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Chapter 1
Language research and statistics

1.1. Statistics and analysis of variance in language research

Language research is based on data. Sometimes the data are quite subjective,
like the appreciation of voices or accents, or introspective, like the intuitions
of linguists on the well-formedness of utterances. In many situations an in-
trospective approach is warranted and one does not need quantitative or sta-
tistical methods to corroborate the scientific argumentation. However there
are many situations in which the language researcher needs to collect data
through a survey, in a field study, in an experiment, or in a language corpus.
Many linguistic subdisciplines use methods which are similar to the ways
researchers in the social sciences obtain and analyze data.

Researchers in these subdisciplines want to generalize the outcomes to
the population(s) from which they have taken one or more samples. The wish
to make generalizations entails the use of inductive statistics, the branch of
statistics which enables us to infer population characteristics. An example:
"Speakers in dialect A exhibit phonetic process X more often than speakers
of dialect B", on the basis of outcomes obtained in relatively small samples,
for instance 110 speakers of dialect A and 80 speakers of dialect B. As is the
case in psychology and sociology, sampling a population in such a way that
the sample is representative of the population under consideration in gender,
age, socio-economic status etc. is an important issue. Random sampling is a
skill in itself, especially in survey research.

This book does not deal with data collection but with data analysis, and,
more particularly, it deals with ANalysis Of VAriance, abbreviated ANOVA.
This technique is the main instrument for social scientists and their linguistic
colleagues to analyze the outcomes of research designs with more than two
treatments or groups. Moreover, analysis of variance enables the researcher
to assess the effects of more than one independent variable at the same time.
When data are obtained from participants of two different groups at four
points in time, we may want to know whether the outcomes of the two groups
differ; we may also want to know whether their outcomes change at different
rates.
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Often students and researchers need to apply analysis of variance to their
data although they may feel insecure about the basic principles of statisti-
cal testing. That is why in this book the treatment of analysis of variance is
preceded by two chapters which explain the use of t tests, type I and type
II errors and power analysis. These are fundamental concepts which consti-
tute the basis of statistical testing. Special attention is paid to an important
concept in experimental design: determining the size of the sample needed to
detect specific hypothesized effects in (the) population(s).

This book gives a comprehensive treatment of ANOVA. Technical and
more complete treatments can be found in Kirk (1995) and Winer, Brown,
and Michels (1991), but these two textbooks are fairly hard to comprehend
for those researchers in the field of language and speech behaviour who have
only attended an introductory course in statistics, perhaps based on specific
textbooks for language research like Butler (1985) and Woods, Fletcher, and
Hughes (1986). Many language researchers seem to use ANOVA simply by
following the HELP files of statistical packages like SPSS or books which
are often obsolete as far as current developments are concerned. We want to
explain to language researchers what they are doing when they use ANOVA
and which options are available. In addition, we would like to inform them
about developments in post hoc comparisons, power analysis, standards in
reporting statistics, ways of dealing with missing data, and the pros and cons
of the FlxF2 approach currently used in psycholinguistic research. Another
problem with books on ANOVA is that they only deal with examples from
the social sciences and are often either too simple or too complicated for the
user of statistics.

In Chapters 4 to 9 we cover the most widely used experimental designs
step by step, showing the researcher how the analyses have to be executed.
Chapters 9 and 10 are slightly more complicated than the others we admit, but
we wanted to highlight more recent developments in the analysis of multi-
group data: different estimation procedures, multilevel analysis, bootstrap
and randomization tests. A specific section in Chapter 9 deals with missing
data, a common phenomenon in psycho- and sociolinguistic research, which
is more relevant than most researchers assume: The standard approach in re-
porting analysis of variance is not to deal with missing data.

The structure of a chapter is determined by the statistical concepts and
analyses handled, but the following sections return in each chapter:

ο Preview: Information is provided about what one is going to read.
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ο Technical sections with examples taken from linguistic research.
ο Terms and concepts: Summary of the concepts presented in the chapter.
ο Statistical reporting: Examples are presented, mostly based on sugges-

tions made by the American Psychological Association (ΑΡΑ).
ο Exercises.

1.2. Variables

There are a number of data collection methods in linguistics, such as survey
research, experimental research and corpus research. In all these methods the
variable concept plays a key role. A variable is a property or characteristic
of a person, a condition, an object, or any other research element. These are
defined by the research questions and the way in which they are made oper-
ational in the research procedures. In the examples we use in this book, the
elements are often subjects, informants, language users or dialect speakers.
We usually call them participants, to meet the more recent standard termi-
nology in reporting research.

Often we want to know whether variable A affects scores obtained on vari-
able B. We call variable A an independent variable, and variable Β a depen-
dent variable, a distinction which is particularly familiar in (quasi-)experi-
mental research. The independent variable is not always under the control
of the researcher. If, for instance, speakers of dialect A, live in rural areas,
whereas speakers of dialect A2 are mainly found in urban areas, the researcher
cannot change this fact. Being a speaker of dialect A2 is connected to being
an urbanite. In genuinely experimental research the investigator has the inde-
pendent variable(s) under full control. He/she can deliberately introduce four
levels of noise (50, 60, 70 and 80 dB) in which participants have to iden-
tify specific speech segments, or specify the number of syllables (1, 2, 3) of
carrier words which participants have to listen to. In the examples discussed
there is at least one dependent and one independent variable.

Variables have values which they get as a result of a measurement pro-
cedure. Measurement is the assignment of numerals to objects or events ac-
cording to rules, cf. Stevens (1946). The scale of measurement determines
the amount of information contained in the data (Anderson, Sweeney, and
Williams 1991: 19). There are four scales of measurement:

1. Nominal scale (also called 'categorical scale' or 'qualitative' scale).
Language background is a good example. One cannot say that English
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is a better or more sophisticated language background than Dutch. It
is simply a different language, the way an adjective is different from a
noun. A variable is nominal if it is used to label elements or observations
in order to categorize or classify them. All transformations are allowed
which leave classification unaffected: A, B and C can be transformed
into 7, δ, ε, into the numbers 1, 2 and 3, or the other way round, into 3,
2 and 1, and even into -5, 11236 and 432 etc. as long as the different
labels represent different classes. Objects measured on nominal scales
can only be distinguished from each other. They are equal or not equal,
i.e. they belong to the same class or category (= equal) or not (= not
equal); object Κ = object Μ or object Κ ̂  object M.

2. Ordinal scale. In addition to distinguishing objects (on the nominal
scale), we can also rank objects which are measured on an ordinal scale
(either object Κ > object Μ or object Μ > object K). Language com-
petence is an example of an ordinal scale. Advanced learners of English
know more about English than intermediate learners and the latter know
more than beginners. Students with these labels differ in their compe-
tence of English, and can be ordered on the variable 'competence of
English'. More information is available than information measured on
a nominal scale. We do not know, however, whether the difference be-
tween advanced and intermediate students is equal to the difference be-
tween an intermediate and a beginner. Theoretically all monotone trans-
formations are permitted, that is all transformation which leave the order
unaffected. Strictly speaking a monotone transformation of scale values
like 1, 2, 3, 4 (representing, for instance, degrees of harshness) into 1, 3,
37, 58 is permitted as the order is not affected. In practice, such a trans-
formation is disturbing, for the numbers suggest that we do have more
precise information. On an ordinal scale the intervals do not contain any
information.

3. Interval scale. If the difference between measurement levels is known,
the data are measured on an interval scale. For instance, the physical
difference between the two pitch values 100 and 120 Hz is equal to the
difference between 200 and 220 Hz (viz. 20 Hz). It is another question
whether the same holds for perceived pitch differences. Linear trans-
formations of the F(X) = aX +b type are permitted as they leave the
differences between scale values unaffected.

4. Ratio scale. An absolute requirement for a ratio scale is that a true zero
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value is defined on the scale. A car which does not cost anything ('is
for free') gets the value Ό' on this scale. Ratios make sense: 400 kilos
are twice as heavy as 200 kilos, and 200 kilos are twice as heavy as
100 kilos. This is not the case for data measured on an interval scale.
We cannot say that the coronation of Charlemagne (800 AD in Aix-la-
Chapelle) was twice as late as the 'Great Migration' (400 AD). We have
a zero value in our calendar time, but it is an arbitrary zero value. The
transformation F(X) = aX is permitted here. Although it changes the
absolute value of the difference, it does not change the relative value.
In contrast to the interval scale adding b to the transformation is not
permitted, as it would affect the absolute zero value.

The scale level on which variables are measured has consequences for the
statistical technique that can be applied. It is customary to say that t tests and
analysis of variance require strict interval data for the dependent variable. We
do not think this is the case. The robustness of these techniques is amazing,
but we postpone the discussion to Chapter 7.

A concrete example may illustrate the distinctions we make here. Let us
assume that we have a nominal variable 'region'. If a researcher wants to
know whether the nominal variable 'region' affects the duration of a vowel
associated with a sentence accent (measured in milliseconds), we have the
independent variable 'region' and the dependent variable 'duration'. Each
measurement carried out on speakers from the region in question, constitutes
a 'case'. In the following matrix we display nine cases rowwise, and two
variables columnwise. The first column contains the values of the dependent
variable, the second one the values of the independent variable.

Table 1.1. A data matrix with nine cases and two variables

case
1
2
3
4
5
6
7
8
9

region
1
1
1
2
2
2
3
3
3

duration
120.000
124.000
130.000
130.000
140.000
145.000
120.000
110.000
100.000
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Most statistical packages have a standard data format: Cases are repre-
sented row-wise, variables column-wise. Cases and variables are defined by
the research design, and a great variety of cases and variables is possible. In
the examples we present in our book we restrict ourselves to straightforward
research designs, where participants play the roles of cases. The data in Ta-
ble 1.1 show this data format. The independent variable 'region' is nominal
and distinguishes three regions. The dependent variable 'duration' is a ratio
variable with a true zero point. There are three cases per region.

Finally, we would like to say a few words about corpus research, which
has become very popular in the last two decades. The fact that large databases
have become available is an important factor in the increasing use of corpora
as sources of information, next to intelligent research tools. Very often the
outcome variables in this kind of research consist of 'counts' and relative
frequencies, often converted to percentages, like "X% of the sentences are
shorter than 10 words in text type A, whereas it is Y% in text type B". Most
of the time analysis of variance is not the appropriate tool for the analysis of
this kind of data. We refer to Baayen (2001) for word frequency statistics,
and to Oakes (1998) for statistics in corpus linguistics. For pitfalls in corpus
research see Rietveld, Van Hout, and Emestus (2004).

1.3. Designs

In this book we are going to deal with the statistical analysis of data obtained
in a number of so-called research designs, which define the research variables
and their status. Two relevant questions for the characterization of a design
with one dependent and one independent variable are the following:

ο How many levels or values has the independent variable? This question
relates to the number of classes or categories distinguished in the nom-
inal independent variable. If two levels are distinguished a t test can be
applied. With more than two classes an ANOVA technique is required.

ο Is the independent variable a between-subject factor or a within-subject
factor? In studying language acquisition we can track the development
over time by using different age groups, each group consisting of differ-
ent children. Suppose we test them with a vocabulary test. By comparing
the age groups we investigate vocabulary development; the differences
we observe are differences between children in different age groups. So
development is a between-participant factor, or in the classical terminol-
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ogy we use, a between-subject factor. It concerns differences between
groups. The other route is to track the development of a group of chil-
dren over time. The same group is tested repeatedly over a longer period
of time. Such a design is called longitudinal. The differences we observe
are differences within the same children. Development now is a within-
participant factor, or in the classical terminology, a within-subject factor.

The distinctions related to these two questions were taken into account in the
schedule in Table 1.2, where crossing the two questions delivers four basic
designs.

Table 1.2. Four basic designs based on the properties of the independent variable

independent variable two levels more than two levels
between-subject factor design 1 design 3

t test one-way ANOVA
independent samples

within-subject factor design 2 design 4
t test repeated measures
correlated samples ANOVA

On the next pages we present schedules of the four basic designs. They
are represented in the SPSS data matrix format. Research design 1 comprises
two groups (equal numbers of cases are not required). In experimental condi-
tions, the participants are assigned to the two groups in an a-select way. Table
1.3 distinguishes one independent variable, i.e. 'group' with two levels. The
dependent variable is called 'dep'.

We did not assign each case (participant) a unique case label. In practice,
we should do so, to be sure that the right data are assigned to the right partic-
ipant. In SPSS a case automatically gets a case label. We assigned the levels
1 and 2 to the 'group' variable, but, as said above, the real values are not rel-
evant as long as they are different. The values -103 and 3425 yield the same
outcomes in the statistical analysis.

Design 2 is represented in Table 1.4. In this design we have a within-subject
factor or variable, which means that the same participants are measured twice
in two different situations or conditions. In fact we have one group of partic-
ipants.

The data format in Table 1.4 looks completely different from the format
in Table 1.3. In both tables, each case (= participant) is represented by one
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Table 1.3. Design 1: SPSS data matrix, the independent between-subject factor or
variable 'group' with two levels

group
1
1
1
1
1
2
2
2
2
2

dep
15
16
28
32
12
20
32
16
11
14

Table 1.4. Design 2: SPSS data matrix, the independent within-subject factor is rep-
resented by two variables

condl
15
16
28
32
12

cond2
19
33
28
44
18

row. Participants in design 2 were measured twice, which is represented by
two variables, the first one containing the scores obtained in the first condi-
tion 'condl', and the second one the scores obtained in the second condition,
'cond2'. The constraint of having only two levels for the independent variable
is expressed by just having two variables to represent the 'condition' factor.

Design 3 is an expansion of design 1 for the number of levels of the 'group'
variable, which now distinguishes three values or levels. This can be seen in
Table 1.5, which does not contain values for the dependent variable.

Design 4 is an expansion of design 2. Instead of two variables we now have
three, which means that the participants were measured three times. The three
measurements constitute the within-subject factor. Such designs are often la-
belled as repeated measures designs. The SPSS data matrix format is given in
Table 1.6.
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Table 7.5. Design 3: SPSS data matrix, the independent between-subject variable
'group' has three levels

group
1
1
1
1
1
2
2
2
2
3
3
3
3

dep

Table 1.6. Design 4: SPSS data matrix, the independent within-subject factor 'time*
is represented by three variables, 'tl ', 't2', and 't3'

tl t2 t3

The subsequent step to expand the analytical possibilities is to increase
the number of factors. Starting from the single between-subject and within-
subject factor designs, we can add three designs:

ο design 5: a multifactorial design for between-subject factors
ο design 6: a multifactorial design for within-subject factors
ο design 7: a multifactorial mix of between- and within-subject factors.

Design 5 is a so-called completely randomized factorial design. The two in-
dependent variables could be gender (2 levels) and experimental condition
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(3 levels). Unequal numbers of participants often lead to problems, as we
discuss later (Chapter 7). An example with the variables gender and experi-
mental condition is given in Table 1.7.

Table 1.7. Design 5, SPSS data matrix, completely randomized factorial design with
two independent variables 'gender' and 'cond' (= condition)

cond
1
1
1
1
2
2
2
2
3
3
3
3

gender
1
1
2
2
1
1
2
2
1
1
2
2

dep

The variable 'dep' in Table 1.7 is the dependent variable. One may add other
independent variables, but the number of combinations will then quickly mul-
tiply. Adding a third facor with three levels results in 18 combinations. A
large number of cells impedes the interpretation of the statistical outcomes.

Design 6 is a multifactorial within-subject design. All participants are mea-
sured in all factor combinations, as is shown in Table 1.8. There are two
within-subject factors, 'time' (three levels) and 'condition' (two levels) which
means 6 combinations. Consequently, there are six variables in Table 1.8. The
subscript of factor 'c' changes more slowly than that of factor 't', moving
from left to right.

Finally, we have design 7, the so-called split-plot design, with at least one
within-subject factor and one between-subject factor. The latter refers to the
independent variable which distinguishes participants, like gender or socio-
economic status. In our example in Table 1.9 there is one between-subject
factor 'therapy' with two levels (two kinds of therapy) and one within-subject
factor, again 'time' with 3 levels: ΊΓ, Ί2', 't3'.
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Table 1.8. Design 6: SPSS data matrix, with two independent within-subject fac-
tors 'time' (three levels, indicated by ΊΓ, Ί2', Ί3') and 'condition' (two
levels, indicated by 'cl', 'c2'), represented by six variables

c l t l clt2 clt3 c2tl c2t2 c2t3

Table 1.9. Design 7: SPSS data matrix, with a between-subject factor 'therapy' and
an independent within-subject factor 'time' represented by three variables,
ΊΓ, 't2',and Ί3'

therapy
1
1
1
1
1
1
2
2
2
2
2
2

tl t2 t3

The three time variables in Table 1.9 could represent a pre-test, a post-test
and a post-test after a longer period of time, to check whether the effect of a
therapy remains or fades.
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Other aspects can complicate the designs we have discussed. In the multifac-
torial designs presented above, all combinations of levels of all factors occur.
The resulting design is called a crossed design. However, there are hierarchi-
cal designs as well, these are designs in which not all levels of one factor
co-occur within all levels of another factor. An example is the factor denom-
ination of hospitals (Christian and General) and the Hospitals themselves (3
Hospitals of each denomination). Each hospital is only listed in one denomi-
nation. We will discuss nesting in Chapter 5.

A final question here is whether the values of the independent variable
represent a sample. Do the independent variables (factors) involve random
samples of a large number of possible samples? If the answer is yes, we have
to deal with a so-called random factor, if not, the factor is called a fixed factor.
This distinction affects the way in which the data have to be analyzed, as we
discuss in Chapter 5.

1.4. Statistical packages

Hardly anyone carries out statistical analyses by hand or by pocket calculator.
It became the task of statistical computer packages, supplemented by dedi-
cated software for less common statistical procedures. We mention S AS: Sta-
tistical Analysis System, SPSS : Statistical Package for the Social Sciences,
MINITAB, S+, R. We do not want to express a preference for one of these, but
we chose SPSS (version 12.0) to provide examples of analysis in this book,
as we think it is the most widely known package in language research.

We will demonstrate how statistical analyses can be carried out in SPSS
with the Point-And-Click (PAC) window system. We show how to use SPSS
syntax in a number of cases, because the syntax approach offers extra options
and possibilities in carrying out a statistical analysis.



Chapter 2
Basic statistical procedures: one sample

2.1. Preview

In this chapter we review the basic principles of statistical testing. These prin-
ciples are reviewed on the basis of the one-sample design with the dependent
variable measured at the interval or ratio level. A one-sample design is a de-
sign in which a statistic of a sample drawn from a population, for instance a
mean value, is compared with a value which is hypothesized to hold for the
population. Obviously, a sample mean will hardly ever have the same value
as the hypothesized value (X is not μ): If we hypothesize that the mean life-
time of lightbulbs is 2000 hrs, and we draw a random sample of 100 bulbs,
the mean lifetime of that sample cannot be expected to be 2000 hrs, but a fig-
ure just above or below this, even if the mean liftetime in the population (μ)
is 2000 hrs. The question is what degree of deviation of the observed value
of the mean from the hypothesized value can be accepted without us having
doubts on the hypothesized mean value. The concept of sampling variability
is extremely important in this context (Section 2.2). In Section 2.3 we review
the procedure of hypothesis testing and in Section 2.4 the well-known t distri-
bution. Important concepts are statistical power and effect size (Section 2.5).
In Section 2.6 we discuss the calculation of the sample size needed to detect
a pre-defined effect size. These concepts tend to be (wrongly) neglected in
linguistic research, but they are very important in medical research. An ex-
ample is the test of a hypothesis that phoneticians only guess when they are
asked to assess the age of a speaker, against the hypothesis that their ratings
are correct in, for example, 75% of the cases.

2.2. Sampling variability

With continuous (interval or ratio) data, our interest is often focused on the
mean(s) of our sample(s). However, the mean only provides a summary of the
data we have collected. If we were to collect another sample of the same size,
it is extremely unlikely that precisely the same mean value will be obtained.
This phenomenon is called sampling variability.
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Let us look at a simple situation, the reaction time for recognizing a Dutch
word. The time taken to recognize the word 'rente' (= interest) was measured.
The mean time taken to recognize the word was 523 ms. This is the mean of
our sample of Dutch listeners, but we would like to be able to generalize this
to all native listeners of Dutch, not just the ones we happen to have sampled.
Our best guess of the mean time taken to recognise 'rente' in the population
is the mean of our sample, 523 ms. This is all the information available, apart
from the standard deviation, and we have no reason to expect it to be biased
in any way.

Of course, we would like to know whether the value of 523 ms - denoted
by X - is a good estimate of the population mean μ. In order to get an in-
tuitive feeling of the quality of our estimate, we have to know more about
the sampling variability. To that end we introduce the concepts of sampling
distribution and standard error, SE. If we take a large number of samples of,
for instance 30 observations, and calculate the mean of each sample, the sam-
ple means will be normally distributed around μ. Even if the distribution is
skewed or uniform, the distribution of sample means is normal. This impor-
tant fact is called the Central Limit Theorem, a theorem which plays a crucial
role in statistics. The distribution of sample means also has a standard devi-
ation, called the standard error, which can be estimated from the data itself.
If we can assume that the size of the sample is smaller than or equal to 5% of
the population size, the formula for the standard error of the sample means,
X is (cf. Anderson, Sweeny, and Williams 1991: 231):

= σ*=-η
 (1)

where σ is the standard deviation of the population of our data, and η is the
sample size. In most cases σ is unknown, and has to be estimated by the
standard deviation of the sample: s. In our example, s — 76.44 and n = 28,
thus the estimated standard error of the mean is 76.44/\/28 = 14.45.

The formula for the standard error summarizes two factors which affect
the stability of the estimates of the mean of a population μ: the variation in
the population σ (estimated by s) and the size of the sample n. The larger
the variation in the population is, the more we can expect sample means X
to vary - that is why s is in the numerator of the formula; the larger η is, the
smaller the fluctuations in sample mean values are.

The Central Limit Theorem tells us that a statistic like X is normally dis-
tributed with the mean μ and the standard deviation σγ'y^ if the number
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of observations is large enough (in theory the theorem holds when n ap-
proaches infinity, in practice n > 30 suffices). Supposing we have a normally
distributed population, with μ = 250 and σ = 50, we can randomly draw (by
compute) 500 samples of size η - 3, of η = 30, and of η — 100. The distri-
butions of the 500 samples for the three samples sizes are given in Figure
2.1.
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Figure 2.]. Distributions of 500 sample means for three different sample sizes:
η — 3, η = 30,« = 100, with samples drawn from a normally distributed
population with μ = 250 and σ = 50

The SE of the sampling distribution with η = 3, is 50/^3 = 28.90; the
SE for samples with η = 30 is 50/\/30 = 9.13. For sample size η = 100, we
get 50/VlOO = 5. The effect of η becomes quite clear: The larger η is, the
smaller the SE of the sampling distribution becomes. This is shown by the
three sample distributions in Figure 2.1. At the same time, we see that the
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samples have a normal distribution, particularly with larger sample sizes.
Figure 2.1 shows that the standard error of the sample mean decreases if

the sample size increases. Let us take a closer look at this relationship. Given
the sample mean, the standard error and the sample size are connected by
the square root function. Some examples are given in Table 2.1, in which a
standard deviation of 100 is assumed in the population.

Table 2.1. Relationship between sample sizes and the standard error, given a standard
deviation of 100

sample
size

1
4

16
64

256
1024

square root
sample size

1
2
4
8

16
32

standard
error

100
50
25

12.50
6.25

3.125

Starting at the value 1 the sample sizes are quadrupled. Going from sample
size 1 to 4, the standard error decreases with l/\/4 = 1/2, which entails a
drop of the standard error from 100 to 50. Quadrupling the sample of 4 to
16 again returns a drop by 1/2. The conclusion is obvious. Within the range
of smaller sample sizes, increasing the sample size has a large impact on
the standard error. For larger samples, there is still an impact, but it is less
pronounced.

2.3. Hypothesis testing: one sample

When an X - a sample mean - is available, we might like to know whether
its value is in accordance with an expectation. Especially in industrial set-
tings people might have expectations about the value of μ in the population,
and confront these with the actual sample means (for instance of the mean
lifetime of light bulbs). If the observed sample mean substantially deviates
from the expectation, then one has to revise the expectation (or sue the man-
ufacturer...). In this case the standard normal distribution - also called the
ζ distribution - offers help. As you may remember from basic statistics, a
transformation of a raw score into a z score yields a variable with 'standard
properties'. The resulting variable has a mean of 0, and a standard deviation
of 1. This is also written as /V(0,1). The equation is:
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Z —
Χ-μ

σ (2)

We can also standardize statistics like X or the difference between two means:
X } — X 2 . The only thing we need is the appropriate term for the denominator:
SE, which takes different forms for different statistics. For the statistic X the
ζ value is:

ζ = (3)

You may ask what standardization is for? Well it enables us to use tables to
find out whether the deviation of our sample mean from the hypothesized
population mean is a probable one. Let us assume that we have a hypothesis
about the mean μ of the reaction times mentioned above, for example 490 ms.
The sample mean is 523 ms, the standard deviation 76.44, and the sample size
28. Filling in these values we get:

ζ — 523 - 490
76.44/V/28

O TO— Z.Zo (4)

We just have to use the well-known tables of the standard normal distribution
to find out that the probability of obtaining a z equal to or larger than 2.28 is
0.0113: p(z > 2.28) = 0.0113. Below we reproduce two sections of this kind
of table which can be organized in two different ways:

1. The upper part (= a) in Table 2.2 shows the probability of obtaining ζ
values between 0 and the observed ζ value (= Z) (p(Q < ζ < Z)) (see
section a in Table 2.2); in order to obtain the probability of a z value
equal to or larger than the actual Z value, we subtract the probability
found from 0.50, as the probability surface left and right from z = 0
equals 0.50; cf. Figure 2.2, the distribution in the right panel.

2. The lower part (= b) in Table 2.2 shows the probability of obtaining
z values equal to or larger than the actual Z value; cf. Figure 2.2, the
distribution in the left panel.

Referring to our example, with z = 2.28, we obtain in part (a) of Table 2.2 at
the intersection of z = 2.2 and 0.08: 0.4887; 0.5000 - 0.4887 = 0.013. In part
(b) we get this result straight away: 0.013.
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Table 2.2. Sections of tables of the standardized normal distribution

a p(0<z<Z)
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

1.9
2.0
2.1
2.2

.4713

.4772

.4821

.4861

.4719

.4778

.4826

.4864

.4726

.4783

.4830

.4868

.4732

.4788

.4834

.4871

.4738

.4793

.4838

.4875

.4744

.4798

.4842

.4878

.4750

.4803

.4846

.4881

.4756

.4808

.4850

.4884

.4761

.4812

.4854

.4887

.4767

.4817

.4857

.4890
b p(z>Z)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

1.9
2.0
2.1
2.2

.0287

.0228

.0179

.0139

.0281

.0222

.0174

.0136

.0274

.0217

.0170

.0132

.0268

.0212

.0166

.0129

.0262

.0207

.0162

.0125

.0256

.0202

.0158

.0122

.0250

.0197

.0154

.0119

.0244

.0192

.0150

.0116

.0239

.0188

.0146

.0113

.0233

.0183

.0143

.0110

2.28 3 2.28 3

Figure 2.2. The z distribution, showing the probability areas, p, for z > 2.28 (left
panel) and 0 < z < 2.28 (right panel)

In fact we tested two hypotheses:

HQ The mean recognition time of 'rente' does not differ from 490 ms;
the difference found is simply due to sampling variability.

//, The mean recognition time of 'rente' differs from 490 ms.


