaining memory locations one
can store the ¿¿t's, because the other elements, with values 0 or 1, do not
have to be stored. The entire memory cost for Gaussian elimination amounts
to n(n+ 1) memory locations, i.e. as many as needed to define the problem.
The cost in terms of number of multiplications is

Therefore the main cost comes from the Lii-factorization. However, if dif-
ferent right hand sides b\,... ,bj are considered, then this factorization has
to be carried out only once.

1.3 Pivoting Strategies and Iterative Refinement

As seen from the simple example

£fc=Ì fc2 = n 3 / 3 for a)

££=? k = n2/2 both for b) and c).

there are cases where the triangular factorization fails even when det A ^ 0.
However an interchange of rows leads to the simplest Lii-factorization we

8 1 Linear Systems

can imagine, namely

In the numerical implementation of Gaussian Elimination difficulties can
arise not only when pivot elements vanish, but also when they are "too
small".

E x a m p l e 1.5 (cf. [30]) We compute the solution of the system

(a) 1.00 • 10"4 i i + 1.00 x2 = 1.00

(b) 1.00 xi + 1.00 x2 = 2 . 0 0

on a machine, which, for the sake of simplicity, works only with three ex-
act decimal figures. By completing the numbers with zeros, we obtain the
"exact" solution with four correct figures

X\ = 1.000 x2 = 0.9999 ,

and with three correct figures

xi = 1.00 x2 = 1.00 .

Let us now carry out the Gaussian elimination on our computer, i.e. in three
exact decimal figures

/21 = —— = ———T = 1-00 • 104 , a n 1.00 -10" 4

(1.00 - 1.00 • 104 • 1.00 • 10"4)a;i + (1.00 - 1.00 • 104 • 1.00)12

= 2.00 - 1.00 • 104 • 1.00 .

Thus we obtain the upper triangular system

1.00 • 1 0 - 4 x i + 1.00x2 = 1-00

-1.00 • 104 x2 = -1-00 • 104

and the "solution"

x2 = 1.00 (true) xi = 0.00 (false!) .

However, if before starting the elimination, we interchange the rows

(a) 1.00 xi + 1.00x2 = 2.00

(b) 1.00 • 10"4 X! + 1.00 x2 = 1.00,

1.3 Pivoting Strategies and Iterative Refinement 9

then /21 = 1-00 • 10—4, which yields the upper triangular system

1.00a;i + 1.00 x2 = 2.00

1.00 x2 = 1.00

as well as the "true solution"

x2 = 1.00 xi = 1.00 .

By interchanging the rows in the above example we obtain

|/2i | < 1 and | àn | > |ò2i| •

Thus, the new pivot a n is the largest element, in absolute value, of the first
column.

We can deduce the partial pivoting or column pivoting strategy from the
above considerations . This strategy is to choose at each Gaussian elimina-
tion step as pivot row the one having the largest element in absolute value
within the pivot column. More precisely, we can formulate the following
algorithm:

Algorithm 1.6 Gaussian elimination with column pivoting

a) In elimination step A^ —> choose a p e {k,..., n}, such that

for j = k,..., n

Row p becomes pivot row.

b) Interchange rows p and k

1 ^ 1 > 1 ^ 1

_ i c o With aj*> =
1J

a(k)
kj

Ak) 1vi
,(fc)

if i — p

\ii = k

otherwise

Now we have

\lik\ =
-Ak)

7.Ìk) kk

~Ak)
ik
(k)
pk

< 1 .

c) Perform the next elimination step for M k \ i.e.

ÀW -> A{k+1) .

10 1 Linear Systems

Remark 1.7 Instead of column pivoting with row interchange one can also
perform row pivoting with column interchange. Both strategies require at
most 0(n2) additional operations. If we combine both methods and look
at each step for the largest element in absolute value of the entire remain-
ing matrix, then we need 0(n3) additional operations. This total pivoting
strategy is therefore almost never employed.

In the following formal description of the triangular factorization with partial
pivoting we use permutation matrices P € Mat„ (R) . For each permutation
7r G Sn we define the corresponding matrix

Pv = [e7T(l) • • • eir(n)] i

where ej = (¿>ij,... ,Snj)T is the j-th unit vector. A permutation w of the
rows of the matrix A can be expressed as a premultiplication by Pn

Permutation of rows ir: A —> PnA.

and analogously a permutation n of the columns as a postmultiplication

Permutation of columns n: A —> AP^ .

It is known from linear algebra that the mapping

7T 1 > Pn

is a group homeomorphism Sn —> O (n) of the symmetric group Sn into the
orthogonal group O(n). In particular we have

p-1 = pT

The determinant of the permutation matrix is just the sign of the corre-
sponding permutation

det P^ = sgn 7r G { ± 1 } ,

i.e. it is equal to +1, if n consists of an even number of transpositions,
and —1 otherwise. The following proposition shows that, theoretically, the
triangular factorization with partial pivoting fails only when the matrix A
is singular.

Theorem 1.8 For every invertible matrix A there exists a permutation ma-
trix P such that a triangular factorization of the form

PA = LR

is possible. Here P can be chosen so that all elements of L are less than or
equal to one in absolute value, i.e.

| £ | < i

1.3 Pivoting Strategies and Iterative Refinement 11

Proof. We employ the Li?-factorization algorithm with column pivoting.
Since det A ^ 0, there is a transposition n € Sn such that the first diagonal
element a ^ of the matrix

=PTiA

is different from zero and is also the largest element in absolute value in the
first column, i.e.

0 la!Vl — lali ;l for ¿ = 1, (i)|
i n •

After eliminating the remaining elements of the first column we obtain the
matrix

a (1) a n * • • • *

0

B<2)

0

A^ = = L\PTlA

where all elements of L\ are less than or equal to one in absolute value, i.e.
|Li | < 1, and d e t L \ = 1. The remaining matrix is again invertible
since la^Vl ^ 0 a n d

0 ^ sgn (n) det A = det A(2) = a[\] det B^ .

Now by we can proceed by induction and obtain

R = A^=Ln-1PTn_1---L1PTlA, (1.6)

where \Lk\ < 1, and r^ is either the identity or the transposition of two
numbers > k. If n € Sn only permutes numbers > k + 1, then the Frobenius
matrix

" 1

Lk =

1

~h+l,k 1

m.fc

12

satisfies

1 Linear Systems

Lk = PirLkP-n 1

/
(1.7)

7r(fe+l),fe

— lir(n),k 1

Therefore we can separate Frobenius matrices Lk and permutations PTk by
inserting in (1.6) the identities P~k

 1 PTk i.e.

R = ¿n-l-Prn_1^n-2-PT^1_1-f)rn_1-Prn_2^n-3 • ' ' L\PTlA .

Hence we obtain

R = Ln-1---L1PV0A with Lk = P^LkP~^ ,

where 7r„_i := id and 7Tk = r„_i • • • Tk+i for k = 0 , . . . , n — 2. Since the
permutation irt interchanges in fact only numbers > k + 1, the matrices Lk
are of the form (1.7). Consequently

P„0A = LR

with L := ¿J"1 • • • L~]i1 or explicitly

L =
wi(2),l

ti(3),1 1TT2(3),2

7Ti (n),l

and therefore \L\ < 1. •

Note that we have used the Gaussian elimination algorithm with column
pivoting to constructively prove an existence theorem.

Remark 1.9 Let us also note that the determinant of A can be easily com-
puted by using the PA = LR factorization of Proposition 1.8 via the formula

1.3 Pivoting Strategies and Iterative Refinement 13

det A = det(.P) • det(L-R) = sgn (710) • r n • • • rnn

A warning should be made against the naive computation of determinants!
As is well known, multiplication of a linear system by an arbitrary scalar a
results in

det (a A) = a™ det A .

This trivial transformation may be used to convert a "small" determinant
into an arbitrarily "large" one and the other way around. The only invari-
ants under this class of trivial transformations are the Boolean quantities
det A = 0 or det A / 0; for an odd n we have additionally sgn (det A). The
above noted theoretical difficulty will lead later on to a completely different
characterization of the solvability of linear systems.

Furthermore, it is apparent that the pivoting strategy can be arbitrarily
changed by multiplying different rows by different scalars. This observation
leads to the question of scaling. By row scaling we mean premultiplication
of A by a diagonal matrix

A —> DrA , Dr diagonal matrix

and analogously, by column scaling we mean postmultiplication by a diagonal
matrix

A —> ADC , Dc diagonal matrix .

(As we have already seen in the context of Gaussian elimination, linear op-
erations on the rows of a matrix can be expressed by premultiplication with
suitable matrices and correspondingly operations on columns are represented
by postmultiplication.) Mathematically speaking scaling changes the length
of the basis vectors of the range (row scaling) and of the domain (column
scaling) of the linear mapping defined by the matrix A, respectively. If this
mapping models a physical phenomenon then we can interpret scaling as a
change of unit, or gauge transformation (e.g. from A to km). In order to
make the solution of the linear system Ax = b independent of the choice of
unit we have to appropriately scale the system by pre- or postmultiplying
the matrix A by suitable diagonal matrices:

A -> A := DrADc ,

where
Dr = diag(<7i,..., <r„) and Dc = diag (n , . . . , r„) .

At first glance the following three strategies seem to be reasonable:

14 1 Linear Systems

a) Row equilibration of A with respect to a vector norm || • ||. Let A1 be
the i-th row of A and assume that there are no zero rows. By setting
Ds := I and

tTj := 11^4'ir1 for i = 1 , . . . ,n,

we make all rows of A have norm one.

b) Column equilibration. Suppose that there are no columns Aj of A
equal to zero. By setting Dz := I and

Tj ••= i i A / i r 1 for j = i ,

we make all columns of A have norm one.

c) Following a) and b) it is natural to require that all rows of A have
the same norm and at the same time that all columns of A have the
same norm. In order to determine Cj and Tj up to a mutual common
factor one has to solve a nonlinear system with 2n — 2 unknowns. This
obviously requires a great deal more effort than solving the original
problem. As will be seen in the fourth chapter the solution of this
nonlinear system requires the solution of a sequence of linear systems,
now in 2n — 2 unknowns, for which the problem of scaling has to be
addressed again.

Because of this dilemma, most programs (e.g. LINPACK [26]) leave the
scaling issue to the user.

The pivoting strategies discussed above cannot prevent the possibility of
computing a rather inaccurate solution x. How can one improve the accuracy
of x without too much effort? Of course we can simply discard the solution x
altogether and try to compute a "better" solution by using a higher machine
precision. However in this way all information obtained in computing x is
lost. This is avoided in the so called iterative refinement method by explicitly
evaluating the residual

r(y) := b - Ay = A(x - y)

The absolute error AXQ := x — XQ of xo := x satisfies the equation

Akxo = r{x0) . (1.8)

In solving this corrector equation (1.8), we obtain an approximate correction
A.tq / Axq which is again afflicted by rounding errors. In spite of this fact
we expect that the approximate solution

xy := XQ + Àx0

1.4 Cholesky's Method for Symmetric Positive Definite Matrices 15

is "better" than XQ. The idea of iterative refinement consists in repeating this
process until the approximate solution Xi is "accurate enough". We should
remark that the linear system (1.8) differs from the original linear system
only by the right hand side, so that the computation of the corrections Ax,
requires little effort. In Section 2.4.3 we will make precise the meaning of
the terms "better approximate solution" and "accurate enough". In fact
iterative refinement works excellently in conjunction with Gaussian elimina-
tion. In Section 2.4.3 we will state the substantial result of SKEEL [70] that
for triangular factorization with column pivoting, a single refinement step is
sufficient for obtaining a suitably accurate solution of the given problem.

1.4 Cholesky's Method for Symmetric Positive
Definite Matrices

We want now to apply Gaussian elimination to the special class of systems
of equations with symmetric positive definite matrices. It will become clear
that in this case, the triangular factorization can be substantially simplified.
We recall that a symmetric matrix A = AT e Mat„(R) is positive definite if
and only if

(x,Ax) > 0 for all x ± 0 . (1.9)

We call such matrices for short spd-matrices.

Theorem 1.10 For any spd-matrix A G Mat„(R) we have:

i) A is invertible.

ii) an > 0 for i = 1 , . . . , n.

iii) maxj j^i , . . .^ \â \ = max i = i j . . . j n a j j .

iv) Each rest matrix obtained during Gaussian elimination without
pivoting is also symmetric positive definite.

Obviously iii) and iv) say that row or column pivoting is not necessary for
LR factorization, in fact even absurd because it might destroy the structure
of A. In particular iii) means that total pivoting can be reduced to diagonal
pivoting.

Proof. The invertibility of A follows immediately from (1.9). If we put
in (1.9) a basis vector e, instead of x, it follows immediately that an =
(ei,Aei) > 0 and therefore the second claim is proven. The third statement
is proved similarly, cf. Exercise 1.7. In order to prove statement iv) we write

16

A = AW as

1 Linear Systems

an ZT

z
At i)

where z = (ai2, •.., a\n)T and after one elimination step we obtain

(1.10)

a n

LXAW =
0

LXAW =
BW

0

with Li

1

-hi 1

— ini
Now if we premultiply A^ with Lj, then zT in the first row is also eliminated
and and the submatrix B ^ remains unchanged, i.e.

an 0 ••• 0

0

£(2)

0

The operation A —> L\ALj describes a change of basis for the bilinear form
defined by the symmetric matrix A. According to the inertia theorem of
Sylvester, L i A ^ L j and with it B ^ remain positive definite. •

Together with the LR factorization we can deduce now the rational Cholesky
factorization for symmetric positive definite matrices.

Theorem 1.11 For every symmetric positive definite matrix A there exists
a uniquely determined factorization of the form

A = LDLt ,

where L is a unit lower triangular matrix and D a positive diagonal matrix.

Proof We continue the construction from the proof of Theorem 1.10 for
k — 2 , . . . , n — 1 and obtain immediately L as the product of LJ " 1 , . . . , j
and D as the diagonal matrix of the pivots. •

1-4 Cholesky's Method for Symmetric Positive Definite Matrices 17

Corollary 1.12 Since D = diag(d,;) is positive, the square root D 2 =
diag(V^t) exists and with it the Cholesky factorization

A = LLT , (1.11)

where L is the lower triangular matrix L := LDi.

The matrix L = (ll}) can be computed by using Cholesky's method, :

Algorithm 1.13 Cholesky's method.

for k := 1 to n do
hk :=(akk~EUlh)1/2'
for i := k + 1 to n do

lik = (o-ik ~ X)jLl hjhj)/lkk',
end for

end for

The derivation of this algorithm is nothing more than the element-wise eval-
uation of equation (1.11)

11 11 In 1 ail

O-nl

a lr

i — k : akk = & + • • • + iiU-i + Zkfc

i > k : aik = lulki + h,k-ilk,k-i + kkhk •

The sophistication of the method is contained in the sequence of computa-
tions for the elements of L. As for the computational cost we have

1 ,
~ - n multiplications and n square roots .

6
In contrast, the rational Cholesky factorization requires no square roots, but
only rational operations (whence the name). By smart programming the
cost can be kept here also to ~ | n 3 . An advantage of the rational Cholesky
factorization is that almost singular matrices D can be recognized. Also the
method can be extended to symmetric indefinite matrices (x T A x / 0 for all
x).

Remark 1.14 The supplemental spd property has obviously led to a sen-
sible reduction of the computational cost. At the same time, this property
forms the basis of completely different types of solution methods that will
be described in Section 8.

18

1.5 Exercises

1 L i n e a r S y s t e m s

Exercise 1.1 Give an example of a full nonsingular (3,3)-matrix for which
Gaussian elimination without pivoting fails.

Exercise 1.2 a) Show that the unit (nonsingular) lower (upper) trian-
gular matrices form a subgroup of GL(n) .

b) Apply a) to show that the representation

A = L R

of a nonsingular matrix A e GL(n) as the product of a unit lower
triangular matrix L and a nonsingular upper triangular matrix R is
unique, provided it exists.

c) If A = LR as in b), then L and R can be computed by Gaussian
triangular factorization. Why is this another proof of b) ? Hint: use
induction.

Exercise 1.3 A matrix A € Mat„(R) is called strictly diagonally dominant
if

n

|fflii| > hi j l for i = 1 , . . . ,n.
i = 1
jjti

Show that Gaussian triangular factorization can be performed for any ma-
trix A 6 Mat„(R) with a strictly diagonally dominant transpose AT. In
particular any such A is invertible. Hint: use induction.

Exercise 1.4 The n u m e r i c a l r a n g e W (A) of a matrix A e Mat„(R) is
defined as the set

W (A) : = { (A x , x) | (x , x) = 1, x € R " }

Here (•, •) is the Euclidean scalar product on R n .

a) Show that the matrix A € Matn(R) has an LR factorization (L unit
lower triangular, R upper triangular) if and only if the origin is not
contained in the numerical range of A, i.e.

0 g W (A) .

Hint: use induction.

1.5 Exercises

b) Use a) to show that the matrix

19

1 2 3

2 4 7

3 5 3

has no LR factorization.

Exercise 1.5 Program the Gaussian triangular factorization. The program
should read data A and b from a data file and should be tested on the
following examples:

a) with the matrix from Example 1.1,

b) with n = 1, A = 25 and 6 = 4,

c) with a,ij = P'1 and bt = i for n = 7, 15 and 50.

Compare in each case the computed and the exact solutions.

Exercise 1.6 Gaussian factorization with column pivoting applied to the
matrix A delivers the factorization PA = LR, where P is the permutation
matrix produced during elimination. Show that:

a) Gaussian elimination with column pivoting is invariant with respect to

i) Permutation of rows of A (with the trivial exception that there
are several elements of equal absolute value per column)

ii) Multiplication of the matrix by a number o ^ 0, A —» a A.

b) If D is a diagonal matrix, then Gaussian elimination with column
pivoting applied to A := AD delivers the factorization PA = LR with
R = RD.

Consider the corresponding behavior for a row pivoting strategy with column
interchange as well as for total pivoting with row and column interchange.

Exercise 1.7 Let the matrix A e Mat„(R) be symmetric positive definite,

a) Show that

| < yjaudj j < au + a,jj) for all i, j = 1 , . . . ,n .

Hint: show first that the matrix (a " a t j) is symmetric positive definite
\Clji Cljj /

for all i,j.

20 1 Linear Systems

b) Deduce from a) that

max I a
i j 13 I max a.

Interpret the result in the context of pivoting strategies.

Exerc i se 1.8 Show that for any u, v e R™ we have:

uyT
a) (I + uvT)~1 = I =—, whenever uTv

1 + v1 u

b) I + uvT is singular whenever uTv = — 1.

Exerc i se 1.9 The linear system Ax = b with matrix

A =
R

0

is to be solved, where R e Mat„(R) is an invertible upper triangular matrix,
u,v e R" and x,b€ R n + 1 .

a) Specify the triangular factorization of A.

b) Show that A is nonsingular if and only if

uTR-lv ^ 0 .

c) Formulate an economical algorithm for solving the above linear system
and determine its computational cost.

Exerc i se 1.10 In the context of probability distributions one encounters
matrices A £ Mat„(R) with the following properties:

i) E r = 1 a i j = 0 for j = 1 , . . . , n ;

ii) an < 0 and a^ > 0 for i = 1 , . . . , n and j ^ i.

Let A = A1-1"1, y l ' 2 ' , . . . , A^ be produced during Gaussian elimination. Show
that:

a) |ffln| > |a,i| for i = 2 , . . . ,n ;

b) E r = 2 « g) = 0 f o r j = 2 , . . . , n ;

1.5 Exercises 21

c) alP < alf} < 0 for i = 2,..., n ;

d) aff > off > 0 for i, j = 2,..., n and j ^ i ;

e) If the diagonal elements produced successively during the first n —

2 Gaussian elimination steps are all nonzero (i.e. a^ < 0 for i =

1, — 1) then (4m = 0.

Exercise 1.11 A problem from astrophysics ("cosmic maser") can be for-
mulated as a system of (n + 1) linear equations in n unknowns of the form

/

1

\

1

(xx \

\ Xn /
\ 1 /

where A is the matrix from Exercise 1.10. In order to solve this system we
apply Gaussian elimination on the matrix A with the following two additional
rules, where the matrices produced during elimination are denoted again by

and the relative machine precision is denoted by eps.

a) If during the algorithm < |afcfc|eps for some k < n, then shift
simultaneously column k and row k to the end and the other columns
and rows towards the front (rotation of rows and columns).

b) ^ laLfc'l — lafcfc|eps for all remaining k < n — 1, then terminate the
algorithm.

Show that:

i) If the algorithm does not terminate in b) then after n — 1 elimination
steps it delivers a factorization of A as PAP = LR, where P is a
permutation and R =

is an upper triangular matrix with rnn —
0, ru < 0 for i = 1, . . . , n — 1 and r^ > 0 for j > i.

ii) The system has in this case a unique solution x, and all components
of x are nonnegative (interpretation: probabilities).

Give a simple scheme for computing x.

Exercise 1.12 Program the algorithm developed in Exercise 1.11 for solv-
ing the special system of equations and test the program on two examples

22 1 Linear Systems

of your choice of dimensions n = 5 and n = 7, as well as on the matrix

/ o n n n \

\

- 2 2 0 0

2 - 4 1 1

0 2 - 1 1

0 0 0 - 2 /
Exercise 1.13 Let a linear system Cx — b be given, where C is an invertible
(2n, 2n)-matrix of the following special form:

C =
A B

B A
, A, B invertible

a) Let C 1 be partitioned as C:

C " 1 -
E F

G H

Prove SCHUR'S identity:

E = H = (A-BA~1B)-1 and F = G = (B - AB~xA)~l .

b) Let x = (x\, X2)t and b = (&i, 62)T be likewise partitioned and

(A + B)y 1 =h+ b2, (A - B)y2 = 61 - b2 .

Show that ^
xi = —(2/1 + 2/2) , x2 = ~{y\ - y2) .

Numerical advantage?

2 Error Analysis

In the last chapter, we introduced a class of methods for the numerical
solution of linear systems. There, from a given input {A, b) we computed
the solution f(A,b) = A~lb. In a more abstract formulation the problem
consists in evaluating a mapping / : U c I -» 7 at a point x e U.
The numerical solution of such a problem (/, x) computes the result f(x)
from the input x by means of an algorithm that eventually produces some
intermediate values as well.

algorithm output
data

In this chapter we want to see how errors arise in this process and in par-
ticular to see if Gaussian elimination is indeed a dependable method. The
errors in the numerical result arise from errors in the data or input errors
as well as from errors in the algorithm.

In principle we are powerless against the former, as they belong to the given
problem and at best they can be avoided by changing the setting of the
problem. The situation appears to be different with the errors caused by
the algorithm. Here we have the chance to avoid, or to diminish, errors by
changing the method. The distinction between the two kind of errors will
lead us in what follows to the notions of condition of a problem and stability
of an algorithm. First we want to discuss the possible sources of errors.

2.1 Sources of Errors

Even when input data are considered to be given exactly, errors in the data
may still occur because of the machine representation of non-integer num-
bers. With today's usual floating point representation, a number 2 of "real

24 2 Error Analysis

type" is represented as z = ade, where the basis d is a power of two (as a
rule 2,8 or 16) and the exponent e is an integer of a given maximum number
of binary positions,

^ ^ {̂ -miru • • • > ^max} ^ •
The so called mantissa a is either 0 or a number satisfying d~x < |a| < 1
and has the form

i
a = v ^^ aid~l,

i=1
where v G {±1} is the sign, m G {0 , . . . , d — 1} are the digits (it is assumed
that o = 0 or ai / 0), and I is the length of the mantissa. The numbers that
are representable in this way form a subset

F := {x G R | there is a, e as above, so that x = ade}

of real numbers. The range of the exponent e defines the largest and smallest
number that can be represented on the machine (by which we mean the pro-
cessor together with the compiler). The length of the mantissa is responsible
for the relative precision of the representation of real numbers on the given
machine. Every number x ^ 0 with

n 1 < |z| < d e° ,«(l - d ~ l)

is represented as a floating point number by rounding to the closest machine
number whose relative error is estimated by

Iz-flOc)! _ < eps := d1-72
Pi

Here we use for division the convention 0/0 = 0 and x/0 = 00 for x > 0. We
say that we have an underflow when |x| is smaller than the smallest machine
number dCmin~1 and, an overflow when |x| > d£ m a x(l — d~l). We call eps
the relative machine precision or the machine epsilon. In the literature this
quantity is also denoted by u for "unit roundoff" or "unit round". For single
precision in FORTRAN, or float in C, we have usually eps ~ 10 - 7 .

Let us imagine that we wanted to enter in the machine a mathematically
exact real number x, for example

x = ir = 3.141592653589... ,

It is known theoretically that n as an irrational number cannot be repre-
sented with a finite mantissa and therefore it is a quantity affected by errors
on any computer, e.g. for eps = 10 - 7

TT h^ fl(7r) = 3.141593 , |fl(?r) - tt| < eps -K

