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Preface

For almost two decades, several topological arguments have been used systemat-
ically in quantum field theory. These methods have been applied mainly in the
study of the semiclassical approximation of the theory and, also, in the description
of physical phenomena at low energy. Apart from a few exceptions, like the dis-
covery of the general structure of anomalies, the applicability of these arguments
was controlled by the validity of certain limits in some given parameters. So, even
if the use of topological arguments has produced several important results, the fun-
damental structure of the field theory models has never been interpreted in purely
topological terms.

In this context, the revolution of the last few years is represented by the quan-
tum Chern-Simons field theory. In the Chern-Simons model, the applicability of
topological arguments is not restricted to a region in which the semiclassical ap-
proximation is valid. In fact, no kind of approximation is at all necessary. We need
not consider either low-energy limit or any other limit. The quantum Chem-Simons
theory is a "true" topological field theory; any observable and any result obtained
in this model has exclusively a topological origin and a topological meaning. The
Chern-Simons theory is exactly soluble at the full quantum level not only in R3

and in S3 but also in any closed, connected and orientable three-manifold M..
This series of lecture notes is devoted to the discussion of several aspects of the

quantum Chern-Simons field theory. In the first part of these notes, the relevant
properties of the model in R3 are studied by means of the standard methods used
in quantum field theory.

In the second part, it is shown how the observables of the Chern-Simons theory,
associated with knots and links in R3, can equivalently be described in more ab-
stract and purely topological terms. The exact solution of the model is obtained by
combining the general properties of the observables, which are consequences of the
symmetries of the system, with the numerical information derived in the canonical
approach. The expectation values of the observables have the form of polynomials
and represent the values of an ambient isotopy invariant of framed links in M3 (or
S3). A constructive method for the computation of the observables is presented
and the reconstruction theorems for the non-Abelian SU(N) Chern-Simons the-
ory are proved. The link polynomial defined by the Chern-Simons field theory
is characterized by the existing relations between satellites and their companions.
The structure of these relations is universal and is described by the representation
rings of the Lie algebras associated with compact simple Lie groups. For this rea-
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son, the invariant obtained in the Chern-Simons theory is called the universal link
polynomial.

In the last part of these notes, the solution of the theory in any closed, connected
and orientable three-manifold M. is constructed by means of the operator surgery
method. The case in which the gauge group is S U (2) is studied in detail. A
certain set of models based on the U (I) gauge group is also considered. The three-
manifold invariant, naturally associated with the Chern-Simons theory, is defined
and its values are computed for several examples of three-manifolds. The present
notes are essentially self-contained and include some introductory reviews of knot
theory and surgery on three-manifolds.

The topological and algebraic structures described in these lectures are known
in mathematics. The purpose of the present notes is to show how these structures
emerge from the physical point of view. Intuition and working hypotheses play a
fundamental role in physics; for this reason, the solution of the quantum Chern-
Simons field theory is presented on the basis of inductive and constructive methods.
For example, new rules for the computation of the universal link polynomial are
introduced; these rules are derived from the properties of the field theory and are
illustrated by means of several examples. Quite often, physical arguments will be
used in the place of more rigorous but technical derivations. Consequently, some
of the proofs have been simplified and their completion is left to the reader.

The quantum Chern-Simons field theory provides an intrinsic three-dimensional
description of the link invariants. Thus, several features of the link polynomials
admit a simple physical interpretation which is a consequence of the symmetry
properties of the field theory. The interplay between the symmetries of the field
theory and the properties of the link polynomials plays a crucial role in our discus-
sion. Symmetry arguments will be used to derive satellite relations and to construct
three-manifold invariants. The rigorous and formal proofs on the subject, which
can be found in mathematical literature, are essentially based on the algebraic
properties of certain modular Hopf algebras. Our approach, instead, gives promi-
nence to the symmetry principles. On the one hand, this shows that the different
constructions of three-manifold invariants, which have been produced in literature,
represent slightly different versions of the same general structure. On the other
hand, we will see how symmetry arguments can conveniently be used to simplify
the explicit computation of these invariants.

The quantum Chern-Simons theory is the first example of a non-trivial gauge
field theory whose exact solution can be explicitly produced in any three-manifold
A4. The algebraic operations, involved in the computation of the observables, are
surprisingly simple and elementary. The resulting theory is remarkable; its structure
presents several new quantum field theory aspects and has deep connections with
different fields of physics and mathematics. It is not clear how useful, in the
description of physical phenomena, the possible applications of the Chern-Simons
theory will be. Certainly, the Chern-Simons model represents an important starting
point for new developments in quantum field theory.
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Chapter 1

Introduction

Quantum field theories provide a very accurate description of physical phenomena.
Local gauge invariance turns out to be one of the basic principles underlying the
construction of realistic particle models. On the other hand, the inclusion of quan-
tum gravitational effects within some unified theory of the fundamental processes
should be based on the principle of general covariance. In these lectures, we shall
consider the case in which both gauge invariance and general covariance are real-
ized at the full quantum level in a particular class of non-trivial field theories in
three dimensions.

The models we shall consider and which are defined by a pure Chern-Simons
action are solvable and possess quite remarkable properties. The expectation values
of the basic observables of these systems can conveniently be expressed in terms
of polynomials of a certain variable which is a function of the coupling constant of
the theory. These polynomials, which are associated with knots and links, encode
some universal features of physics in two and three dimensions and, at the same
time, provide a useful set of invariants of three-manifolds. This introductory chap-
ter contains a preliminary discussion of some of the essential concepts we shall
encounter.

1.1 Quantum physics and classical electromagnetism

We shall begin our discussion with an example of quantum field theory compu-
tation in which some notions of classical electromagnetism are involved. Before
introducing the action of the model in which we are interested, it is useful to recall
a simple method of evaluating path-integrals.

There is a particular situation in which one can easily perform path-integral
computations; namely, when the system is characterized by a "quadratic" action
of the type

In equation (1.1), φ denotes the field (or the set of fields) of the model and Δ is
some differential operator. For the moment, we do not need to specify the explicit
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form of Δ nor the number of dimensions of the space-time manifold in which the
theory is defined. Let us introduce some external source coupled to the fields; we
shall be interested in computing the vacuum expectation value

"1 Ι( e ' J J < p ) = Z-i I αφ el*»m e ' J J < p , (1.2)

where

Ζ = / αφ βί5ϋ[φ}. (1.3)

The simplest way of computing the expression (1.2) is to perform a linear change
in the integration variables in the numerator so that the free path-integral factorizes
and then cancels out with the denominator. The whole idea is to put

φ = φ + ψ , (1-4)

where φ is a fixed classical configuration. Then, in the path-integral, it is assumed
that αφ = άψ because this is precisely the fundamental property which should
hold in any reasonable definition of integral. Now, the clever choice of φ is the
one for which i/r and φ decouple; this means

= Αφ + J = 0. (1.5)
0=?

Finally, in terms of the solution φ of equation (1.5), the expression (1.2) takes the
form

(1.6)

Of course, when no solution of equation (1.5) exists or when several inequiva-
lent solutions (with the same fixed boundary conditions) exist, this simple method
of computing the expectation value (1.2) may need some improvements. For the
purposes of the present introductory section, however, it is not necessary to discuss
in detail these more complicated situations.

Let us now consider the Abelian Chern-Simons action [1,2]

a . - --- -, 0·7)O7t
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In this example, the vector field Αμ is the analogue of φ , the differential operator
(£/4ττ) €μνρ dv is the analogue of Δ and the source term is chosen to be

f / 0 ->> f d3

J J
Αμ = βλ ( Αμαχμ+62( Αμαχμ . (1.8)

In the expression (1.8), the line integrals are performed along the two oriented
non-intersecting closed paths C\ and C2 in M3 shown in Fig. 1.1.

C

Figure 1.1.

Let us introduce a parametrization >'μ(5) (0 < s < 1) for C\ and ζμ(ί) (0 < t < 1)
for C2. The source Jμ appearing in equation (1.8) can be written as

r]
<,/l(r\ .s-Vv _ Λ , ί Γ · » ϊ j_ *~ I ^t^^ft\^J»(x) = e{ I dsyti(s)8\x-y(s})+e2 I dt έ μ(0 δά(χ - z(0). (1.9)

Jo Jo

In order to compute the expectation value (e J d x J' A" ) , we shall use the same
method as before. The vector field is decomposed into two parts

where the classical configuration Bfl(x) should satisfy the analogue of equa-
tion (1.5), that is

This equation is well known in classical electromagnetism; it shows the con-
nection between the magnetic field Βμ and the stationary current density which
originates the field itself. Finding the solution of equation (1 .11) means, in our
case, finding the expression of the magnetic field in the presence of two filamen-
tary wires (shown in Fig. 1.1) which carry the currents

/. = -*ιτ' /2 = ~e2
C-. (1.12)k k
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The solution of this problem is expressed by the so-called Ampere Law: the total
magnetic field is the linear combination

) , (1.13)

of the two components

and

generated by the wires Ci and C2 respectively.
In terms of the resulting magnetic field (1.13), the Chern-Simons vacuum ex-

pectation value of the source term takes the form

The expression (1.16), which is the analogue of equation (1.6), presents a prob-
lem: each line-integral of the magnetic field along a wire contains a self-interaction
part which has certain ambiguities. The solution to this problem will be discussed
in detail in Chapter 3. For the moment, one can conclude that, neglecting self-
interactions, the desired expectation value is given by

= exp -2ie,e2 - x(C,,C2) , (1.17)

where

X(C, ,C 2 ) = ^-i dxfi (f dyve^,p(*~y}" (1.18)4π 7C| Jc2 \x-yr
Note that, in the Abelian Chern-Simons theory, there are several field con-

figurations satisfying equation (1 .11 ) . Indeed, the longitudinal part of Βμ is not
constrained by equation (1.11). This means that any Βμ configuration, which dif-
fers from the classical expression (1.13) by the gradient of an arbitrary function,
still satisfies equation (1.11). Apparently, one has a situation in which the general
method leading to equation ( 1 .6) presents some ambiguities. In the Chern-Simons
model, however, these ambiguities are completely harmless because of the partic-
ular choice of the source, equation (1.9). Since we are considering closed paths,
the longitudinal part of Βμ is totally irrelevant (see equation (1.16)) and the re-
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suit shown in equation (1.17) is unique. In fact, as we shall see, equation (1.17)
represents the exact result (neglecting self-interactions, of course).

With the usual (right-handed) convention in the definition of the antisymmetric
tensor €μνρ (e1 2 3 = 1), the value of x(C\, CT) for the paths shown in Fig. 1.1 is

X(C, ,C 2 ) = 1 . (1.19)

The result (1.17) has a simple physical interpretation. The exponent in the ex-
pression (1.17) contains the circuitation along one closed path, say C\, of the
magnetic field generated by the second wire. This quantity is precisely the energy
gain ε of an imaginary magnetic monopole moving along C\ in the presence of
the magnetic field generated by C^. For each "winding" of the magnetic monopole
around €2, the energy increases by a definite amount which, in our units, is given
by S = —2e\62(2n/k). For arbitrary non-intersecting closed paths C\ and €2, the
value of the expression (1.18) (called the Gauss integral) is an integer representing
exactly how many times C\ "winds" CT.

One of the most remarkable features of the Abelian Chern-Simons theory is that
the expectation value (1.17) is invariant under smooth deformations of the paths
C\ and €2. We would now like to understand the reasons for this behaviour and
construct new models possessing the same property.

1.2 Abelian Chern-Simons action

All the information on the physics of the different systems is encoded in their
action; so, let us reconsider the Abelian Chern-Simons (CS) action [1,2]

o = ^- fοπ J
(1.20)

The functional (1.20) is invariant under (Abelian) gauge transformations acting
on the vector field Αμ(χ). The quantization of the system defined by the action
(1.20) will be discussed in Chapter 3.

The action S0 is also invariant under general coordinate transformations with
A , t ( x ) transforming as a covariant vector. This last property is called general
covariance. Note that, in our example, general covariance is realized in quite a
peculiar way. In ordinary field theories, the action is not invariant under general
coordinate transformations (acting on the fields of the theory) unless the metric also
is a dynamical variable. In the Abelian CS model, the metric that one can introduce
on the three-manifold is not a variable (or a "field") of the theory. Nevertheless, the
action is invariant under general coordinate transformations for the simple reason
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that 5o does not depend on the metric at all. In fact, SQ can be understood as the
integral of a three-form on a three-manifold.

Gauge invariance and general covariance are the real reasons for the properties
of the expectation value (1.17) that we have observed. Gauge invariance forced us
to choose the external source to be expressed in terms of closed paths (conserved
external currents), since only gauge-invariant quantities have an intrinsic mean-
ing in gauge theories. Because of general covariance, the final result (1.17) only
depends on the topological structure of the closed contours. This is why there is
invariance under smooth deformations of the paths in E3.

In the previous section, the source term was represented by the simple two-
component link shown in Fig. 1.1. But one can consider more complicated links,
of course; an example is shown in Fig. 1.2.

Figure 1.2.

Exercise. Consider the Abelian CS theory with a source term corresponding to
the link shown in Fig. 1.2. In this case, what is the expression (neglecting self-
interactions) of the vacuum expectation value {e J * J " ) ?

1.3 Non- Abelian Chern-Simons action
The action (1.20) can be generalized L 1,3,4] to the case in which the gauge group
G is a non-Abelian. The corresponding CS action reads

= A t ί? (1-21)

where Αμ = Αα
μ Τ", { Τ" } are the Hermitian generators of a compact simple

Lie group G in its defining representation and the real parameter k is the coupling
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constant of the model. The integral appearing in equation (1.21) has to be performed
in M3.

The expectation values { ( W ( L ) ) } of Wilson line operators associated with
oriented links {L} represent a useful set of gauge-invariant observables for the CS
theory. Given an oriented knot C and an irreducible representation p of G, the
associated Wilson line operator is

WP(C) = W(C; p) = Tr Pexp / Φ Λ" U) Τ« αχμ , (1.22)

where the path ordering is performed along C and { T"p) } are the generators of
G in the p representation. Consider now an oriented link L with m components
{C|, . . . , Cm] and let p/ be the irreducible representation of G associated to the
i-th component C, of L. The vacuum expectation values

(01 .
( 0 | 0 )

defined for generic links and arbitrary representations {p,·}, are the gauge-invariant
observables in which we are interested.

We will show that the expectation values (1.23) are well defined. The proof
is divided into two parts: first, one has to verify that the quantum CS theory is
renormal izable (the renormalized correlation functions satisfy an action principle
based on the functional (1.21)) and, second, the precise meaning of the composite
operator W(C; p) at the quantum level must be specified. We will see that, in
order to preserve general covariance, the Wilson line operators must be defined on
framed knots.

As a consequence of general covariance, ( W(L) } is invariant under smooth
deformations of the framed link L in M3. Therefore, the set { { W(L) ) } defines a
link invariant of the same type considered in knot theory and the main problem
is how to compute its values on different framed links in closed form. We will
derive the rules which permit the computation of { W(L) } with a finite number of
operations. It turns out that ( W(L) ) takes the form of a polynomial in a certain
complex variable which is a function of the coupling constant k of the theory.

After { ( W(L) ) } have been found, the main issue is to identify these polyno-
mials. It turns out that the link invariants obtained in the CS theory are those
associated with the braid group representations described by the quasi-tensor cat-
egory of quasi-triangular quasi-Hopf (QTQH) algebras associated to the quantum
deformations of ordinary Lie algebras. In this sense, the obtained link polynomials
are not completely unknown. In quite general terms, the link invariants described
by the quasi-tensor category of QTQH algebras are called by Drinfeld the universal
link (or knot) invariants [5]. For this reason, the polynomial E ( L ) , associated to
the expectation value ( W(L) >, is called the universal link polynomial.
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The link invariant E(L) is of particular interest for knot theory because it is the
natural generalization of the Jones polynomial |6]. The most important aspect of
this generalization is based on the existence of a Lie algebra structure underlying the
construction of the universal link polynomial. The expectation values { ( W(L)}},
computed in the case in which all the components of the links are associated
with the fundamental representation of the gauge group G = S t/(2), essentially
give the Jones polynomial. The first generalization consists of associating arbitrary
representations of G = SU(2) to the different components of the links. In this case,
one obtains a new polynomial, which can be called the extended Jones polynomial
because the SU(2) Lie algebra remains the same. A further step consists of taking
a generic real simple Lie algebra as the Lie algebra of the gauge group G and
computing { ( W ( L ) ) } when the different components of the links are associated
with arbitrary representations of G. This is the case considered in these lectures.
The general properties of the universal link polynomial associated with an arbitrary
simple Lie algebra are obtained and the proof of the complete reconstruction of
E ( L ) in the case of {A,,} algebras is presented.

The physics of the model described by the CS action is quite peculiar. In a (2+1)
decomposition of 1R3, any fixed-time plane may intersect a given link at a certain
number of points. These punctures can be interpreted as point-like particles whose
world-lines represent the components of the link. As time goes by, these particles
may move on the space plane; furthermore, two of them may either annihilate or
be produced. A possible world-line configuration is shown in Fig. 1.3.

Figure 1.3.
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The expectation value { W ( L ) } can be interpreted as the quantum mechanical
amplitude associated with the whole process described by the link L. For generic-
values of k, each particle (puncture) is characterized by a quantum number which
labels the inequivalent irreducible representations of the gauge group G. For inte-
ger values of k, something special happens: the number of the different kinds of
particles is finite. For example, when G — SU(2) and k > 2, only \k\ — 2 different
kinds of particles exist. For |λ·| = 2, the state space is one-dimensional and any
state vector is proportional to the vacuum vector. When \k\ = 1, the state space
is two-dimensional; in addition to the vacuum state, there is only one nontrivial
particle state.

A further generalization of the CS theory consists of considering the model,
described by the action (1 .21) , in a generic three-manifold „Vf which is closed,
connected and orientable. In this case, the computation of the expectation values,
denoted by { ( W ( L ) ) . }, can be performed by means of an operator realization

, *Ί
of surgery and the expectation values in Μ can be expressed as appropriate linear
combinations of the expectation values in R3 which must be evaluated for integer
values of the coupling constant k. We shall give the details of the surgery con-
struction in the case in which G = SU(2). The three-manifold invariant defined
by the CS action is also constructed and the values taken by this invariant in some
examples of manifolds are given.

The importance of the action (1 .21) for knot theory and the study of three-
manifolds has been pointed out by Schwarz [ l ] and Atiyah [3]. Further develop-
ments on the subject, together with a large number of possible connections of the
CS theory with different areas of mathematics and physics, have been discussed
by Witten in Ref.|4), in which several conjectures have been formulated. The
first rigorous mathematical construction of the three-manifold invariants, whose
existence was conjectured in [4], has been produced by Reshetikhin and Turaev
(7,8]. These authors have given a precise definition of these invariants by means
of certain modular Hopf algebras. We shall use a different approach based on the
Feynman path-integral. But our final results perfectly agree with the Reshetikhin-
Turaev invariants. Only recently has the exact solution of the quantum CS theory
been produced [9,10,11 ]. Its possible realistic applications in physics have not been
completely explored.



Chapter 2

Basic notions of knot theory

The full program of classifying and studying the properties of knots and links
that one can construct in R3 was formulated on the basis of physical motivations
in the second half of the nineteenth century. The interest in this subject mainly
originated from the vortex-atoms model proposed by J.C. Maxwell, P.G. Tail and
W. Thomson around 1867. Several excellent results have been obtained in knot
theory and important developments, connecting different fields of mathematics,
have taken place. In this chapter, a few definitions and results are briefly recalled;
a more detailed and complete exposition can be found, for instance, in [12,13]
and in the references quoted there. We shall begin by considering links in R3 or,
equivalently, in the three-sphere S3. The more general case of an arbitrary closed,
connected and orientable three-manifold M will be discussed in Chapter 16.

2.1 Ambient and regular isotopy

A smooth non-intersecting closed path C in R3 is called a knot. Since the defini-
tion of the holonomy requires an orientation for the path, we will always consider
oriented knots. An oriented link L with m components is the union of m ori-
ented non-intersecting closed paths. The m components of L will be denoted by
{Ci, C a , . . . , Cm). Smooth deformations in the ambient space do not modify the
"topological" properties of links. Two links L\ and LI in R3 are called ambient
isotopic if LI can be smoothly connected with L^ in R3. If one is interested in the
topological properties of links, only the equivalence classes of ambient isotopic
links are relevant, of course.

A convenient description of links is given in terms of diagrams obtained by
projecting the links on a plane. In order to avoid all ambiguities, one usually
considers link diagrams containing only simple crossing points; at each crossing
point the choice of over/under crossing is specified, as shown for example in
Fig. 1.1 and Fig. 1.2. Given two link diagrams D\ and D2, the associated links L\
and L 2 are ambient isotopic if and only if a finite sequence of Reidemeister moves
(shown in Fig. 2.1) which transforms D\ into D-ι exists.

Reidemeister moves (RM) are very important in knot theory because they encode
the symmetry structure which is relevant for the link classification problem. Indeed,
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Figure 2.1.

constructing link invariants of ambient isotopy means finding invariants of the
symmetry group generated by the RM. Several different methods of constructing
link invariants have been discovered and some of them will be mentioned here.
Before describing some explicit examples, let us analyse the RM a little more
carefully. Reidemeister moves of type / are very special. In fact, one can eliminate
them from the list of admissible moves. In this way, one can define an interesting
structure which plays an important role in the construction of the universal link
polynomial.

Two link diagrams D{ and ΟΊ related by RM of types // and / / / only are
called regular isotopic. Consider now the equivalence classes of regular isotopic
link diagrams. A useful invariant of regular isotopy is the writhe number
which is defined for any link diagram DL by

(2.1)
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The sum in equation (2. 1 ) is performed over all the crossing points of the link
diagram D ι and

±\, (2.2)

where L± are shown in Fig. 2.2. The configurations L+ and L_ will be called
overcrossing and undercrossing respectively.

Figure 2.2.

The proof that w(Di) is a regular isotopy invariant is very simple; as a matter
of fact, it is immediately verified that w(D^} is invariant under RM of types //
and / / / .

The concept of regular isotopy is useful because, by eliminating the RM of type
/, one does not lose any information concerning the topology of links; on the
contrary, one gains a free variable for each component of the link. In fact, each
equivalence class of ambient isotopy contains, by definition, all the equivalence
classes of regular isotopy which are connected by RM of type /. Each RM of
type / acts only on a single line of the diagrams; therefore, it can modify only the
writhe number of a single component of the link diagrams. This being the case,
each equivalence class of ambient isotopy corresponding to a link in R3 contains an
infinite number of equivalence classes of regular isotopy, which are labelled by the
writhe numbers {u>(C,)} of the different components {C,·} of the link. The crucial
point is that one can give [ 13| the following interpretation of the above conclusion.
The equivalence classes of regular isotopic link diagrams describe ambient isotopy
classes of links in R3 in which each component is characterized by an integer
number which, in turn, is an ambient isotopy invariant.

Now, suppose that one replaces links made of, say, strings with links made of
oriented bands. The topology of the links is not modified; the only change is that
for each component C, of the link we now have an extra variable T(d) telling
us how many times the oriented band is twisted. The twist Τ of the band is an
ambient isotopy invariant and therefore we are precisely in the same conditions as
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above. In conclusion, one can represent the equivalence classes of ambient isotopic
links made of bands with the equivalence classes of regular isotopic link diagrams.
The only thing which remains to be fixed is the connection between the writhe
number u>(C/) and the the value of the twist T(d) of each component C, of the
links. The simplest choice is

T(d) = w(d). (2.3)

With the convention (2.3), the band shown in Fig. 2.3(a), for example, is repre-
sented by the link diagram shown in Fig. 2.3(b).

The importance of regular isotopy for the CS theory is due to the fact that, in
studying the properties of the expectation values { ( W ( L ) ) }. one has to consider
framed links. This means that for each component C of the links one has to
introduce another closed and oriented path C/ called the framing of C. We will
discuss this point in detail in Chapter 3. For the moment, imagine that C/ lies
within an infinitesimal neighbourhood of C, with the condition that C and C t- never
intersect. Moreover, C/ is always oriented in the same direction as C (i.e., C and
Cf coincide in the limit in which the thickness of the neighbourhood vanishes).
An example of a framed knot is shown in Fig. 2.4.

(a) (b)

Figure 2.3.

Since C and C/ can be considered to be the two components of the boundary
of an oriented band, framed links can be interpreted as links made of bands. Con-
sequently, we will represent oriented framed links in R3 with the regular isotopy
classes of link diagrams with the identification (2.3); this representation will be
called vertical framing. In order to simplify the notations, framed links in R3 and
their corresponding link diagrams in vertical framing will be indicated by the same
symbol.
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Figure 2.4. The unknot (solid line) with a particular framing (dashed line).

RM of type / are very peculiar for another reason too; as we shall see, they
are the only moves in which the partial closure of braids is involved. As far as
RM of types // and / / / are concerned, one should note that they essentially
determine the algebraic structure of the Artin braid group Bn. For open braids,
the invariance under RM of type / / i s quite trivial because this invariance is
automatically satisfied in terms of the Bn generators. However, in considering
the closure of braids, RM of type // have the important effect of associating
the conjugacy classes of Bn to the links. Finally, let us consider the RM of type
/ / / ; they represent the main feature of the braid group and enter directly the
defining relations satisfied by the B„ generators. Finding a complete classification
of the inequivalent realizations of the RM of type / / / i s still an open problem.
In considering matrix representations of Bn and with an appropriate choice of the
form of the generators, RM of type / / / give origin to the famous quantum Yang-
Baxter equation. Some relevant properties of the braid group will be considered in
Chapter 8.

2.2 Link invariants

In this section some examples of link invariants are reported. Consider a two-
component oriented link L in R3 with components C] and C^ and let DL, D\
and Ü2 be the associated diagrams. As we have stated above, W(DL) is a regular
isotopy invariant; it is easy to see that also u;(Di) and w(D-i) are separately
regular isotopy invariants. Let us now try to construct an invariant of ambient
isotopy by combining these three writhe numbers. Under a RM of type /, w(Di)
and w(D\} + w(D2) transform as

= ±1. (2.4)
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Therefore, the combination

X(C,,C2) = l-[w(DL)-w(Dl)-w(D2)] (2.5)

is an ambient isotopy invariant. The invariant x(C\,C2) is called the linking
number of C\ and €2- Roughly speaking, the value of x(C\,C2) tells us how
many times C2 winds around C\. This quantity can also be expressed in terms of
the Gauss integral

C|
X ( C i , C2) = -(> αχμ( dyv 6μνρ , (2.6).r -

where the distance \x — y\ is computed by means of the ordinary flat metric in R3.
This example shows that the same link invariant can be constructed by using

very different methods. In equation (2.5), χ is obtained through computations
performed by looking at the link diagrams, whereas equation (2.6) provides a more
direct geometrical interpretation of χ. The expression (2.5) has to be computed on
a specific link diagram but the result, being ambient isotopic, does not depend
on the particular choice of this diagram. Similarly, in the expression (2.6) the
integrand depends on the metric Bflv of R3, but the result of the integral is metric-
independent: it depends exclusively on the topology. It is obvious that, for explicit
computations, equation (2.5) is more practical to use than the expression (2.6).
Usually, the invariants constructed by operating on the link diagrams are easier to
compute than those constructed by means of geometrically more intrinsic methods.

Equations (2.5) and (2.6) are useful for illustrating the strategy pursued in solving
the CS theory. The contributions to { W(L) ) obtained, for instance, by computing
the Feynman diagrams are the analogue of the expression (2.6) and are in general
quite difficult to evaluate. The idea is to find the analogue of equation (2.5); that
is, all the contributions of the Feynman diagrams will be expressed in terms of
simple algebraic operations based on the structure of the link diagrams.

As we have already said, a framed oriented knot C with framing C/ can be
interpreted as a knot made of a band; the twist Τ of this band is simply given by

Τ = x(C,Cf). (2.7)

Among the several link invariants that have been discovered, there are the so-
called link polynomials . Some of them are strictly connected with the universal link
polynomial described by the CS theory and their construction is simply formulated
in terms of the concept of the skein relation. Three oriented links L+, L_ and L0
are skein related if they have diagrams which are identical except for a small part
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Ό

Figure 2.5.

contained inside a fixed open disc of the plane of the pictures. Moreover, inside
this disc the three diagrams look as shown in Fig. 2.5.

The Alexander-Conway polynomial V(L; z), associated to the link L, is defined
by [14]

(i) ambient isotopy invariance,
(ii) V(i/; z) = 1 ,
(iii) V(L+; z) - V(L_; z) = ζ V(L0; ζ ) , (2.8)

where U is the unknotted knot and condition (ii) fixes the normalization. With
our notations, V(L; z) is also called the Conway potential function and it is a
(finite) Laurent polynomial in the variable z with integer coefficients. Of course,
if V(L i ; z) ^ V(L2; z), then the two links L\ and LI are not ambient isotopic.
However, it is easy to find examples of links which are not ambient isotopic but
have the same Alexander-Conway polynomial.

The Jones polynomial V(L\ q [ / 2 } e Z [ q ± l / 2 ] is defined by [6]

(i) ambient isotopy invariance,
(ii) V(U;q1/2) = 1 ,
(iii) qV(L + )-q-lV(L-) = (q]/2 - <r'/2) V(L0). (2.9)

The V(L) polynomial is more selective than V(L); however, there are still ambient
non-isotopic links with the same Jones polynomial. Our convention on the form of
the exchange relation (2.9) should be noted; the dependence of equation (2.9) on the
variable q is not standard. In these notations, the field theory results take a simple
form. In Chapter 12, we shall compare our definition of the Jones polynomial with
the standard convention used in mathematics.

The two-variable HOMFLY polynomial P(L\ r, z) is defined by [15J
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(i) ambient isotopy invariance,
(ii) P ( U ; t , z ) = 1 ,
(iii) t P(L+) - r1 P(L_) - z P(L0) , (2.10)

and it represents essentially the most general polynomial [16] constructed by
means of the skein relation involving the configurations shown in Fig. 2.5. In
fact, P(L\ t, z) reduces to the Alexander-Conway and Jones polynomials with the
obvious choices for the values of the variables t and z. The HOMFLY polynomial
also does not provide a complete classification of knots or links.

A common feature of all these polynomials is that, by means of the skein rela-
tion, they can be easily constructed by analysing the link diagrams. By using the
conditions (i) and (iii) recursively, the polynomial of whatever link can be written
in terms of the polynomial of the unknotted knot i/, which is conventionally taken
to be the identity. At this stage, it is not completely obvious that the construction
based on the recursive use of the skein relation is well defined. Several different
proofs of the internal consistency of the defining conditions (i), (ii) and (iii) have
been produced in literature, see for instance [6,15,17].

By looking at the defining conditions (2.8)-(2. 10), one notes that the progress in
the construction of the "classical" link polynomials has been made by modifying
the skein (or exchange) relation. However, along this line it is hard to imagine how
to improve the HOMFLY polynomial significantly. In fact, the strategy leading to
the universal link polynomial is to come back to the Jones polynomial and provide
it with a Lie algebra interpretation.

We conclude this section by considering a link polynomial of regular isotopy
which is of particular interest for the CS theory. The S(L: α, β, ζ) polynomial [18]
is defined by

(i) regular isotopy invariance,
(ii) S(f/0) = 1 ,
(iii) 5 (L ( + ) )=aS(L ( 0 ) ) , S(L (->) = cr1 S(L(0)) , (2 .11)
(iv)

where L (± ) and L< 0 ) are shown in Fig. 2.6 and f/() is the unknotted knot with
zero writhe. The use of a simplified notation should cause no problems here. From
the definition (2.1 1) it is clear that S(L) is defined on the equivalence classes of
regular isotopic link diagrams or, equivalently, on the set of framed links.

The polynomial S(L) was introduced in Ref.[18] to describe the behaviour of
the Wilson line operators when the link components are associated with certain
representations of the gauge group. S(L) also can be constructed by using the
skein relation recursively and is related [18] to the HOMFLY polynomial by

P(L;t=a , z ) = α~"'α) 5(L; α. β, ζ) . (2.12)



18 2. Basic notions of knot theory

to
L(0)

Figure 2.6.

The factor multiplying S(L) in equation (2.12) just compensates the covariant vari-
ation of S(L) under RM of type /. Because of the identity (2.12), the information
concerning the link classification problem contained in S(L) and P(L) is essen-
tially the same. However, the S(L) polynomial is particularly significant; as we
shall see in Chapter 8, S(L) is in a way the ancestor of all the polynomials which
are obtained in Hecke algebra representations of the braid group. Moreover, the
structure of the relations (2.11) naturally extends to the general case described by
E(L).

Clearly, all the link polynomials defined by a skein relation represent invariants
of links in E3 and of links in S3 as well. Indeed, in the construction of the invariant
what is important is the fact that any link is contained in the interior of a three-ball
where the ordinary skein relation holds. We shall return to this important point
later.

2.3 Framing and satellites

This section completes our rapid review of knot theory and introduces several
definitions and concepts which are useful for our discussion. Consider a knot
C cE3 or in S3 and the two-dimensional disc D2 (i.e. the unit ball in R2 centered
at the origin). If we represent D2 in the complex plane, its points have coordinates
(r eie) with 0 < r < 1. An embedding / : C χ D2 -» E3, such that f(x, 0) = χ
for χ € C, defines a tubular neighbourhood of C. In other words, a tubular
neighbourhood of C is just a solid torus whose core is C, as shown in Fig. 2.7.

A solid torus V is a three-dimensional space homeomorphic with S1 χ D2;
a specified homeomorphism h : S1 χ D2 -> V is called a framing of V.
In Chapter 16, we shall analyse in detail the main properties of solid tori; for
the moment, only some useful definitions are recalled. A meridian of V is a
simple closed curve on the boundary dV of the solid torus which is essential
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Figure 2.7. Tubular neighbourhood of the knot C

Figure 2.8.

in 3V and is homotopically trivial in V. The curve μ, shown in Fig. 2.8, is a
meridian. A longitude of V is a closed curve in 3V intersecting some meridian of
V (transversally) in a single point. The curve λ, shown in Fig. 2.8, is a longitude.
For any given framing h of V, h(Sl χ 1) is a longitude. It should be noted that any
two meridians are ambient isotopic in V; in this sense, the meridian is an intrinsic
part of a solid torus. On the other hand, there is an infinite number of ambient
isotopy classes of longitudes. These classes can be classified by the linking number
of the longitude and the core of the solid torus.

Given a tubular neighbourhood Ν of the knot C and a specific framing h of
N, the longitude h(S] χ 1) defines a framing C/ of C. One can always assume
that the image of the core of Sl χ D2, namely h(Sl χ 0), coincides with the knot
C. Therefore, a given orientation for the knot C defines an orientation for S1 and,
consequently, C/ = h(Sl χ 1) also is oriented. In conclusion, a framing h of a
tubular neighbourhood of a knot C defines a framing C/ of C. Viceversa, a given
framing C/ of C determines, up to ambient isotopy, a unique framing h for a


