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Preface 

The topic of Numerical Analysis is the development and the understand-
ing of computational methods for the numerical solution of mathematical 
problems. Such problems typically arise from areas outside of Mathemat-
ics — such as Science and Engineering. Therefore Numerical Analysis is 
directly situated at the confluence of Mathematics, Computer Science, Nat-
ural Sciences, and Engineering. A new interdisciplinary field has been evolv-
ing rapidly called Scientific Computing. Driving force of this evolution is 
the recent vigorous development of both computers and algorithms, which 
encouraged the refinement of mathematical models for physical, chemical, 
technical or biological phenomena to such an extent that their computer 
simulations are now describing reality to sufficient accuracy. In this process, 
the complexity of solvable problems has been expanding continuously. New 
areas of the natural sciences and engineering, which had been considered 
rather closed until recently, thus opened up. Today, Scientific Computing is 
contributing to numerous areas of industry (chemistry, electronics, robotics, 
automotive industry, air and space technology, etc.) as well as to important 
problems of society (balance of economy and ecology in the use of primary 
energy, global climate models, spread of epidemics). 

The movement of the entire interdisciplinary net of Scientific Computing 
seizes each of its knots, including Numerical Analysis, of course. Conse-
quently, fundamental changes in the selection of the material and the pre-
sentation in lectures and seminars have occurred — with an impact even to 
introductory courses. The present book takes this development into account. 
It is understood as an introductory course for students of mathematics and 
natural sciences, as well as mathematicians and natural scientists working 
in research and development in industry and universities. Possible readers 
are assumed to have basic knowledge of undergraduate Linear Algebra and 
Calculus. More advanced mathematical knowledge, say about differential 
equations, is not a required prerequisite, since this elementary textbook is 
intentionally excluding the numerics of differential equations. As a further 
deliberate restriction, the presentation of topics like interpolation or inte-
gration is limited to the one-dimensional case. Nevertheless, many essential 
concepts of modern Numerical Analysis, which play an important role in 
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numerical differential equation solving, are treated on the simplest possible 
model problems. 

The aim of the book is to develop algorithmic feeling and thinking. After 
all, the algorithmic approach is historically one of the roots of todays Math-
ematics. That is why historical names like Gauss, Newton and Chebyshev 
are found in numerous places of the subsequent text together with contem-
porary names. The orientation towards algorithms should by no means be 
misunderstood. In fact, the most efficient algorithms do require a substantial 
amount of mathematical theory, which will be developed in the text. As a 
rule, elementary mathematical arguments are preferred. Wherever meaning-
ful, the reasoning appeals to geometric intuition — which also explains the 
quite large number of graphical representations. Notions like scalar product 
and orthogonality are used throughout — in the finite dimensional case as 
well as in function spaces. In spite of the elementary presentation, the book 
does contain a significant number of rather recent results, some of which 
have not been published elsewhere. In addition, some of the more classical 
results are derived in a way, which significantly differs from more standard 
derivations. 

Last, but not least, the selection of the material expresses the scientific 
taste of the authors. The first author has taught Numerical Analysis courses 
since 1978 at different German institutions such as the University of Technol-
ogy in Munich, the University of Heidelberg, and now the Free University 
of Berlin. Over the years he has co-influenced the dynamic development 
of Scientific Computing by his research activities. Needless to say, he has 
presented his research results in numerous invited talks at international con-
ferences and seminars at renowned university and industry places all over 
the world. The second author rather recently entered the field of Numerical 
Analysis, after having graduated in pure mathematics from the University 
of Bonn. Both authors hope that this combination of a senior and a junior 
has had a stimulating effect on the presentation in this book. Moreover, it 
is certainly a clear indication of the old dream of unity of pure and applied 
mathematics. 

Of course, the authors stand on the shoulders of others. In this respect, 
the first author remembers with gratitude the time, when he was a graduate 
student of Roland Bulirsch. Numerous ideas of the colleagues Ernst Hairer 
and Gerhard Wanner (University of Geneva) and intensive discussions with 
Wolfgang Dahmen (Technical University of Aachen) have influenced our pre-
sentation. Cordial thanks go to Folkmar Bornemann for his many stimulat-
ing ideas and discussions especially on the formulation of the error analysis 
in Chapter 2. We also want to thank our colleagues at the Konrad Zuse 
Center Berlin, in particular Michael Wulkow, Ralf Kornhuber, Ulli Nowak 
and Karin Gatermann for many suggestions and a constructive atmosphere. 
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This book is a translation of our German textbook "Numerische Mathe-
matik I (Eine algorithmisch orientierte Einführung)", second edition. Many 
thanks to our translators, Florian Potra and Friedmar Schulz, and to Erlinda 
Cadano-Körnig for her excellent work in the final polishing of the English 
version. May this version be accepted by the Numerical Analysis students 
equally well as the original German version. 

Peter Deuflhard and Andreas Hohmann Berlin, May 1994 



Teaching Hints 

The present textbook addresses students of Mathematics, Computer Science 
and Science covering typical material for introductory courses in Numerical 
Analysis with clear emphasis towards Scientific Computing. 

We start with Gaussian elimination for linear equations as a classical algo-
rithm and discuss additional devices such as pivoting strategies and iterative 
refinement. Chapter 2 contains the indispensable error analysis based on the 
fundamental ideas of Wilkinson. The condition of a problem and the sta-
bility of algorithms are presented in a unified framework and exemplified by 
illustrative cases. Only the linearized theory of error analysis is presented 
— avoiding, however, the typical "e-battle". Rather, only differentiation is 
needed as an analytical tool. As a specialty we derive a stability indicator 
which allows for a rather simple classification of numerical stability. The 
theory is then worked out for the case of linear equations, thus supplying a 
posteriori a deeper understanding of Chapter 1. In Chapter 3 we deal with 
methods of orthogonalization in connection with linear least squares prob-
lems. We introduce the extremely useful calculus of pseudoinverses, which is 
then immediately applied in Chapter 4. There, we consider iterative meth-
ods for systems of nonlinear equations (Newton's method), nonlinear least 
squares problems (Gauss-Newton method) and parameter-dependent prob-
lems (continuation methods) in close mutual connection. Special attention is 
given to the affine invariant form of the convergence theory and the iterative 
algorithms. A presentation of the power method (direct and inverse) and 
the QR-algorithm for symmetric eigenvalue problems follow in Chapter 5. 
The restriction to the real symmetric case is motivated from the beginning 
by a condition analysis of the general eigenvalue problem. In this context 
the singular value decomposition fits perfectly, which is so important in ap-
plications. 

After the first five rather closely connected chapters the remaining four 
chapters also comprise a closely connected sequence. The sequence begins in 
Chapter 6 with an extensive treatment of the theory of three-term recurrence 
relations, which play a key role in the realization of orthogonal projections in 
function spaces. Moreover, the significant recent spread of symbolic comput-
ing has renewed interest in special functions also within Numerical Analysis. 
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The condition of three-term recurrences is presented via the discrete Green's 
function. Numerical algorithms for the computation of special functions are 
exemplified for spherical harmonics and Bessel functions. In Chapter 7 clas-
sical interpolation and approximation in the one-dimensional special case are 
presented first, followed by non-classical methods like Bezier techniques and 
splines, which nowadays play a central role in CAD (Computer Aided De-
sign) or CAGD (Computer Aided Geometric Design), i.e. special disciplines 
of computer graphics. Our presentation in Chapter 8, which treats iterative 
methods for the solution of large symmetric linear equations, is conveniently 
based on Chapter 6 (three-term recurrences) and Chapter 7 (min-max prop-
erty of Chebyshev polynomials). The same is true for the Lanczos algorithm 
for large symmetric eigenvalue problems. The final Chapter 9 turns out to be 
a bit longer: it carries the bulk of the task to explain principles of the numer-
ical solution of differential equations by means of the simplest problem type, 
which here is numerical quadrature. After the historical Newton-Cotes for-
mulas and the Gauss quadrature, we progress towards the classical Romberg 
quadrature as a first example of an adaptive algorithm, which, however, only 
adapts the approximation order. The formulation of the quadrature prob-
lem as an initial value problem opens the possibility of working out a fully 
adaptive Romberg quadrature (with order and stepsize control) and at the 
same time a didactic first step into extrapolation methods, which play a 
prominent role in the solution of ordinary differential equations. The alter-
native formulation of the quadrature problem as a boundary value problem 
is exploited for the derivation of an adaptive multigrid algorithm: in this 
way we once more present an important class of methods for ordinary and 
partial differential equation in the simplest possible case. 

For a typical university term the contents of the book might be too rich. 
For a possible partitioning of the presented material into two parts we rec-
ommend the closely connected sequences Chapter 1 - 5 and Chapter 6 - 9 . 
Of course, different "teaching paths" can be chosen. For this purpose, we 
give the following connection diagram: 
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As can be seen from this diagram, the chapters of the last row (Chapters 
4, 5, 8, and 9) can be skipped without spoiling the flow of teaching — 
according to the personal scientific taste. Chapter 4 could be integrated 
into a course on "Nonlinear optimization", Chapters 5 and 8 into a course 
on "Numerical linear algebra" or Chapter 9 into "Numerical solution of 
differential equations". 

At the end of each chapter we added exercises. Beyond these explicit 
exercises further programming exercises may be selected from the numerous 
algorithms, which are given informally (usually as pseudocodes) throughout 
the textbook. All algorithms mentioned in the text are internationally ac-
cessible via the electronic library eLib of the Konrad Zuse Center. In the 
interactive mode eLib can be reached via: 

Datex-P: +45050331033 (WIN) +2043623331033 (IXI) 
INTERNET: elib.ZIB-berlin.de (130.73.108.11) 
login: elib (no password necessary) 

In addition, there is the following e-mail access: 

X.400: S=eLib;OU=sc;P=ZIB-Berlin;A=dbp;C=de 
INTERNET: elib@elib.ZIB-Berlin.de 
BITNET: eLib@sc.ZIB-Berlin.dbp.de 
UUCP: unidolsc. ZIB-Berlin.dbp.de!eLib 

Especially for users of Internet there is an "anonymous ftp" access (elib.ZIB-
Berlin.de - 130.73.108.11) . 
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1 Linear Systems 

We start with the classical Gaussian elimination method for solving sys-
tems of linear equations. Carl Friedrich Gauss (1777-1855) describes the 
method in his 1809 work on celestial mechanics "Theoria Motus Corporum 
Coelestium" [33] by saying "the values can be obtained with the usual elim-
ination method". The method was used there in connection with the least 
squares method (cf. Section 3). In fact the method had been used previ-
ously by Lagrange in 1759 and had been known in China as early as the first 
century B.C. The problem is to solve a system of n linear equations 

an^i + a\2X2 + ••• + ainxn = b\ 

a2\X\ + a22X2 + • • • + a2n.Xn = i>2 

flnl^l + On 2X2 + • • • + a,nnXn = bn 

or, in short form 
Ax = b, 

where A € Mat„(R) is a real (n, n)-matrix and b, x E R™ are real n-vectors. 
Before starting to compute the solution x, we should ask ourselves whether 
or not the system is solvable or not? From linear algebra, we know the 
following result which characterizes solvability in terms of the determinant 
of the matrix A. 

T h e o r e m 1.1 Let A € Mat r a(R) be a real square matrix with det / I / O and 
b £ R™. Then there exists a unique x <G R™ such that Ax = b. 

Whenever det A / 0, the solution x = A~lb can be computed by Cramer's 
rule. Here we already see a general property of a "good" algorithm, namely 
the connection of existence and uniqueness of the solution with a numerical 
method for computing it. The cost of computing det A amounts to n • n\ 
arithmetic operations when the Leibniz representation 

d e t A = X ] S g n ' • " an,a(n) 
<r£Sn 
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of the determinant as a sum of all permutations <7 £ Sn of the set { 1 , . . . ,n } 
is used. Even with the recursive scheme involving development in sub-
determinants according to Laplace's rule 

n 

det A = ^ ( - l ^ + V i det Au 

i=1 
there are 2™ arithmetic operations to be carried out, where An € Mat„_i(R) 
is the matrix obtained from A by crossing out the first row and the ¿-th 
column. As we will see, all methods to be described in what follows are 
more efficient than Cramer's rule for n > 3 so that the latter is interesting 
only for n = 2. 

Remark 1.2 Of course, we expect that a good numerical method solves 
a given problem at minimal cost (in terms of arithmetic operations). Intu-
itively there is a minimal cost for each problem which is called the complexity 
of the problem. The closer the cost of an algorithm is to the complexity of 
the problem, the more efficient that algorithm is. The cost of a concrete 
algorithm is therefore always an upper bound for the complexity of the prob-
lem it solves. Obtaining lower bounds is in general much more difficult — 
for details see the monograph of T R A U B and WOZNIAKOWSKI [75]. 

The notation x = A~lb could suggest the idea of computing the solution 
of Ax = b by first computing the inverse matrix A_1 and then applying it 
to b. However the computation of A~l inherently contains all difficulties 
related to solving Ax = b for arbitrary right hand sides b. We will see in the 
second chapter that the computation of A c a n be "badly behaved", even 
when for special b the solution of Ax = b is "well behaved", x = A~lb is 
therefore meant only as a formal notation which has nothing to do with the 
actual computation of the solution x. One should therefore avoid talking 
about "inverting matrices", when in fact one is concerned with "solving 
linear systems". 

Remark 1.3 There has been a long standing bet by an eminent colleague, 
who wagered a significant amount, that in practice the problem of "inverting 
a matrix" is always avoidable. As far as we know he has won the bet in all 
cases. 

1.1 Solution of Triangular Systems 

In the search for an efficient solution method for arbitrary linear systems 
we will first consider cases that are particularly easy to solve. Simplest is 
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obviously the case of a diagonal matrix A, where the corresponding system 
consists of n independent scalar equations. The method that transforms a 
general system into a diagonal one is called the Gauss-Jordan method. How-
ever we will omit it here, since it is less efficient than the method described 
in Section 1.2. Next, in terms of difficulty, is the case of a triangular system 

r u x i + r 1 2x 2 + . . . + r i n x n = zi 

r2 2X2 + ••• + r2nxn = z2 

Tnn%n ~ Zn i 

and in matrix notation 
Rx = z , (1.1) 

where R is an upper triangular matrix , i.e. = 0 for all i > j. Obviously 
the components of x can be obtained recursively starting with the n ' th row: 

xn := zn/rnn , if rnn ^ 0 , 

: = (Zn—l T n — l , n — 1 ; if l,n—1 ^ 0 > 

Xi := (z1 -ri2x2 - ... - rinxn)/rn , if r n ^ 0 . 

Now, the determinant of the upper triangular matrix R is det R = r n • • • rnn, 
and therefore 

det Ry^ 0 ru ^ 0 for allz = 1 , . . . , n . 

The above defined algorithm is therefore applicable (as in the case of Cra-
mer's rule) if and only if det R ^ 0, i.e. under the hypothesis of the existence 
and uniqueness theorem. The computational cost amounts to: 

a) for the ¿-th row: n — i additions and multiplications, and one division 

b) for rows n through 1 together: 

i=1 

multiplications and as many additions. 
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Here the notation "=" stands for "equal up to lower order terms", i.e. we 
consider only the term containing the highest power of n, which dominates 
the cost for large values of n. 

The solution of a triangular system of the form 

Lx = z, (1.2) 

with a lower triangular matrix L, is completely analogous, if one starts now 
with the first row and works through to last one. This way of solving tri-
angular systems is called backward substitution in case of (1.1) and forward 
substitution in case of (1.2). The name substitution or replacement is used 
because each component of the right hand side vector is successively replaced 
by the solution, as indicated in the following scheme describing the content 
of the vector stored in the memory of the machine (memory scheme) at each 
step: 

(zi 

, Z2, • • • , Zn—i, Zn) 

, Z2, ... , Zn— J , X„) 

(zi, X2 5 • • • , Xn—1 > xn) 

(xi, X2y • • • , Xn— \ , Xn) . 

1.2 Gaussian Elimination 

We now return to the general linear system Ax = b, 

anXi + ai2x2 +...+ alnxn = b\ 

a21X1 + a 22X2 + • • • + a,2nXn = b2 
(1-3) 

anix\ + an2x2 + • • • + 
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and try to transform it into a triangular one. The first row does not have 
to be changed. We want to manipulate the remaining rows such that the 
coefficients in front of x\ vanish, i.e. the variable X\ from rows 2 through n 
is eliminated. Thus we produce a system of the form 

anXi + ai2X2 + . . . + a\nxn = b\ 

a22xZ + • • • + o,2nxn = b2 

(1.4) 

an2x2 + . . . + a n n x n = bn . 

Having achieved this we can apply the same procedure to the last n — 1 rows 
in order to recursively obtain a triangular system. Therefore it is sufficient 
to examine the first elimination step from (1.3) to (1.4). We assume that 
a n 0. In order to eliminate the term an%i in row i (i = 2 , . . . , n), we 
subtract from row i a multiple of row 1 (unaltered), i.e. 

new row i := row i — In • row 1 

or explicitly 

(an - l a a n ) + ( a i 2 - ¿¿1*112) x2 H h ( a i n - k i a l n ) xn = bi - Inbi 

= 0 = a. %i = b. 

From an — Inan = 0 it follows immediately that In = an / a n . Therefore 
the first elimination step can be performed under the assumption a n ^ 0. 
The element a n is called a pivot element and the first row a pivot row. After 
this first elimination step there remains an (n — 1, n — l)-submatrix in rows 
2 through n. By applying repeatedly the elimination procedure we obtain a 
sequence 

A = AW - > . . . - A<n> =: R 

of matrices of the special form 

a (!) J 1 ) 
11 1 2 

ï ( 2 ) 
x 2 2 

I ( 1 ) In 

1 ( 2 ) 
2n 

A w = 
Ak) 
1kk 

Ak) 
kn 

(1.5) 

( it) 
2nk a { k )  "nn 
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with an (n — fc+1, n — fc+l)-submatrix, to which we can apply the elimination 
step 

1ik •— aik /akk for i = k + 1 , . . . , n 

.— C h k a k j for i,j = k + l,...,n 

b(k+1) for i = k + 1 , . . . , n 

(k) 
whenever the pivot akf; does not vanish. Since every elimination step is a 
linear operation applied to the rows of A, the transformation from A^ and 
b<k> into A(k+V> and can be represented as a premultiplication by a 
matrix Lk € Mat„(R), i.e. 

= LkA{k) and b ^ = Lkb™ . 

(In case of operations on columns one obtains an analogous postmultiplica-
tion). The matrix 

Lk = 

—h+l,k 1 

ln,k 

is called a Frobenius matrix; It has the nice property that its inverse L'kl 

is obtained from Lk by changing the signs of the lik s. Furthermore the 
product of the 1 !s satisfies 1 

hi 1 

hi ¿32 1 L := L -l 
• KU = 

Inl ln,n—1 1 

In this way we have reduced the system Ax = b to the equivalent triangular 
system Rx = z with 

R = L~1A and z = L^b . 
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A lower (resp. upper) triangular matrix, whose main diagonal elements are 
all equal to one is a called a unit lower (resp. upper) triangular matrix. 
The above representation A — LR of the matrix A as a product of a unit 
lower triangular matrix L and an upper triangular matrix R is called the 
Gaussian triangular factorization, or briefly LR factorization of A. In the 
English literature the matrix R is often denoted by U (from upper triangular) 
and the corresponding Gaussian triangular factorization is called the LU 
factorization. If such a factorization exists, then L and R are uniquely 
determined (cf. Exercise 1.2). 

Algori thm 1.4 Gaussian Elimination. 

a) A = LR Triangular Factorization, R upper and L lower triangular 
matrix 

b) Lz = b Forward Substitution 

c) Rx = z Backward Substitution. 

The memory scheme for the Gaussian elimination is based upon the repre-
sentation (1.5) of the matrices In the remaining memory locations one 
can store the ¿¿t's, because the other elements, with values 0 or 1, do not 
have to be stored. The entire memory cost for Gaussian elimination amounts 
to n(n+ 1) memory locations, i.e. as many as needed to define the problem. 
The cost in terms of number of multiplications is 

Therefore the main cost comes from the Lii-factorization. However, if dif-
ferent right hand sides b\,... ,bj are considered, then this factorization has 
to be carried out only once. 

1.3 Pivoting Strategies and Iterative Refinement 

As seen from the simple example 

£fc=Ì fc2 = n 3 / 3 for a) 

££=? k = n2/2 both for b) and c). 

there are cases where the triangular factorization fails even when det A ^ 0. 
However an interchange of rows leads to the simplest Lii-factorization we 
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can imagine, namely 

In the numerical implementation of Gaussian Elimination difficulties can 
arise not only when pivot elements vanish, but also when they are "too 
small". 

E x a m p l e 1.5 (cf. [30]) We compute the solution of the system 

(a) 1.00 • 10"4 i i + 1.00 x2 = 1.00 

(b) 1.00 xi + 1.00 x2 = 2 . 0 0 

on a machine, which, for the sake of simplicity, works only with three ex-
act decimal figures. By completing the numbers with zeros, we obtain the 
"exact" solution with four correct figures 

X\ = 1.000 x2 = 0.9999 , 

and with three correct figures 

xi = 1.00 x2 = 1.00 . 

Let us now carry out the Gaussian elimination on our computer, i.e. in three 
exact decimal figures 

/21 = —— = ———T = 1-00 • 104 , a n 1.00 -10" 4 

(1.00 - 1.00 • 104 • 1.00 • 10"4)a;i + (1.00 - 1.00 • 104 • 1.00)12 

= 2.00 - 1.00 • 104 • 1.00 . 

Thus we obtain the upper triangular system 

1.00 • 1 0 - 4 x i + 1.00x2 = 1-00 

-1.00 • 104 x2 = -1-00 • 104 

and the "solution" 

x2 = 1.00 (true) xi = 0.00 (false!) . 

However, if before starting the elimination, we interchange the rows 

(a) 1.00 xi + 1.00x2 = 2.00 

(b) 1.00 • 10"4 X! + 1.00 x2 = 1.00, 
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then /21 = 1-00 • 10—4, which yields the upper triangular system 

1.00a;i + 1.00 x2 = 2.00 

1.00 x2 = 1.00 

as well as the "true solution" 

x2 = 1.00 xi = 1.00 . 

By interchanging the rows in the above example we obtain 

|/2i | < 1 and | àn | > |ò2i| • 

Thus, the new pivot a n is the largest element, in absolute value, of the first 
column. 

We can deduce the partial pivoting or column pivoting strategy from the 
above considerations . This strategy is to choose at each Gaussian elimina-
tion step as pivot row the one having the largest element in absolute value 
within the pivot column. More precisely, we can formulate the following 
algorithm: 

Algorithm 1.6 Gaussian elimination with column pivoting 

a) In elimination step A^ —> choose a p e {k,..., n}, such that 

for j = k,..., n 

Row p becomes pivot row. 

b) Interchange rows p and k 

1 ^ 1 > 1 ^ 1 

_ i c o With aj*> = 
1J 

a(k) 
kj 

Ak) 1vi 
,(fc) 

if i — p 

\ii = k 

otherwise 

Now we have 

\lik\ = 
-Ak) 

7.Ìk) kk 

~Ak) 
ik 
(k) 
pk 

< 1 . 

c) Perform the next elimination step for M k \ i.e. 

ÀW -> A{k+1) . 
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Remark 1.7 Instead of column pivoting with row interchange one can also 
perform row pivoting with column interchange. Both strategies require at 
most 0(n2) additional operations. If we combine both methods and look 
at each step for the largest element in absolute value of the entire remain-
ing matrix, then we need 0(n3) additional operations. This total pivoting 
strategy is therefore almost never employed. 

In the following formal description of the triangular factorization with partial 
pivoting we use permutation matrices P € Mat„ (R ) . For each permutation 
7r G Sn we define the corresponding matrix 

Pv = [e7T(l) • • • eir(n)] i 

where ej = (¿>ij,... ,Snj)T is the j-th unit vector. A permutation w of the 
rows of the matrix A can be expressed as a premultiplication by Pn 

Permutation of rows ir: A —> PnA. 

and analogously a permutation n of the columns as a postmultiplication 

Permutation of columns n: A —> AP^ . 

It is known from linear algebra that the mapping 

7T 1 > Pn 

is a group homeomorphism Sn —> O (n) of the symmetric group Sn into the 
orthogonal group O(n). In particular we have 

p-1 = pT 

The determinant of the permutation matrix is just the sign of the corre-
sponding permutation 

det P^ = sgn 7r G { ± 1 } , 

i.e. it is equal to +1, if n consists of an even number of transpositions, 
and —1 otherwise. The following proposition shows that, theoretically, the 
triangular factorization with partial pivoting fails only when the matrix A 
is singular. 

Theorem 1.8 For every invertible matrix A there exists a permutation ma-
trix P such that a triangular factorization of the form 

PA = LR 

is possible. Here P can be chosen so that all elements of L are less than or 
equal to one in absolute value, i.e. 

| £ | < i 
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Proof. We employ the Li?-factorization algorithm with column pivoting. 
Since det A ^ 0, there is a transposition n € Sn such that the first diagonal 
element a ^ of the matrix 

=PTiA 

is different from zero and is also the largest element in absolute value in the 
first column, i.e. 

0 la!Vl — lali ;l for ¿ = 1, (i)| 
i n • 

After eliminating the remaining elements of the first column we obtain the 
matrix 

a ( 1 ) a n * • • • * 

0 

B<2) 

0 

A^ = = L\PTlA 

where all elements of L\ are less than or equal to one in absolute value, i.e. 
|Li | < 1, and d e t L \ = 1. The remaining matrix is again invertible 
since la^Vl ^ 0 a n d 

0 ^ sgn ( n ) det A = det A(2) = a[\] det B^ . 

Now by we can proceed by induction and obtain 

R = A^=Ln-1PTn_1---L1PTlA, (1.6) 

where \Lk\ < 1, and r^ is either the identity or the transposition of two 
numbers > k. If n € Sn only permutes numbers > k + 1, then the Frobenius 
matrix 

" 1 

Lk = 

1 

~h+l,k 1 

m.fc 
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satisfies 
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Lk = PirLkP-n 1 

/ 
(1.7) 

7r(fe+l),fe 

— lir(n),k 1 

Therefore we can separate Frobenius matrices Lk and permutations PTk by 
inserting in (1.6) the identities P~k

 1 PTk i.e. 

R = ¿n-l-Prn_1^n-2-PT^1_1-f)rn_1-Prn_2^n-3 • ' ' L\PTlA . 

Hence we obtain 

R = Ln-1---L1PV0A with Lk = P^LkP~^ , 

where 7r„_i := id and 7Tk = r„_i • • • Tk+i for k = 0 , . . . , n — 2. Since the 
permutation irt interchanges in fact only numbers > k + 1, the matrices Lk 
are of the form (1.7). Consequently 

P„0A = LR 

with L := ¿J"1 • • • L~]i1 or explicitly 

L = 
wi(2),l 

ti(3),1 1TT2(3),2 

7Ti (n),l 

and therefore \L\ < 1. • 

Note that we have used the Gaussian elimination algorithm with column 
pivoting to constructively prove an existence theorem. 

Remark 1.9 Let us also note that the determinant of A can be easily com-
puted by using the PA = LR factorization of Proposition 1.8 via the formula 
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det A = det(.P) • det(L-R) = sgn (710) • r n • • • rnn 

A warning should be made against the naive computation of determinants! 
As is well known, multiplication of a linear system by an arbitrary scalar a 
results in 

det (a A) = a™ det A . 

This trivial transformation may be used to convert a "small" determinant 
into an arbitrarily "large" one and the other way around. The only invari-
ants under this class of trivial transformations are the Boolean quantities 
det A = 0 or det A / 0; for an odd n we have additionally sgn (det A). The 
above noted theoretical difficulty will lead later on to a completely different 
characterization of the solvability of linear systems. 

Furthermore, it is apparent that the pivoting strategy can be arbitrarily 
changed by multiplying different rows by different scalars. This observation 
leads to the question of scaling. By row scaling we mean premultiplication 
of A by a diagonal matrix 

A —> DrA , Dr diagonal matrix 

and analogously, by column scaling we mean postmultiplication by a diagonal 
matrix 

A —> ADC , Dc diagonal matrix . 

(As we have already seen in the context of Gaussian elimination, linear op-
erations on the rows of a matrix can be expressed by premultiplication with 
suitable matrices and correspondingly operations on columns are represented 
by postmultiplication.) Mathematically speaking scaling changes the length 
of the basis vectors of the range (row scaling) and of the domain (column 
scaling) of the linear mapping defined by the matrix A, respectively. If this 
mapping models a physical phenomenon then we can interpret scaling as a 
change of unit, or gauge transformation (e.g. from A to km). In order to 
make the solution of the linear system Ax = b independent of the choice of 
unit we have to appropriately scale the system by pre- or postmultiplying 
the matrix A by suitable diagonal matrices: 

A -> A := DrADc , 

where 
Dr = diag(<7i,..., <r„) and Dc = diag ( n , . . . , r„) . 

At first glance the following three strategies seem to be reasonable: 
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a) Row equilibration of A with respect to a vector norm || • ||. Let A1 be 
the i-th row of A and assume that there are no zero rows. By setting 
Ds := I and 

tTj := 11^4'ir1 for i = 1 , . . . ,n, 

we make all rows of A have norm one. 

b) Column equilibration. Suppose that there are no columns Aj of A 
equal to zero. By setting Dz := I and 

Tj ••= i i A / i r 1 for j = i , 

we make all columns of A have norm one. 

c) Following a) and b) it is natural to require that all rows of A have 
the same norm and at the same time that all columns of A have the 
same norm. In order to determine Cj and Tj up to a mutual common 
factor one has to solve a nonlinear system with 2n — 2 unknowns. This 
obviously requires a great deal more effort than solving the original 
problem. As will be seen in the fourth chapter the solution of this 
nonlinear system requires the solution of a sequence of linear systems, 
now in 2n — 2 unknowns, for which the problem of scaling has to be 
addressed again. 

Because of this dilemma, most programs (e.g. LINPACK [26]) leave the 
scaling issue to the user. 

The pivoting strategies discussed above cannot prevent the possibility of 
computing a rather inaccurate solution x. How can one improve the accuracy 
of x without too much effort? Of course we can simply discard the solution x 
altogether and try to compute a "better" solution by using a higher machine 
precision. However in this way all information obtained in computing x is 
lost. This is avoided in the so called iterative refinement method by explicitly 
evaluating the residual 

r(y) := b - Ay = A(x - y) 

The absolute error AXQ := x — XQ of xo := x satisfies the equation 

Akxo = r{x0) . (1.8) 

In solving this corrector equation (1.8), we obtain an approximate correction 
A.tq / Axq which is again afflicted by rounding errors. In spite of this fact 
we expect that the approximate solution 

xy := XQ + Àx0 
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is "better" than XQ. The idea of iterative refinement consists in repeating this 
process until the approximate solution Xi is "accurate enough". We should 
remark that the linear system (1.8) differs from the original linear system 
only by the right hand side, so that the computation of the corrections Ax, 
requires little effort. In Section 2.4.3 we will make precise the meaning of 
the terms "better approximate solution" and "accurate enough". In fact 
iterative refinement works excellently in conjunction with Gaussian elimina-
tion. In Section 2.4.3 we will state the substantial result of SKEEL [70] that 
for triangular factorization with column pivoting, a single refinement step is 
sufficient for obtaining a suitably accurate solution of the given problem. 

1.4 Cholesky's Method for Symmetric Positive 
Definite Matrices 

We want now to apply Gaussian elimination to the special class of systems 
of equations with symmetric positive definite matrices. It will become clear 
that in this case, the triangular factorization can be substantially simplified. 
We recall that a symmetric matrix A = AT e Mat„(R) is positive definite if 
and only if 

(x,Ax) > 0 for all x ± 0 . (1.9) 

We call such matrices for short spd-matrices. 

Theorem 1.10 For any spd-matrix A G Mat„(R) we have: 

i) A is invertible. 

ii) an > 0 for i = 1 , . . . , n. 

iii) maxj j^i , . . .^ \â \ = max i = i j . . . j n a j j . 

iv) Each rest matrix obtained during Gaussian elimination without 
pivoting is also symmetric positive definite. 

Obviously iii) and iv) say that row or column pivoting is not necessary for 
LR factorization, in fact even absurd because it might destroy the structure 
of A. In particular iii) means that total pivoting can be reduced to diagonal 
pivoting. 

Proof. The invertibility of A follows immediately from (1.9). If we put 
in (1.9) a basis vector e, instead of x, it follows immediately that an = 
(ei,Aei) > 0 and therefore the second claim is proven. The third statement 
is proved similarly, cf. Exercise 1.7. In order to prove statement iv) we write 
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A = AW as 
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an ZT 

z 
At i) 

where z = (ai2, •.., a\n)T and after one elimination step we obtain 

(1.10) 

a n 

LXAW = 
0 

LXAW = 
BW 

0 

with Li 

1 

-hi 1 

— ini 
Now if we premultiply A^ with Lj, then zT in the first row is also eliminated 
and and the submatrix B ^ remains unchanged, i.e. 

an 0 ••• 0 

0 

£(2) 

0 

The operation A —> L\ALj describes a change of basis for the bilinear form 
defined by the symmetric matrix A. According to the inertia theorem of 
Sylvester, L i A ^ L j and with it B ^ remain positive definite. • 

Together with the LR factorization we can deduce now the rational Cholesky 
factorization for symmetric positive definite matrices. 

Theorem 1.11 For every symmetric positive definite matrix A there exists 
a uniquely determined factorization of the form 

A = LDLt , 

where L is a unit lower triangular matrix and D a positive diagonal matrix. 

Proof We continue the construction from the proof of Theorem 1.10 for 
k — 2 , . . . , n — 1 and obtain immediately L as the product of LJ " 1 , . . . , j 
and D as the diagonal matrix of the pivots. • 
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Corollary 1.12 Since D = diag(d,;) is positive, the square root D 2 = 
diag( V^t) exists and with it the Cholesky factorization 

A = LLT , (1.11) 

where L is the lower triangular matrix L := LDi. 

The matrix L = (ll}) can be computed by using Cholesky's method, : 

Algorithm 1.13 Cholesky's method. 

for k := 1 to n do 
hk :=(akk~EUlh)1/2' 
for i := k + 1 to n do 

lik = (o-ik ~ X)jLl hjhj)/lkk', 
end for 

end for 

The derivation of this algorithm is nothing more than the element-wise eval-
uation of equation (1.11) 

11 11 In 1 ail 

O-nl 

a lr 

i — k : akk = & + • • • + iiU-i + Zkfc 

i > k : aik = lulki + h,k-ilk,k-i + kkhk • 

The sophistication of the method is contained in the sequence of computa-
tions for the elements of L. As for the computational cost we have 

1 , 
~ - n multiplications and n square roots . 

6 
In contrast, the rational Cholesky factorization requires no square roots, but 
only rational operations (whence the name). By smart programming the 
cost can be kept here also to ~ | n 3 . An advantage of the rational Cholesky 
factorization is that almost singular matrices D can be recognized. Also the 
method can be extended to symmetric indefinite matrices ( x T A x / 0 for all 
x). 

Remark 1.14 The supplemental spd property has obviously led to a sen-
sible reduction of the computational cost. At the same time, this property 
forms the basis of completely different types of solution methods that will 
be described in Section 8. 
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1.5 Exercises 

1 L i n e a r S y s t e m s 

Exercise 1.1 Give an example of a full nonsingular (3,3)-matrix for which 
Gaussian elimination without pivoting fails. 

Exercise 1.2 a) Show that the unit (nonsingular) lower (upper) trian-
gular matrices form a subgroup of GL(n) . 

b) Apply a) to show that the representation 

A = L R 

of a nonsingular matrix A e GL(n) as the product of a unit lower 
triangular matrix L and a nonsingular upper triangular matrix R is 
unique, provided it exists. 

c) If A = LR as in b), then L and R can be computed by Gaussian 
triangular factorization. Why is this another proof of b) ? Hint: use 
induction. 

Exercise 1.3 A matrix A € Mat„(R) is called strictly diagonally dominant 
if 

n 

|fflii| > hi j l for i = 1 , . . . ,n. 
i = 1 
jjti 

Show that Gaussian triangular factorization can be performed for any ma-
trix A 6 Mat„(R) with a strictly diagonally dominant transpose AT. In 
particular any such A is invertible. Hint: use induction. 

Exercise 1.4 The n u m e r i c a l r a n g e W ( A ) of a matrix A e Mat„(R) is 
defined as the set 

W ( A ) : = { ( A x , x ) | ( x , x ) = 1, x € R " } 

Here (•, •) is the Euclidean scalar product on R n . 

a) Show that the matrix A € Matn(R) has an LR factorization (L unit 
lower triangular, R upper triangular) if and only if the origin is not 
contained in the numerical range of A, i.e. 

0 g W ( A ) . 

Hint: use induction. 



1.5 Exercises 

b) Use a) to show that the matrix 

19 

1 2 3 

2 4 7 

3 5 3 

has no LR factorization. 

Exercise 1.5 Program the Gaussian triangular factorization. The program 
should read data A and b from a data file and should be tested on the 
following examples: 

a) with the matrix from Example 1.1, 

b) with n = 1, A = 25 and 6 = 4, 

c) with a,ij = P'1 and bt = i for n = 7, 15 and 50. 

Compare in each case the computed and the exact solutions. 

Exercise 1.6 Gaussian factorization with column pivoting applied to the 
matrix A delivers the factorization PA = LR, where P is the permutation 
matrix produced during elimination. Show that: 

a) Gaussian elimination with column pivoting is invariant with respect to 

i) Permutation of rows of A (with the trivial exception that there 
are several elements of equal absolute value per column) 

ii) Multiplication of the matrix by a number o ^ 0, A —» a A. 

b) If D is a diagonal matrix, then Gaussian elimination with column 
pivoting applied to A := AD delivers the factorization PA = LR with 
R = RD. 

Consider the corresponding behavior for a row pivoting strategy with column 
interchange as well as for total pivoting with row and column interchange. 

Exercise 1.7 Let the matrix A e Mat„(R) be symmetric positive definite, 

a) Show that 

| < yjaudj j < au + a,jj) for all i, j = 1 , . . . ,n . 

Hint: show first that the matrix ( a " a t j ) is symmetric positive definite 
\Clji Cljj / 

for all i,j. 
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b) Deduce from a) that 

max I a 
i j 13 I max a. 

Interpret the result in the context of pivoting strategies. 

Exerc i se 1.8 Show that for any u, v e R™ we have: 

uyT 
a) (I + uvT)~1 = I =—, whenever uTv 

1 + v1 u 

b) I + uvT is singular whenever uTv = — 1. 

Exerc i se 1.9 The linear system Ax = b with matrix 

A = 
R 

0 

is to be solved, where R e Mat„(R) is an invertible upper triangular matrix, 
u,v e R" and x,b€ R n + 1 . 

a) Specify the triangular factorization of A. 

b) Show that A is nonsingular if and only if 

uTR-lv ^ 0 . 

c) Formulate an economical algorithm for solving the above linear system 
and determine its computational cost. 

Exerc i se 1.10 In the context of probability distributions one encounters 
matrices A £ Mat„(R) with the following properties: 

i) E r = 1 a i j = 0 for j = 1 , . . . , n ; 

ii) an < 0 and a^ > 0 for i = 1 , . . . , n and j ^ i. 

Let A = A1-1"1, y l ' 2 ' , . . . , A^ be produced during Gaussian elimination. Show 
that: 

a) |ffln| > |a,i| for i = 2 , . . . ,n ; 

b) E r = 2 « g ) = 0 f o r j = 2 , . . . , n ; 
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c) alP < alf} < 0 for i = 2,..., n ; 

d) aff > off > 0 for i, j = 2,..., n and j ^ i ; 

e) If the diagonal elements produced successively during the first n — 

2 Gaussian elimination steps are all nonzero (i.e. a^ < 0 for i = 

1, — 1) then (4m = 0. 

Exercise 1.11 A problem from astrophysics ("cosmic maser") can be for-
mulated as a system of (n + 1) linear equations in n unknowns of the form 

/ 

1 

\ 

1 

( xx \ 

\ Xn / 
\ 1 / 

where A is the matrix from Exercise 1.10. In order to solve this system we 
apply Gaussian elimination on the matrix A with the following two additional 
rules, where the matrices produced during elimination are denoted again by 

and the relative machine precision is denoted by eps. 

a) If during the algorithm < |afcfc|eps for some k < n, then shift 
simultaneously column k and row k to the end and the other columns 
and rows towards the front (rotation of rows and columns). 

b) ^ laLfc'l — lafcfc|eps for all remaining k < n — 1, then terminate the 
algorithm. 

Show that: 

i) If the algorithm does not terminate in b) then after n — 1 elimination 
steps it delivers a factorization of A as PAP = LR, where P is a 
permutation and R = 

is an upper triangular matrix with rnn — 
0, ru < 0 for i = 1, . . . , n — 1 and r^ > 0 for j > i. 

ii) The system has in this case a unique solution x, and all components 
of x are nonnegative (interpretation: probabilities). 

Give a simple scheme for computing x. 

Exercise 1.12 Program the algorithm developed in Exercise 1.11 for solv-
ing the special system of equations and test the program on two examples 
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of your choice of dimensions n = 5 and n = 7, as well as on the matrix 

/ o n n n \ 

\ 

- 2 2 0 0 

2 - 4 1 1 

0 2 - 1 1 

0 0 0 - 2 / 
Exercise 1.13 Let a linear system Cx — b be given, where C is an invertible 
(2n, 2n)-matrix of the following special form: 

C = 
A B 

B A 
, A, B invertible 

a) Let C 1 be partitioned as C: 

C " 1 -
E F 

G H 

Prove SCHUR'S identity: 

E = H = (A-BA~1B)-1 and F = G = (B - AB~xA)~l . 

b) Let x = (x\, X2)t and b = (&i, 62)T be likewise partitioned and 

(A + B)y 1 =h+ b2, (A - B)y2 = 61 - b2 . 

Show that ^ 
xi = —(2/1 + 2/2) , x2 = ~{y\ - y2) . 

Numerical advantage? 



2 Error Analysis 

In the last chapter, we introduced a class of methods for the numerical 
solution of linear systems. There, from a given input {A, b) we computed 
the solution f(A,b) = A~lb. In a more abstract formulation the problem 
consists in evaluating a mapping / : U c I -» 7 at a point x e U. 
The numerical solution of such a problem (/, x) computes the result f(x) 
from the input x by means of an algorithm that eventually produces some 
intermediate values as well. 

algorithm output 
data 

In this chapter we want to see how errors arise in this process and in par-
ticular to see if Gaussian elimination is indeed a dependable method. The 
errors in the numerical result arise from errors in the data or input errors 
as well as from errors in the algorithm. 

In principle we are powerless against the former, as they belong to the given 
problem and at best they can be avoided by changing the setting of the 
problem. The situation appears to be different with the errors caused by 
the algorithm. Here we have the chance to avoid, or to diminish, errors by 
changing the method. The distinction between the two kind of errors will 
lead us in what follows to the notions of condition of a problem and stability 
of an algorithm. First we want to discuss the possible sources of errors. 

2.1 Sources of Errors 

Even when input data are considered to be given exactly, errors in the data 
may still occur because of the machine representation of non-integer num-
bers. With today's usual floating point representation, a number 2 of "real 
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type" is represented as z = ade, where the basis d is a power of two (as a 
rule 2,8 or 16) and the exponent e is an integer of a given maximum number 
of binary positions, 

^ ^ {̂ -miru • • • > ^max} ^ • 
The so called mantissa a is either 0 or a number satisfying d~x < |a| < 1 
and has the form 

i 
a = v ^^ aid~l, 

i=1 
where v G {±1} is the sign, m G {0 , . . . , d — 1} are the digits (it is assumed 
that o = 0 or ai / 0), and I is the length of the mantissa. The numbers that 
are representable in this way form a subset 

F := {x G R | there is a, e as above, so that x = ade} 

of real numbers. The range of the exponent e defines the largest and smallest 
number that can be represented on the machine (by which we mean the pro-
cessor together with the compiler). The length of the mantissa is responsible 
for the relative precision of the representation of real numbers on the given 
machine. Every number x ^ 0 with 

n 1 < |z| < d e° ,«(l - d ~ l ) 

is represented as a floating point number by rounding to the closest machine 
number whose relative error is estimated by 

Iz-flOc)! _ < eps := d1-72 
Pi 

Here we use for division the convention 0/0 = 0 and x/0 = 00 for x > 0. We 
say that we have an underflow when |x| is smaller than the smallest machine 
number dCmin~1 and, an overflow when |x| > d£ m a x(l — d~l). We call eps 
the relative machine precision or the machine epsilon. In the literature this 
quantity is also denoted by u for "unit roundoff" or "unit round". For single 
precision in FORTRAN, or float in C, we have usually eps ~ 10 - 7 . 

Let us imagine that we wanted to enter in the machine a mathematically 
exact real number x, for example 

x = ir = 3.141592653589... , 

It is known theoretically that n as an irrational number cannot be repre-
sented with a finite mantissa and therefore it is a quantity affected by errors 
on any computer, e.g. for eps = 10 - 7 

TT h^ fl(7r) = 3.141593 , |fl(?r) - tt| < eps -K 


