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Preface 

Since their discovery the simplicity and, at the same time, the power of the 
classical theorems of Korovkin impressed several mathematicians. 

During the last thirty years a considerable amount of research extended these 
theorems to the setting of different function spaces or more general abstract 
spaces such as Banach lattices, Banach algebras, Banach spaces and so on. 

This work, in fact, delineated a new theory that we may now call Korovkin-
type approximation theory. 

At the same time, strong and fruitful connections of this theory have been 
revealed not only with classical approximation theory, but also with other fields 
such as functional analysis, harmonic analysis, measure theory, probability the-
ory and partial differential equations. 

This has been accomplished by a large number of mathematicians ranging 
from specialists in approximation theory to functional analysts. 

A selected part of the theory is already documented in the monographs of 
Donner [1982] and Keimel and Roth [1992]. 

With this book we hope to contribute further to the subject by presenting a 
modern and comprehensive exposition of the main aspects of the theory in 
spaces of continuous functions (vanishing at infinity, respectively) defined on a 
compact space (a locally compact space, respectively), together with its main 
applications. 

We have chosen to treat these function spaces since they play a central role in 
the whole theory and are the most useful for the applications. 

Besides surveying both classical and recent results in the field, the book also 
contains a certain amount of new material. In any case, the majority of the 
results appears in a book for the first time. 

We are happy to acknowledge our indebtedness to several friends and colleagues. 
First, we would like to thank Hubert Berens, Heinz H. Gonska, Silvia 

Romanelli and Yurji A. Shashkin for reading a large part of the manuscript, for 
their fruitful suggestions and for their help in correcting mistakes. 

We are also grateful to Ferdinand Beckhoff and Michael Pannenberg, to 
whom we asked to write Appendices Β and A, respectively, for their collabora-
tion in outlining the development of the theory in the setting of Banach algebras. 

We are particularly indebted to Ferdinand BeckhofT, George Maltese, Rainer 
Nagel, loan Rasa and Rouslan K. Vasil'ev who read and checked the entire 
manuscript gave valuable advice and criticisms and kindly corrected several 
mistakes and inaccuracies as well as our poor English. To them we extend our 
particular warm thanks. 



viii Preface 

We want to express our deep gratitude to Heinz Bauer not only for his inter-
est in this work, for reading several chapters and for making several remarks, 
but also for inviting us to publish the book in the prestigious series De Gruyter 
Studies in Mathematics of which he is co-editor. 

We thank him and the other editors of the series for accepting the monograph 
and Walter De Gruyter & Co. for producing it according to their usual high 
standard quality. 

Finally we express our great affection and gratitude to Raffaella, Bianca 
Maria and Gianluigi and to Giusy, for their patience and understanding as well 
as for their constant encouragement over all these years without which this 
monograph would have never been completed. 

We dedicate the book to them. 

Bari, October 1993 Francesco Altomare 
Michele Campiti 
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Introduction 

Positive approximation processes play a fundamental role in approximation 
theory and appear in a very natural way in many problems dealing with the 
approximation of continuous functions, especially when one requires further 
qualitative properties, such as monotonicity, convexity, shape preservation and 
so on. 

In 1953, P.P. Korovkin discovered the, perhaps, most powerful and, at the 
same time, simplest criterion in order to decide whether a given sequence (L„)ne N 
of positive linear operators on the space #([0,1]) is an approximation process, 
i.e., L„(f) -+ f uniformly on [0,1] for every / e #([0,1]). 

In fact, it is sufficient to verify that Ln( f) -> / uniformly on [0,1] only for 
/ e { Ι ,χ ,χ 2}. 

Starting with this result, during the last thirty years a considerable number of 
mathematicians have extended Korovkin's theorem to other function spaces or, 
more generally, to abstract spaces, such as Banach lattices, Banach algebras, 
Banach spaces and so on. 

This work, in fact, delineated a new theory that we may now call Korovkin-
type approximation theory (in short, ΚΑΤ). 

At the same time, strong and fruitful connections of this theory have also been 
revealed not only with classical approximation theory, but also with other fields 
such as functional analysis (abstract Choquet boundaries and convexity theory, 
uniqueness of extensions of positive linear forms, convergence of sequences of 
positive linear operators in Banach lattices, structure theory of Banach lattices, 
convergence of sequences of linear operators in Banach algebras and in 
C*-algebras, structure theory of Banach algebras, approximation problems in 
function algebras), harmonic analysis (convergence of sequences of convolution 
operators on function spaces and function algebras on (locally) compact topo-
logical groups, structure theory of topological groups), measure theory and 
probability theory (weak convergence of sequences of positive Radon measures 
and positive approximation processes constructed by probabilistic methods), 
and partial differential equations (approximation of solutions of Dirichlet 
problems and of diffusion equations). 

After the pioneer work of P.P. Korovkin and his students E.N. Morozov and 
V.l. Volkov, that came to light in the fifties, a decisive step toward the modern 
development of Korovkin-type approximation theory was carried out by Yu.A. 
Shashkin when, in the sixties, he characterized the finite Korovkin sets in the 
space #(X), X compact metric space, in many respects and, in particular, in 
terms of geometric properties of state spaces. 
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The development of ΚΑΤ in «^'(X)-spaces was also pursued and amplified by 
Wulbert [1968], Berens and Lorentz [1973], [1975], and Bauer [1973], In par-
ticular, Bauer expanded the investigation of Korovkin subspaces by using, in a 
systematic way, suitable enveloping functions, previously considered in connec-
tion with abstract Dirichlet problems. 

As a matter of fact, these methods allowed Bauer [1973], [1974] to character-
ize Korovkin subspaces also in the framework of adapted spaces. 

This was the first systematic study of Korovkin subspaces carried out in 
spaces of continuous functions on locally compact Hausdorff spaces. 

This line of investigation led Bauer and Donner [1978], [1986] to the 
development of a satisfactory parallel theory in the space ^0(X) of all real-
valued continuous functions vanishing at infinity on a locally compact space 
X. 

On the other hand, in the seventies and eighties, Korovkin-type approxima-
tion theory rapidly grew along many other directions including other classical 
function Banach spaces, such as LP(X, /i)-spaces, and more abstract spaces such 
as locally convex ordered spaces and Banach lattices, Banach algebras, Banach 
spaces and so on. 

In the specific setting of LP(X, /x)-spaces nowadays we have very satisfactory 
results. Noteworthy achievements were obtained by several mathematicians 
and culminated in the (in many respects) conclusive results of Donner [1980], 
[1981], [1982]. 

ΚΑΤ has been well developed also in the framework of Banach lattices and 
locally convex vector lattices as is documented, for instance, in Donner's book 
[1982]; there, theorems on the extensions of positive linear operators are fruit-
fully used as a main tool. 

In this context, fundamental contributions have been carried out by the Rus-
sian school (notably, M.A. Krasnosel'skii, E.A. Lifshits, S.S. Kutateladze, A.M. 
Rubinov, R.K. Vasil'ev) and by the German school (especially, K. Donner, 
Η.Ο. Flösser, Ε. Scheffold and Μ. Wolff). 

As far as we know, the development of the theory is still incomplete in the 
context of Banach algebras (especially in the non commutative case) and, even 
more so, in Banach spaces, although some attempts have been made to frame 
the different problems in a more systematic way, for instance, by Altomare 
[1982a], [1982c], [1984], [1986], [1987a], Pannenberg [1985], [1992], Limaye 
and Namboodiri [1979], [1986], Labsker [1971], [1972], [1982], [1985], 
[1989a], 

Very recently, Keimel and Roth [1992] presented a unified approach to 
Korovkin-type approximation theory in the framework of so-called locally con-
vex cones. 

The reader will find a quite complete picture of what has been achieved in 
these fields in Appendix D, where we present a subject classification of ΚΑΤ, 
which reflects the main lines of its development. 
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All references in the final bibliography concerned with ΚΑΤ, are classified 
according to this subject classification; the classification numbers are indicated 
by the prefix SC. 

Furthermore, in the same Appendix D we also include a subject index with a 
list of all references pertaining to every subsection of the subject classification. 

However, in spite of our efforts, we are sure that the list of references is not 
complete. We apologize for possible errors and omissions due to lack of 
accurate information. 

The main purpose of this book is to present a modern and comprehensive 
exposition of the main aspects of Korovkin-type approximation theory in the 
spaces ^0(X) (X locally compact non-compact space) and X) (AT compact 
space), together with its main applications. 

The function spaces we have chosen to treat play a central role in the whole 
theory and are the most useful for the applications in the various univariate, 
multivariate and infinite dimensional settings. 

However we occasionally give some results concerning LP(X, /i)-spaces too. 
The book is mainly intended as a reference text for research workers in the 

field; a large part of it can also serve as a textbook for a graduate level course. 
The organization of the material does not follow the historical development 

of the subject and allows us to present the most important part of the theory in 
a concise way. 

As a prerequisite, we require a basic knowledge of the theory of Radon mea-
sures on locally compact spaces as well as some standard topics from functional 
analysis such as various Hahn-Banach extension and separation theorems, the 
Krein-Milman theorem and Milman's converse theorem. 

For the reader's convenience and to make the exposition self-contained, we 
collect all these prerequisites in Chapter 1. 

However in some few sections, such as Sections 4.3, 5.2, 6.1 and 6.2, in order 
to present some significant applications of Korovkin approximation theory, 
we have also required a solid background on measures on topological spaces 
and the Riesz representation theorem, on some basic principles of probability 
theory, on Choquet's integral representation theory and on C0-semigroups of 
bounded linear operators. 

The definitions and the results pertaining to these topics are briefly reviewed 
also in Chapter 1 in some starred sections. 

Thus a starred section or subsection in principle is not essential for the whole 
of the book but it serves only for a particular (notable) application that will be 
indicated in the same section. 

Chapters 2,3 and 4 are devoted to the main aspects of Korovkin-type approx-
imation theory in %(X) and ^(ZJ-spaces. 

The fundamental problem consists in studying, for a given positive linear 
operator T: %(X) -*• %(Y), those subspaces Η of %(X) (if any) which have the 
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remarkable property that every arbitrary equicontinuous net of positive linear 
operators (or positive contractions) from %(X) into %(Y) converges strongly to 
Τ whenever it converges to Τ on H. 

Such subspaces are called Korovkin subspaces for T. 
Historically, this problem (and related ones) was first considered when Τ is the 

identity operator; this classical case is developed in many respects in Chapter 4. 
In the same chapter we also point out the strong interplay between ΚΑΤ and 

Choquet's integral representation theory, as well as Stone-Weierstrass-type 
theorems. 

Furthermore we present a detailed analysis of the existence of finite 
dimensional Korovkin subspaces and we give some estimates of the minimal 
dimension of such subspaces in terms of the small inductive dimension of the 
underlying space as well as of other topological parameters. 

In Chapter 3 we characterize Korovkin subspaces for an arbitrary positive 
linear operator by emphasizing, among other things, additional properties, such 
as universal Korovkin-type properties with respect to positive linear operators, 
monotone operators and linear contractions. 

We also consider other important classes of operators, such as positive projec-
tions, finitely defined operators and lattice homomorphisms. 

The results concerning positive projections lead to some applications to 
Bauer simplices and to potential theory. 

Finitely defined operators are important in this context because they are the 
only positive linear operators which can admit finite dimensional Korovkin 
subspaces. 

Several characterizations are provided for this case and the interplay between 
Korovkin subspaces for finitely defined operators and Chebyshev systems is 
stressed. 

Our main approach in developing the theory uses the basic idea, whose quin-
tessence goes back to Korovkin, of studying approximation problems for equi-
continuous nets of positive linear forms (Radon measures). This study, in fact, is 
carried out in Chapter 2. We deal with both the general case when the limit 
functional are arbitrary bounded positive Radon measures, and the case when 
they are discrete or Dirac measures. The latter leads directly to the study of 
Choquet boundaries. 

Chapters 5 and 6 are mainly concerned with applications to: 
- Approximation of continuous functions by means of positive linear operators. 
- Approximation and representation of the solutions of particular partial differ-

ential equations of diffusion type, by means of powers of positive linear 
operators. 
More precisely, in Chapter 5 we give the first and best-known applications of 

Korovkin-type approximation theory, namely to the approximation of continu-
ous functions defined on real intervals (bounded or not). 
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Throughout the chapter we describe different kinds of positive approximation 
processes. 

Particular care is devoted to probabilistic-type operators, discrete-type 
operators, convolution operators for periodic functions and summation 
methods. 

In general our results concern the uniform convergence on the whole interval 
or on compact subsets of it. 

However in some cases we also investigate the convergence in //-spaces or in 
suitable weighted function spaces. 

For almost all the specific approximation processes we consider in Chapter 5, 
we give estimates of the rate of convergence in terms of the classical modulus of 
continuity and, in some cases, of the second modulus of smoothness. 

These estimates are not the sharpest possible but, on the other hand, an 
adequate analysis of improving them or of using more suitable moduli of 
smoothness would have gone too far for the purpose of this book. 

For more details concerning rates of convergence of the specific approxima-
tion processes considered in Chapter 5 or of other more general ones, we refer, 
for instance, other than to the pioneering book of Korovkin [1960], also to the 
excellent books of Butzer and Nessel [1971], De Vore [1972], Ditzian and Totik 
[1987], Lorentz [1986 a] and Sendov and Popov [1988], for the univariate case 
as well as to the articles of Censor [1971] and Nishishiraho [1977], [1982b], 
[1983],· [1987] for the multivariate and the infinite dimensional cases, respec-
tively (see also Keimel and Roth [1992]). 

In the final Chapter 6 we present a detailed analysis of some further sequences 
of positive linear operators that have been studied recently. These operators 
seem to play a non negligible role in some fine aspects of approximation theory. 
They connect the theory of C0-semigroups of operators, partial differential equa-
tions and Markov processes. 

The main examples we consider are the Bernstein-Schnabl operators, the 
Stancu-Schnabl operators and the Lototsky-Schnabl operators. 

All these operators are constructed by means of a positive projection acting 
on the space of continuous functions on a convex compact set. 

This general framework has the advantage of unifying the presentation of 
various well-known approximation processes and, at the same time, of provid-
ing new ones both in univariate and multivariate settings and in the infinite 
dimensional case, e.g., Bauer simplices. 

After a careful analysis of the approximation properties of these operators, 
both from a qualitative and a quantitative point of view, a discussion follows 
of their monotonicity properties as well as their preservation of some global 
smoothness properties of functions, e.g., Holder continuity. 

Subsequently we show how these operators are strongly connected with ini-
tial and (Wentcel-type) boundary value problems in the theory of partial differ-
ential equations. 



6 Introduction 

In fact, we prove that there exists a uniquely determined Feller semigroup that 
can be represented in terms of powers of the operators with which we are 
dealing. 

The infinitesimal generator of the semigroup is explicitly determined in a core 
of its domain and, in the finite dimensional case, it turns out to be an elliptic 
second-order differential operator which degenerates on the Choquet boundary 
of the range of the projection. 

Consequently we derive a representation and some qualitative properties 
of the solutions of the Cauchy problems which correspond to these diffusion 
equations. 

We also emphasize the probabilistic meaning of our results by describing 
the transition function and the asymptotic behavior of the Markov processes 
governed by the above mentioned diffusion equations. 

In Appendices A and B, written by M. Pannenberg and F. Beckhoff respec-
tively, some of the main developments of Korovkin-type approximation theory 
in the setting of Banach algebras (commutative or not) are outlined essentially 
without proofs. 

There the reader will have the opportunity to realize once again how 
Korovkin-type approximation theory, besides having its own interest, may also 
be used for solving problems of other important fields, such as Banach algebras 
and particular function algebras on locally compact abelian groups. 

In Appendix C we list several concrete examples of Korovkin sets and deter-
mining sets. This list could be useful for rapidly checking those Korovkin sets 
that are most appropriate for the applications. 

Finally we close every section with historical notes, giving credit and detailed 
references to supplementary results, so that, except in a few cases, we do not give 
references in the text. However, any inaccuracy or omission for historical details 
or in assigning priorities is unintentional and we apologize for possible errors. 

In a diagram we also indicate some of the main connections among the 
various sections of the book. 

After looking closely at the above mentioned subject classification in Appen-
dix D, the reader will clearly see that the topics we have selected are not exhaus-
tive with respect to the complete theory. 

We have not dealt with certain other aspects of the theory, some of which 
have been indicated at the beginning of this introduction. 

We also have to mention, for their particular interest and value of further 
investigations, those results concerning spaces of differentiable functions and 
spaces of continuous affine functions on convex compact subsets. The latter 
subject has been recently studied by Dieckmann [1993]. There the reader will 
also find a rather complete survey on this topic. 

Although the aim of the book is to survey both classical and recent results in 
the field, the reader will find a certain amount of new material. In any case, the 
majority of the results presented here appears in a book for the first time. 
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We hope this monograph may serve not only to illustrate how effectively 
Korovkin-type approximation theory acts as a contact point between approxi-
mation theory and other areas of researches, notably functional analysis, but it 
may also lead to further investigations and to new applications to the theory of 
approximation by positive linear operators. 
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Interdependence of sections 9 

Legend: In each square we have considered the interdependence among the sections of a 
chapter and all the preceding ones. 

A dotted line indicates a minor dependence. 



Notation 

We denote by Ν the set of natural numbers 1, 2 , . . . , Ζ the set of integers, <Q> the 
set of rational numbers, IR the set of real numbers and C the set of complex 
numbers, endowed with their usual topology. 

The letter IK stands either for the field IR or for the field C. We also denote by 
N0 the set Ν u {0}. 

When +oo and — oo are added to IR, then we obtain the extended real 
line U. 

If x t , . . . , xp are in IK, the product xl... xp is sometimes denoted by J^ x f . 
i = 1 

A real number χ is called positive (strictly positive, respectively) if χ > 0 (χ > 0, 
respectively). The symbols Z+, Q+ and IR+ denote the subsets formed by the 
positive elements of the respective sets. If ζ - χ 4- iy e C, then ζ := χ — iy, 
Mez := x, Jm. ζ := y and |z| := y f x 2 + y2 denote the conjugate, the real part, the 
imaginary part and the modulus of z, respectively. Here and in the sequel we 
adopt the notation A : = Β to signify that the symbol A is used to denote the 
object Β or that the objects A and Β are equal by definition. 

For given real numbers a and b,a < b, the intervals [a, b~\ ([a, ]a , ft], ~\a, b\_, 

respectively) are the subsets of all χ e IR satisfying a < x < b { a < x < b , a < χ < 

b, a < χ < b, respectively). 
The empty set is denoted by 0 . If X and Y are sets, then the notation X <= Y 

means that X is a subset of Y and the case X = Y is not excluded. 
As usual, the symbols Χ υ Y and Χ η Y, or ( J X{ and P| Xh respectively, are 

iel iel 
used to denote the union and the intersection of two sets X and Y or of a family 
(Xj)i e ι of sets, respectively. 

Given two sets X and Y, the symbols X\Y stands for the set of all elements 
x e X such that χ φ Y. Card(AT) denotes the cardinality of a finite set X. 

We denote by («fj)i < a matrix of objects with η rows and m columns; if 
1 < j < m 

m = η and a f J e IK for every i, j = 1, . . . , n, we denote the determinant of the 
a n ··· «In 

or by det(ay). matrix by 
*n ι 

The Kronecker symbol δy stands for 1 if i = j and 0 otherwise. 
If X is a topological space and A <= X, we use the symbols A, A and dA to 

denote the closure, the interior and the boundary of A, respectively. Thus, 
δ Α :=Än(X\Ä) = Ä\A. 

If A = X , then we say that A is dense in X or that A is everywhere dense. 
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If X is a vector space over the field IK and Α er X, we denote by J?(A) the 
linear subspace generated by A, i.e., the intersection of all linear subspaces con-
taining A. 

If A <= X and a e X, the set A + a := {x + a\x e A} denotes a translate of A. 
Moreover — A := {— x|x e A} and, if Β <= X, A + Β := {χ + y|x e A,ye B} and 
A - Β := {χ - y\x e A,y e B}. 

If £ is a function space and A <= E, we also put A + R+ := { / + a | / e A, 
a e R + } . 

The symbol dim(£) denotes the algebraic dimension of a vector space E. 
The cartesian product Χ χ Y of two sets X and Y is the set of all ordered pairs 

(x, y) with χ e X and y e Y. 
More generally, if (Xi) i€l is a family of sets, the cartesian product J^ Xt of the 

is I 
family consists of all families (x;) ie/ where x{ e X{ for every i e I. 

ρ 
If / is finite, say / = {1,..., p}, then the cartesian product Y[ Xt is often iden-

i=l 
tified with the set of all p-uples (x„.. . , xp) of elements where x, eX, (l < i < p). 

The cartesian product of ρ copies of the same set X is denoted by Xp. 
The unit circle Τ and the unit disk D are, respectively, the subsets Τ := 

{(x,y) e R 2 | x 2 + y2 = l} = {ze C| |z | = 1} and Ο := {(x,y) e U2\x2 + y2 < 1} -
{z e C | | z | < 1}. The unit sphere in 1RP+1 is denoted by S p . 

If (Xi)ieI is a family of topological spaces, then the cartesian product J~[ X{ en-
i ε / 

do wed with the product topology is called the product space of the family (Xi) ie l. 
As usual, the symbol f:X-*Y denotes a mapping from a set X into a set Y. 

Sometimes we also use the symbol χι-*/(x). I f / : X -» Y is a mapping, for every 
A X and ß c y we set 

f(A):= {ye Υ \ there exists χ e A such that /(x) = y} 

and 

/-»(B):- {xeX\f(x)eB}. 

The subsets f(A) and f~l{B) are called the image of A and the inverse image of 
Β under f , respectively. 

More generally, the symbol f : Dx(f) -»• Y stands for a mapping from a subset 
Ar ( / ) X ' n t 0 γ · The subset Dx{f) is called the domain of the mapping / and 
the image f(Dx(f)) of Dx(f) is called the range of / . If Υ = X, Dx(f) will be 
simply denoted by D(f). 

Given a mapping f : X Y and a subset A of X, the restriction of / to A is 
denoted byflA. Moreover, considering another mapping g: Υ -» Ζ from Y into a 
set Z, the composition of / and g is denoted by go f . The p-th power (p> 1) of a 
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mapping / : X -* X is defined as 

7 if Ρ = 1, 
f p = 

f p ~ l o f , if ρ > 2. 

Generally, throughout the book the mappings are denoted by small letters, 
say f,g,h, — However, when we deal with random variables acting on proba-
bility spaces as well as with linear mappings (almost always called linear opera-
tors) acting on vector spaces, we use capital letters, say Υ, Z,..., and L, 5, Γ , . . . , 
respectively. 

Sometimes for a given linear mapping T: £ F acting from a vector space Ε 
into a vector space F, the value of Τ at a point f e E is denoted by Tf instead of 
T { f ) , if no confusion can arise. Furthermore the composition of Τ with another 
linear mapping S: F -> G is also denoted by ST instead of S ° Τ. 

A linear mapping from a vector space (over IK) into IK is also called a linear 
form or a functional on E. 

A mapping f : X -> Y is said to be injective if / (x) = f ( y ) implies χ = for 
every x, yeX. If f ( X ) = Y, i.e., for every y e V there exists χ e X such that 
/ (x) = y, we say that / is surjective. 

If / is both injective and surjective, we say that / is bijective. 
A mapping / : X Y is bijective if and only if is invertible, i.e., there exists a 

(unique) mapping g :Y X such that g(f(x)) = χ and f{g(y)) = y for every χ e 
X and y e Y. 

The mapping g is called the inverse of / and it is denoted by / _ 1 . 
A mapping from a set X into IR (R, C, respectively) is called a real-valued 

(numerical, complex-valued, respectively) function on X. When we simply speak 
of a function on X we always mean a real-valued function on X. 

If A is contained in a set X, then the characteristic function of A is the function 
lA: X -·• IR defined by putting for every xe X 

U * ) := \ 
1, ifxeA, 

0, if χ φ Α . 

The constant function on X of constant value 1 is denoted by 1. 
Giving two functions f : X ->U and g: X IR, we use the symbols sup(/ ,^) 

and inf(/, g) to denote the functions on X defined by putting 

sup(/,0)(x) := sup (f(x),g(x)), 

inf(/,<7)(x):= i n f ( f ( x ) , g ( x ) ) 
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for every χ e X. These functions are also denoted by / ν g and / a g, 
respectively. 

More generally, if / x , f p are real functions on X we define the functions 
sup ft:X-*R and inf /·: X R by 

1 < i < ρ läi^p 

( sup / i ) ( x ) : = sup fi(x), ( inf / )(x) := inf / ( x ) (xeX). 
/ 1 ZiZp VlSiSp / 1 <.i<p 

These functions are also denoted by fl ν · · · ν and / t λ · · · a / p , 
respectively. 

I f / : X —*· 1R, the positive part f+ o f / , the negative part / " o f / and the absolute 
value l / l of / are defined as 

/ + := sup(/,0), / " := sup(—/,0), | / | := sup(/, - / ) . 

Clearly we h a v e / = / + - / " a n d | / | = / + + / " . 
If / t , . . . , / p are functions on X, sometimes we use the symbol / to denote 

the real-valued function on X defined by i = 1 

( Π f i ) < * ) : = Π / i ( * ) = Λ Μ · • / p W ( * e η 
\ i= l / i=1 

A function / : X -> R is said to be positive if f(x) > 0 for every χ e X. 
Moreover we say that / is strictly positive if / ( χ ) > 0 for every χ e X. 

If / : X -*• [R and g: X -»· R are functions on X, we write / < g (/ < g, respec-
tively) if / (x) < g(x) (/(x) < g(x), respectively) for every χ e X. 

A real function / : I R defined on a real interval / is called increasing (de-
creasing, strictly increasing, strictly decreasing, respectively) if / (x) < f{y) ( f ( y ) < 
/(x), / (x) < /(y), / (y) < /(x), respectively) for every x, y e / satisfying χ < y. 
A monotone (strictly monotone, respectively) function is a function which is 
indifferently increasing or decreasing (strictly increasing or strictly decreasing, 
respectively). 

The symbols ο and Ο are the usual Landau symbols. Thus, if (x„)neM and 
(yJneN are sequences of real numbers, the symbol x„ = o(y„), n-> oo, means 
that x„/yn -* 0 as η oo, while the symbol x„ = 0{yn), n-> oo, means that there 
exists a constant Μ > 0 such that |xn/y„| < Μ for every n e N . 

A similar meaning must be attributed to the symbols / (x) = o(g(x)), χ x0, 
and /(x) = 0(g(x)), χ - » x 0 , where / and g are functions defined on a subset X 
of a topological space and x 0 is a limit point for X. 

The symbols =>, <=, ο stand for the usual logical implication symbols. Thus 
(a)=^(b), (a)<=(b) and ( a ) o ( b ) mean that statement (a) implies statement (b), 
statement (b) implies statement (a) and statement (a) is equivalent to statement 
(b), respectively. 
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The section numbered, say, by a.b is the b-th section of Chapter a. 
Definitions, lemmas, propositions and theorems are numbered by three digits, 

say a.b.c, where a denotes the number of the chapter, b that of the section and c 
is the progressive number within the section. 

Formulas are numbered by an index of the form (a.b.c) where the digits a, b, c 
have the above specified meaning. 

Sections, formulas, theorems, definitions, etc., are referred to by their corre-
sponding numbers. 

The end of a proof is indicated by the symbol • . 



Chapter 1 

Preliminaries 

The main aim of this introductory chapter is to present the general notation and 
definitions we shall use throughout the book. 

To make the exposition self-contained we also review those prerequisites 
which are necessary for a full understanding. 

The topics are Radon measures, locally convex spaces and some basic aspects 
of general topology. 

They have been selected primarily in view of our needs and are presented 
without pretence of completeness and without proofs. 

Throughout the book we shall attempt to give various applications of 
Korovkin-type approximation theory. However some of them require a solid 
background also from other branches of analysis, e.g., measures on topological 
spaces, integration theory with respect to Radon measures, basic principles of 
probability theory, Choquet's integral representation theory and C0-semigroups 
of bounded linear operators. 

For the sake of completeness we also review the definitions and results per-
taining to these topics and we include them in starred sections. 

Thus a starred section or subsection is not essential for the whole book but 
will be only used for a particular (important) application of the Korovkin-type 
approximation theory. 

1.1 Topology and analysis 

In this section we present the definitions and the main properties of compact 
and locally compact spaces. We shall also introduce the main function spaces 
which we shall be concerned with in the sequel. For more details see Bourbaki 
[1965] and Engelking [1980] or the short and elegant Section 7.4 of Bauer 
[1981]. 

We begin by recalling the notions of net and filter. 
A filter on a set I is a collection & of non-empty subsets of /, which is closed 

under the formation of finite intersections and such that, if F e / and f c G c 
/, then G e f . 
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If (/, < ) is a directed set, i.e., < is a partial ordering on / such that for every 
i, j e / there exists λ e / satisfying / < Λ. and j < A, then the set of all subsets 
F of / for which there exists i0 e / such that {i 6 /|i0 < i} <= F, is a filter on / and 
it is called the filter of sections on I. 

If ^ and 3F2 a r e filters on /, we shall say that J ^ is /mer than ^ if J^ c= 
or, equivalently, if for every Fj e ^ there exists F2 e s u c ^ that F2 <= . 

A filtered family (Xi)f s l of a set X is a family (x;),e/ of elements of X such that 
on the index set / there is fixed a filter J^. 

A nei (or generalized sequence) on A" is a family (X;)fe j of elements of X such 
that on the set I there is a partial ordering < with respect to which (I, < ) is a 
directed set. 

Given a topological space X, we say that a filtered family (x,)^ t converges to 
a point x0 e X if for every neighborhood V of x 0 there exists F e ^ such that 
xf e V for each i e F. In this case, x0 is called a limit of the filtered family. 

A filtered family is said to be convergent if it converges to some point. 
If X is a Hausdorff space, i.e., for every pair of distinct points x1}x2e X there 

exist neighborhoods Vx and V2 of xx and x2 , respectively, such that Vxr\V2 = 
0, then every convergent filtered family (Xi)feI converges to a unique limit 
x0 e X. In this case we shall write 

linv x, = x 0 . (I l l) 
iel 

Sometimes, the notation x( -+ x 0 will be also used, if no confusion can arise. 
If (x,)fe/ is a net, we say that (χ,)^6/ converges to a point x 0 e X, if (x,)^; 

converges to x 0 . Explicitly this means that for every neighborhood V of x0 there 
exists i0 e / such that x, e V for every i e I, i > i0. The point x0 is called a limit 
of the net (x,J?e/. 

If X is HausdorfT, then x0 is unique and we shall write 

lim^ x, = x0 , or x ; x 0 . (1.1.2) 
iel 

If X and Y are topological spaces, then a mapping /: X Y is continuous at 
a point x 0 e X if and only if for every net (Xi)feI in X which converges to x0 , 
(/(*«))£ ι converges to /(x0). 

Given a topological space X, a numerical function f : X { + c c } 
( f : X Uv {— oo}, respectively) is said to be lower semi-continuous (upper semi-
continuous, respectively) at a point x 0 e X if for every λ e IR satisfying f(x0) > λ 
(f(xo) < Κ respectively) there exists a neighborhood V of x 0 such that /(χ) > λ 
(/(χ) < λ, respectively) for every χ e V. 

A function / is said to be lower semi-continuous (upper semi-continuous, respec-
tively) if it is lower semi-continuous (upper semi-continuous, respectively) at 
every point of X. 
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In fact, / is lower semi-continuous (upper semi-continuous, respectively) if 
and only if the subset {x e X\f(x) > λ} is open for every A e R (the subset 
{x e X\f{x) < λ} is open for every λ e R, respectively) or, equivalently, the sub-
set {x e X\f(x) < λ} is closed for every λ e [R (the subset {x e X\f(x) > λ} is 
closed for every AeR, respectively). 

Moreover, a function / : X -* IR is continuous if and only if it is both lower 
and upper semi-continuous. 

A topological space X is called a compact space if every open cover of X has 
a finite subcover. 

A subset of a topological space is said to be compact (relatively compact, 
respectively) if it is compact in the relative topology (if its closure is compact, 
respectively). 

A useful characterization of compact spaces may be stated in terms of filtered 
families. More precisely, a topological space X is compact if and only if for every 
filtered family (x,·)^/ in X there exists a filter on / finer than such that 
(xi)u / is convergent in X. 

If X is metrizable, i.e., the topology of X is induced by a metric on X, then X 
is compact if and only if every sequence of points of X admits a convergent 
subsequence. 

Every compact metrizable space is separable, i.e., X contains a dense count-
able subset. 

Let A" be a compact Hausdorff space and denote by ^ its topology. If 
is another Hausdorff topology on X such that 3T2 then necessarily 
Τ — Τ 

Every compact Hausdorff space X is normal, i.e., each closed subset of X 
possesses a fundamental system of closed neighborhoods. 

In this case, the Tietze's extension theorem holds (see Choquet [1969, Theorem 
6.1]). 

1.1.1 Theorem (Tietze). If X is a normal space, then every continuous function 
from a closed subset of X is continuously extendable to X. 

Finally, we recall that, if X is compact, then every increasing (decreasing, 
respectively) sequence of lower semi-continuous (upper semi-continuous, respec-
tively) functions on X converging pointwise to a continuous function, converges 
uniformly on X as well (DinVs theorem) (for a proof see Engelking [1989, Lemma 
3.2.18]). 

A topological space X is said to be locally compact if each of its point 
possesses a compact neighborhood. 

In fact, if X is locally compact and Hausdorff, then each point of X has a 
fundamental system of compact neighborhoods. 

The spaces 1RP, ρ > 1, as well as discrete spaces and compact spaces are exam-
ples of locally compact spaces. 
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Every locally compact Hausdorff space which is countable at infinity (i.e., it is 
the union of a sequence of compact subsets of X), is normal. 

Furthermore, a locally compact Hausdorff space which has a countable base 
(i.e., there exists a countable family of open subsets such that every open subset 
is the union of some subfamily of this countable family) is necessarily metrizable, 
complete (and, hence, normal) and separable. 

Conversely, a metrizable locally compact Hausdorff space which is countable 
at infinity has a countable base and, hence, is separable. 

For technical reasons, it will be often useful to consider the (Alexandrov) 
one-point-compactification Χω of X, which is defined as Χω:= X KJ {ω}, where ω 
is an object which does not belong to Χ (ω is often called the point at infinity 
o f X ) · 

The topology on Χω is defined as 

:= Ρ υ {Χω\Κ\Κ C-Χ,κ compact}, (1.1.3) 

where denotes the topology on X. 
The topological space (Χω, is a Hausdorff compact space and X is open 

in Χω. Furthermore, if X is non compact, then X is dense in Χω. 
For example, the one-point-compactification of Rp, ρ > 1, is homeomorphic 

to the unit sphere of Rp+1. 
If a net (x, )f6 / of elements of X converges to ω in Χω, we say that the net (x,·),?/ 

converges to the point at infinity of X. This means that for every compact subset 
Κ of X there exists i0 e / such that x, e X\K for every i e I, i > i0. 

Analogously, if / : X R and α e R, we say that f converges to α at the point 
at infinity, if for every ε > 0 there exists a compact subset Κ of X such that 
I f(x) — α I < ε for every χ e X\K. If this is the case, we shall write 

lim / (χ) = α. (1.1.4) 
jc-»to 

Given a set X, we shall denote by &(X) the Banach space of all real-valued 
bounded functions defined on X, endowed with the norm of the uniform conver-
gence (briefly, the sup-norm) defined by 

11/11 := sup |/(x)| for every f e ^ ( X ) . (1.1.5) 
xe X 

If X is a topological space, X) denotes the space of all real-valued continu-
ous functions on X. Furthermore, we set 

%{X) := <€{Χ) η (1.1.6) 

The space %(X), endowed with the sup-norm, is a Banach space. 
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Given a locally compact space X, we shall denote by %(X) the space of all 
functions / e which vanish at infinity. 

A function / e X) vanishes at infinity if for every real number ε > 0 the set 
{x e Λ'ΙΙ/ίχ)! > ε} is compact or, equivalently, if for every real number ε > 0 
there exists a compact subset Κ of X such that |/(x)| < ε for every χ e X\K. 

In other words, / e %(X) if and only if lim / (χ ) = 0 or, what is the same, the 
function / : Χω D? defined by 

is continuous in Χω. 
Sometimes, the above function/ is called the canonical extension of / to Χω. 
Note that if / e %(X) and (x,)fe/ is a net of elements of X converging to the 

point at infinity of X, then (/(x,·)),^/ converges to 0. 
Clearly, if X is compact, then %(X) = V{X) = %(X). 
In general, % ( X ) is a closed subspace of %(X) and, hence, endowed with the 

sup-norm, it is a Banach space. Unless otherwise stated, we shall always con-
sider the space %(X) endowed with this norm. 

On %(X) we shall also consider the natural ordering induced by the cone 

Thus V0(X) is a Banach lattice. We recall, indeed, that a normed lattice £ is a 
vector lattice (see Section 1.4) endowed with a lattice norm || · ||, i.e., 

If £ is a Banach space for a lattice norm, then we say that £ is a Banach lattice. 
Other than %(X), standard examples of Banach lattices are the spaces %(X), 

@(X) and LP{X, μ), 1 < ρ < +oo (see Section 1.2). 
An important property of Banach lattices concerns the automatic continuity 

of positive linear operators acting on them. 
More precisely, if £ is a Banach lattice and if F is another normed lattice, then 

every positive linear operator Τ: Ε -»· F (i.e., T ( f ) > 0 for every / e £, / > 0) is 
continuous. 

Furthermore, if £ = X), X compact, then 

(1.1.7) 

<g+(X) : = { / e %(X)\f{x) > 0 for every χ ε Χ}. 

If / θ %{X), then / + , / " , l / l e %{X) and 

I I / I I = I l l / I l l = m a x { | | / + I I , | | /~ I I } . 

(1.1.8) 

(1.1.9) 

\f\<\g\ => 11/11 <\\g\\ for every f g e £. (1.1.10) 

II Til = ||T(1)||, (1.1.11) 

where 1 denotes the constant function 1. 
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In particular every positive linear form on a Banach lattice E, i.e., every posi-
tive linear mapping from Ε into R, is continuous. 

Another function space playing a fundamental role in this book is the space 
J f ( X ) of all real-valued continuous functions f : X -*• R whose support 

Supp( / ) := {x e X\f{x) Φ 0} (1.1.12) 

is compact. 
In other words, a continuous function f\X-*U belongs to X{X) if it van-

ishes on the complement of a suitable compact subset of X. 
The space J f (X) is dense in X) and, if X is compact, obviously coincides 

with <g(X). 
Besides the topology induced by the sup-norm, on X{X) there are other 

important locally convex topologies, such as the inductive topology and the 
projective topology. However, throughout the book we shall only make use of 
the first one. We refer to Choquet [1969, Section 16] for a detailed study of the 
properties of the other topologies. 

If X is a locally compact Hausdorff space, then there are sufficiently many 
functions in Jf{X). This is a consequence of the following result, whose proof 
can be found for instance in Bauer [1981, Lemma 7.4.2]. 

1.1.2 Theorem. For every compact subset Κ of X and for every open subset U 
containing K, there exists g e J f ( X ) such that 0 < g < 1, g = 1 on Κ and 
Supp(g) cz U. 

1.2 Radon measures 

Radon measures are a powerful tool which is fruitfully used in several branches 
of analysis such as probability theory, potential theory and integral representa-
tion theory. In this book they play a central role. 

For more details the reader is referred to Bourbaki [1969] or Choquet [1969]. 
For a modern approach see also Bauer [1992] and Anger and Portenier [1992]. 

A Radon measure on a locally compact Hausdorff space X is a linear form 
μ: j f ( X ) -»· R satisfying the following property: 

For any compact subset Κ of X there exists MK > 0 such that 
|μ ( / ) | < MK\\f\\ for every / e having its support contained in K. 

The space of all Radon measures on X will be denoted by Ji(X). Thus Jt(X) 
is the dual space of the locally convex space J f ( X ) endowed with the inductive 
topology. 
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As a matter of fact, in this book we shall restrict ourselves mainly to bounded 

Radon measures. They are those Radon measures μ e Ji{X) which are continu-
ous with respect to the sup-norm. In this case the norm of μ is defined to be the 
number 

IIII := sup {|μ(/)||/ε JT(X), 11/11 < 1}. (1.2.1) 

A bounded Radon measure μ is said to be contractive if ||μ|| < 1. 
The space of all bounded Radon measures will be denoted by J(b{X). 

Furthermore, we shall denote by M*{X) the cone of all positive Radon mea-
sures. Thus, μ G Jt+{X) if μ e Ji{X) and μ(/) > 0 for every / e JT(X), f > 0. In 
fact, every positive linear form on Jf(X) is automatically in Μ+{Χ\ 

Finally we set 

Jtb(X) := Ji+{X) Π Jfb(X), (1.2.2) 

and 

Jtt(X):= {μ<=^(Χ)\\\μ\\ = 1}. (1.2.3) 

The elements of JiX{X) are also called probability Radon measures. 

It is easy to see that every μ e Jib{X) (μ e Mb{X\ respectively) can be ex-
tended to a (unique) continuous (positive, respectively) linear form on W that 
we shall continue to denote by μ. 

If X is compact, then Ji{X) = Jtb(X) (and, hence, Ji+{X) = Jib{X)). More-
over, for every μ e J(+(X), ||μ|| = μ(1). Conversely, if μ e J({X) and ||μ|| = μ(1), 
then μ e J?+(X). 

Another simple but useful property which is satisfied by every positive Radon 
measure μ e Jf+(X) is the so-called Cauchy-Schwarz inequality, i.e., 

Ml/öl) < v V ( / 2 M 0 2 ) , (1.2.4) 

which holds for every /, g e Jf{X) (respectively, for every /, g e W provided 
μ e JftiX)). 

As a matter of fact the same inequality holds by replacing Jt(X) (or X)) 
with an arbitrary vector sublattice Ε of continuous functions on X and by 
considering a positive linear form L: Ε IR on Ε (we recall that a linear sub-
space £ of a vector lattice F is said to be a sublattice of F if for every f,geE the 
supremum and the infimum of / and g in F lie in E). In this case one has 

U\fg\) < V/L(/2 )L(92 ) , (1.2.5) 

for every /, g e Ε such that fg, f2,g2 e E. 
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The simplest examples of Radon measures on X are the Dirac measures. 
More precisely, given xe X, the Dirac measure at χ is the (bounded) Radon 

measure εχ defined by 

£*(/) := fix) for every / e JT(X) (or, / e %(X)). (1.2.6) 

In fact, εχ e M\{X). 
A linear combination of Dirac measures is called a discrete measure on X. 

Thus, discrete measures are those bounded Radon measures on X of the form 

μ Σ (1-2-7) 
i = l 

where η > 1, xx , . . . , x„ e X and . . . , λ„ e IR. In this case μ is positive if and 
only if every λ{ is positive. 

Furthermore 

Ml = Σ W- d·2 ·8) 
i = l 

Other important examples of Radon measures can be constructed as follows. 
Let μ e Ji{X) and consider g e <£(X). Then, the linear form υ: X{X) R 

defined by 

o ( f ) := μσ·θ) for every f e J f ( X ) , (1.2.9) 

is a Radon measure on X. It is called the measure with density g relative to μ and 
it is denoted by g • μ. 

If μ and g are bounded (respectively, positive), then g • μ is bounded (respec-
tively, positive) and 

U - μ ^ Μ Μ - (1-2.10) 

By a simple method it is possible to extend every bounded positive Radon 
measure μ e Ji^(X) to a positive Radon measure μ on the one-point-compacti-
fication Χω of X. The measure μ is defined by 

fi(g) ·•= ~ g(o>)) + g((o) ||μ|| for every g e <$(XJ. (1.2.11) 

Clearly we have ||μ|| = ||μ|| and ß ( f ) = μ(β for every / e %(X). 
We say that a Radon measure μ e J((X) is zero on an open subset Ϊ7 of AT if 

μ ( / ) = 0 for every function / e JT(X) whose support is contained in U. 
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We shall denote by 2Ι(μ) the collection of all open subsets of X on which μ is 
zero. 

The support of the measure μ is then defined to be the subset 

Supp(/i) := X\ U V. (1.2.12) 
V e «(μ) 

Thus Supp(/i) is a closed subset of X and, in fact, is the complement of the 
largest open subset of X on which μ is zero. 

Clearly a point x0 e X belongs to Supp(/z) if for every neighborhood V of x0 

there exists f e X(X) such that Supp(/) <= V and μ ( f ) φ 0. 
On the other hand, x0 φ Supp(/i) if there exists an open neighborhood V of x0 

on which μ is zero. 
It is also clear that Supp(/i) = 0 if and only if μ = 0. 
Here, we list some of the main properties of supports which we shall use later. 

For a proof see Bourbaki [1969, Chapter III, Section 2] and Choquet [1969, 
Section II]. 

1.2.1 Theorem. Let X be a locally compact Hausdorff space and let μ e Jt(X). 
Then 
(1) Supp(^ + υ) c Supp(/i) υ Supp(u) for every v e M(X\ If μ and ν are positive 

we have equality in the above inclusion. 
(2) If f e J f ( X ) and / = 0 on Supp(^), then μ(β = 0. If μ e Jih(X\ then the 

same property holds for every f e ^0(Χ). 
(3) If f,ge j f ( X ) (or f g e %{X) provided μ e J(h{X)) and f = g on Supp(^), 

then μ(β = μ(g). 
(4) If με J/+(X) and f e JST(X) (or f e %(X) provided μ e J f f ( X ) ) then μ(/) > 

Οι/ / > 0 on Supp(/i). 
(5) If μ eJ(+(X) and f e J f ( X \ f > 0 (or f e #0

+(-X) provided μ e Jt£(X)) and if 
μ( / ) = 0> then f = 0 on Supp(/z). 

(6) For every g e X), Supp(g · μ) = {χ e Supp(/z)|^(x) φ 0} c Supp(^) π Supp(μ). 
(7) If χ j , . . . , x„ are distinct points of Χ, η > 1, then Supp(^) = {χ^.-. ,χ, ,} if and 

η 
only if μ = £ for some ..., λ„ e R\{0}. 

i = 1 
(8) If Supp(/i) is compact, then μ is bounded. 

On the space M(X) we shall consider the vague topology which is, by defini-
tion, the coarsest topology on Ji(X) for which all the mappings <pf(f e Jf(X)) 
are continuous, where 

φ^μ) := μ(β for every / e J f ( X ) and μ e J f ( X ) . (1.2.13) 

It is a locally convex topology and, in fact, is the weak*-topology of the dual 
space of the locally convex space X(X) (see Section 1.4). 
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A net (μ,)? , in J({X) converges to a Radon measure μ e Jt{X) with respect to 
the vague topology if lim < μ,(/) = μ( / ) for every / e JT(X). In this case we also 

16/ 

say that (μ,)?€ί converges vaguely to μ. 
Endowed with the vague topology, Jt{X) is a locally convex Hausdorff space. 

Furthermore in general Ji{X) is not metrizable. If X has a countable base, then 
J?+(X) is metrizable and separable. 

A useful characterization of vaguely compact subsets of Ji{X) (i.e., those sub-
sets which are compact with respect to the vague topology) is indicated below. 

We also notice that a subset of Jt{X) is vaguely bounded if the set 
{μ(/) |μ 6 91} is bounded for every / e J f ( X ) . 

Moreover, 91 is strongly bounded if for every compact subset Κ of X there 
exists MK > 0 such that |μ( /) | < MK || /1| for every μ e 91 and for every / e JT(X) 
satisfying Supp(/) c= K. 

For a proof of the next result see Choquet [1969, Theorem 12.6]. 

1.2.2 Theorem. A subset 91 of Ji{X) is relatively vaguely compact in Jt{X) if and 
only if it is vaguely bounded or, equivalently, if and only if it is strongly bounded. 

From this criterion it follows that for every r > 0 the set {με Jib(X) | ||μ|| < 
r} is vaguely compact in Jt{X). Moreover, if X is compact, then 
{μ e Jt+(X)\ ||μ|| = r} is vaguely compact too. 

Via the vague topology every Radon measure can be approximated by dis-
crete measures. More precisely we have the following result, whose proof can be 
found again in Choquet [1969, Theorem 12.11]. 

1.23 Theorem (Approximation theorem). Let X be a locally compact Hausdorff 
space. Then the following assertions hold: 
(1) For every μ e M{X) there exists a net (μ,),^/ of discrete Radon measures 

which converges vaguely to μ. Moreover, if μ is positive, every μί can be chosen 
positive too. 

(2) If μ e Ji{X) and Supp^) is compact, then there exists a net (ßi)f£l of discrete 
Radon measures vaguely convergent to μ such that ||μ,·|| = ||μ|| and Supp^,-)c: 
Supp{μ) for every ie I. 

Furthermore, if μ is positive, the measures μ·ι can also be chosen positive. 

* Measures on topological spaces. The Riesz representation theorem 

In this subsection we briefly discuss some properties of Borel and Baire measures 
on a topological space together with Riesz's representation theorem. 

This last theorem will be used only in Section 5.2 to give a probabilistic 
interpretation of Korovkin's theorem. 
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In the sequel it is assumed that the reader has a thorough familiarity with 
the essential notions of measure theory and integration theory. As a reference 
the reader could consult Bauer [1981, part I ] , [1992]. 

If X is a topological space, we shall denote by © (X ) the σ-algebra of all 
Borel sets in X, i.e., the σ-algebra generated by the open subsets of X. 

We shall also denote by © 0 P O σ-algebra of Baire sets of X, which is 
defined as the smallest σ-algebra in X with respect to which all continuous 
functions on X are measurable. 

In general, © 0 W Φ If X is metrizable, then the two σ-algebras coincide. 
A measure υ on © ( X ) (on © 0 W > respectively) is called regular if for every 

Β e © ( X ) 

v(B) = M{v(U)\B czU,U open} = sup{u{K)\K <- Β, Κ compact}, (1.2.14) 

(respectively, for every Β e © 0 W 

o(B) = mi{o{U)\B czU,U open, U e © 0 ( X ) } 

= sup{o(K)\K c B,K compact, Κ e © o W } ) . (1.2.15) 

Furthermore we say that a measure υ on © P O (on © 0 W , respectively) is a 
Borel measure on X (a Baire measure on X, respectively) if 

D(K) < +OO for every compact subset Κ of X (1.2.16) 

(respectively, 

υ(Κ) < +oo for every compact subset Κ e S 0 (X ) ) . (1.2.17) 

If X is a Polish space, i.e., it has a countable base and its topology is defined 
by a metric with respect to which it is complete, then every finite Borel measure 
on X is regular (note that locally compact HausdorfT spaces with a countable 
base are Polish spaces). 

If A" is a locally compact Hausdorff space which is countable at infinity, then 
every Baire measure on X is regular and σ-finite. 

We now state the Riesz's representation theorem which establishes a one-to-
one correspondence between Radon measures and Baire (Borel) measures. 

For a proof see Bourbaki [1969] and Bauer [1981, Theorem 7.5.4], 

1.2.4 Theorem (Riesz's representation theorem). Let X be a locally compact 

Hausdorff space. Given μ 6 M*{X), then 

(1) If μ is bounded, there exists a unique regular finite Borel measure ο on X such 

that Jf(X) c Jäf: l(X, ©(Χ) , υ) and μ(/) = f fdo for every f e Jf{X). 
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(2) If X is countable at infinity, there exists a unique (regular and σ-finite) Baire 
measure υ on X such that J f ( X ) α ^1(Χ,^0{Χ),υ) and μ ( / ) = j/<i(j for 
every f e X(X). 

If X is countable at infinity and metrizable, then an explicit construction of 
the measure υ is indicated in the next subsection. 

From now on we shall assume that X is a locally compact Hausdorff space 
which is countable at infinity. 

On the basis of the above theorem, by a common abuse of notation, we shall 
continue to denote by Ji+{X) the cone of all Baire measures on X. Furthermore, 
the subset of all μ e Ji^iX) satisfying μ(Χ) < +oo (μ(-Χ") = 1, respectively) will 
be denoted by .Jf^(X) {Ji\{X\ respectively). 

A net (μ,)? / in Jt£{X) is said to be weakly convergent to a measure μ ε 
Jtt{X) if for every / e %(X) 

If X is a Polish space and if (μ{)^6/ converges weakly to μ, then we obtain 

for every Borel-measurable, bounded, μ-a.e. continuous function f : X -»· R. 
Finally note that, in general, the weak convergence in .Jt^(X) can be derived 

from a topology on that is called the weak topology on Jf£(X). 
As a simple criterion to decide if a sequence of measures with densities con-

verges weakly, we mention the following result which is often referred to as 
Scheffe's theorem: 

Let μ e Ji+(X) and consider a sequence (g„)„e N of positive μ-integrable nu-
merical functions on X converging pointwise to a positive μ-integrable function g 
on X. If jg„ άμ -*• ^άμ, then the sequence of measures with densities {g„ · μ)η€ ^ 
converges weakly to g· μ. 

In fact, for every / e %{X) 

(1.2.18) 

(1.2.19) 

fd(gn-ß)- fd(g· μ) (fg„ - fg)dμ < ||/|| \gn - g\άμ 

since \gn Λ gdμ-+\gdμby Lebesgue's dominated convergence theorem. 
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As a matter of fact the same result holds even if gn -»· g μ-stochastically, i.e., 
for every ε > 0 and for every Baire subset A of finite measure μ(Α) one has 

lim - g\ > ε} η A) = 0 
co 

(see Bauer [1992, Lemma 21.6]). 

"Integration with respect to Radon measures. Lp(X,f<)-spaces 

As we have seen in the above subsection, there is a one-to-one correspondence 
between positive Radon measures and regular Baire (Borel) measures. 

Without using this correspondence, it is nevertheless possible to develop an 
integration theory with respect to Radon measures that leads, in particular, to 
the construction of the same LP(X, /*)-spaces that one obtains via the classical 
procedure by starting from the corresponding regular Baire (Borel) measures. 

Below we shall briefly indicate the most salient points of this integration 
theory. For complete details see Bourbaki [1969, Chapter IV] or Choquet 
[1969, Section 11]. 

However the reader who is not interested in Korovkin-type theorems in 
LP(X, /i)-spaces can directly proceed to the other sections. 

In the sequel we shall fix a locally compact HausdorfF space X and a positive 
Radon measure μ e 

We set 

Jf+{X) := { / e JT{X)\f > 0} (1.2.20) 

and 

S+(X) := {/: X -> IF&jf is lower semi-continuous and positive}. (1.2.21) 

For every / e </+(X) we put 

I* fdM := sup{M(g)lg e Jf+(X), g<f}cU+ υ {+oo}. (1.2.22) 

The number $*/άμ is called the upper integral of f with respect to μ. Of 
course, 

^βάμ = μ(ρ) if geJf+(X). (1.2.23) 
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To assign an upper integral to every positive function we proceed as follows. 
If / i X - ^ I R + u J + o o J i s a n arbitrary function we set 

fάμ := inf < g άμ\9 e J+{X), f<g\eU+u{+ao). (1.2.24) 

Again, j * / ά μ is called the upper integral of f with respect to μ and coincides 
with the one defined by (1.2.22) provided / e S+(X). 

Now, fix ρ Ε IR, 1 < ρ, and set for every f\X -*U 

;-(f 
'* \1/P 

N p ( f ) := I Ι \/\ράμ . (1.2.25) 

Furthermore let 

Ρ'(Χ,μ) := {/: X U\Np(f) < +oo}. (1.2.26) 

Then, Np is a seminorm on μ) and J f ( X ) c &P(X, μ), because of (1.2.23) 
and the equality J f ( X ) = X+(X) - Jf+(X). 

We denote by ^"{Χ,μ) the closure of JT(X) in Fρ(Χ,μ) with respect to the 
seminorm Np. Finally, we set 

ν(Χ,μ):= 2»{Χ,μ)/^ρ, (1.2.27) 

where J f p is the equivalence relation on S£P(X, μ) defined by 

f j f p g N p ( f - g ) = 0 (/,βεΧ'(Χ,μ).) (1.2.28) 

The space LP(X, μ) endowed with the norm || · ||p inherited from Np is a Banach 
space. 

By embedding &ρ(Χ,μ) in L"{X,μ) we have that J f ( X ) is dense in Lp{Χ,μ). 
The functions in £έ>1(Χ,μ) (or, in Ll(X,μ)) are also called μ-integrable 

functions. 
The value attained by the unique extension of μ to if1 (Χ,μ) in / e J?1 (Χ,μ) 

is called the integral of f with respect to μ and is denoted by one of the following 
symbols 

Sfd* ί 
f 

f{x) άμ{χ), ίμ. (1.2.29) 

If f , ge£f1{X^) and f ^ g , then ^άμ = ^άμ. So, the integral can be 
defined for every / e Ll{Χ,μ). 
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For some classical criteria of integrability as well as for a complete treatment 
of the properties of the upper integral, the integral and υ(Χ,μ)-spaces see 
Bourbaki [1969, Chapter IV]. 

For example, if f : X -* u {+ 00} is lower semi-continuous and positive, 
then / is μ-integrable if and only if §*/άμ < +oo. If this is the case, then 

f d ß fdiL (1.2.30) 

Because of (1.2.23) and (1.2.30), for every / e Jf(X) we shall often denote the 
value μ ( / ) by j/άμ. 

Given a subset A of X we shall set 

μ*(Α) := ίΛάμε υ {+oo}, (1.2.31) 

where ίΑ denotes the characteristic function of A. 
The value μ*(A) is called the outer measure of A with respect to μ. 
A subset A of X such that μ* (A) = 0 is called negligible (or of measure zero). 
A property Ρ of points of X is said to hold μ-almost everywhere (shortly, 

μ-a.e.) if the subsets of all points χ e X for which P(x) is false, is contained in a 
set of measure zero. 

The inner measure of a subset A of X is defined as 

μ+(Α) := ϊ\ιρ{μ*(Κ)\Κ c A, Κ compact}. (1.2.32) 

A subset A of X is called μ-integrable if \A is /i-integrable. In this case, we have 

μ^Α) = μ*(Α) = Μ / / . (1.2.33) 

The space X is μ-integrable, i.e., the constant functions are μ-integrable, if and 
only if μ is bounded. Then, 

= μ*(Χ) - (1.2.34) 

Furthermore %(X) is a dense subspace of £^ρ{Χ,μ) (1 < ρ < +oo). Moreover 
for every / e %(X) 

ί f d ß \μ\\· (1.2.35) 
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A function / : Z - > [ R + u { + o o } is called μ-measurable if for every ε > 0 and 
for every compact subset Y of X there exists a compact subset Κ of X such that 
/ is continuous on Κ and μ*(Υ\Κ) < ε. 

The subspace of all μ-measurable functions /: X -> R such that 

N J f ) := inf{a e 1|/| < a μ-a.e.} < +00 (1.2.36) 

is denoted by ^ ( Χ , μ ) . 
The quotient space μ ) / ^ , where Jf^ is the equivalence relation on 

^ " ( Χ , μ ) defined by 

fJT^g ο Na3(f-g) = 0 /=9μ-a.e., (1.2.37) 

will be denoted by L°°(X, μ). 

The space LX{X, μ) endowed with the norm 

11/11.:= Λ ϋ / ) (1-2-38) 

(where every / e υ°{Χ, μ) is identified with an arbitrary representing function), 
is a Banach space. 

Moreover, all LP(X, /z)-spaces (1 < ρ < +oo) endowed with the ordering 

f<g if f<g /i-a.e. (1.2.39) 

are Banach lattices. 
We say that a subset A of X is μ-measurable if 1A is μ-measurable. The set 

of all μ-measurable subsets of X will be denoted by ©* (X) . In fact, © * ( X ) 
is a σ-algebra and μ* is a measure on ©*(Ar). Moreover, S*(AT) contains the 
σ-algebra ©(-Y) of Borel sets in X. 

If X is countable at infinity and metrizable, then the unique Baire (or, 
equivalently, Borel) measure u o n X determined from Riesz's representation 
theorem is, in fact, μ*. Furthermore, &ι(Χ,'&(Χ),μ*) = 1(Χ,μ) and for every 
/ε&ΗΧ,μ) 

^/άμ = J/ί/μ* (1.2.40) 

(see Choquet [1969, Theorem 11.18]). 

Restrictions and extensions of Radon measures 

Again we fix a locally compact HausdorfT space X and a measure μ e JSf+(X). 

Given a locally compact subset Y of X, there is a classical procedure to define a 
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new Radon measure on Y, which is called the restriction of μ to Y and is denoted 
by μΙΥ. 

This restriction is defined by 

/*άμ for every / e J f ( Y ) , (1.2.41) 

where 

/ · ( * ) C ·, , ' (1-2-42) 

(Note that ( / + ) * and ( / " ) * are upper semi-continuous and, hence, //-measur-
able; so, f * = ( f + ) * — ( / " ) * is μ-measurable, bounded and with compact sup-
port, so that it is μ-integrable). 

When X is metrizable or countable at infinity, we may employ another proce-
dure (which does not make use of integration theory) to define the restriction of 
μ to y in the particular case when Y is compact and Supp(/i) <= Y. 

In fact, since X is normal, given / e J f ( Y ) = Y), by Tietze's theorem there 
exists a continuous extension fx: X R of / . After choosing f2 e X{X) such that 
f2 = 1 on Y, clearly the function g := f 1 f 2 is another extension of / which be-
longs to Jf(X). 

Note that, if gl and g2 are two extensions of / belonging to JT(AT), then 
μ{ρχ) = μ^2) since Supp(^) c= Y. So, we may define a Radon measure υ on Y by 

ο(/):=μ(ρ) for every f e <€{Y\ (1.2.43) 

where g e Jf(X) is an arbitrary extension of / to X. 
As it is easy to see, the measure υ coincides, in fact, with the measure μΙΥ 

defined by (1.2.41). 
We shall use this approach mainly in the particular case when X is compact. 
Finally let us make some remarks about a simple procedure to extend Radon 

measures. 
Let 7 be a closed subset of X and fix μ e Jt£(Y). Then we may define a new 

bounded Radon measure μ on X by 

Άί) := μ(/ν) for every / e J f ( X ) . (1.2.44) 

The measure μ is called the canonical extension of μ over X and, by a common 
abuse of language, it is still denoted by μ. 
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Image Radon measures 

Let X and Y be locally compact HausdorfT spaces. A continuous mapping 
φ: X Y is called proper if for every compact subset Κ of Y, is compact 
in X. 

If X is compact, then every continuous mapping from X into Y is proper. 
Furthermore, if f:Y-*M, then Supp(/ ° φ) <= <p-1(Supp(/)) so that, if / is 

proper, we have 

f o ( p e 3 f { X ) for every /GJf (y ) , (1.2.45) 

as well as 

foq,eV0(X) for every fe%{Y). (1.2.46) 

Given a Radon measure μ e M(X) and a proper mapping φ: X -*• Y, we may 
consider the Radon measure oon y defined by 

o ( f ) := μϋ ° φ) for every / e X(Y). (1.2.47) 

The measure υ is called the image of μ under the mapping φ and it is denoted 
by φ{μ). 

If μ is positive, φ(μ) is positive. If μ is bounded, then φ(μ) is bounded as well 
and ||<ρ(μ)ΙΙ ^ IIA4II· Moreover, if, in addition, μ is positive, then ||φ(μ)|| = ||μ||. 

In general, Supp(cp^)) <= <p(SuppM) and we have equality if μ is positive. 
Furthermore the mapping μι-κ/>(μ) from M(X) into Jt(Y) is vaguely 

continuous. 
Note that, if φ: X Y is an arbitrary continuous mapping (or, more gener-

ally, measurable with respect to the σ-algebras 93(X) and 93(7)) and μ e Ml(X), 
we could define a Radon measure φ*(μ) on J({Y) by 

φ*(μ)(Ω •= J / ° ψάμ for every f e Jf(Y). (1.2.48) 

But, in this case, the mapping μ ι-> φ*(μ) fails to be continuous. 
For more details on proper mappings and image measures see Bourbaki 

[1965, § 10, n.l], [1969] and Choquet [1969, Section 13]. 

Tensor products of Radon measures and of positive operators 

Let (·Χ",·)ι <;,·<; ρ be a finite family of locally compact Hausdorff spaces and consider 

the product space J^ Xt endowed with the product topology. 
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The product space is a locally compact HausdorfT space and is compact if 
each Xj is compact. p 

For each j = 1, . . . , ρ we shall denote by piv f ] X, ->· X} the j-th projection 
which is defined by 1=1 

Ρ 
ρη{χ) := Xj for every χ = (χ ;)χ e f ] Xt. (1.2.49) 

i = l 

By a common abuse of notation, if X <= Xh the restriction of each ρη to X 
i = 1 

will be denoted by ρη as well. 
If finitely many functions ΛΓ, -»· Κ, 1 < i < ρ, are given, we shall denote by 

Ρ Ρ 
® f i - Π x i R t h e n e w function defined by 
;=i i=i 

(<§)/,)(X) •= Π Λ(*ι) f o r e v e r y * = e Π *ι· (1-2.50) 
\i=l / i=l i=l 

Thus we have 

i=1 i=l 

Furthermore, if j = 1 ρ and f f . Xj -> IR, then 

(g)fi=Ylfi°Pri- (1-2-51) 

fj°prj = &fi.j, d-2.52) i = 1 

where fu := 1 if i Φ j, and fu := f j if i = j. , , 
Clearly, if for each ι = 1, . . . , p, / , e J f U Q , then (x) / , e J f i f j Xt), because 

Supp = f i Supp(/ f). 
V'-l / i=l 

We shall denote by (X) Jf(Xi) the linear subspace generated by ·|(Χ) / f | / f e 

«=1 (,i=l 

Jf(X,\ i = 1, . . . , p j . In fact, we have that (Χ) JfiX,) is dense in ^ with 

respect to the sup-norm (see Choquet [1969, Lemma 13.8]). 

Now, for every i = 1 , . . . , ρ fix μί, e Jl{X,·). Then there exists a uniquely deter-

mined Radon measure u o n f j Xt such that for every (fi)1 e A Jf(Xj) i=1 1=1 

»(<&/<) = f i f t ( / i ) · (1-2-53) \i=l J i=l 
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Such a measure is called the tensor product of the family and is 
ρ 

denoted by (Χ) μί or μι (χ) · · · (g) μρ. Thus, if / e Jf(Xi), 1 < i < p, then 
i=l 

,ί = 1 / \i=l / i =1 

(1.2.54) 

J 

Γ 
1 = 1 

Note that, if / e )> f ° r every j = 1,... , ρ — 1 and (x1 ? . . . , x ; ) e 

Xi the function 

» Xj> Xj+1 > · · · » xp)äμp(xp) )...dMJ+l(xJ+l) 

from X j into IR is continuous and has compact support. As a matter of fact it is 
possible to show that 

Mi (/) = 
,i=l 

f(x1,...>xp)dMp(xp) ... )άμι(χ1). (1.2.55) 

We shall also denote the right-hand side of (1.2.55) by 

» 

f(xlt...txp)dßi(xl)... άμρ(χρ). ί - J (1.2.56) 

In fact, from the above formula (1.2.55) one can also deduce the Fubini's 
ρ (Ρ \ 

theorem for functions /: X{ -*• IR which are ( (Χ) μ,· l-integrable, namely 
i=l Vi=l / 

fd μ,·) = J · · - |/ ( x , , . · · ,xp) άμχ (xl)... άμρ(χρ). (1.2.57) 

Note also that, if every μ, is positive, then (Χ) μ, is positive. Furthermore, if 
i=l 

each Xi is compact and μ,·(1) = 1, then, because of (1.2.51) and (1.2.54), for each 
j = 1 , . . ρ we obtain 

Prj ( ® ßi ) = ßy (1.2.58) 
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Some of the main properties of tensor products of measures are listed below 
(for a proof see Bourbaki [1969, Chapter III, Section 4] or Choquet [1969, 
Section 13]). 

1.2.5 Proposition. Let be a finite family of locally compact Hausdorff 
spaces and for every i = 1,..., ρ fix μι e Ji(X^). 

Then the following statement hold: 

(1) S u p p i ^ - U n S u p p O i , · ) . 

(2) If each μ( is bounded then (Χ) μ,· is bounded and 
i=ι i=l = Π llttl 

i = l 
(3) (Commutativity property) If σ\ {ί,.,.,ρ} -»{ί,.,.,ρ} is a permutation, then 

Ρ Ρ 
' ^ (o = 0 9 /ν i=l i=1 

(4) (Associativity property) If ( / Λ ) χ i s a partition of { Ι , . , . ,ρ } , then 

( g ) ( ( X ) / ' I ) = (X)/V 
k=1 \<6/k / 1=1 

Ρ Ρ 
Note that, in general, the mapping Mi from J?(Xt) into 
/ P \ ' = 1 i=l 

Ji\ n ^ . is not continuous with respect to the product topology (of the vague 
\i=l / / ρ \ 

topologies) and the vague topology on J( I J~| Χ{\. 

However, we have the following useful result (see Choquet [1969, Proposition 
13.12]). 

1.2.6 Proposition. Given a finite family (λ",·)ι of locally compact Hausdorff 
ρ ρ ί ρ \ 

spaces, then the mapping (μ;)ι<,·<;ρ>->· (X) fa from Π *ηίο + ( Π ) I S 

i=ι i=l \i=l / 
continuous with respect to the product topology (of the vague topologies) and the 

vague topology on ^ X^j. 

By using tensor products of measures we can also construct positive linear 
operators on spaces of continuous functions on the product space. 

First, note that to every positive linear operator defined on a suitable function 
space, it is possible to associate a family of positive Radon measures. 

More precisely, given two locally compact Hausdorff spaces X and Y, con-
sider two function spaces Ε and F on X and Υ, respectively (i.e., Ε and F are 
vector subspaces of continuous functions on X and Y, respectively). Further-
more suppose that jf(X) c E. 



36 Preliminaries 

Given a positive linear operator Τ: Ε -*• F, for every y e Y we consider the 
linear form μΐ: J f ( X ) R defined by 

M y
T ( f ) := T f i y ) for every / 6 Jf(X). (1.2.59) 

Then is positive and, hence, it is a Radon measure on X. 
More generally, if μ: F IR is a positive linear form, we shall denote by Τ(μ) 

the positive Radon measure on X defined by 

Ά μ ) ( ί ) := μ ( Τ ( / ) ) for every / e J f ( X ) . (1.2.60) 

Thus μ^ = T(eylF). 

Now, let and be two finite families of locally compact 
Hausdorff spaces. For every i = 1, . . . , ρ let us consider a positive linear operator 
T,: J f { X i ) V(Yi). 

Then we define a linear operator T: J f ^ f j X^j ^ ^ ( f l b y 

T f ( y ) : = (<&*#)(/) = J- ^ Α Χ ι , . . . , Χ ρ ) ά μ Ι > ( χ ι ) . . . ά μ ϊ ; ( χ ρ ) (1.2.61) 

f p \ ρ 
for every / e J f l J~[ X, 1 and y = ( y ^ ^ p e PJ where the measures μ J* are 

\i=1 J i=l 
defined as in (1.2.59). (Note that T(f) is continuous by virtue of Proposition 
1.2.6). 

Ρ 
The operator Τ is positive and is denoted by (X) 7]. It is also called the tensor 

i=ι 

product of the f a m i l y ( T J . ^ p . 

Thus (g) T- J f j j « ( β ^ and for every f e J f ( j \ X^j and y = 
Ρ 

(y.)l<i<pe Π Yt> 
i = 1 

(g> T ^ j ( f ) ( y ) = = J · · · ^ { χ ι , · · ; Χ Ρ ) ά μ ^ ( χ ι ) . . . ά μ ^ ( χ ρ)· 

(1.2.62) 

In particular, taking (1.2.59) and (1.2.54) into account, for every ( / i h ^ o e 
ρ 

Π Jf(Xi) we have 
i=l 

1-1 T i ) [ ^ f i J
 = ^ T i ( f i ) · ( 1 1 6 3 ) 
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*1.3 Some basic principles of probability theory 

Here we survey some classical material on probability theory that will be used 
mainly in Section 5.2. For more details and proofs see for instance Bauer [1981, 
part II] and Feller [1957], [1966]. 

Random variables 

Consider a probability space (Ω, P), i.e., OF is a σ-algebra in the set Ω and Ρ is 
a measure on SF such that Ρ(Ω) = 1, and let (Ω', 5F') be a measurable space. A 
random variable from Ω into Ω' is a mapping Ζ: Ω ->· Ω' which is measurable with 
respect to & and (i.e., Z~l(B) e & for every Β e 

When Ω' = U and SF' = ®(R) we shall speak of real random variables on 
Ω. The set of all real random variables will be denoted by Μ(Ω). 

If Ζ: Ω Ω' is a random variable from Ω into Ω', the image measure Z(P) is 
called the distribution of Ζ (with respect to Ρ) or the probability law of Ζ and is 
denoted by Pz. 

Thus Pz is a probability measure on J5"' and for every B&SF' 

The subset Z~1(B) and the number P{Z~l(B)} are often denoted by {Z e Β} 
and P{Z e B}, respectively. 

If μ is a probability measure on 3F' and Pz = μ, we also say that Ζ is distrib-
uted according to μ. 

If Ζ e Af (Ω), then Pz e Jil(U). More generally, if Ω' is a locally compact 
Hausdorff space which is countable at infinity and = ©0(Ω')> then Pz e 

for every random variable Ζ: Ω Ω'. 
In this case, if Ω' has a countable base, then Supp(Pz) c ΑΓ(Ω) (we recall that 

if μ e ^ + (Ω') , the support Supp(/z) of μ is the complement of the largest open 
subset of Ω' of measure zero with respect to μ). 

If Ζ: Ω -*• Ω' is a random variable and if / : Ω' -> R is positive and ^'-measur-
able, then 

Pz(B):=P{Z-HB)}. (1.3.1) 

Λ 
fdPz= foZdP. (1.3.2) 

Furthermore a J^'-measurable function / : Ω' ->· R is Pz-integrable if and only 
if / ο Ζ is P-integrable. In this case (1.3.2) holds as well. 
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If a real random variable Ζ: Ω R is positive or P-integrable, then we set 

£(Z) := 
Γ+00 

ZdP = 
a 

xdPz(x) (1.3.3) 

and we call E(Z) the expected value of Z. 
If the random variable Ζ: Ω R is P-integrable, we call 

Var(Z) := £((Z - E(Z))2) e R + , (1.3.4) 

and 

σ(Ζ) := yVar(Z) , (1.3.5) 

the variance and the standard deviation (or dispersion) of Z, respectively. 
A real random variable Ζ is P-integrable and has finite variance if and only if 

it is square-integrable. If this is the case, then 

Λ+oo / p+oo \2 
Var(Z) = E(Z2) - E(Z)2 = x2 dPz(x) - χ d P ^ x ) - (1.3.6) 

If Ζ: Ω -»• Rp is a random variable with components Z l 5 . . . , Zp (i.e., Ζ (ω) = 
(Ζ χ(ω), . . . , Ζρ(ω)) for every ω e Ω), we set 

E(Z):=(E(Zl),...,E(Zp))eR", (1.3.7) 

provided every Zi is integrable. Furthermore, if every Z( is square integrable, we 
also set 

Var(Z) := f V a r ^ ) = £(| |Z| |2) - ||£(Z)||2. (1.3.8) 
i=l 

Let Ζ: Ω -*• R be a real random variable such that P{Z e Ν0] = 1. For every 

η e we set oc„ := P{Z = n} (hence ^ a„ = 1 ]. 
n = 0 

The probability generating function of Ζ is the function gz: [— 1,1] -»• R de-
fined by 

9z(f) •= Σ *η = £( tZ) = 
+ 00 

t* dPz(x) for every f e [ — 1,1]. (1.3.9) 
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In this case we have 

ao 
E(Z)= Σ noc„ = g'z(l) (1.3.10) 

n = l 

and 

Var(Z) = gl{ 1) + gz( 1) - g'z(l)2. (1.3.11) 

If Var(Z) < +oo, then 

Var(Z) = £ n \ - ( £ na„Y. (1.3.12) 
n=l Vn=l / 

More generally, if for every peN, we denote by mp{Z) the p-th factorial 
moment of Z, i.e., 

mp(Z):= E(Z{Z — 1)... (Ζ — ρ + 1)) = 

then 

+ 00 
x ( x _!)... (x-p+l)dPz(x), 

(1.3.13) 

m,(Z) = gf{ 1). (1.3.14) 

A random variable Ζ: Ω IRP is said to be discretely distributed if there exists 
00 

a sequence (an)ne No in Rp and a sequence ( a j ^ in U+ satisfying Σ <xn = 1, 
n = 0 

such that 

Pz = Σ (1.3.15) 
«=o 

where, for every η e ε0η e ^^(IR*) denotes the unit mass at an, i.e., for every 
Β e S(RP) 

ε""{Β) : = | o , if αη £ B. ( L 3 1 6 ) 

In particular we have that P{Z = a„} = a„ for every n e Furthermore a 
~ 0 0 

measurable function / : IRP->IR is Pz-integrable if and only if Σ α„|/(α„)| < 
n = 0 

+oo. In this case 

i. fdPx = Σ a«/( f ln)· (1.3.17) 
Rp n=0 
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The same formula holds if / is positive (not necessarily integrable). 
In the case ρ = 1 we have that Ζ is integrable (square-integrable, respectively) 

CO / QO \ 
if and only if Σ α„|α„| < +oo I Σ a„a^ < +oo, respectively 1. 

n=0 \n=0 / 
Furthermore 

E ( Z ) = Χ α„α„ (1.3.18) 
n=0 

and 

Var(Z) = £ α„α„2 - ( £ α„α π J . (1.3.19) 
n=0 \n=0 / 

Important examples of discretely distributed real random variables are the 
binomial or Bernoulli random variables. A real random variable Ζ is said to be a 
Bernoulli random variable with parameters η and ρ (η > 1, 0 < ρ < 1) if it is 
distributed according to the binomial or Bernoulli distribution 

βη,ρ · = Σ ( j P k ( l - P r k e k . (1-3.20) 
k=ο \K/ 

In this case 

E(Z) = np and Var(Z) = np( 1 - p). (1.3.21) 

Furthermore for every t e [— 1,1] 

9z(t) = (Pt + (1 - P)Y· (1.3.22) 

Another class of important discretely distributed real random variables are 
the Poisson random variables. A Poisson random variable Ζ with parameter 
α > 0 is a real random variable which is distributed according to the Poisson 
distribution with parameter α 

α* 
π α : = Σ e x p ( - a ) — ek. (1.3.23) 

fc = ο 

We have 

E{Z) = Var(Z) = α (1.3.24) 
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and 

gz(t) = exp(a(r - 1)) for every f e [ - 1 , 1 ] . (1.3.25) 

As an example of discretely distributed random variables on Rp with p > 2, 
ρ 

consider finitely many positive real numbers r1,...,rp satisfying £ r,· < 1 and fix 
η e N. i = 1 

Every random variable Ζ on IRP distributed according to 

Σ 
kt...%*o h^.... hp\{n — hl — ••· — hp)\ "P 

*ι+···+Λρ£π 
χ r*1 ... rp"{\ - rx - · · · - γ,)""*» — hp) (1.3.26) 

is called a multinomial random variable of order ρ + 1 with parameters n, rlt..., 
rP· 

In this case E(Z) = (nrlt...,nrp) and Var(Z) = η £ r^l — 
i=l 

A random variable Ζ: Ω IRP is said to be Lebesgue-continuous if Pz is 
λρ-continuous, i.e., P{Z e Β] = 0 for every Β e 93([RP) such that λρ(Β) = 0. Here 
λρ denotes the Lebesgue-Borel measure in IRP. 

By the Radon-Nikodym theorem (see, e.g., Bauer [1981, Theorem 2.9.10]), if 
Ζ is Lebesgue continuous, then there exists a Borel-measurable positive func-
tion g: IRP-» R satisfying JRP^(x)iix = 1 such that Pz = g· λρ, i.e., for every 
Β e ©(Rp) 

P{Z e B} = g(x)dx. (1.3.27) 

The function g is also called the probability density of Z. 
A measurable function / : [Rp -> IR is Pz-integrable if and only if fg is 

Ap-integrable. In this case 

fdPz = 
RP 

f(x)g(x)dx. (1.3.28) 
RP 

This formula also holds provided / is positive and measurable. 
In particular, when ρ = 1, we obtain that Ζ is integrable (square-integrable, 

respectively) if and only if J*® \x\g(x)dx < +oo (Jt® x2g(x)dx < +oo, respec-
tively). Then 

ί '+0O 
E(Z) = I xg(x)dx (1.3.29) 

-αο 
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and 

Var(Z) = 
+00 / ρ +αο \ 2 

x 2 0 ( x ) d x - ( x0(x) i fx) . (1.3.30) 
- o o \ J - o o 

The most important Lebesgue-continuous random variables are the normal 
ones. We recall that a normal or Gaussian random variable Ζ with parameters α 
and σ2 (α e (R, σ > 0) is a real Lebesgue-continuous random variable having as 
probability density the function 

ga,a2(t) := ( 2 π σ 2 Γ ι ' 2 ε χ ( ί e U). (1.3.31) 

In this case 

E(Z) = α and Var(Z) = a2. (1.3.32) 

Some properties of real random variables can be also described in terms of 
their distribution functions. Actually, given a real random variable Z, the distri-
bution function of Ζ is the function Fz: IR IR defined by 

Fz(x) := P{Z < x} for every x e R . (1.3.33) 

The function Fz is increasing and left-continuous I i.e., lim Fz(x) — Fz(a) for 

every a e IR) and satisfies the conditions lim Fz(x) = 0 and lim Fz(x) = 1. 
x-'—oo J C - > + O O 

Furthermore P{a < Ζ <b] = Fz(b) — Fz(a) provided a < b, and Fz is contin-
uous in a point a e IR if and only if P{Z = a} = 0. 

We also recall that, if F:U-*U is an increasing left-continuous function 
converging to 0 as χ -+ — oo and to 1 as χ -»· +oo, then there exists a (in 
general, non-unique) random variable Ζ such that Fz = F. 

A crucial notion in probability theory is that of independence of random 
variables. 

Consider an arbitrary family (Z,) i6/ of real random variables defined on the 
same probability space (Ω, !F, P). 

The family (Z,) ie / is said to be independent if for every finite subset J c / and 
for every finite family (Bi)iei in ©(IR) we have 

p f f l {ZieBi})=Y\P{ZieBi}. (1.3.34) \ieJ J ieJ 

If this is the case, then for every finite subset J a 1 the following statements 
hold: 
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(1) If we consider the random variable (Χ) Ζ,: Ω -»· IR-7 defined as I (Χ) Ζ, )(ω) = 
ieJ \ieJ / 

(Ζ,·(ω))16 j for every ω e Ω and if (x) Pz. denotes the tensorial product of the 
i e J 

family (PZ i) i 6 j , then 

P®z = ®PZi· (1.3.35) 
iej ieJ 

(2) If either all Z, are positive or all Zi are integrable, then 

Π Zi) = Π m ) · (1.3.36) \iej / iej 

(3) If all Z, are integrable, then 

V a r f x z ) = Σ Var(Z,). (1.3.37) 
\ieJ / ieJ 

(4) If-)^-Pz. denotes the convolution product of the family (Pz.)ieJ, then 
ieJ 

ρ Σ ζ , = ^ ρ ζ , (1-3.38) • t j ieJ 

(5) If we consider the probability generating function : [— 1,1] [R of 
Σ then 
iej 

0Σζ< = Γ Ί fc,· d-3.39) 
^ J iej 

From (1.3.38) it easily follows that if Zx and Z2 are two independent binomial 
(Poisson, normal, respectively) random variables with parameters η, ρ and m, ρ 
(α and β, α, σ2 and β, τ2, respectively), then Z t + Ζ2 is a binomial (Poisson, 
normal, respectively) random variable with parameters η + m, ρ (α + β, α + β 
and σ2 + τ2, respectively). 

Similarly, one can prove that, if Z : , . . . , Z„ are independent normal ran-
dom variables with the same parameters 0 and σ2, then the random variable 

η 
χ2 „ι := Σ Zf is Lebesgue-continuous and its probability density is the 

i=l 
function 

' t" l 2~ l exp( —ί/2σ2) 
^ ( ί ) : = (2σ2)π/2Γ(η/2) ' ( 1 3 4 ( ) ) 

0, if ί < 0, 

where Γ(ί) := Jo00*' 1 e x p ( - x ) d x (t > 0) denotes the gamma function. 
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The random variable is also called a chi-squared random variable with η 
degrees of freedom and parameter σ2. 

It is well known that 

Eixl,*) = ησζ and Var(ZJ.a) = 2«σ
4 . (1.3.41) 

Finally, by using the Kolmogorov's theorem about the existence of the infinite 
tensorial product of probability spaces, it is possible to show that, if ((Ω„ J5·, P,)) ie / 

is an arbitrary family of probability spaces, then there exist a probability space 
(Ω, P) and an independent family (Zf)i e i of random variables, Z(: Ω Ω, (i e /), 
such that Pz. = Pf for every i e / (for a proof see Bauer [1981, Corollary 5.4.5]). 

Convergence of random variables 

Consider again a probability space (Ω, 2F, P). On the space Μ(Ω) of all real ran-
dom variables on Ω we shall consider three different concepts of convergence 
that can be derived from suitable topologies. 

A sequence (Z„)n e N of real random variables is said to be P-almost surely 
convergent to a random variable Ζ if there exists a P-negligible set Ν c Ω (i.e., 
Ν e 3F and P(N) = 0) such that 

lim Ζη(ω) = Ζ (ω) for every ω e Ω\Ν. (1.3.42) 
B-> 00 

We say that (Z„)neN converges Ρ-stochastically (or stochastically) to Ζ if 

lim P { | Z „ - Z | > e } = 0 for every ε > 0 . (1.3.43) 

Finally we say that (Z„)„e N converges in distribution to Ζ if 

lim PZn = Pz weakly. (1.3.44) 
η-»ao 

The logical relations between these concepts of convergence are as follows: 

(P-almost surely convergence) => (P-stochastic convergence) => 
=> (convergence in distribution). 

In addition, if Ζ is P-almost surely constant and if (Z„)ne N converges in distri-
bution to Z, then (Z„)ne N converges P-stochastically to Z. 

Note also that (Z„)neM converges in distribution to Ζ if and only if 
lim FZn(x) = Fz(x) for every point x e IR at which Fz is continuous, or if the 
n-»oo 
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sequence of the Fourier transforms (P z J n e N converges pointwise to Pz (continu-
ity theorem of P. Levy). 

By Schefle's theorem (see Section 1.2), if every Z„ and Ζ are Lebesgue-
continuous with probability densities g„ and g respectively and if gn-> g 
P-almost everywhere, then Z„ -> Ζ in distribution. 

For the same reasons, if every Z„ and Ζ are discretely distributed and have a 
common support {ak\k e 0} <= R, i.e., 

00 00 

pzn = Σ (η e Ν) and Pz = Σ 
k=0 k = 0 

then Z„ -*• Ζ in distribution provided lim an k = ak for each ke N0. 
Π-+00 

A sequence (Z„)ne^ of integrable real random variables is said to obey the 
strong law of large numbers (the weak law of large numbers, respectively) if 

lim i £ (Z, - £(Z,)) = 0 P-almost surely (1.3.45) 
π->αο η 

(respectively, 

1 " 
lim - Σ (Ζ, - E(Z{)) = 0 stochastically). (1.3.46) 

π - ό ο η l = j 

Two celebrated theorems of Kolmogorov show that an independent sequence 
(Z„)n€ N of real integrable random variables obeys the strong law of large num-
bers if 

- Var(Z„) 
Σ 2— < + 0 0 ' (1.3.47) 
n=l » 

or alternatively, if the Z„'s are identically distributed (i.e., PZn = PZm for every n, 
meN) . 

On the other hand, a sequence (Z„)ne N of real integrable pairwise uncorrelated 
random variables (i.e., E(Z„Zm) = E(Z„)E(Zm) for every η φ m) obeys the weak 
law of large numbers if 

lim \ Σ V a r ( z . ) = 0, (1.3.48) 
«-•oo W i=l 

(theorem of Markov) or alternatively, if the Z„'s are identically distributed (theo-
rem of Khinchiri). 

For more details see Bauer [1981, Chapter 6 and Sections 7.7 and 8.2]. 
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1.4 Selected topics on locally convex spaces 

In this section we survey some classical results on locally convex vector spaces 
such as various Hahn-Banach extension and separation theorems, the Krein-
Milman theorem and Milman's converse theorem. 

As a reference for these topics see for instance Choquet [1969] and Horvath 
[1966]. 

Let £ be a topological vector space over the field IK of real or complex num-
bers. A point xe Ε is said to be a convex combination of η given points x t , . . . , 

η η 
x„ e Ε if χ = £ Α,χ, for some λι,..., λη > 0 such that £ = 1. 

i=l i=l 
A subset X of Ε is said to be convex if λχ + (1 — e X for every x, ye X 

η 
and λ e [0,1] or, equivalently, if £ Xixi e X for every finite family (Xi) l s i s n of 

i = l η 
elements of X and for every λ γ , . . . , λ„ > 0 such that £ A, = 1. 

1 = 1 

The convex hull of a subset X of Ε is, by definition, the smallest convex subset 
of Ε containing X and is denoted by co(X). In fact, we have 

co(X) = I £ Α,χ,|χ, e X, A, > 0, i = Ι , . , . ,η and £ Xt = 1 [ . (1.4.1) 
U=1 i = l J 

In general, if X is compact, co(X) is not compact. If Ε is Hausdorff and 
complete, then the closure cö(X) of c o ^ ) is compact. 

A topological vector space is said to be locally convex if the origin possesses a 
fundamental system of convex neighborhoods. 

In fact, in a locally convex vector space the origin possesses a fundamental 
system of balanced, closed and convex neighborhoods (we recall that a subset X 
of Ε is said to be balanced if Ax e X for each xe X and λ e IK, |A| < 1). 

Given a topological vector space E, we shall denote by E' the space of all 
continuous linear forms on Ε and call it the dual space of E. 

On E' we shall often consider the weak*-topology σ(Ε', Ε) which is, by defini-
tion, the coarsest topology on £ ' for which all the linear forms φχ(χ e Ε) are 
continuous, where 

φχ{φ) := φ(χ) for every XE Ε and φ e E'. (1.4.2) 

Thus a net (φί),^Ι in E' converges to an element φ in (£', σ(Ε\ Ε)) if and only if 
lim<; φ{(χ) = <p(x) for every xe E. 
iel 

The dual space £', endowed with the weak*-topology, is a locally convex 
Hausdorff space. Furthermore, if for every χ e Ε, χ Φ 0, there exists φ e E' such 
that φ(χ) Φ 0, then the dual space of (£', σ(Ε', Ε)) can be identified with Ε itself, 
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that is, if a linear form φ: Ε' -*• IK is continuous for the topology σ(Ε',Ε), then 
there exists a unique xe Ε such that ψ = φχ. 

A useful criterion to decide if a subset 91 of £' is σ(Ε', £)-compact is furnished 
by the Alaoglu-Bourbaki theorem. 

We recall that a subset 91 of E' is equicontinuous if for every ε > 0 there exists 
a neighborhood V of the origin of Ε such that |<p(x)| < ε for every xe V and 
<pe9t. 

More generally, a subset 91 of linear mappings from Ε into another topologi-
cal vector space F is said to be equicontinuous if for every neighborhood W of the 
origin of F there exists a neighborhood V of the origin of Ε such that u(x) e W 

for every χ e V and u e 91. 
If Ε and F are both normed spaces, then 91 is equicontinuous if and only if 

each u e 91 is continuous and sup{ ||u|| |u e 91} < +oo. 
If £ is a Banach space and 91 is a subset of continuous linear mappings such 

that sup{||M(X)|||U E 91} < +oo for every xe E, then 91 is equicontinuous (uni-

form boundedness principle) (for a proof see Choquet [1969, Theorem 7.4]). 

1.4.1 Theorem (Alaoglu-Bourbaki). Given a topological vector space E, then 

every equicontinuous subset of E' is relatively compact for the weak*-topology. 

For a proof of the above result see Horvath [1966, Chapter 3, Section 4, 
Theorem 1]. 

In the sequel we shall present several extension and separation theorems. 
The first one concerns the extension of positive linear forms. 
To this end we recall that an ordered vector space is a real vector space Ε 

endowed with a partial ordering < satisfying the following properties: 

χ + ζ < y + ζ for every x, y, ζ e Ε, χ < y, (1.4.3) 

and 

λχ < Xy for every x, y e Ε, χ < y and λ > 0. (1-4.4) 

A vector lattice is an ordered vector space Ε such that for every x, ye Ε there 
exists sup{x,y} in E. 

In this case we set χ ν y := sup{x,y}, χ Λ y := — sup { — χ, — y} = inf {x,y} , 
|x| := sup{ —x,x}, x + := sup{x,0} and x~ := sup{ —x,0}. 

A linear form φ: Ε R is said to be positive if φ(χ) > 0 for every χ e Ε, χ > 0. 
The proof of the next result can be found in Choquet [1969, Theorem 34.2]. 

1.4.2 Theorem. Let Ε be an ordered vector space and F a subspace of Ε such that 

for every χ e Ε there exists yeF satisfying χ < y. 
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Given a positive linear form φ: F -+U, then for every xe Ε and a e R sat-
isfying 

sup (p(y) < a < inf φ(ζ), 
yeF zeF 
y<x χ< ζ 

there exists a positive linear form φ on Ε satisfying φ(χ) = a and extending φ 
over E. 

From this result one can derive the classical Hahn-Banach theorem. To state 
it we recall that, given a vector space E, a mapping ρ: Ε -* IR is said to be 
sublinear if 

ρ(λχ) = λρ(χ) for every xe Ε and λ > 0, (1.4.5) 

and 

p(x + y) < p(x) + p(y) for every x, ye E. (1.4.6) 

A seminorm ρ: Ε -*• IR is a sublinear mapping such that p( — x) = p(x) for each 
xe E. 

1.4.3 Theorem (Hahn-Banach). Let Ε be a real vector space and ρ: Ε R a sub-
linear mapping. If F is a subspace of Ε and φ: F -*U is a linear form satisfying 
φ < pF, then there exists a linear form φ: Ε ->M satisfying φ < ρ and extending 
φ over E. 

The following corollaries are direct consequences of the above result. For a 
proof we refer to Choquet [1969, Section 21] or Horvath [1966, Chapter 3, 
Section 1]. 

1.4.4 Corollary. Given a real locally convex space Ε and a continuous seminorm 
ρ: Ε -* IR, then for every x0e Ε there exists φ e E' such that φ(χ0) = p(x0). 

Then, if Ε is Hausdorff, for every x0e Ε there exists φ e E' such that 
φ(χ0) Φ 0. 

1.4.5 Corollary. Let Ε be a real normed space, F a subspace of Ε and φ e F'. 
Then there exists φ e E' such that = φ and ||<p|| = ||<p||. 

From Corollary 1.4.5 (that holds also for complex normed spaces) it follows 
in particular that, if £ is a normed space and x0 e Ε, x 0 Φ 0, then there always 
exists φ e E' such that <p(x0) = ll*oll a n d II φ II = 1· 

The Hahn-Banach theorem has a wide range of applications. 
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However, in some cases the domination is required only on a cone and the 
sublinear mapping may attain the value +00. 

In these settings several extension theorems are available. Here we shall quote 
a useful one due to Anger and Lembcke [1974], 

Let £ be a real locally convex Hausdorff space and Ρ c Ε a convex cone (i.e., 
χ + y e Ρ and λχ e Ρ for every x, y e Ρ and λ > 0) such that 0 e P. 

A mapping p : P - > R u { + o o } which satisfies (1.4.5) and (1.4.6) for every x, 
y e Ρ and λ > 0 is said to be a hypolinear mapping (in (1.4.5) the convention 
0 · ( + 00) = 0 must be observed). 

If p(P) c [R and p(x + y) = p(x) + p(y) for every x,yeP,p is called linear. 
Consider two convex cones Ρ and C of £ such that 0 e Ρ η C. Consider a 

hypolinear mapping ρ: Ρ U\J {+00} and a linear mapping φ: C -+U. 
For every χ e Ε we set 

ρφ(χ) := inf{p(x,) + φ(γι) - q>{y2)\Xi e P,ylty2 e C,x t + yx - y2 = x} 

(1.4.7) 

(with the convention i n f 0 = +00) and 

p9(x):=limintp,(y). (1.4.8) 
y-*x 

Then ρφ is the largest lower semi-continuous minorant of ρφ. 

1.4.6 Theorem (Anger-Lembcke). If ρφ( 0) > — oo, then for every xe Ε and for 
every a e ] —fi9( — x),pv(x)[ there exists φ e E' such that φ^ = φ, φ < ρ on Ρ and 
φ(χ) = α. 

Note that, if C = {0}, φ = 0 and Ρ = Ε, then ρφ = ρ so that Ρφ = ρ provided 
ρ is lower semi-continuous on E. Accordingly we have the following result. 

1.4.7 Corollary. Let Ε be a real locally convex Hausdorff space and ρ: Ε R u 
{+00} α hypolinear lower semi-continuous mapping. Then for every xe Ε and 
α 6 ] — P( — there exists φ e E' such that φ < ρ and φ(χ) = α. 

Other important consequences of the Hahn-Banach theorem concern the sep-
aration of convex sets. 

Let £ be a real vector space. An affine subspace G of Ε is a translate of a 
subspace of £, i.e., there exist a subspace F of £ and a e Ε such that G = 
F + a := {x + a\x e F}. 

A hyper plane in £ is a subspace of £ of codimension 1. A subspace G of £ 
is a hyperplane if and only if there exists a linear form φ: Ε -> IR such that 
G = {x e Ε\φ(χ) = 0}. 
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Note that each hyperplane is either closed or dense in E. 
An affine hyperplane is a translate of a hyperplane. Thus an affine hyperplane 

is necessarily of the form {χ e Ε\φ(χ) = λ} where φ is a linear form on Ε and 
λ€ U. 

Given two subsets U and V of E, we say that a hyperplane G = 
{x e Ε\φ{χ) = λ) separates U and V(separates strictly U and V, respectively) if 

U α {χ e Ε\φ(χ) > λ} and V ^ {χ e Ε\φ(χ) < λ} (1.4.9) 

(respectively, 

U {χ e Ε\φ(χ) > λ] and V <= {χ e Ε\φ(χ) < λ}). (1.4.10) 

In the next result we collect some important separation theorems (see 
Choquet [1969, Section 21]). 

1.4.8 Theorem. Let Ε be a real topological vector space. Then the following state-
ments hold: 
(1) If U is a non-empty open convex subset of Ε and G an affine subspace of Ε 

disjoint from U, then there exists a closed affine hyperplane disjoint from U 
which contains G. 

(2) If U and V are non-empty disjoint convex subsets of Ε with U open, then there 
exists a closed affine hyperplane which separates U and V. 

If V is also open, the separation is strict. 
(3) If Ε is locally convex and Hausdorff and if U and V are disjoint closed convex 

subsets of Ε with U compact, then there exists a closed affine hyperplane which 
separates strictly U and V. 

The above separation theorems can be fruitfully used in the approximation of 
lower semi-continuous convex functions on convex compact sets. 

Let £ be a locally convex HausdorfT space and Κ a convex compact subset 
of E. 

A function u: Κ -*• R is said to be affine (convex, concave, respectively) if for 
every x, y e Κ and λ e [0,1] 

u(ix + (1 - k)y) = Xu(x) + (1 - A)u(y), (1.4.11) 

(u(Ax + (1 - % ) < Am(x) + (1 - A)u(y), u(Xx + (1 - %) > Au(x) + 
(1 — A)u(y), respectively). 

In this case, for every x1,...,x„e Κ, η > 2, and λ χ,..., λ„ > 0 satisfying 
π 

Σ λ ( = 1, one has 
ί = 1 
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" Σ λ ι χ ι λ Μ χ ι ) 
i=1 

π 

(1.4.12) 

( " ( . Σ - Σ " ( . Σ ^ Σ λΜχλ respectively^. 
We shall denote by A{K) the closed subspace of consisting of all contin-

uous affine functions on K. 
Moreover we shall denote by A(K,E) the subspace of all restrictions to Κ of 

continuous affine functions on E. Note that 

1.4.9 Theorem. Let Ε be a real locally convex Hausdorff space and Κ a convex 
compact subset of E. Then the following statements hold: 
(1) If u: Κ ->U is a convex lower semi-continuous function, then for every xe Κ 

(2) ( M o k o b o d z k i ) If u: Κ -*• R is an upper semi-continuous function, then for 
every xe Κ 

Moreover, if u is also convex, then there exists a net (u,)fei of convex 
continuous functions on Κ which converges pointwise to u. 

(3) If us A(K), then there exists an increasing sequence in A(K,E) which con-
verges uniformly to u. Thus, A(K,E) is dense in A(K). 

For a proof of the above theorem see Alfsen [1971, Proposition 1.1.2, Corol-
lary 1.1.5 and Proposition 1.5.1]. 

Now we list some properties of convex compact sets including the classical 
Krein-Milman theorem. 

Let Κ be a convex compact subset of a locally convex Hausdorff space. A 
point x 0 e Κ is said to be an extreme point of Κ if K\{x 0 } is convex or, equiva-
lent^, if for every x l 5 x2 e Κ and λ e ]0,1[ satisfying x 0 = λχι + (1 — λ)χ2, it 
necessarily follows that x0 = Xj = x2 . 

The set of all extreme points of Κ will be denoted by deK. 
For example, if X is a compact Hausdorff space and Κ = M\{X) endowed 

with the vague topology, then 

A{K, Ε) = {φικ + λ\φ e Ε', λ Ε R}. (1.4.13) 

u(x) = sup{a(x)|a e A(K,E),a < u}. 

M(X) = inf{i;(x)|i; convex continuous function, u < r}. 

deK = {e jx e X], (1.4.14) 
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while, if Κ = {μ e Ji{X)\ ||μ|| < 1}, then 

deK = {εχ\χ eX}u{-εχ\χ e X). (1.4.15) 

An important topological property of deK which was proved by Choquet (see 
Choquet [1969, Theorem 27.9]) is that deK is a Baire space in the relative 
topology (i.e., the intersection of every sequence of dense open subsets of deK in 
dense in deK). 

Moreover, if Κ is metrizable, deK is a countable intersection of open subsets 
of Κ and hence it is a complete metric space. 

We also recall that a ray of a locally convex Hausdorff space £ is a subset δ 
of Ε of the form 

δ = δΧο:={λχο\λ>0}, (1.4.16) 

where x0 e Ε, x0 φ 0. 
Clearly every affine subspace which does not contain the origin and which has 

non-empty intersection with a ray δ intersects the ray in a unique point. 
Given a convex cone C of E, a ray δ cz C is said to be an extreme ray of C if 

C\ö is convex. 
This also means that every affine subspace G of Ε not containing the origin 

and having non-empty intersection with δ intersects δ in an extreme point of 
GnC. 

If C is proper, i.e., C η ( — C) = {0}, then a ray δ of C is an extreme ray if and 
only if for every a e δ and b e C such that a — b e C, there exists λ > 0 such that 
b = λα (and hence be δ). 

If the convex cone C has a compact base Κ (i.e., Κ is the intersection of C with 
an affine hyperplane and for every y e C there exist χ e Κ and λ > 0 such that 
y = Ax), then a ray δ is an extreme ray of C if and only if δ = δΧο for some 
x0 e deK (Choquet [1953]). 

Note that in general a convex cone may have no extreme rays, while 
every convex compact subset has extreme points. This will follow from the 
Bauer's maximum principle for convex compact sets (see Choquet [1969, 
Theorem 25.9]). 

1.4.10 Theorem (Bauer's maximum principle). Let Κ be a convex compact subset 
of a real locally convex Hausdorff space and u: Κ -*• (R a convex upper semi-con-
tinuous function. Then there exists x0 e deK such that u(x0) = max{u(x)|x e X}. 

In particular, deK is non-empty. 

In addition to the above result, the next comparison principle is useful in 
comparing semi-continuous convex and concave functions. For a proof see 
Bauer [1963], 


