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Preface 

The old and venerable subject of geometry has been changed radically by the fa-
mous book of Hilbert [1899, 30] on the foundations of geometry. It was Hilbert's 
aim to give a simple axiomatic characterization of the real (Euclidean) geometries. 
He expressed the necessary continuity assumptions in terms of properties of an 
order. Indeed, the real projective plane is the only desarguesian ordered projec-
tive plane where every monotone sequence of points has a limit, see the elegant 
exposition in Coxeter [61]. 

However, the stipulation of an order excludes the geometries over the complex 
numbers (or over the quaternions or octonions) from the discussion. In order to 
include these geometries, the order properties have been replaced by topological 
assumptions (like local compactness and connectedness), see Kolmogoroff [32], 
Köthe [39], Skornjakov [54], Salzmann [55, 57], Freudenthal [57a,b]. This is the 
historical origin of topological geometry in the sense of this book. 

Topological geometry studies incidence geometries endowed with topologies 
which are compatible with the geometric structure. The prototype of a topological 
geometry is a topological projective plane, that is, a projective plane such that the 
two geometric operations of joining distinct points and intersecting distinct lines 
are continuous (with respect to given topologies on the point set and on the line 
set). Only few results can be proved about topological planes in general. In order to 
obtain deeper results, and in order to stay closer to the classical geometries, we con-
centrate on compact, connected projective planes. Planes of this type exist in abun-
dance; topologically they are very close to one of the four classical planes treated 
in Chapter 1, but they can deviate considerably from these classical planes in their 
incidence-geometric structure. Most theorems in this book have a 'homogeneity hy-
pothesis' requiring that the plane in question admits a collineation group which is 
large in some sense. Of course, there is a multitude of possibilities for the meaning 
of 'large'. It is a major theme here to consider compact projective planes with colli-
neation groups of large topological dimension. This approach connects group theory 
and geometry, in the spirit of F. Klein's Erlangen program. We shall indeed use 
various methods to describe a geometry in group-theoretic terms, see the remarks 

after (32.20). Usually, the groups appearing in our context turn out to be Lie groups. 

* 

In this book we consider mainly projective (or affine) planes. This restriction is 
made for conciseness. Let us comment briefly on some other types of incidence geo-
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metries (compare Buekenhout [95] for a panorama of incidence geometry). Topolo-
gical projective spaces have been considered by Misfeld [68], Kühne-Löwen [92] 
and others, see also Groh [86a,b]. It is a general phenomenon that spatial geome-
tries are automatically much more homogeneous than plane geometries; we just 
mention the validity of Desargues' theorem (and its consequences) in each pro-
jective space, and the more recent classification of all spherical buildings of rank 
at least 3 by Tits. This phenomenon effectuates a fundamental dichotomy between 
plane geometry and space geometry. Stable planes are a natural generalization of 
topological projective planes, leading to a rich theory, compare (31.26). Typical 
examples are obtained as open subgeometries of topological projective planes. The 
reader is referred to Grundhöfer-Löwen [95] and Steinke [95] for surveys on lo-
cally compact space geometries (including stable planes) and circle geometries, 
respectively. 

Projective planes are the same thing as generalized triangles, and the generalized 
polygons are precisely the buildings of rank 2. A theory of topological generalized 
polygons and of topological buildings is presently developing, see Burns-Spatzier 
[87], Knarr [90] and Kramer [94] for fundamental results in this direction, compare 
also Grundhöfer-Löwen [95] Section 6. These geometries are of particular inter-
est in differential geometry, see Thorbergsson [91, 92], Another connection with 
differential geometry is provided by the study of symmetric planes, see Löwen 
[79a,b, 81b], Seidel [90a, 91], H. Löwe [94, 95], Grundhöfer-Löwen [95] 5.27ff. 

* 

Now we give a rough description of the contents of this book (see also the 
introduction of each chapter). 

In Chapter 1, we consider in detail the classical projective planes over the real 
numbers, over the complex numbers, over Hamilton's quaternions, and over Cay-
ley's octonions; these classical division algebras are denoted by E , C, H, O. The 
four classical planes are the prime examples (and also the most homogeneous ex-
amples, as it turns out) of compact, connected projective planes. We describe the 
full collineation groups of the classical planes, as well as various interesting sub-
groups, like motion groups with respect to polarities. In the case of the octonion 
plane, this comprises a complete and elementary description of some exceptional 
Lie groups (and of their actions on the octonion plane), including proofs of their 
simplicity; e.g. the full collineation group has type E^, and the elliptic motion 
group is the compact group of type F4. 

Chapter 2 is a brief summary of notions and results concerning projective and 
affine planes, coordinates and collineations. It is meant as a reference for known 
facts which entirely belong to incidence geometry. 

In Chapter 3 we study planes on the point set R 2 , with lines which are homeo-
morphic to the real line R, so that each line is a curve in R 2 . This chapter is the 
most intuitive part of the book. If the parallel axiom is satisfied, that is, if we have 
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an affine plane, then we can form the usual projective completion, which leads to 
a (topologically) 2-dimensional compact projective plane. These planes have been 
studied by Salzmann in 1957-1967 with remarkable success. He proved that the 
full collineation group Σ of such a plane is a Lie group of dimension at most 8, 
that the real projective plane is characterized by the condition dim Σ > 4, 
and that the Moulton planes are the only planes of this type with dim Σ = 4. 
Furthermore, he explicitly classified all 2-dimensional compact projective planes 
with dim Σ = 3. All these classification results are proved in Chapter 3. 

In Chapter 4 we begin a systematic study of topological projective planes in 
general. Most results require compactness, and some results (like contractibility 
properties) are based on connectedness assumptions. Note that, for every prime p, 
the plane over the p-adic numbers provides an example of a compact, totally 
disconnected plane. We show that the four classical planes studied in Chapter 1 
are precisely the compact, connected Moufang planes; Moufang planes are defined 
by a very strong homogeneity condition, which implies transitivity on triangles 
(and even on quadrangles). Furthermore, we prove that the group of all continuous 
collineations of a compact projective plane is always a locally compact group (with 
respect to the compact-open topology). 

Chapter 5 deals with the algebraic topology of compact, connected projective 
planes of finite topological dimension. As Löwen has shown, the point spaces of 
these planes have the very same homology invariants as their classical counterparts 
considered in Chapter 1; moreover, the lines are homotopy equivalent to spheres. 
We obtain that the topological dimension of a line in such a plane is one of the 
numbers 1 , 2 , 4 , 8 ; the (point sets of the) corresponding planes have topological 
dimensions 2, 4, 8, 16. The topological resemblance to classical planes has strong 
geometric consequences, which are discussed in Section 55 and in Chapters 6-8. 
In fact, these results determine a subdivision of the whole theory into four cases. In 
order to understand Chapters 6-8, it suffices to be acquainted with the main results 
of Chapter 5; the methods of proof in that chapter are not used in other chapters. 

In Chapter 6 we consider compact, connected projective planes which are homo-
geneous in some sense. As indicated above, the idea of homogeneity plays a central 
role in this book. We prove that a compact, connected projective plane which ad-
mits an automorphism group transitive on points is isomorphic to one of the four 
classical planes treated in Chapter 1. This is a remarkable result; it says that for 
compact, connected projective planes, the Moufang condition is a consequence of 
transitivity on points. Furthermore, we consider groups of axial collineations and 
transitivity conditions for these groups, and we study planes which admit a classi-
cal motion group. Often, these homogeneity conditions are strong enough to allow 
an explicit classification of the planes in question. In Section 65 we employ the 
topological dimension of the automorphism group as a measure of homogeneity 
(this idea is fully developed in Chapters 3, 7, 8), and Section 66 is a short report 
on groups of projectivities in our context. 
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In Chapters 7 and 8 we determine all compact projective planes of dimension 4, 8 
or 16 which admit an automorphism group of sufficiently large topological dimen-
sion. This approach leads first to the classical planes over C, H, O, and then the 
most homogeneous non-classical planes appear in a systematic fashion. In contrast 
to Chapter 3, deeper methods are required, and proper translation planes arise. 

In Chapter 7 we study compact projective planes of topological dimension 4; 
these planes are the topological relatives of the complex projective plane SP2C. 
We prove that the automorphism group Σ of such a plane SP is a (real) Lie group 
of dimension at most 16, and that the complex projective plane is characterized 
by the condition dim Σ > 8. This result is one of the highlights of the theory of 
4-dimensional planes. If dim Σ > 7, then SP is a translation plane (up to duality) 
or a shift plane. All translation planes SP with dim Σ > 7 and all shift planes SP 
with dim Σ > 6 have been classified explicitly; Chapter 7 contains a classification 
of the translation planes with dim Σ > 8 and of the shift planes with dim Σ > 7. 
Finally, we show in Section 75 that only the complex plane admits a complex 
analytic structure. 

The theory of 4-dimensional compact planes is distinguished from the theory of 
higher-dimensional compact planes, regarding both the phenomena and the meth-
ods. For instance, the class of shift planes appears only in low dimensions. In 
higher dimensions, special tools connected with the recognition and handling of 
low-dimensional manifolds are not available. 

Chapter 8 deals with compact projective planes of topological dimension 8 or 16, 
that is, with the relatives of the quaternion plane SP2H or of the octonion plane 
SP2O. In some parts of this chapter, the results are only surveyed, with references to 
the literature. Again, classification results on planes admitting automorphism groups 
of large dimension constitute the main theme. It turns out that such planes are 
often translation planes up to duality. They carry a vector space structure, whence 
special tools become available. Accordingly, the theory of translation planes and 
the classification of the most homogeneous ones form a theory on their own. 
Fundamental results of this theory are developed in Section 81; in Section 82, 
the classification of all 8-dimensional compact translation planes SP satisfying 
dim AutSP > 17 and of all 16-dimensional compact translation planes SP satisfying 
dim Aut SP > 38 is presented. 

In the following sections, classification results of this kind are extended to 8-
and 16-dimensional compact planes in general. For reasons of space, the results 
often are not proved in their strongest form. Salzmann [81a, 90] proved, on the 
basis of Hähl [78], that the quaternion plane SP2H is the only compact projective 
plane of dimension 8 such that dim AutSP > 18. In Section 84, this result is proved 
under the stronger assumption dim Aut SP > 23. Similarly, the octonion plane is 
known to be the only compact projective plane SP of dimension 16 such that 
dim Aut SP > 40, see Salzmann [87], Hähl [88], In Section 85, we characterize the 
octonion plane by the stronger condition that dim AutSP > 57. The proofs of these 
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characterization results make use of the corresponding characterization results for 
translation planes. 

In Section 86, we construct and characterize the compact Hughes planes of di-
mensions 8 and 16. They form two one-parameter families of planes with rather 
singular properties. Section 87 contains basic results indicating a viable route to-
wards an extension of the classification results presented here. This should help 
the reader to go beyond the limitations of the exposition here; moreover, it may 
serve as a guide to future research. Among other things, these results explain the 
special role played in the classification by translation planes on the one hand and 
by Hughes planes on the other hand. 

The final Chapter 9 is an appendix. Here we collect a number of results from 
topology, and we give a systematic outline of Lie theory, as required in this book. 
In this chapter we usually do not give proofs, but rather refer to the literature 
(with an attempt to give references also for folklore results). The topics covered 
in Chapter 9 include the topological characterization of Lie groups (Hilbert's fifth 
problem), and the structure and the classification of (simple) Lie groups; in fact, we 
require only results for groups of dimension at most 52. Furthermore we report on 
real linear representations of almost simple Lie groups, and we list all irreducible 
representations of these groups on real vector spaces of dimension at most 16. 
Finally, we deal with various classification results on (not necessarily compact) 
transformation groups. 

* 

This book gives a systematic account of many results which are scattered in 
the literature. Some results are presented in improved form, or with simplified 
proofs, others only in weakened versions. A few of the more recent results are 
only mentioned, because their proofs appear to be too complex to be included 
here. However, we hope to provide a convenient introduction to compact, connected 
projective planes, as well as a sound foundation for future research in this area. 

Many colleagues and friends have offered helpful advice, or have read parts 
of the typescript and contributed improvements. In particular, the authors would 
like to thank Richard Bödi, Sven Boekholt, Michael Dowling, Karl Heinrich Hof-
mann, Norbert Knarr, Linus Kramer, Helmut Maurer, Kai Niemann, Joachim Otte, 
Burkard Polster, Barbara Priwitzer, Eberhard Schröder, Jan Stevens, Peter Sperner, 
and Bernhild Stroppel. We are also indebted to the Oberwolfach Institute, which 
gave us the opportunity to hold several meetings devoted to the work on this book. 
Finally, we would like to thank de Gruyter Verlag and, in particular, Dr. Manfred 
Karbe, for support and professional advice. 

Tübingen, September 1994 The authors 
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Chapter 1 

The classical planes 

In this introductory chapter, the classical examples of topological projective planes 
will be presented and studied. These are the planes over the following coordinate 
domains: the field Ε of real numbers, the field C of complex numbers, the skew 
field Η of quaternions, and the alternative field Ο of octonions. In a later chapter, 
see (42.7), it will turn out that these classical planes are the only locally com-
pact, connected topological planes which either satisfy Desargues' law (valid in 
the planes over the fields E , C , and EI), or at least possess the Moufang property 
(which holds in the plane over ©, as well). 

A careful elementary study of the latter plane, the plane over the octonions O , 
is a particular objective of this chapter. This comprises the investigation of the 
group Σ of its collineations, and of certain subgroups of Σ , including the elliptic 
motion group Φ. The group Γ is known to be the real exceptional simple Lie group 
Eö(—26), and Φ is the compact exceptional simple Lie group of type F 4 . One of 
the aims of our presentation is to give a detailed study of these groups which is 
mainly based on incidence geometry, and which makes only marginal references to 
the theory of simple Lie groups (just what we need for the identification of these 
groups among the simple Lie groups, for instance). In particular, the simplicity of 
these groups is proved without recourse to Lie group theory. It seems to us that 
this approach offers a pleasant road to an intimate understanding of EÖ(—26) and 
its distinguished subgroups. 

It should be said here that the material of this chapter is classical and well known. 
Distinctive features of our presentation are, we believe, the particular blend of ar-
guments and techniques in dealing with the octonion plane, and our systematic use 
of methods from incidence geometry. 

The subject is rooted in incidence geometry on the one hand, and it has aspects 
which are important for topology and Lie group theory on the other hand. There 
may be readers whose interest is primarily on one side and who are less familiar 
with the other side. The presentation in this chapter is therefore intended to be ac-
cessible with few prerequisites from either side. In particular, Sections 12 and 13 
about the affine planes over E , C , EI, and O , and about the projective planes over 
E , C , and H , may serve at the same time as a concrete introduction to some basic 
notions about affine and projective planes and their collineations, before one turns 
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to Chapter 2, which is a short and rather abstract summary on projective planes 
in general. We trust that the more experienced reader will find it easy to skip the 
extra explanations implied by this approach. 

In Section 11, the Cayley-Dickson process is applied to the field Κ in order to 
construct the algebras C, IHI, and O. We present their characteristic properties and 
study their automorphism groups. Section 12 is concerned with the affine planes 
over these algebras. For the planes over K, C, and H, a complete description 
of their (affine) collineation groups is given. For the plane over O, this is less 
easy due to non-associativity, and a full treatment is therefore postponed until 
Sections 15-18. However, first results will be given in the octonion case, as well. 
They concern special collineations, which are in close connection with the Moufang 
identities in ©, and the description of all collineations fixing the coordinate axes; 
the latter topic is closely related to the triality principle. It should be pointed out 
that in our presentation the mentioned algebraic laws, viz. the Moufang identities 
and the triality principle, are obtained as a by-product of the geometrical reasoning, 
whereas they are usually proved by algebraic means and then employed for geo-
metrical conclusions, among other things. Section 13 is devoted to a description of 
the projective planes over E , C, and IHI by homogeneous coordinates (a tool not 
available for the non-associative algebra Q) and to a study of their collineation 
groups. The fundamental theorem of projective geometry describing all colline-
ations is proved, and the elliptic and hyperbolic motion groups are presented. In 
Section 14, these planes are studied as topological planes; the topological structure 
is introduced using homogeneous coordinates. 

A step of major conceptual and technical importance is the study of the geometry 
of a projective line in Section 15. A projective line is represented as a quadric of 
index 1 in a certain real vector space. This interpretation is valid over Ο as well 
as over R, C, and H. It provides a description in algebraic terms of the Möbius 
geometry ('conformal geometry') on a projective line, which was introduced and 
used by Tits [53] in his fundamental paper on the octonion plane. The Möbius geo-
metry helps to understand the stabilizer of a line in the collineation group, because 
the action of that stabilizer on the given line respects this additional geometric 
structure. This fact is an important tool for the study of the collineation group in 
the octonion plane. 

Sections 16 through 18 are devoted to a close study of the projective plane 
over O. In Section 16, 'Veronese coordinates' are introduced as a substitute for 
homogeneous coordinates, which are not available over O. (Veronese coordinates 
could equally well be used for the planes over IR, C, and IHI, so that a unified 
treatment would result.) The topological properties of the octonion plane can now 
be derived in virtually the same way as for the other classical planes. 

In Section 17, the group Σ of all collineations of the octonion plane is deter-
mined. We show that Σ is generated by elations, and we deduce that it is a simple 
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group. Incidentally, we obtain that all collineations are induced by appropriate 
linear transformations acting on Veronese coordinates; this result is an octonion 
analogue of the fundamental theorem of projective geometry over (not necessarily 
commutative) fields. Then we study the stabilizer of a triangle. In affine language, 
such a stabilizer has already been described in Section 12 as the stabilizer of the 
coordinate axes in the affine collineation group. We now show that its maximal 
compact, connected subgroup, which is a normal subgroup, is the universal cover-
ing group Spin8R of SOgR, and we exhibit the triality automorphism of SpingR. 
In the stabilizer of a degenerate quadrangle, we accordingly find the universal cov-
ering group Spin7R of SO7R. One thus obtains a concrete geometric understanding 
of these groups and of the homogeneous space Spin7R/G2 ^ §7. 

In Section 18, we study the groups of collineations which commute with the stan-
dard elliptic polarity or with the standard hyperbolic polarity of the octonion plane, 
the so-called elliptic and hyperbolic motion groups. We prove their simplicity by a 
geometric argument; using their dimensions, they are then easily identified as real 
simple Lie groups of exceptional type F4. The elliptic motion group turns out to be 
a maximal compact subgroup of the full collineation group; this fact finally allows 
us to recognize the latter among the simple Lie groups as a real form of type Εό. 
A crucial step in the study of the motion groups is the analysis of the stabilizer of a 
point. For an arbitrary point in the elliptic case and for an interior point in the hy-
perbolic case, the stabilizer is isomorphic to the universal covering group Spin9R 
of S 0 9 R ; the covering map Spin9R —> S 0 9 R has a very simple geometric de-
scription. As by-products of this analysis one obtains that the homogeneous space 
F4 /Spin9R is homeomorphic to the point space of the projective octonion plane, 
and that Spin9R/Spin7R ^ §15. The section closes with a classification of all polar-
ities of the octonion plane, up to equivalence; besides the standard elliptic polarity 
and the standard hyperbolic polarity, there appears just one further possibility. 

We close this summary by a list of references to places in this chapter where 
descriptions of various classical or exceptional groups or further information about 
them may be found. 
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SO3R (11.22 through 25), 
(11.29) 

O3R (13.13) 
SO4R, O4M (11.22 and 23) 
SO8M, O8M (11.22 and 23), 

(12.18) 
SO9R (18.8) 

Spinal I (11.26) 
Spin5I I (18.9) 
Spin7H I (17.14 and 15) 
Spin8I I (17.13 and 16) 
Spin9I I (18.8, 13 and 16) 

0 3 ( R , 1) (13.13 and 17), 
(15.6) 

PSO4( K, 1) (15.6) 
PSO6( Μ, 1) (15.6) 
(X>(R, 1) (18.22) 
PSO,O (R, 1) (15.6) 

SU2C (11.26) 
U 2 C (13.14) 
SU3C (11.34 and 35) 
PU3C (13.13 and 15) 
PU3(C, 1) (13.13 and 17) 

U 2 H (13.14), (18.9) 
PU3H (13.13 and 15) 
PU3(M, 1) (13.13 and 17) 

PGL2F (12.12), (15.6) 
PGL3F (13.4) 

( F E {R, C, H}) 

G2 = AutO (11.30 through : 
(17.15) 

F4 = F4(—52) (18.10, 15 and 1 
F4(—20) (18.23 and 26) 
EÖ(—26) (18.19) 

11 The classical division algebras 

In this section, we apply the Cayley-Dickson process to the field R of real num-
bers in order to construct the field C of complex numbers, the skew field Η of 
quaternions and the (non-associative) alternative field Ο of octonions, and we de-
rive the characteristic properties of these algebras. They will be called the classical 
division algebras; notice that, in our terminology, a division algebra is not neces-
sarily associative. The multiplication of these algebras provides useful descriptions 
of certain orthogonal groups. This will be explained and applied for a study of the 
automorphism groups AutlHI and AutO. Little will be said about AutC, as this is 
more a matter of field theory. 

11.1 The Cayley-Dickson process serves to construct a sequence Fm of R-
algebras, each furnished with an involutory antiautomorphism a ä, called conju-
gation. The construction proceeds inductively in the following way: One starts with 

F0 = R, ä = a for a e R ; 

then, assuming that Fm_i (m > 1) with its conjugation has been constructed, one 
puts 

Fm := Fm_i χ Fm_i , 
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with addition, multiplication, and conjugation defined by 

(a, b) + (c, d) :=(a + c,b + d) 
(a, b)(c, d) := (ac — db, da + be) 

(a, b) := (ä, -b) 

(for a, b, c, d e F m _ i ) . Obviously, the dimension of Fm over Ε is 2m. 
For m = 1, this is the familiar definition of the field C of complex numbers, 

F2 =: HI is the algebra of Hamilton's quaternions, and F3 =: Ο is the algebra 
of octonions (or Cayley numbers). The further steps in the ladder will not be of 
interest to us, because they lead to algebras having zero divisors (11.17). 

Via the map Fm_i —• Fm : α μ» (a, 0) we may identify Fm_i with a subalgebra 
of Fm . In this way, Ε = Fo is a central subfield of all the algebras Fm , and we 
have inclusions 

R c C c i c O . 

It is easily verified by induction that conjugation is indeed an antiautomorphism 
of Fm , and that its fixed elements are precisely the real numbers: 

11.2. {χ e Fm | ;c = x } = E. • 

11.3 The norm form. For χ = (a, b) e ¥m, a, b e Fm_i , one computes that 

xx = (a, b)(d, —b) = (ad + bb, 0) 
xx = (d, —b)(a, b) = {da + bb, 0) . 

By induction on m, one obtains that xx = xx, and that for χ φ 0 this is a positive 
element of the subfield E. This positive real number will also be written as 

11 jc 11 « ^jc JC JC · 

The map χ m>- ||x||2 is a positive definite quadratic form (the so-called norm form) 
on the Ε-vector space ¥m . The associated bilinear form is 

{χ I y) := II* + yll2 - IUII2 - llyll2 = xy + y*, 

as is easily computed. It is a positive definite inner product; note that 

(χ I x) = 2||x||2 . 

Since conjugation is involutory, one has 
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Our initial calculation shows that the norms in Fm and in Fm_i are connected as 
follows: 

IIC«, b)\\2 = \\af + \\b\\2 

for a, b <E F m _j . In particular, the subspaces Fm_i Χ {0} and {0} Χ Fm_i of 
Fm = Fm_i χ Fm_i are orthogonal with respect to the inner product. 

11.4 Inverses. For a nonzero element χ e Fm, one easily verifies that 

JC"1 | |χ |Γ2χ 

is a two-sided multiplicative inverse, and that 

II-*"1 II2 = (ll*ll2)_1. 

11.5 ¥m as a quadratic algebra. By (11.2), one immediately obtains that for 
every χ e Fm 

χ + χ e R, so that i e l + R x . 
Consequently, 

χ2 = (χ + χ)χ - ||χ||2 eR + fo. 

In particular, every element of Fm satisfies a quadratic equation with real coeffi-
cients. 

11.6 Pure elements. The subspace 

PuFm := {χ e Fm | χ = - χ } < Fm 

of pure elements is the orthogonal complement of R = R · 1 with respect to the 
inner product. One infers directly from the quadratic equation in (11.5) that this 
subspace can also be described as 

Pu Fm = { JC 6 Fm I x2 e R, x2 < 0 } . 
More precisely, 

(1) x2 = - | | x | | 2 if, and only if, χ e PuFm . 

For u, ν G PuF m , we have 

(2) { M | U ) = 0 ^=>· uv = —vu « u e P u F m ; 

this is clear from the definitions, since uv = vü = (—v)(—u) = vu. 

We now deal with the associativity properties of our algebras. Fj = C is asso-
ciative and commutative, and F2 = Η is associative; F3 = Ο is not associative, but 
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weak forms of associativity survive, which we shall now consider. Our discussion 
will also cover the facts mentioned about C and H. For m > 4, little associativity 
is left in Fm , see (11.17); the following fact is nevertheless quite general. 

11.7 Mono-associativity. For χ e Fm \ R, the span R + Rx of 1 and χ is an 
associative and commutative subalgebra of Fm, and this subalgebra is isomorphic 
to C. 

Proof The span A = R + Rx intersects the hyperplane Pu Fm in a 1 -dimensional 
subspace Ru with « e PuFm and \\u\\2 = 1; then {1, u) is a basis of A. By (11.6), 
we have u2 = — \\u\\2 = —1 e R. One now easily verifies that Λ is a subalgebra, 
which is associative and commutative. Clearly, it is isomorphic to C. • 

The key to stronger associativity properties of ¥m for m < 3 is 

11.8 Alternativity. Assume that Fm_| is associative. Then ¥m has the following 
property: 

(1) x(xy) = (xx)y = ll*ll2;y 

for all x, y € ¥m, and hence, upon conjugation, 

(2) (yx)x = y(xx) — \\x\\2y • 

Equivalently, Fm is alternative; i.e., the following identities hold: 
9 9 ^(xy) = χ y and (yx)x = yx . 

Proof. Let χ = (a, b), y = (c, d) for a, b, c, d e Fm_]. By direct computation and 
the associativity of Fm_i one obtains that Jc(jc_y) = (äac — ädb + ädb + ebb, 
dad + bed — bed + bbd). Since ad = da = ||a||2 and bb — bb — \\b\\2 are 
scalars, and since ||a||2 + ||&||2 = ||x||2, we conclude that x(xy) — ( | | a | | 2 c+ ||^||2c, 
||fl||2i/ + \\b\\2d) = \\x\\2{c,d) = |U||2y. This proves (1), and (2) follows upon 
conjugation. The alternative laws are identical to (1) and (2) if jc is a pure element, 
i.e., if χ = —jc. The general case is dealt with by decomposing χ into a scalar in 
R and a pure element. • 

From (11.8), we now derive the associativity of HI together with the following 
weaker associativity property of O, which includes alternativity: 

11.9 Biassociativity. For all χ e Ο \ R and y e Ο \ (R + Rx), the span R + Rx + 
Mv + Mxv is an associative subalgebra of Ο isomorphic to H. 

Remark. Taken together with (11.7), this implies that Ο is biassociative in the 
sense that any two elements i j e O belong to an associative subalgebra (contain-
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ing 1). By (11.4 and 5), then, this subalgebra also contains x, y, x~l — | |χ | |~2χ, 
and = llyll-2}'. As a consequence, brackets are of no importance in multiple 
products whose factors are among x, y, x, y, jc_ i , and y - 1 , or are scalars in R. 

Proof o / ( l 1.9). Intersecting R + Rx and R + Rx + Ry with the hyperplane P u O , 
we obtain elements u,v e P u O for which ||w||2 = 1 = ||t>||2 and (u \ v) = 0, 
and such that χ — ro + r\u, y — so + s\u + S2V, for suitable scalars r„, s„ € R 
(v = 0, 1,2) with rι φ 0 , ί 2 Φ 0. By (11.6), we have u2 = - | |m| | 2 = - 1 , and 
therefore R + Rx + Ry + Rxy = R + Ru + Rv + Ruv. It thus suffices to prove the 
following statement, which is formulated so as to give information about = H, 
as well. 

11.10 Proposition. Assume that 2 < m < 3, and let u, ν € P u F m be such that 

(1) \\u\\2 = 1 = ||υ||2 and (u | υ ) = 0 . 

Then the product w := uv satisfies 

(2) wePu¥m, (u I w) = 0 = {ν | w) , and |M|2 = 1 . 

Moreover, we have the following multiplication table: 

u V w 
u - 1 w — v 
V —w - 1 u 
w V —u - 1 

The span Μ + Ru + Μ υ + Ku; is an associative subalgebra of F,„ isomorphic to H. 

Terminology. A triple u, v, w with these properties is called a Hamilton triple. 

Proof At a first stage, we shall assume in addition that F m , m = 2, 3, is already 
known to be alternative. This assumption will later prove to be innocuous. From (1) 
and (11.6(2)), we infer u2 = — 1 — v2, and w e P u F m . Assuming alternativity 
one obtains 

uw = u(uv) = u ν = —v and wv — (uv)v — uv = —u . 

By (11.6(2)) again, it now follows that u, v, and w are mutually orthogonal with 
respect to ( | ) and anticommuting. Using alternativity once more we obtain that 
w2u = w(wu) — wv = —u . Since w2 is a scalar by (11.6(1)), this means that 
w2 — — 1 and ||u;||2 = 1. Thus the multiplication table is as asserted, and it follows 
that 

A:=R + Ru + Rv + Rw 
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is a subalgebra. Next we remark that A is flexible, which means that 

(3) a(ba) = (ab)a 

for all a, b e A. This follows immediately from alternativity by expanding the two 
sides of the equation (a + b)((a + b)a) = (a + b)2a. 

For the proof of associativity of A, it now suffices to show that triple products 
composed of u, ν and w are associative. If two of the factors of such a triple 
product coincide, then this is a consequence of alternativity and flexibility. As to 
triple products with different factors, we have, for instance, 

(uv)w = w2 = — 1 = u2 — u(vw) and (vu)w — —w2 - 1 = —v2 — v(uw) . 

All the other triple products with different factors are obtained from these by cyclic 
permutation of u, v, and w, under which the corresponding equalities remain valid 
because of the symmetry of our multiplication table. Thus A is associative. 

We must now dispose of our supplementary hypothesis of alternativity. In F2, 
this is easy. Since F | = C is associative, F2 is alternative by (11.8), and so the 
above arguments are valid in F2. In this case, 1, u, v, w span the 4-dimensional 
algebra F2 = H, since they are linearly independent by (1) and (2); thus ¥2 = A. 
In particular, from the above, F2 = Η is now known to be associative. 

Using (11.8) again, we infer that also F3 = Ο is alternative. Thus our previ-
ous arguments apply here, as well, with the result that the subalgebra A spanned 
by 1 and by elements u, v, w of the specified kind is associative. Any two such 
algebras are isomorphic, since multiplication is entirely determined by the given 
multiplication table. As Η is also spanned by such a basis, every such subalgebra 
of F3 = Ο is isomorphic to i . • 

Since, by (11.4), there are multiplicative inverses, associativity of one of our 
algebras implies that it satisfies all the axioms of a (not necessarily commutative) 
field. From the preceding discussion, in particular from (11.10), we thus infer the 
following. 

11.11. C = Fi and HI = F2 are associative; C is a commutative field, and HI is 
a skew field. 

(The non-commutativity of F2 is obvious from the multiplication table in (11.10).) 
• 

It was already noted in the proof of (11.10) that, by (11.8), we now know 
F3 = Ο to be alternative. This has the following consequence. 
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11.12. For m <3, the algebra F m has no zero divisors, and therefore is a division 
algebra in the sense that, for αφ 0, the Ε-linear maps χ μ - ax and χ κ» χα are 
bijective. 

Indeed, if xy = 0, then ||jt||2y = jc(xy) = 0, so that χ = 0 or y — 0. • 

We summarize the properties of Ο which we have now obtained (11.8,9 and 12). 

11.13. Ο is an alternative field, i.e., an alternative division algebra, and it is 
biassociative. • 

11.14 Multiplicativity of the norm. If m < 3, i.e., if F,„ is R, C, H, or O, then 

(1) ll*yll2 = ||jc||2||y||2 

for x, y G F m . Moreover, for each a e ¥m, 

(2) (χ I äy ) = { ax | y) and {χ \ yd) — (χα \ y). 

In particular, for ρ € PuFm , we have 

(3) < p j c | j c ) = 0 . 

Remark. For m > 4, these equalities are not true, see (11.17). 

Proof. By (11.9) and (11.11), all the algebras in question are at least biassocia-
tive. Therefore, ||;ry||2 = (xy)(;c_y) = y(xx)y — |U||2>7 = ||̂ ||2||>ΊΙ2, proving (1). 
For (2), we may assume αφ 0. Put ζ = so that az = a(a~]y) = y. 
Using (1), we obtain ( a x \ y) = (ax \ az} = \\ax + az\\2 — \\ax\\2 — \\az\\2 = 
ll«ll2(ll-^ + zll2 - ll-^ll2 - llzll2) = lla|l2{jc I ζ) = (X I \\a\\2z} = (χ I (aa)z) = 
(χ I ä(az)} — (χ I äy}. The first equality of (2) is thus proved. The second is 
obtained by applying conjugation, which preserves the inner product (11.3). Iden-
tity (3) follows from (2), since ρ = —p. • 

The following result is a motivation ex post of the Cayley-Dickson process 
(11.1). 

11.15 Proposition: Constructing Ο from quaternion subfields. Let Η be a sub-
algebra of Ο isomorphic to H, and let ζ e PuO of unit length ||z||2 = 1 and 
orthogonal to Η. Then the 4-dimensional W-linear subspace Hz is orthogonal 
to H, so that the R-vector space Ο decomposes into the direct sum 

Ο = Η ©Hz. 

For a, b, c, d e H, we have 

(ιa + bz)(c + dz) — (ac — db) + (da + bc)z . 
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Proof. Clearly, Η is invariant under conjugation (11.5). By (11.14(2)), we have 
{a I bz) = {ba \ ζ ) = 0, so that Η and Hz are orthogonal. Using alternativity 
(11.8) we obtain, for x,y,we O, 

II* + y||2 · w = (* + j)((x + y)u>) = (IWI2 + Ml V + x(yw) + y(xw) . 

Now ||jc + y||2 = IUII2 + ||.y||2 whenever (χ | y) = 0, so that 

(*) if (λ: I y) = 0, then x(yw) = —y(xw) . 
In particular, for w = 1, 
(**) if y e Pu Ο and ( χ | y) = 0, then xy = yx . 

Using these pieces of information together with alternativity, we may now eval-
uate the terms obtained from expanding the left hand side of the asserted product 
formula as follows. 

(bz)c — c(bz) — c(zb) = -z(cb) = —(be)ζ = (be)ζ , 
a(dz) = a(zd) — —z(äd) = z(da) = (da)z , 

(bz)(dz) = ~d((zb)z) = ~d((bz)z) = ~d(b\\z\\2) = -db. • 

11.16 Cayley triples are triples u,v, ζ e PuO, ||m||2 = ||υ||2 = ||z||2 — 1 such that 
u and ν are mutually orthogonal, and such that ζ is orthogonal to u, ν and uv. 

This notion is symmetric in the sense that a permutation of a Cayley triple is 
another Cayley triple. For example, by (11.15 and 10), we obtain the following 
identities. 

(1) u(vz) = (vu)z = —(uv)z , 
(2) (vz)u = —(vu)z • 

Thus, in particular, u(vz) = —(vz)u. From (11.6(2)) one now infers that the pure 
element vz is orthogonal to u. In passing, we note that (1) shows Ο to be non-
associative. 

By (11.10 and 9), for a given Cayley triple u, v, z, the pure octonions u, ν and 
w := uv form a Hamilton triple, and together with 1 they span a subalgebra Η 
isomorphic to H. Furthermore, according to (11.15), the elements 1, u, v, w, z, 
uz, vz, wz constitute a basis of Ο as a vector space over E. From (11.10 and 15), 
it is easy to compute a multiplication table for this basis; even without explicit 
computation, the following assertion is obvious. 

For all Cayley triples u, ν, ζ one obtains the same multiplication table with 
respect to the basis 1, u, v, w, z, uz, vz, (uv)z. 
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In particular, this shows that, for any two Cayley triples, the R-linear trans-
formation of Ο mapping the basis obtained in this way from the first Cayley triple 
onto the basis corresponding to the second Cayley triple is an automorphism of O. 
We thus have proved the following. 

For any two Cayley triples of O, there is a unique automorphism of Ο mapping 
the first Cayley triple onto the second. 

This observation may be used to reduce the effort in computing the multiplication 
table mentioned above. 

The standard Cayley triple and the associated basis of Ο are obtained as follows. 
Let i e C be an 'imaginary unit', that is, i 'e PuC with i2 = — 1. In HI = C χ C , 
one usually considers the basis 

1 = ( 1 ,0 ) , i = (i, 0 ) , j := (0, 1), k := ij = (i, 0)(0, 1) = (0, i). 

The triple i,j,k is clearly a Hamilton triple as in (11.10). In Ο = Η χ i , by 
identifying HI with the subalgebra HI χ {0}, we find these elements again, namely 

i = (i, 0) , j = ( j , 0) , k = (k, 0) . 

They are elements of PuO. Putting 

/ = (0, 1) g P u O , 

we note that /, j, I is a Cayley triple, and we compute the following products. 

il = ( i , 0 ) (0,1) = ( 0 , 0 , 
jl = ( y , 0 ) (0,1) — (0, j) , 
kl = (*,0)(0, 1) = (0, k) . 

A discussion and presentation of the complete multiplication table for the basis 
1, i, j, k, I, il, jl, kl of Ο may be found for instance in Porteous [81] Chap. 14, 
p. 277 ff. Following an idea of Freudenthal [85] 1.5.13, p. 19, one may represent 
this multiplication table graphically as shown in Figure 11a, using the projective 
plane with 7 points. 

Figure 1 la is to be interpreted as follows: If basis elements a, b, c are on a line 
of this projective plane, then ah = ± c , the sign depending on whether or not the 
cyclic order of (a, b, c) matches with the orientation indicated in the diagram. For 
example, ij = k but ji = —k. (When comparing this to Freudenthal, loc. cit., one 
should note that Freudenthal uses a different basis, so that the orientations implicit 
in his diagram do not completely agree with ours. Also, there is a misprint; e^ej 
should be e3.) 
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kl 

Figure 11 a 

11.17 Warning. If m > 4, then Fm has zero divisors. Consequently, Fm is not 
alternative, and the norm in ¥ m is not multiplicative. 

It suffices to show this for F4 c F m . Let u, ν, ζ be a Cay ley triple of Ο 
as discussed in (11.16). In F4 = Ο χ Ο, we then compute (z, —u)(vz,uv) = 
(z(vz)-(uv)u, (uv)z + u(vz)) = (~z(zv) + (vu)u, 0) = ((-z2 + u2)v, 0) = (0 ,0) ; 
here, we have applied (11.10) and the alternativity of O. Thus, there are zero 
divisors; hence, clearly, the norm cannot be multiplicative. If Fm were alternative, 
there could be no zero divisors by the argument of (11.12). 

11.18 Notes. Biassociativity as a consequence of alternativity can be derived much 
more generally for alternative rings. This result is commonly ascribed to Artin, see 
Zorn [31]. 

There are further weak associativity properties of O, which involve quadruple 
products of three elements, the so-called Moufang identities. Usually they are de-
rived from alternativity by algebraic means. We shall obtain them as a by-product 
from geometric considerations, see (12.14 and 15) and the references given there. 

We have seen that among the algebras Fm only the first few have satisfactory 
associativity properties, are division algebras (without zero divisors), and have mul-
tiplicative norms. These facts are special cases of much more general results: A the-
orem of Frobenius [1878] says that R , C, and Η are the only fields which contain R 
as central subfield and have finite dimension over R. By a theorem of Zorn [33], the 
octonions form the only non-associative alternative field of finite dimension over E . 

For modern proofs of these results see Herstein [64] Chap. 7 Sect. 3, p. 326 ff, 
Palais [75], Ebbinghaus et al. [90, 92] Chap. 8 §2 and Chap. 9 §3. Much more 
generally, there is a complete structure theory for non-associative alternative fields, 
culminating in the theorem of Bruck-Kleinfeld-Skornyakov, which is presented, 
for instance, in the following books: Kleinfeld [63], Pickert [75] Chap. 6, The-
orem 13, p. 175 and Theorem 15, p. 177, Schäfer [66] Theorem 3.17, p. 56, 
Zhevlakov et al. [82] 7.3 Corollary 2, p. 152; for further references, in particular 
to the original papers, one may consult Grundhöfer-Salzmann [90] XI.7.8, p. 322. 

The algebras E , C, H, and Ο can also be characterized as being the only finite-
dimensional composition algebras over E , i.e., finite-dimensional algebras admit-
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ting a positive definite quadratic form which is multiplicative; this is a theorem 
of Hurwitz [1898], see also Freudenthal [85] 1.5.14 p. 19, Harvey-Lawson [82] 
Appendix IVA, p. 140 ff and Theorem A. 12, p. 143, Ebbinghaus et al. [90, 92] 
Chap. 10 §1, Curtis [90] VD, p. 156 ff. For generalizations see Zhevlakov et 
al. [82] Chap. 2, p. 22 ff. 

These facts are of an algebraic nature. Adams, Atiyah, Bott, Hirzebruch, Ker-
vaire, and Milnor proved the following (much broader) result by using methods of 
algebraic topology: Finite-dimensional (not necessarily associative) division alge-
bras over R can only exist in dimensions 1, 2, 4, and 8, that is, in the dimensions 
of the classical examples R, C, H, and O. See e.g. Bott-Milnor [58], Milnor [58], 
Kervaire [58]. An even more general, purely topological result determining the 
possible dimensions of spheres which admit a multiplication with (homotopy) unit 
will play an important role in Chap. 5, cf. (52.5 and 8). A survey by Hirzebruch 
of these topics may be found in Ebbinghaus et al. [90, 92] Chap. 11. For a recent 
proof using mainly analytic means see Gilkey [87]. 

There are variations of the Cayley-Dickson process. When these are carried 
out over other scalar fields than R, higher stages of the process may remain free 
of zero divisors, thus producing (non-alternative) division algebras of dimension 
at least 16, in contrast with the above and (11.17). In this way, one obtains, 
for instance, a 16-dimensional division algebra over Q. See Schäfer [45] and 
R.B. Brown [67]. 

The deviation in F,„ from commutavity and associativity is measured by the 
following results. 

11.19 The center of ¥m. For m > 1, the only elements of F,„ commuting with all 
elements are the scalars in Μ C F m ; i.e., the center of ¥m is R. 

Proof Let c, d e Fm_i be such that (c, d) e Fm = FW_| χ Fm_i commutes with 
each element of F,„. Then, in particular, (—d, c) = (0, l)(c, d) = (c, d)(0, 1) = 
{—d, c), so that c = c e R, d = d e R (11.2). Moreover, for arbitrary ζ e Fm_i , 
we have (zc, dz) = (z, 0)(c, d) = (c, d)(z, 0) = (cz, dz), so that d(z - z) = 0. 
Since d is a real scalar, it must be zero, whence (c, d) = (c, 0) e l . • 

11.20 The kernel of Fm is defined as 

KerFm = {a e Fm | = (xy)a for all x, y e ¥m } . 

The fields Fm , m < 2 coincide with their kernels. We shall show that 

Ker ¥m — R for m > 3 , 
so that, in particular, 

Ker Ο = R . 
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Remarks. 1) We are particularly interested in the case of F3 = O. The geometric 
significance of the result will be discussed in (12.13), see also (23.11) and (25.4). 

2) The same result can be obtained more generally for arbitrary 8-dimensional real 
division algebras by means of algebraic topology, see Buchanan-Hähl [77], 

Proof of (11.20). Let m > 3. It is clear that KerFm contains the scalar field R. 
Conversely, let a e KerF m , and write a = (c, d) € χ Fm_i = F m . For u, ν g 
Fm_i and for 

χ = (w, 0), y = (υ, 1) e Fm_, χ Fw_, = F w , 

by definition of the multiplication in Fm via the Cayley-Dickson process, one has 

x{ya) = (M, 0)(UC — d, dv + c) = (u(vc) — ud, (dv)u + cu) . 

Because of a e Ker F m , these two products coincide. With ν — 0 and u arbitrary, 
we obtain that c and d belong to the center of F m _i , which is R by (11.19), so 
that c,deR. Now, with arbitrary u'and v, a comparison of the second components 
in (1) yields 

(2) d(uv) — (dv)u = d(vu) . 

Since HI = F2 C Fm_i is not commutative, we may choose u and ν in such 
a way that uv φ vu; it then follows from (2) that the scalar d must be 0, so 
that a = (c, d) = (c, 0) € R. • 

Orthogonal groups 

In the sequel, let F be one of the algebras Fm for 0 < m < 3, i.e., one of 
the algebras R, C, HI, or O. Using the multiplication in F, one may give conve-
nient descriptions of certain groups of orthogonal transformations acting on the R-
vector space F = R", where 

11.21. The group of R-linear transformations of F which preserve the norm 
form II ||2, or, equivalently, which are orthogonal with respect to the inner pro-
duct ( I ) on F (11.3), is denoted by 

0 „ R = { C : F ^ F | C i s R-linear, Vx e F : ||Cx||2 = ||x||2 } . 

The normal subgroup 

(1) 
(.xy)a = (uv, u)(c, d) ((uv)c — du, d(uv) + uc 

n = d i m R F = 2m e {1,2,4, 8} . 

SO„R = {C e 0 „ R I detC = 1 } 
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has index 2. Together with the scalar homotheties, these groups generate the group 
of 'similitudes' 

GO„R := {F — F : χ ι-» r · Cx | r e E \ {0}, C e 0„R } , 

and the group of 'direct similitudes' 

GO+R := {F — F : * h-> r • Cx | r e t \ ( 0 ) , C e SO„R } . 

Note that GO,R = GO+R = { x ^ rx\ r G R \ {0} }. 

11.22 Lemma. 

(a) For each a e F \ {0}, the transformations χ ι-> ax and χ ι->- χα of F = R" 
belong to GO^~R. If ||a||2 = 1, they belong to 0„R, and even to SO„R for 
F € {C, H, O}. 

(b) The group SO„R is generated by the transformations 

(c) The group GO*R is generated by the transformations 

raxa , where a e F, ||α||2 = 1 and r € R \ {0} . 

Note that in the non-commutative case the transformations in (b) and in (c) do not 
constitute a group by themselves. For more precise information in the associative 
case, see (11.23). 

Proof. Since the norm is multiplicative (11.14), the R-linear transformations in (a) 
change the square of the norm by a factor ||a||2; hence, upon multiplying by 
| |a | | - 1 , one obtains an element of 0„R. If F e {C, H, O}, every element belongs 
to a subfield isomorphic to C, see (11.7), and therefore is a square; by alternativ-
ity (11.8), it follows that the given transformations are squares of transformations 
of the same kind, and thus have positive determinant over R. For F = R use the 
fact that GOjR = G O f R . 

Assertion (b) is trivial for F = R, since SOjR = {id}. In general, the trans-
formations considered in (b) belong to SO„R by (a). In order to show that they 
generate SO„R, we use reflections in hyperplanes. (These reflections do not be-
long to SO„R!) For any a e F with ||a||2 = 1, the reflection in the hyperplane a1 

orthogonal to a is the mapping 

note that a(ax) = \\a\\2x = χ by alternativity (11.8). As is well known, ev-
ery element of SO„R is the product of an even number of such hyperplane 

F —> F : χ h-> axa , where a e F , ||α||2 — 1 . 

(.xa + ax) _ 
— — = χ — a(xa + ax) = — axa ; 

21| α || 
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reflections, that is, the product of transformations having the form QaQb for 
a, b e F with ||ö||2 = 1 = \\b\\2, see e.g. Porteous [81] p. 159-160. Now 
xQaßb — __b(-axa)b = b(äxä)b, so that gagb can also be written as the com-
position of the transformations χ ι-»· äxä and χ ι—>· bxb. • 

In contrast to the preceding result, the following does not hold in the case F = Ο 
for lack of associativity. 

11.23 Corollary. For F e {C, H} and η = dirriRF, the group GO+R consists 
precisely of the transformations 

b~{ χα , 

where a, b € F \ {0}, and the group SO„R consists of these transformations for 
\\a\\2 = 1 = \\b\\\ 

Proof By (11.22a), these transformations belong to SO„R and to GO+R, respec-
tively, and they form subgroups of SO„R and GO+R. (Here, the associativity 
of F is required.) On the other hand, these subgroups contain the transformations 
of (11.22b) (put b = a" 1 ) , and of (11.22c) (put b = (ra)~l), which generate 
SO„R and GO+R, respectively. • 

11.24. Using F = H, we may also obtain a description of SO3R from (11.23). 
The subspace Pu Η = R3 of the R -vector space Μ is the orthogonal complement 
of R = Μ · 1 in Η, see (11.6). The group of R-linear transformations of HI which 
are orthogonal with respect to the inner product and which fix 1 may therefore be 
identified with the group of orthogonal transformations of PuH = R3 . Abusing 
notation somewhat, we denote both groups by O3R. The normal subgroup SO3R 
of elements of determinant 1 has index 2. Now the transformation EI Μ : 
χ m> b~]xa in (11.23) fixes 1 if, and only if b = a, whence the following result. 

Corollary. SO3R consists precisely of the transformations 

int(a) : Η —> Η : χ \-> a~ l χα , 

where a 6 H satisfies ||a||2 = 1. • 

The notation int(a) reflects the fact that this transformation is an inner automor-
phism of the skew field H. 

The preceding result shows that SO3R is an epimorphic image of the unit sphere 

§3 = { a € e I M l 2 = 1 } 

of Η = R4 , which, by multiplicativity of the norm (11.14), is a subgroup of the 
multiplicative group H x . 
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11.25 Corollary. The kernel of the epimorphism in t : S3 SO3R : a m>- int(a) is 
{1,-1}· 

Proof. An element a e S3 belongs to the kernel if, and only if a~lxa = χ for 
all JC G H, or, equivalently, if a belongs to the center of H, which is R , cf. (11.19); 
now R n S 3 = {1 , -1} . • 

Remark. In other words, S3 is a two-fold covering group of SO3R. Since the 
sphere S3 is simply connected, this shows that S3 is (isomorphic to) the universal 
covering group of SO3R, cf. (94.2), which is denoted systematically by Spin3R. 
This group shall now be interpreted as a C-linear group. 

11.26 An isomorphism Spin3R = SU2C. We consider i = C χ € as a right 
vector space over the subfield C = C χ {0}. Thus, scalar multiplication of 
(a, b) € C χ C = Η by the scalar c e C is given by 

(a, b)c — (a, b)(c, 0) = (ac, be) . 

The elements 1 = (1,0) and ; = (0, 1) of Ε = C χ C form a C-basis. Un-
der the standard Hermitian form with respect to this basis, the inner product of 
λ: = JC[ + jx2 and y = y\ + jy2, for x\, X2, j i , J2 £ C, is, by definition, Χ\Υ\+Χ2)>2· 
Now note that, for c e C, we have cj — jc as ij — —ji, see also (11.15(*)). 
Therefore, ||x||2 may be expressed in the following way. 

||x||2 = (jci + jx2)(x\ ~ jx2) = x\Ti + jx2T\ - j xix2 - j2 xix2 (*) — , — 
— X\X\ + X2x2 \ 

this is the inner product of χ by itself under the standard Hermitian form. For 
a e H, the transformation 

ka \ Η ->· Ε : χ αχ 

is C-linear by associativity. Moreover, if α € §3, the norm is preserved, see 
(11.14), so that λα is unitary with respect to the standard Hermitian form. 

By U2C we mean the group of all unitary transformations of the 2-dimensional 
C-vector space H, and SU2C is the normal subgroup consisting of the unitary 
transformations having (complex) determinant 1. 

Proposition. The group {Αα | a e S3 }, which clearly is isomorphic to S3 = 
Spin3R, coincides with SU2C. 
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Proof. For a\, aj € C and a = a\ + ja.2 = a\ + aij, we have aj = a i j + «2V2 = 
—«2 + j so that the matrix of λα is 

/ α ι - 0 Ϊ \ 
v«2 «Τ / · 

It has determinant 1 and is unitary if, and only if, a\ä\ -\-ajal = 1. By (*), this is 
equivalent to a e §3. Hence, {λ α \ a e §3 } is a subgroup of SU2C, and the two 
groups coincide since both are sharply transitive on S3. • 

Automorphisms 

11.27. We now study the group AutFm of automorphisms of the ring That 
is, we consider automorphisms with respect to addition and multiplication in F m ; 
linearity over Ε is not presupposed. As is well known, the only automorphism of 
Fo = R is the identity. The only continuous automorphisms of the field Fi = C 
are the identity and conjugation, because every continuous automorphism fixes the 
elements of R (the closure of the prime field Q) and maps i onto i or —i. How-
ever, C has a multitude of other automorphisms, see the references in (44.11). 
Concerning information about their topological (mis)behaviour, cf. (55.22a) and 
the references given there. 

For m > 2, the picture becomes simpler again: 

11.28 Proposition. Let m > 2. Then an automorphism a e AutFm fixes every 
element of the center Ε of Fm , and so is R-linear. Moreover, a leaves Pu F„, 
invariant, commutes with conjugation, and is orthogonal with respect to the inner 
product of Fm . 

Proof. The center R of Fm (11.19) is invariant under a, and QT|R = id since R 
has no other automorphism. This is equivalent to R-linearity. The invariance of 
Pu Fm = { Λ G Fm I JC2 < 0 }, see (11.6), is now immediate. Therefore conjuga-
tion, which on PuFm induces —id, commutes with a . It follows that ||jca||2 = 
xaxa — χαχα = (xx)a — (||jc||2)a = ||x||2, whence a is orthogonal. • 

We now determine AutH. 

11.29. Because of associativity of H, conjugation by an element a e i \ (0) is 
an automorphism of the skew field H, the inner automorphism int(a) : Η —> Η : 
JC i-> a~{xa. Let IntH be the group of all these inner automorphisms. Since ||a|| 
belongs to the center R of HI, we have int ( γ ^ a ) — int(a). Now ^ a has norm 1, 
so that 

IntH = {int(fl) | a e Μ, ]|α||2 = 1 } . 
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According to (11.28 and 24), we already know that AutH is contained in the group 
0 3 M of orthogonal transformations of Η = R 4 fixing 1, and that In tH = S 0 3 R . 

Proposition. AutH = IntH = S 0 3 R . 

Proof. One merely has to show that AutH c O3R cannot be bigger than SO3R = 
IntH. Now, SO3R has index 2 in 0 3 R , whence, if AutH were bigger than SO3R, 
we would have AutH = O3R. In particular, conjugation (which on PuH induces 
—id € O3R) would have to be an element of AutH, but conjugation is an anti-
automorphism and not an automorphism, as Η is not commutative. • 

Finally, we study AutO. We begin by stating a few transitivity properties which 
follow from the sharp transitivity of AutO on the set of Cayley triples, compare 
(11.16). 

11.30 Lemma. 

(a) AutO acts transitively on { (u, ν) | u, υ e Pu O, u _L υ, ||u||2 = 1 = IMI2 } . In 
other words, Au tO is transitive on the 6-sphere { u G P u O | ||«||2 = 1 }, and 
the stabilizer (AutO), is transitive on the unit sphere of the orthogonal space 
of i in PuO, that is, on the 5-sphere { u e P u O | ||w||2 = 1, u J_ i }. 

(b) The stabilizer (AutO ) , j is sharply transitive on the unit sphere of {0} χ Η C 
Η χ Η = Ο, that is, on the 3-sphere { (0, b) e Η χ Η | \\b\\2 = 1 }. 

Proof. Concerning (a), note that, for any two pure orthogonal elements u, ν of unit 
length, there is a Cayley triple having u, ν as the first two elements. The 3-sphere 
in (b) consists precisely of the elements ζ e P u O with ||z||2 = 1 and such that 
i, j, ζ is a Cayley triple; this is because i, j, ij span Pu Η χ {0}, and {0} χ Η is the 
orthogonal space of P u H χ {0} in PuO, cf. (11.3 and 6). • 

11.31 Lemma. 

(a) The automorphism group A = Aut Ο acts transitively on the set ^t of subal-
gebras Η of Ο with Η = Η, so that the stabilizers Λ Η of such subalgebras 
are conjugate. These stabilizers cover A. 

(b) The stabilizer of Η = Η χ {0} c Η χ Η = Ο is 

ΛΗ = {(x,y) ^ (α-*χα,0~ιγα) \a,beM, ||α||2 = 1 = H^2 } , 

where (jt, y) e Ο = Η χ Η. It is isomorphic to SO4R. 

(c) The stabilizer of i and j is 

K j = {(x,y) ^ (x,b~]y) \beM, \\b\\2 = 1 } . 

(d) All involutions of A are conjugate, and A is generated by them. (e) AutO c SO sR. 
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Note. More precisely, it can be proved that every element in AutO is a product 
of at most two involutions, see Wonenburger [69]. 

Proof, (a) A subalgebra Η = HI intersects PuO in a 3-dimensional subspace, 
and therefore contains pure elements u, ν of unit length which are orthogonal. 
By (11.10), Η is the span of 1, u, v, and uv. It follows from (11.30a) that A = 
AutO is transitive on the set Μ of such subalgebras. In particular, the stabilizers 
A// for Η e W are conjugate, cf. (91.1a). 

We must show in addition that every element A e A leaves some subalgebra 
Η e W invariant. Under the orthogonal action of A, the 7-dimensional invariant 
subspace PuO (11.28) decomposes into 1- and 2-dimensional invariant subspaces. 
In particular, there is an invariant 2-dimensional subspace spanned by orthogonal 
pure vectors u, ν of norm 1. The subalgebra Η spanned by 1, u, v, uv is isomor-
phic to HI , see (11.10), and clearly is invariant under A. 

(b and c) By definition of the multiplication in Ο = HI χ HI , one readily verifies 
that the right-hand side in assertion (b) is a subgroup Μ of AutO. The stabilizer 
M/j fixes every element of the subalgebra HI χ {0}, which is spanned by 1, i, j, 

and k = ij. Thus, M, j consists of the transformations described in assertion (b) 
with a = ±1 , cf. (11.25), and is the group on the right-hand side of assertion (c). 

In particular, M, j acts transitively on the unit sphere of {0} χ Η. Now, by 
(11.30), the larger group A, j 2 Μ i s sharply transitive on this unit sphere. So, we 
have 

(1) N.J - M„ . 

Obviously, Μ leaves HI = HI χ {0} invariant, and induces the full automorphism 
group IntHI = SO3R (11.29). In particular, Μ is transitive on the set of pairs of 
pure orthogonal elements of length 1 contained i n H = H I x { 0 } c H I x H I = 0 , 
and this set is invariant under Am by (11.28). From (1), we therefore infer that 
Ah = M, using the general principle (91.3). 

Restriction to {0} χ HI provides an epimorphism of Ah onto SO4R according 
to the description of SO4R given in (11.23) (with F — HI). We even obtain an 
isomorphism; indeed, if b~{ya = y for all y e i , then b = a. 

(d) Let ι e A be an involution. Since 1 is orthogonal (11.28), the M-vector space 
Ο is the orthogonal sum of the eigenspaces F+ and F_ of t corresponding to the 
eigenvalues 1 and —1, and ι is uniquely determined by its fixed space F + , which 
is a subalgebra of O. 

Now, multiplication by an element a e F_ \ {0} is a vector space isomorphism 
between F+ and F_ , so that F+ has dimension 4 over 1R. By (11.9 and 10), 
the subalgebra F+ is isomorphic to HI. The fact that A is transitive on the set 
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W of such subalgebras according to (a) now implies that all involutions are con-
jugate. 

It is well known that Ah = SO4K is generated by its involutions, see e.g. 
Dieudonne [71] Chap. II §6 no. 1), p. 51 . The same then holds for the conjugates 
Λ η, Η g Hi, and for their union A, see (a). 

(e) From (11.28), we know that AutO c OgE, and (a) and (b) imply that every 
automorphism has determinant 1. • 

11.32 Theorem. AutO is a simple group. 

Proof. Let Ν φ {id} be a normal subgroup of A = AutO. We must show that 
Ν = AutO. By (1 1 .3Id) , it suffices to prove that Ν contains an involution. From 
( 1 1 .3 1a) we infer that Ν intersects some and therefore each of the conjugate 
subgroups Ah , Η e W non-trivially. Now every non-trivial normal subgroup of 
SO4R = Ah contains an involution, as is well known, and may be seen as follows. 

According to (11 .23), write 

SO4M = { Η Η : j b~xya \ a, b e H, \\a\\2 - 1 = ||6||2 } . 

The two subgroups 

Α = ||Ö||2 = 1 } 

and 

Β - { e Η : J Η» b~ly \ b € H, \\b\\2 = 1 } 

are normal subgroups, and AB = SO4R. The centralizer Cs Β of Β is A (and 
vice versa). If Ν is a normal subgroup of SO4R such that Ν Π Β = {id}, then 
Ν c Cs Β c A. As A and Β are isomorphic to S 3 = { a e H | ||a||2 = 1 } , it now 
suffices to ascertain that every nontrivial normal subgroup Η of S3 contains an 
involution. For this, we consider the epimorphism int : S3 —> SO3R with kernel 
{ 1 , - 1 } of (11 .25). If Η contains the involution —1, the proof is finished. If not, 
then Η is mapped isomorphically onto a non-trivial normal subgroup of SO3R by 
int. As SO3R is simple (see e.g. Artin [57] p. 178), we then have int(H) = S 0 3 R , 
so that Η must contain involutions since SO3R does. (In fact, the latter case does 
not occur, but that does not affect the argument.) • 

The following result connects our discussion with the theory of simple Lie 
groups; it will not be used in this chapter in an essential way. 

11.33 Theorem. AutO is a compact, connected simple Lie group of dimension 14. 
By the classification of simple Lie groups, it is therefore isomorphic to the excep-
tional compact Lie group G2 = G2(—14). 
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Proof. By (11.28), AutO is a subgroup of OgM. It is closed in the usual topology 
of OsM c GLglR, as multiplication in Ο is continuous. Hence AutO is compact 
since OgM is (see for instance Porteous [81] Prop. 17.8, p. 337). As a closed linear 
group, AutO is a Lie group, cf. (94.3). 

Simplicity has been proved in (11.32). It follows that AutO is connected, be-
cause the connected component of the identity of any topological group is a normal 
subgroup, and because AutO contains non-trivial connected subsets, see (11.31b 
and c). 

The dimension of AutO may be computed by applying the dimension formula 
for stabilizers (96.10) to the transitive actions described in (11.30), as follows. 
By (11.31c or 30b), we have dim(AutO),j = dim§3 = 3. As (AutO),·,; is a 
stabilizer of the transitive action of (AutO), on the 5-sphere of pure unit octo-
nions orthogonal to i, it follows that dim(AutO), = dim(AutO), j + 5 = 8. By 
transitivity of AutO on the 6-dimensional unit sphere of PuO, we conclude that 
dim AutO = dim(AutO), + 6 = 14. 

Now, according to the classification of almost simple Lie groups, cf. (94.32 
and 33), there is just one compact almost simple Lie group of dimension 14, viz. 
the exceptional Lie group G2 = G2(—14). • 

Remarks. The classification of almost simple Lie groups also yields that Aut Ο is 
simply connected; we shall prove this independently in (17.15c). 

In the above proof, the only information needed about the stabilizer (AutO), 
was its dimension. In fact, it is not difficult to determine this stabilizer completely, 
as we shall see now. 

11.34 Automorphisms of Ο which are C-linear. Biassociativity (11.13) of Ο 
implies that Ο is a left vector space over the subfield C spanned by 1 and i, scalar 
multiplication being multiplication within O. Explicitly, scalar multiplication of 
( i j ) e H x H = O b y the scalar c e C c Η = Η χ {0} is given by 

(1) c(x, y) := (c, 0)(x, y) = (cx, yc) . 

An automorphism in (AutO), has the following properties: it fixes 1, is C-linear, 
and is orthogonal with respect to the standard inner product of Ο = E 8 ; for 
the latter property, see (11.28). We shall show that (AutO), consists precisely 
of the transformations which have these properties and in addition have complex 
determinant 1. 

For convenience of notation, we first identify Ο and C4 in a suitable way. It 
is easy to see that the vectors 1, j, I = (0, 1), and jl = (0, j) belonging to the 
standard basis of Ο = i χ i form a C-basis of O. We note that these vectors are 
orthonormal with respect to the standard inner product of Ο = R 8 . If we identify 
Ο and C4 via this basis, then these vectors are also orthonormal with respect to the 
standard Hermitian form on C4 = O. We note that with these identifications we 



24 1 The classical planes 

obtain that OgKnGL^C = U4C, where U4C is the group of unitary transformations 
of Ο = C4 with respect to the standard Hermitian form. 

The properties of (AutO),· stated above now can be expressed by saying that 
(AutO); is contained in the stabilizer of 1 e Ο in U4C. With a slight abuse 
of notation, this stabilizer will be denoted by U3C, as it induces the identity on 
C = Ε + Mi = C χ {0}, and acts in the usual way on the orthogonal space 

= {0} χ C3 . The normal subgroup consisting of the elements of U3C with 
complex determinant 1 will be denoted by SU3C. 

Proposition. (AutO),· = SU3C. 

Proof. The group SU3C is transitive on the unit sphere of and so is A, : = 
(AutO), by (11.30a). It therefore suffices to show that A, c SU3C and that 

(2) A,j = (SU3C);, 

see (91.3). By (11.31c and 26), the stabilizer A u acts trivially on HI χ {0} c 
Η χ Η = Ο and induces the group SU2C on {0} χ Η = {0} χ C2 , so that (2) is 
clear. It remains to prove that A, c SU3C. Every C-linear map has an eigenvector, 
hence A, is the union of all stabilizers Λ,χ* with 0 φ χ e C^. The action of A, on 
the set of such subspaces Cx is transitive by (11.30a); according to the principle 
of conjugate stabilizers (91.1a), this implies that A, acts transitively on the set of 
the corresponding stabilizers Α,χ* by conjugation. Thus, because of A, c U3C, 
the proof is finished if we show that A,xj ^ SU3C. 

Now the subalgebra of Ο generated by i and C j is i = i χ (0), so that 
A/ c/ = Ah,,. The explicit description (11.31b) of Ah shows that Α,χ; is the pro-
duct of A i j = { (JC, y) 1—> (x, b~[y) | b e H , \\b\\2 = 1 } by a subgroup of A,·/, 
namely { (x, y) H> (a~{xa, a~{ya) | a e C, ||α||2 = 1 }. From (11,30a), we know 
that the stabilizer A,,/ is conjugate in A, c U3C to ALj — ( S U J C ) J , see (2). We 
conclude that A,,/ c SU3C and that A/>cy c Λ,-̂ -Λ,·., c SU3C. • 

The following converse of the preceding result will only be used in later chapters. 

11.35 Proposition. Every closed, connected subgroup of AutO which is locally 
isomorphic to SU3C is conjugate to (AutO), . 

Proof. Let Δ be a subgroup of this kind; it is a Lie group by (94.3). As SU3C 
is connected and simply connected (see e.g. Porteous [81] Prop. 17.22, p. 340 
and Husemoller [66] 12.3, p. 93), there is a surjective covering homomorphism 
SU3C ->· Δ , which may be viewed as a representation of SU3C on Ο = R8 . 
(For the notion of covering homomorphism, see (94.2).) According to (95.3), M8 
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is the direct sum of the subspace F of fixed vectors and of irreducible subspaces. 
Now, 1 € F, so that d imF > 1, and, up to equivalence, the only irreducible 
representation of SU3C of dimension < 7 is the usual representation of SU3C 
on C3 = K6, see (95.10). Thus F is 2-dimensional, F = R + Ru for a suitable 
u g Pu Ο with IIκ||2 = 1. Up to conjugation with an automorphism of Ο mapping 
i to u (11.30a), we may assume that F = R + Ri = C; then Δ c (AutO),·. By 
assumption, dimA = 8 = dim(AutO),, cf. (11.34) or the proof of (11.33). We 
conclude that Δ = (AutO), by connectedness, cf. (93.12). • 

12 The classical affine planes 

This section is concerned with the classical planes over R, C, H, and Ο from 
an affine point of view. We introduce the affine planes over these division al-
gebras; the corresponding projective planes can then be obtained by projective 
completion, i.e., by adjunction of a line at infinity. Our main objects of study 
are the affine collineations, which may also be viewed as collineations of the 
projective completion fixing the line at infinity. A special role is played by col-
lineations having an axis and a center; these notions are introduced and illustrated 
by a concrete description of all such collineations for particular axes and cen-
ters. The group of collineations of the affine plane over a division algebra F can 
be easily determined if F is a field like R, C, or Η in our context here. Then, 
the affine collineations are just the semilinear affine transformations of the vector 
space F χ F; this is the so-called fundamental theorem of affine geometry. On the 
line at infinity, the affine collineations induce the fractional semilinear transforma-
tions. 

The plane over Ο has no comparable vector space structure, as Ο is not asso-
ciative. Consequently, for the octonion plane, the description of the collineation 
group is much more involved. A full discussion will therefore take place separ-
ately in Sections 16-18. Here, we restrict ourselves to first results. We construct 
special affine collineations of particular interest; they will be obtained as products 
of certain easily accessible central collineations (shears). The geometric fact that 
they are collineations readily translates into well-known algebraic properties of O, 
the Moufang identities. These collineations fix the coordinate axes, and the group 
of all collineations doing so will be determined completely, starting from these 
special collineations. The description obtained for this group is in terms of ortho-
gonal transformations of the coordinate axes and of the line at infinity. As a direct 
algebraic interpretation of these geometric results, we obtain the so-called triality 
principle for the group SOgM. 
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12.0 General assumption. Throughout this section, F shall denote one of the 
Cayley-Dickson division algebras R, C, H, or O. 

12.1 The affine plane sl2F o v e r ^ is constructed as follows. The set of points is 
F χ F, and the following subsets of F χ F are called lines: 

We say that the line [ 5 , t] has slope s, and the line [c] has slope 0 0 . 
Because F is a division algebra, it is easily verified that this structure has the 

following properties: 

1) For two points y\) Φ (x2, >>2) there is a unique line joining them (i.e., con-
taining both of them), namely the line [ 5 , y\ — >SJC 1 ], where 5 is uniquely determined 
by the equation 

(1) s(x2 - x\) = y2 - y\ 

if x\ φ x2, and the line [xi] if x\ = x2. 

2) Two lines of different slopes have a unique point of intersection. In fact, we 
have [c] Π [s, t] = { (c , sc + t)}, and for s\ φ s2 we have [s\, r 1J Π [s2, t2] = 
{(x, si χ + t\)}, where χ is uniquely determined by the equation 

(2) (si - s2)x = t2 - t\. 

3) Two different lines are disjoint if they have the same slope, and by property 2) 
this condition is also necessary. Two lines will be called parallel if they have the 
same slope, i.e., if they are disjoint or equal. 

4) The so-called parallel axiom holds: For each line L and each point (x, y), there 
is a unique line which passes through (x, y) and is parallel to L. Depending on 
whether the slope of L is 0 0 or s e F, this parallel is given by [JCJ or by [s, y — S J C ] , 
respectively. 

Properties 1) - 4) say that satisfies the axioms of an affine plane, see (21.8). 

Since F is biassociative (11.11 and 13), the solutions of equations (1) and (2) 
may be written down explicitly as 

12.2 The projective completion si2F of the affine plane ^ 2 ^ is obtained by ad-
joining 'points at infinity', one for each parallel class. All the lines of the parallel 

[s, t] = {(x, sx + t) I jc e F } for s, t e F , 
[c] = ( c ) x F for c € F . 

d ' ) 
(2') 

s = (yi- yOU2 -
x = (s 1 - s2y\t2 -1\). 

-I 
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class are thought to intersect in the respective point at infinity. Furthermore, one 
adds a 'line at infinity' passing through just these points at infinity. 

For s e F U {oo}, the point at infinity on the lines of slope s (which form a 
parallel class) will be denoted by (5), and the line at infinity is 

[00] := { 0 ) I 5 e F U {00} } . 

By this construction, we obtain a geometry in which any two lines L\ φ Lj 
always have a unique point of intersection L \ λ L2. (If L\, L2 are lines of the affine 
plane .s^F, their intersection point in the projective completion .s^F is a point at 
infinity if, and only if, in ^ F the lines L\, L2 are parallel.) The property that for 
any two points p\ φ p2 there is a unique line p\p2 joining them is preserved in 
this extension process. Thus, the projective completion sd2F is a projective plane 
in the sense of definition (21.1). 

Of course, this construction applies quite generally to any affine plane, see 
Hughes-Piper [73] Theorem 3.10, p. 83. 

For certain points and lines of the projective completion s ^ F , we shall system-
atically use special names as indicated in the diagram of Figure 12a. 

v : = ( ~ ) 

Figure 12a 

12.3 Collineations. A collineation of an affine or projective plane is a bijection of 
the set of points onto itself mapping lines onto lines. 

As for the latter condition, it suffices to postulate that lines are mapped into 
lines, see (23.2). 

A collineation of an affine plane maps every parallel class of lines to a parallel 
class of lines; one therefore obtains a unique extension to a collineation of the 
projective completion by permuting the points at infinity accordingly. Conversely, 
if a collineation of the projective completion leaves the line at infinity invariant, 
then it arises in this way from an affine collineation. Henceforth, we shall not 
distinguish between an affine collineation and its projective extension. We remark 
that, besides these collineations, the projective completion may have collineations 
which move the line at infinity, cf. (13.5) and (17.6). 
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It is straightforward that for a collineation φ, for points p\ φ p2 and for lines 
Lj Φ L2 one has 

ίΡ\Ρ2)φ = ρφ
χρψ

2 and (L, λΖ ,2Γ = Ζ * λ Ζ ^ . 

The collineations of a given plane form a group under composition. For a sub-
group Δ of this group, for a point ρ and a line L, the stabilizers Ap and Α ι are 
the subgroups consisting of all collineations in Δ which fix ρ or leave L invariant, 
respectively. 

12.4 Axial collineations. We now present a notion which is basic for the study of 
collineation groups of projective planes, together with some standard results, cf. 
also (23.7 ff). 

(a) Consider a point ρ and a line L. We say that a collineation φ has axis L if 
φ fixes every point on L; dually, φ has center ρ if φ leaves every line through ρ 
invariant. A collineation of a projective plane has an axis if, and only if, it has a 
center (see Hughes-Piper [73] Theorem 4.9, p. 94; in the present chapter, we shall 
not use this fact). The center may be on the axis or not. 

(b) For a group Δ of collineations, Δ [ ρ d e n o t e s the subset of all collineations 
in Δ with center ρ and axis L; it is obviously a subgroup. For y e Δ one easily 
verifies the following 

Conjugation formula: γ~ι A[PtL] γ = Δ^^yj , 

cf. also (91.1a). 

(c) Uniqueness properties. A collineation δ € Δ | ^ having a fixed point q outside 
LU{p} must be the identity. Indeed, by joining q to the points of L, one sees that 
q is a center of <5, too; therefore, every point not on pq is a fixed point, being 
the intersection of two different lines through the centers ρ and q, and the same 
argument applied to such a fixed point instead of q finally shows that δ = id. 

Dually, the only collineation in Δ^,ζ.] leaving a line Μ ψ L with ρ <£ Μ invari-
ant is the identity, because then Μ is an axis as well, its points being the points of 
intersection of the invariant line Μ and the invariant lines through the center p. 

In particular, if a non-identical collineation has a center and an axis, these are 
uniquely determined. 

We now give concrete descriptions of collineations of s ^ F having a center and 
an axis. We first deal with such collineations for which center and axis are incident, 
so-called elations. The other case, in which center and axis are not incident, will 
be taken up later (12.13). 
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12.5 Proposition: Elations of 

(a) The collineations of .5^2F having the line at infinity W = [oo] as axis and a 
center on W are precisely the translations 

Ta,b • (X, y) (x + a, y + b); ra^b\w = id 

with a, b G F. The translation group 

Τ = { rflifc I a , b G F } 

is commutative and sharply transitive on the affine point set F χ F. 
(b) The collineations of s ^ F with axis Y — [0] and center ν = (oo) are precisely 

the shears 

o"a : (x, y) ι > (x, y + ax), 0 ) (s + a), (oo) μ» (oo) 

for a G F; they form a commutative group which is sharply transitive on W\{u}. 
(c) The collineations of s ^ F with axis X = [0, 0] and center u = (0) are precisely 

the collineations 

σ'α : (χ, y) η* (x + ay, y), (s) ι-> ((s - 1 + a ) - 1 ) for s φ 0, -a~\ 

(0) ^ (0), ( - « " ' ) (oo), (oo) (a"1) 

for a £ F \ {0} (together with σ'0 = id). 

Note that (c) is obtained from (b) by conjugation with the following collineation, 
see the conjugation formula in (12.4b). 

12.6. The reflection 

(x, y) (y, x), (s) η* 0Γ1) for s ^ 0, 

(0) (oo), (oo) ι—> (0) 

is a collineation of s^F with axis [1,0] and center (—1). 

Proof of (12.5 and 6). 1) We first consider the restrictions of the maps in (12.5a 
and b) and in (12.6) to the affine plane with point set F χ F. One may easily verify 
by direct computation that these restrictions transform affine lines into lines and 
therefore are collineations of the affine plane s ^ F . For (12.5a and b), this only 
requires the distributive laws; for (12.6), one also uses biassociativity (11.9). The 
necessary computations show that lines are mapped as follows: 

(1) 

(2) 

[s, t]T"h = [s,t + b-sa]; [c]T"h = [c + a) 
[s,t]'r" = [5 + a , / ] ; [ c f " = [c], 
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and that the reflection of (12.6) interchanges 

[s, i] with [ j · - 1 , f o r 5 φ 0 , 
[0, t] with [t] . 

The effect of these collineations on the slopes of lines shows that their projective 
extensions act on the line at infinity W in the specified way. 

From (3), one infers that the collineation defined in (12.6) leaves all the lines 
of slope —1 invariant, so that it has center (—1). It is clear that this collineation 
has axis [1, 0] = { ( χ , χ) | χ e F }. 

Thus, (12.6) is proved. Concerning (12.5), it now suffices to prove (a) and (b), 
because (c) then follows from (b), as was noted above. 

2) The collineation Ta,b has axis W. If α φ 0 and if 5 e F is the solution of sa = b, 
then by (1) all the lines [j, t], t e F, are invariant under τα^· Now these are pre-
cisely the affine lines through the point (5), so that ra h has center (j) . For a = 0, 
the center is (00), since then all the lines [c] are invariant according to equation (1). 

Commutativity of Τ and transitivity on F χ F are obvious. We use a standard 
transitivity argument in order to show that Τ contains every collineation with axis 
W and center ρ on W. For fixed ρ 6 W, the group k[p,w\ of all these colline-
ations contains Τ\p,w\- Now, for any line Μ φ W through ρ, the latter group is 
transitive on M\ {/?}; indeed, for two different points q\, qj e Μ \ {p}, the trans-
lation τ G Τ mapping q\ to <72 leaves Μ — pq \ = pq2 invariant, so that, by the 
uniqueness properties (12.4c), the center of r belongs to Μ and therefore equals 
ρ — Μ λΨ . Again by the uniqueness properties (12.4c), the group A ^ ^ i is now 
seen to be sharply transitive on Μ \ {p}, so that A[/, vv] = T ^ vvi; see also (23.9). 
This completes the proof of (12.5a). 

3) It is obvious that σα has axis Y = {0} χ F, and from (2) one sees that all the 
lines [c] of slope 00, in other words the lines through ν — (oo), are invariant, so 
that σα has center v. Transitivity of the group { σ α \ a e F } on W \ {t>} is obvious. 
By the same argument as above, it follows that this group coincides with the group 
Α[υ,κ] of all collineations with axis Y and center v, since the latter group is seen 
to be sharply transitive on W \ {u} by virtue of the uniqueness properties (12.4c). 
Thus, (12.5b) is verified. • 

Next, we prove some general statements about collineations having non-collinear 
fixed points. 

12.7 Lemma: Stabilizer of a triangle. The collineations of s ^ F fixing the points 
ο — (0, 0), u = (0), and ν = (oo) are precisely the transformations of the form 

(x,y) (xa,y?), (5) (J?), (00) t—> (00) 
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with automorphisms α, β, γ of the additive group of F satisfying 

(*) (sx)ß = = S' X 

for all s, χ e F. In particular, these collineations are completely determined by 
their actions on the coordinate axes F χ {0} and {0} χ F. 

Proof A collineation of this kind leaves the coordinate axes X = ou and Υ = ov 
invariant and maps parallels of X and Υ to parallels of X and Y, respectively; this 
means that in the image of (x, y) the first coordinate is independent of y and the 
second one is independent of x, so that the collineation is of the stated form with 
bijections a, ß, y of F fixing 0. We now find the algebraic conditions for such a 
transformation to be a collineation. Consider the point (x, sx +1) on the line [5, /] 
joining (0, t) and (5). The corresponding condition for the image points, requiring 
that the point (x a , (sx + t)ß) lies on the line joining (0, tß) and O r ) , that is, on 
the line [sy, tß], is expressed algebraically by 

The special case t = 0, which is just (*), allows us to write (1) as (sx + t)ß = 
(sx)ß + tß, thus exhibiting the additivity of β , which in turn, once more via (*), 
implies the additivity of a and γ. 

Conversely, if (*) holds and if β is additive, then (1) is valid, and we have a 

12.8 Corollary: Stabilizer of a quadrangle. The collineations of s^F fixing the 
points ο = (0, 0), u = (0), ν = (oo), and e = (1, 1) are precisely the transforma-
tions 

(x, y) (xa, ya), (5) (sa), (00) (00) with a £ Aut F . 

Proof These collineations are the transformations given in (12.7) which, in addi-
tion, satisfy l a = 1 = \ β . From (12.7(*)) it then follows that also l r = 1, that 
a = β — γ, and that, consequently, a is an automorphism of F. • 

12.9 Remark. The collineations in (12.8) coincide with the affine collineations 
fixing the points o, e\ =(1,0), and = (0, 1). 

Indeed, if we consider them as collineations of the projective completion 
the line at infinity W remains invariant; now u = (oe\) λ W, ν = (oei) λ W, 
e = (e\v) λ (e2u), and conversely e\ = (ve) λ (ou), β2 = (ue) λ (ov). • 

(1) (sx + t f = s7xa + tß. 

collineation. • 

In the field case F e {R, C, Et}, the affine collineation group can now be deter-
mined completely. 
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12.10 Fundamental theorem of affine geometry. Let F e {IR, C, H}. The colline-
ations of the affine plane si·^ are precisely the mappings 

for a, b € F, a e AutF, and φ Ε GL2F (the group of linear transformations of 
F χ F considered as a right F-vector space). They form the group A = A r i ^ F , 
which is the semidirect product A = Τ χ A0 of the translation group Τ described 
in (12.5) by the stabilizer of the origin 

Remark. This theorem and the proof given below are in fact valid over any (not 
necessarily commutative) field F, cf. (23.6) and the references given there. 

Proof of (12.10). Let A denote the group of all affine collineations. As Τ is the 
group of all collineations with axis W and center on W, see (12.5), the conjugation 
formula (12.4b) implies that Τ is a normal subgroup of A . By transitivity of Τ on 
the affine point set, the Frattini argument (91.2a) shows that A = A0 · Τ = Τ • A„. 

The group GL2F consists of collineations because in the field case the lines are 
just the one-dimensional affine subspaces of the right F-vector space F χ F, as 
is immediate from their definition (12.1), so that linear transformations map lines 
to lines. Now GL2F is sharply transitive on the set of bases of F χ F, whence 
A„ — A0i(i o),(o,i) GL2F by the Frattini argument. Finally, the stabilizer Α() (ι ο),(ο,ΐ) 
is described by A u t F according to (12.9 and 8). • 

We now determine how these affine collineations act on the line at infinity W. 
Since A = Τ · A„, and since the translation group Τ acts trivially on W, only the 
collineations fixing ο need to be considered. 

12.11. Let F e {R, C, H}. The stabilizer A(> consists of all the mappings 

Ύα,φ '• 

for a G A u t F and φ E GL2F. If φ is described by a matrix as 

then the projective extension of the collineation ya,<p acts on the line at infinity as 
the fractional semilinear transformation 

This should be understood also for s = 0 and 5 = 00, with the usual conventions 
about the role of 0 and 00 in such expressions, e.g. with 0 _ 1 = 0 0 , o o - 1 = 0. 

(x, y) ^ φ(χα, ya) + (a, b) 

A„ = TL2F = AutF IX GL 2F . 

ya,v\w ·. W W : (s) ((c + d • sa)(a + b • sa)~x) . 
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In order to obtain the asserted description of y a ^\w, we decompose the given 
collineation as ya^ = ya,id Tid,^· The projective extension of y a jd is the col-
lineation described in (12.8) mapping (s) to (sa). The projective extension of 
γ i d m a p s (5) to (5'). where s' is the slope of the image of the line [.v, 0] = 
{(je, sx) I χ € F } = ( l , s )F . The image line is ((α + iw), (c + rfi))F = ( l , s ' )F , so 
that s' = (c + ds)(a + bs)~]. The description of ya,<p\w now follows by composi-
tion. • 

We thus have obtained the following result. 

Fundamental theorem for the projective line. Let F e {K, C, H}. The group A|w 
of transformations induced on the line at infinity W by the group A of collineations 
of d2¥ (via projective extension) is the product 

Note. In (15.6), we shall present a version of the preceding theorem which is valid 
for F = O, as well. 

Addenda. 

(a) The last-mentioned group is the stabilizer of (0), (1), and (00) in A |h / . 
(b) The stabilizer of (0) and (00) in PGL2F consists of the transformations 

(s) h^ (dsa~l) for a, d € F x . These are precisely the maps (s) (BS) where 
Β belongs to the group GO^K defined in (11.21). 

(c) The fractional linear group P G L 2 F is triply transitive on W. It is sharply triply 
transitive if and only if F is commutative. 

(d) A u t F is trivial for F = Ε .In the case F = H, the transformation (5) m>- (sa) 
for a € AutF belongs to PGL2H. Thus, 

A|w = AutF · PGL2F 

of the group 

of fractional linear transformations by the group 

{(s) (sa), (00) ^ ( o o ) | a e AutF } = AutF . 

A | w = P G L 2 F for F = R, Η . 

Proof of Addenda. We begin with assertion (b). The first part of the assertion is im-
mediate from the explicit description of PGL2F. The second part has been proved 
in (11.23). 
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We now turn to (c). The stabilizer of (oo) in PGL2F contains the transformations 
(5) i-> ( i + c ) for c e F and hence is transitive on VK\(oo). Under (5) 1-» ( s _ l ) , the 
points (0) and (00) are interchanged. Hence, the group PGL2F is doubly transitive 
on W, and (b) shows that it is even triply transitive. Also from (b), we infer that the 
stabilizer Λ of the triple (0), (1), (00) in PGL2F is induced by the inner automor-
phisms of F, so that this stabilizer is trivial precisely if F is commutative. Thus, (c) 
is proved. At the same time, we have obtained that this stabilizer is contained in the 
subgroup of A|w corresponding to AutF, which proves (a). Moreover, the latter 
subgroup reduces to Λ c PGL2F whenever all automorphisms of F are inner, so 
that then A\w = PGL2F. This is the case for F = Μ by (11.29), whence (d). • 

From now on, we include the case F = Ο in our discussion again. Our next 
topic is a concrete description of collineations with non-incident center and axis. 
Such collineations are called homologies. 

12.13 Proposition: Homologies of .s^F. 

(a) The collineations of s ^ F having the line at infinity W = [00] as axis and 

fixing the origin ο = (0, 0) are precisely the mappings 

They have center o. These collineations are called homotheties. 
In the field case F e {M, C, H}, the group of these homotheties is transitive 

on X\{o,X λ W}. For ¥ = O, this is not so. 

(b) The collineations of Sl^F with axis X = [0, 0] and center ν = (oo) are pre-

cisely the mappings 

(x,y) i-> (x, ay), (s) (as) 

for 0 φ a e F if F e J R , C, M}, and for ΟφαεΈί if F = O. 
(c) The collineations of .si^F with axis Y = [0] and center u — (0) are precisely 

the mappings 

for 0 φ a e F if F € {R, C, H} , and for O ^ a e R i / F = 0 . 

Remark. The difference between Ο and the fields M, C, Η exhibited here reflects 
the non-associativity of O, as will become clear in the proof. Synthetically, this 
difference is expressed by the fact that Desargues' theorem for non-incident cen-
ters and axes, which holds in planes over (not necessarily commutative) fields, is 
not valid in the octonion plane. The fundamental interrelations between transitivity 

μα : (χ, y) ^ (xa, ya)\ μα\ψ = id 

(x,y) 1—>· (ax,y), (s) (sa ') 
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properties of groups of homologies, the validity of Desargues' theorem, and asso-
ciativity properties of the coordinate domain are due to Baer [42] Theorem 5.1, 
p. 146 and Theorem 6.2, p. 151, cf. also (23.22) and the books mentioned there. 

Proof of (12.13). (a) The collineations in question are precisely the transformations 
of the form stated in (12.7) with γ = id, i.e., the collineations 

δ :(*,;y)M> ( * " , / ) ; S\w = id 

with bijections α, β of F satisfying 

(*) (sxf = s-xa 

for all 5, Χ G F. With χ — 1 and a := la this gives — sa; and putting s = 1 
we obtain β = a . Thus, <5 is of the form 

(1) δ : (χ, y) (χα, ya) , 

and (*) requires that 

(2) (sx)a = s(xa) 

for all s, x e F . 
Now, if F e {M, C, H}, then every element a satisfies (2) because of associativ-

ity; if F = O, then (2) holds precisely for the elements a of the kernel Ker Ο = Ε , 
see (11.20). Thus, the first part of assertion (a) is proved. 

For F G {R, C, H}, the easy direction of the preceding argument would suffice, 
namely the verification that the homotheties μα are indeed collineations for all 
a G F \ {0}. The proof can then be completed by the following standard transitivity 
argument. Obviously, in these cases, the set { μ α \ a G F \ {0} } of homotheties is 
transitive on Χ \ {ο, Χ λ W) = F χ {0} \ {(0, 0)}; one now observes that, by the 
uniqueness properties (12.4c), the group A[0>vv] of all homologies with center ο and 
axis W is sharply transitive there and thus consists precisely of the homotheties as 
stated. See also (23.9). 

A further proof for F G {R, C, H} can be obtained from the fundamental theorem 
of affine geometry (12.10). The collineations fixing the origin are given in (12.11) 
together with their actions on W\ the collineation ya ip described there has axis 
W if, and only if c + d • sa = s(a + b • sa) for all s e F . By putting in turn 
s = 0, s = 1, and s = — 1 one sees that this is equivalent to c — 0 = b, d — a 
and sa — a~[sa for all S G F . In this situation, γα>φ maps (x, y) to φ(χα, ya) = 
(a • xa, a • ya) = (a • (α - 1 xa), a • ( a - 1 xa)) = (xa, ya); this proves our proposition 
anew. Note that, in the non-commutative case F = EI at hand, γα<φ is not a linear 
transformation (of the affine point set H 2 considered as a right Η-vector space)! 
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(b) may be proved analogously. The collineations with axis X and center ν are 
the mappings 

( x , y ) » (x,yß), ( j )h> (jT) 

with bijections β, γ of F satisfying (sx)& = syx for all s, χ e F. With s = 1 and 
c \= \y, we obtain = ex. Putting χ = 1, we infer γ — β. Thus, the collineations 
in question are the transformations (jc, _y) (x, cy), where c φ 0 satisfies 

(3) c(s;c) = (cs)jt for all s, χ e F . 

For F e {R, C, H}, the latter condition is trivially fulfilled because of associativity. 
For F = O, by applying conjugation to (3), we obtain the equivalent condition 
( i i ) c = jc(Sc) for all s, χ e F, which says that c, and hence c, belongs to the 
kernel R of O. 

In the field cases F e {R, C, H}, analogous variations of the proof as in (a) are 
possible, of course. 

(c) is obtained from (b) by conjugation; one applies the conjugation formula 
(12.4b) to the reflection (x, y) (y, x), (s) (s - 1) of (12.6), which inter-
changes the axis X with Υ and the center u with v. • 

Collineations of si20, Moufang identities, and triality 

Finally, we proceed to a more detailed study of the stabilizer V of the triangle 
ο = (0,0), u — (0), and ν = (oo) in the collineation group of the projective 
octonion plane si20. The group V can also be viewed as the stabilizer of the 
coordinate axes X — ou and Υ = ov in the group of collineations of the affine 
plane s ^ ® · This stabilizer is an easily accessible part of the collineation group. 
A study of the whole collineation group of the projective plane s ^ O will be the 
subject of separate sections (17 and 18). 

First, we exhibit special collineations which generate V and which are closely 
related to the Moufang identities (12.15). By an idea of Salzmann [59c], these 
collineations can be constructed very easily as compositions of elations which are 
known from (12.5). When translating the geometric fact that these transformations 
are collineations into algebraic language, one immediately obtains the Moufang 
identities. They express other facets of the weak associativity properties of Ο be-
sides alternativity (11.13). Actually, they are inherent in alternativity, although this 
is not entirely obvious. Here, this fact may be obtained by inspection of our argu-
ment. For purely algebraic proofs, see Pickert [75] 6.1 no. 2, p. 160, Schäfer [66] 
III. 1, p. 28, Zhevlakov et al. [82] Lemma 2.7, p. 35. 

With the special collineations mentioned above at our disposal, it is then easy to 
determine V. The structure of V is closely related to the triality principle (12.18). 
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As a special trait of our presentation, triality does not appear as an algebraic fact 
having geometric applications, but is intertwined with geometric phenomena right 
from the start. 

Our arguments would be valid more generally for any alternative field instead 
of O. In particular, they work over (not necessarily commutative) fields, as well; 
but then, the collineations in question may also be obtained directly from the funda-
mental theorem of affine geometry (12.10), see (12.19), and the Moufang identities 
are trivially satisfied because of associativity. 

12.14 Proposition. The following mappings are collineations of sä-2@> for every 
a eO\jO|: 

Ύa '• (x,y) ·-»· (a - 1 *, ay), (s) i-> (asa) 
y'a : (x, y) i-» (axa,ya), (ί) ι-»· (ία-1) 
y"a : (x, y) (χα, ay a), (s) i-> (as) . 

Proof We use the elations σα : (χ, y) μ- (χ, y + αχ), σ'α : {χ, y) (χ + ay, y) 
from (12.5b and c) and check that ya is the following product of such elations: 

(*) Ύα = σ \ σ α _ ι σ / _ α - ι σ α _ α 2 . 

The biassociativity of Ο (11.9) will be essential for the necessary calculations. 
Under the given product of elations, an affine point is mapped as follows: 

(x, y) (x + y, y) 
Η» (x + y, y + (a - l)(x + y)) = (x + y, a{x + y) - x) 

(->· (x + y — a~] (a(x + y)) + a~lx, a(x + _y) — x) = (a~[x, a(x + y) — x) 

μ>· (α - 1 χ, a{χ + j ) — χ + (a — a2)(a~lx)) = a{x + y) — χ + χ — αχ) 

= (a-1 χ, ay) . 

The line [s, 0] joining (0, 0) and (1, s) is mapped onto the line joining the image 
points (0,0) and ( a - 1 , as); this line is [asa, 0], since (asa)a~ l = as by biasso-
ciativity, so that indeed ( a - 1 , as) e [asa,0]. The projective extension thus maps 
(s) to (asa), and (*) is proved. 

According to (12.7), the fact that ya is a collineation is expressed algebraically 
by the identity a(sx) = (asa)(a~]x). Substituting ζ = α - 1 χ , az = χ yields the 
first Moufang identity 

(1) a(s(az)) = (asa)z . 

Applying conjugation on both sides of (1) and renaming, one obtains the second 
Moufang identity 

(2) ((ba)x)a = b(axa) 



38 1 The classical planes 

With s = ba, sa~l = b this is transformed into the identity (sx)a = (sa~l)(axa), 
from which in turn, by applying (12.7) backwards, it follows that y'a is a col-
lineation. An immediate verification with the help of biassociativity shows that 
y'a = yay'cn s o that this is a collineation as well. By (12.7) once again, the latter 
fact is equivalent to the third Moufang identity 

(3) a(sx)a = (as)(xa) . 

We collect these identities as a corollary to the proof. 

12.15 The Moufang identities. For all a, b,c e O, the following hold: 

a(b(ac)) = (aba)c 
((ab)c)b = a(bcb) 
(ab){ca) = a(bc)a . • 

12.16 Lemma. The group of collineations generated by the collineations ya and 
y'a of (12.14) for α Ε © \ {0} fixes the vertices of the triangle o, u, ν and is 
transitive on the set (© \ {0}) χ (Ο \ {0}) of affine points not incident with the sides 
of this triangle. 

Proof. For a, b 6 ©\{0}, we show that the point (1,1) may be mapped to the point 
(a, b) by a product of collineations of the specified kind. Indeed, since ba belongs 
to a subfield of © isomorphic to C, see (11.7), there is c € © with ba = c3 . Now, 
using alternativity (11.8), one easily verifies that yc-\y'cyh maps (1, 1) to (a, b). 

• 

In the following proposition, we use the notation for orthogonal groups intro-
duced in (11.21). 

12.17 Proposition: The stabilizer of the coordinate axes. 

(a) The group V of collineations of .5^2© leaving the points o, u, and ν fixed 
consists of the transformations 

(A, B\C)·. (x, y) (Ax, By), (s) ^ (Cs) , 

where A,B,C belong to GO^R and satisfy the triality condition 

(*) B(s • x) — Cs • Ax for all s, χ e © . 

(b) The group V is the direct product of the subgroup consisting of the transforma-
tions 

Mrj (x, y) ι-* (rx, ty), (tr~ l • s) for 0 < r, t e R 
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by the subgroup 

SV = { ( Α , ΒI C) e V | A, B, C e SOsK } . 

(c) The projection homomorphisms pr„ : SV —• SOsM for ν = 1 ,2 ,3 defined 
by ρτν(Α\, A2 | A3) = Av are surjective. Their kernels are of order 2 and are 
generated by the reflections 

iv — μχ : (χ, y) μ» (χ, — (s) i-> (—5) with center v, axis X — [0, 0] 
Lu = μ—1,1 : (χ, y) m>- (—χ, .y), (i) h>· (—5) with center u, axis Y = [0] 
l„ = μ~\,~ \ : (χ, y) (—χ, —y), (5) 1-^· (5) with center o, axis W = [00] . 

These reflections are the non-trivial elements of the center Z2 χ Z2 of SV. 

Proof 1) According to (12.7), the transformations of the form ( A , B \ C ) for 
A, B,C € GO^M are collineations if, and only if, the triality condition (*) is 
satisfied; they obviously fix o, u, and v. Let Ψ be the subgroup of V consisting 
of these transformations. By (11.22), the collineations given in (12.14) belong 
to Ψ. From (12.16), we know that Ψ is transitive on (Ο \ {0}) χ (Ο \ {0}). The 
Frattini argument (91.2a) yields that V = Ve · Ψ, where e — (1, 1). According to 
(12.8), the stabilizer Ve of o, u, v, e consists of the collineations (x, y) (x a , ya), 
(5) (sa) for a € AutO. Now AutO is contained in S0 8 R by (11.31e). Thus 
Ve c Ψ and V = Ψ, as asserted in (a). 

2) We now prove (b). For an element (Α, Β | C) of V, let A = rA', Β = tB', 
C = qC' with 0 < r , i , ^ e E and A', B', C e S0 8 R. Then, in the equation 

tB'{s · x) = qC's • rA'χ 

obtained from (*), we consider the norms of both sides. As A', B', C are ortho-
gonal maps and as the norm is multiplicative (11.14), we see that ί2||5·||2||χ||2 = 
q2\\s\\2r2\\x\\2, whence q = tr~K This shows that (A,B\C) = - {Α', Β' \ C). 

3) Surjectivity of pr^ follows from the fact that the collineations γα, γ'α, and y"a 

constructed in (12.14) for a e Ο \ {0} belong to SV if ||a||2 = 1. Indeed, the 
corresponding transformations χ (XX, X I ^ XCly and χ m>- axa belong to SOgM 
and generate this group by (11.22). 

The kernel of pr3 consists of homologies with axis W and center o, i.e., of 
real homotheties according to (12.13a). Since SV induces an orthogonal group on 
the coordinate axes, it follows that kerpr3 = {(x, y) i-> (±x, ±_y)}. Analogously, 
kerpr, = SV^, χ] and kerpr2 = SV[Miyj can be obtained from the description of 
homolories in (12.13b and c). 
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have order 2, the center of SV cannot have more than four elements, so that it 
consists of id, TV, Lu, and L0. • 

Reformulating certain aspects of the preceding geometric result (12.17) in alge-
braic terms, one obtains the following well-known statement. 

12.18 Triality principle. Among the triples of transformations A, B,C <E SOgR 
satisfying 

(*) B(s • x) = Cs • Ax for all s, χ e Ο , 

each of A, B, or C may take on every value in SOsM, and, in such a triple, each 
of the elements A, B, C determines the other two uniquely up to sign. 

This is an immediate consequence of the information in (12.17c) about the sur-
jective homomorphisms pr^ and their kernels. By (12.7), the triality condition (*) 
just expresses the fact that (A,B\C) is a collineation. 

For other approaches to the triality principle, see e.g. van der Blij-Springer [60] 
and Harvey [90] p. 275 ff. 

12.19 Remarks. 1) The study of the stabilizer V and of certain of its subgroups 
will be continued in Section 17, see (17.11 through 16). For instance, the homo-
morphisms pr,, will be used to show that SV is the universal (two-fold) covering 
group Spin8M of SO^M. The discussion of the latter topic in (17.13) does not 
make essential use of Sections 13-16, so the reader may continue right there if he 
wishes. 

2) Over Μ and Η instead of O, the group V may be described in complete analogy 
with (12.17). Over C, the collineations analogous with those given in (12.17) only 
constitute the C-linear part of V. 

Over F e {R, H}, even the proof of (12.17) carries over verbatim. On the other 
hand, the result may be obtained directly from the fundamental theorem (12.10) of 
affine geometry, according to which the affine collineations fixing the coordinate 
axes X = F χ {0} and Y — {0} χ F are the maps 

(jr,y) ι > (ax01, dya) , 

for a, d e F x and a e AutF . The only automorphism of Μ is the identity, and 
the automorphisms of Η are precisely the inner automorphisms (11.25). Thus, the 
collineations in question, with their actions on the line at infinity according to 
(12.11), are the mappings of the form 

(x, _y) i-> (axe, dye), (s) i-» (dsa~') . 

(This collineation is composed of the collineation (x, _y) m» (c~lxc, c~]yc), 
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(5) η» (c_1äc) obtained from the inner automorphism χ c~]xc, and of 
the collineation (x, y) i-> (acx, dcy), whose action on the line at infinity is 
(s) M- (dcs(ac)~x) = (dcsc~l a~1).) Now, the transformations Η —> IHE : χ ι-> axe 
constitute the group GO4R, see (11.23), so that we arrive at a description of V 
for the plane over Η which is analogous to (12.17). 

Over C, the collineations corresponding to the multitude of field automorphisms, 
see the references in (44.11), are not covered by this description; except conjuga-
tion, they are all discontinuous. 

12.20 Note. For F e {R, C, H}, the group A|w of transformations induced on the 
line at infinity by the group of all affine collineations was discussed in (12.12) and 
was shown to be the product AutF · PGL2F. For the case F = O, we shall not 
enter into a detailed discussion of A|w at this point; the usual definitions of GL2F 
and PGL2F for a field F do not make sense if F is replaced by O. Instead, we 
shall give a different geometric description of the group A|jy in Section 15, which 
is valid uniformly for F e {K, C, H} and for F = O, see (15.6). At this stage, we 
shall merely add a few remarks related to the results obtained so far; these remarks 
will not be used in the sequel. 

From what we know, it is not difficult to deduce that A|w is generated by the 
transformations cra\w and σ'α\ψ for a e O, where σα and σ'α are the shears de-
scribed in (12.5b and c). Indeed, the subgroup Ω generated by these transformations 
acts 2-transitively on W, so that it suffices to show that Ω contains the stabilizer 
of (0) and (00). This stabilizer is the group V|w, where, as before, V is the stabil-
izer of the points o, (0), and (00) in the group of all collineations; recall that 
A |vy = A„|vv because of transitivity of the group of translations with axis W. Now 
V was discussed in (12.17); arguing as in step 3) of the proof there, one sees that 
V|w is generated by the restrictions ya\w, a £ 0\{0}, of the collineations described 
in (12.14). These, in turn, have been constructed explicitly as products of shears. 

If Ο is replaced with an arbitrary Cayley division algebra K, then Ω need not 
coincide with A|w any more, but still is an important normal subgroup. As shown 
by Timmesfeld [94], the group Ω encodes the entire geometry of the plane over Κ. 
One of the main themes of his paper are characterizations of the subgroup of A 
generated by the shears σα and σ'α for a e K. Timmesfeld calls that group SL^/f, 
thus giving a meaning to this otherwise undefined symbol. In the case of a field K, 
this is in accordance with the usual meaning and with the description of A|w using 
the group PGL2A: as in (12.12). 

The following fact will be useful in later sections when we continue the study 
of the collineation group of the octonion plane. 

12.21 Lemma. The group A of all collineations of the affine octonion plane siiO 
is the semidirect product of the translation group Τ described in (12.5) by the 
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stabilizer A() of the origin ο = (0, 0), and A0 consists of M-linear transformations 
of Ο χ O. 

Proof. Since Τ is a normal subgroup of A and is transitive on the affine point 
set Ο χ O, we have A = A(, • Τ = Τ · A0 exactly as in (12.10), by the Frattini 
argument (91.2a). If one is willing to use basic information about translation planes, 
see (25.5), the linearity assertion is obtained readily: the collineations in Aa are 
known to be semilinear over the kernel of a coordinatizing quasifield, which in our 
case is O. Now the kernel of Ο is R (11.20) and has no automorphism except the 
identity, so that semilinearity implies linearity. 

Without using this information, a direct argument for the linearity of A„ may 
be given as follows. The subgroup Λ of Aa generated by the shears (χ, y) i-»· 
(x, y + ax), (s) i—» (s + a), (σο) Μ» (σο) of (12.5b) and by the reflection 
(x, y) H>- (Y, x), (s) Ι-* (Λ"1) for s φ 0, (0) (OO), obviously consists of 
R-linear collineations. Moreover, Λ acts 2-transitively on the line at infinity, so 
that A„ = Λ· A„ „ „ by the Frattini argument. Now, finally, A/) U-V = V also consists 
of R-linear transformations by (12.17a). • 

13 The projective planes over R, C, and Η 

The projective planes s ^ F over F e {M, C, H, 0 } are highly homogeneous struc-
tures. For instance, the group of all collineations is transitive both on the set of 
points and on the set of lines, including the points at infinity and the line at in-
finity, see (13.5) and (17.2). This fact is obscured, however, by the representation 
of .s^F as the projective completion of .s^IF; that description, given in (12.2), 
assigns a special role to the elements at infinity. The classical method to rem-
edy this defect is to introduce homogeneous coordinates. For the planes over the 
fields F 6 {M, C, H}, this is easy and will be our first objective here. Due to the 
non-associativity of O, an equally homogeneous description of the octonion pro-
jective plane is of needs more complicated, and will be put off to Section 16. The 
present section continues with a proof of the fundamental theorem of projective 
geometry, which describes the group of all collineations of the projective plane 
over F e {K, C, H} in terms of homogeneous coordinates. Finally, we examine 
some distinguished subgroups of those collineation groups, namely the elliptic mo-
tion groups and the hyperbolic motion groups. They can be defined as the groups 
of all (linear) collineations which commute with certain polarities. Our interest 
focusses on the transitivity properties of these groups. 

13.0 General assumption. In this section, F shall denote one of the fields R, C, 
or HI. Many of our arguments would work for an arbitrary field. 
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13.1 The projective plane S^F over F is defined as follows. Consider F 3 as 
a right vector space over F . The 1-dimensional subspaces of F 3 will be called 
'points'; the 'lines' will be the 2-dimensional subspaces. Incidence between points 
and lines is given by inclusion. The set of points will be denoted by P2F, and the 
set of lines by if^F. 

In this definition, the roles of points and of lines are completely symmetric. If 
one wishes to think of lines as subsets of the set of points, one has to identify a 
line with the point row consisting of the points incident with it. 

Elementary linear algebra shows that this geometry SP2F is indeed a projective 
plane in the sense of definition (21.1). We shall see soon (13.3) that in fact S ^ F 
is isomorphic to the projective completion 5 i 2 F constructed in (12.2). 

13.2 Homogeneous coordinates in SP2F. A point ρ e P2F, i.e., a 1-dimensional 
subspace of F 3 , is spanned by some nonzero vector {x\, jc2, ^3) e F 3 , 

The point ρ determines the coordinates jci , jc2, X3 € F uniquely up to a common 
nonzero factor from the right; these coordinates are called homogeneous coordi-
nates of p. 

In order to introduce homogeneous coordinates for lines, we recall that the 2-di-
mensional subspaces of F 3 are precisely the kernels of nonzero linear forms of F 3 . 
Assume that the 2-dimensional subspace U is the kernel of the linear form 

where (a 1, a3) e F3 \ {0}. Then U determines the coefficients a„ e F of such 
a linear form uniquely up to a common factor from the left. These coefficients 
are called homogeneous coordinates of the line U. It is obvious that incidence of 
points and lines can be expressed in homogeneous coordinates as follows. 

The point ρ — (x\, x2, .*3)F is incident with the line Ker (a\ a2 03) if, and only 

ρ = (jci, x2, *3)F . 

U = Ker (αι a2 <33) , 

13.3 An isomorphism i ^ F = SP2F. In SP2F, we single out the line 

(*) 

W : = F χ F χ {0} = Ker ( 0 0 1) e i£ 2 F 
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The affine plane IF as described in (12.1) can be located within F 3 on the 
2-dimensional affine subspace 

This bijection maps the lines of s ^ F as defined in (12.1) onto the 1-dimensional 
affine subspaces of A. 

Now we interpret this geometry on A in the projective plane SP2F, see Fig-
ure 13a. The vectors in A span the 1 -dimensional linear subspaces of F 3 not con-
tained in W\ these are the points of S^F not incident with the line W. A line L in 
A (a 1 -dimensional affine subspace) spans a 2-dimensional linear subspace U φ W 

of F 3 , which is a line of S ^ F ; the points on this line are the 1-dimensional linear 
subspaces containing some vector on L, and the 1 -dimensional subspace t/ fW. De-
noting by P2¥\W the set of points of ^ F not incident with W, we have a bijection 

and φ is a collineation of the affine plane .s^F onto an affine plane with point 
set P2F \ W whose lines are the elements of i£2F \ {W} (disregarding their points 
on W)\ this affine plane will be denoted by S?2FH/. 

A \= F χ F χ { 1 } 

parallel to W by means of the bijection 

¥ χ F ^ A : (x, y) (x,y, 1) . 

ψ : F χ F ->· P 2 F \ W : (x, y) (x, y, 1)F , 

2-dimensional subspace 

Figure 13a 

We shall write down the inverse map explicitly, and incidentally prove the 
bijectivity of ψ once again. To do this, we use the fact that one is allowed to 
multiply homogeneous coordinates of a point by a common scalar from the right. 
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Thus, for a point (jc], jc2, *3)F not belonging to W, i.e., with JC3 φ 0, we have 
(jf|, jc2, *3)F = (jc|jc^', x 2 x j ] ' Hence, 

(1) P2W\W = {(x,y, 1)F I x j e F ) , 

and the inverse of ψ is the map 

ψ~χ : P 2 F \ W -> F χ F : (jc, , jc2, jc3)F ( j c ^ 1 , x2xj]) . 

By an analogous normalization we obtain that the points on W = F χ F χ {0} can 
be written as 

(2) (1 ,J ,0)F for 5 € F and (0, 1 ,0 )F . 

In the affine plane <3>2¥w, two different lines L{,L2 e i£2F \ {W} are paral-
lel if, and only if, their point of intersection in the projective plane SP2F lies on 
W. Thus, 9>

2F is (isomorphic to) the projective completion of the affine plane 
^ 2 ¥ w , with W having the role of the line at infinity. To put it more precisely, the 
collineation ψ : sä2F (3>

2¥w extends uniquely to a collineation φ of the pro-
jective completion si2¥ onto the projective plane $*2F. We now give a complete 
coordinate description of that collineation. 

A correspondence between affine and homogeneous coordinates. 
The collineation φ of the projective completion iä2F onto SP2F is given by the 
following maps between points and lines, respectively, of s i 2 F and ty2¥. 

(jc, y) (jc, y, 1)F [s, t] Ker ( - j 1 - t ) 
(s) (1 , j , 0)F [c] —• Ker ( 1 0 -c) 

(00) i-> (0, 1,0)F [00] Ker(0 0 1 ) = W. 

Indeed, from (1) and (2) it is immediate that the left column describes a bijection 
between the point sets of ,s42F and 9 i

2F. Furthermore, one has to check that this 
bijection maps the point row of every line onto the point row of the image line 
specified in the right column. For example, in s€2¥ the point (jc, y) is incident with 
the line [j, /] if, and only if y — sx + 1 , i.e., — sx + y — t — 0; this is equivalent to 
the condition that φ{χ, y) = (jc, y, 1)F is incident with the line Ker ( —s 1 —t) 
of 2P2F, see (13.2(*)). That line also contains the point (1, s, 0)F of W correspond-
ing to the point (s) at infinity of [5, t]. The other verifications are just as easy. • 

The isomorphism ,s42F = SP2F described above may serve to illustrate the term 
'point at infinity'. The 1-dimensional linear subspace (1, s, 0)F = φ(^)) is paral-
lel to the line [s, t] χ {1} = { (jc, sjc + 1 , 1) | jc € F } in A C F3 for every t e F. 
Every projective point corresponding to a point of this affine line can be rewritten 
as (jc, 5jc-M, 1)F = (1, 5 + tx~l, jc"')F for χ φ 0. If χ 'tends to infinity', this 
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projective point 'converges' to the point ( l , s , 0)F corresponding to the point at 
infinity (s), see Figure 13a. This will be made more precise in Section 14. 

Collineations 

13.4 Linear collineations. A linear transformation A e GL3F of the right vector 
space F3 maps 1 -dimensional subspaces of F3 to 1 -dimensional subspaces and 
therefore induces a bijection of the point set of 2P2F, given by 

[A] : P2F P2F : xF η* ( A x )¥ , 

where JC € F3 . Furthermore, [Λ] is a collineation of Si^F, because A maps 2-
dimensional subspaces of F3 to 2-dimensional subspaces. The collineations which 
are obtained in this way are called linear collineations·, they form a subgroup 

PGL3F : = { [ A ] I A e GL 3F } 

of the group Aut0>2F of all collineations of SP2F. 

As to transitivity properties of PGL3F, we consider non-degenerate quadrangles 

of SP2F, i.e., quadruples of points no three of which are collinear. One such quad-
rangle is the standard quadrangle β\Ψ, e2F, ^ F , (e\ + e2 + e3)F where e\, e2, e3 
is the standard basis of F3 . If p\, p2, p^, P4 is an arbitrary non-degenerate quad-
rangle, then the 1-dimensional subspaces p\, /?2, p3 generate F3 because they are 
not collinear; thus, there is a basis such that pv — buF (v = 1,2,3). 
A vector χ e F3 generating the 1 -dimensional subspace p4 may be represented 
as χ — J2l = ι bvAv with λμ G F; and the scalars λ ν are all nonzero because ρ4 
is not collinear with any two of ρ ι, p2, ρ3. Let A e GL3F be the linear trans-
formation mapping the standard basis onto b\X\, A3; then the 
collineation [A] maps the standard quadrangle onto p\, p2, pi, P4. Thus we have 
obtained the following result. 

13.5 Proposition: Homogeneity. PGL3F is transitive on the set of non-degenerate 

quadrangles. • 

13.6 Fundamental theorem of projective geometry. The collineations of 9f2F 

are precisely the transformations induced by semilinear bijections of F3 . Explicitly, 

these are the transformations [A, a\ defined by 

( χ Λ 

[A, a] : P2F - > P 2 F : JC2 -F A 

where A is a regular 3 χ 3 -matrix over F, and a e AutF. 
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Proof. By (13.5) and with the help of the Frattini argument (91.2a), the proof 
reduces to showing that the stabilizer of the standard quadrangle 

= (1,0, 0)F, e2W = (0, 1,0)F, <?3F = (0, 0, 1)F, (e,+e2+e3)F = (1, 1, 1)F 

in AutS/^F consists precisely of the transformations [id, a], a € AutF. 
By means of the collineation φ : s ^ F = <3>

2F described in (13.3), a collineation 
of SP2F fixing the standard quadrangle can be written as ψ ο δ ο ψ 1, where δ 
is a collineation of si2F that fixes the corresponding quadrangle formed by the 
points u = (0), ν — (00), ο = (0, 0), and e = (1, 1). By (12.8), the collineations 
of sl2F fixing those points are precisely the transformations δ : (jt, y) (xa, /*), 
(5) μ* ( ί α ) , (σο) (->• (σο) for all a e AutF. For these, it is easy to show that 
ψ ο δ ο φ 1 = [id, α] by checking that φ ο δ = [id, α] ο φ. • 

13.7 Remarks. Not only the collineations coming from automorphisms of F, but 
in fact all collineations of .s^F as determined by the fundamental theorem of 
affine geometry (12.10) are easily translated into homogeneous coordinates via the 
collineation φ : sl2F —>· 2P2F of (13.3). In this way, the collineation 

the collineation [D] = [D, id] is the same as [id, intd], where int d is the inner 
automorphism intd : F —> F : χ dxd~l; indeed, [D, id] maps (jcj, x2, * 3 )F to 
(dx 1, dx2, dx3)F = (dx\d~\ dx2d~\ dx3d~x)¥. 

Thus, if all automorphisms of F are inner automorphisms, then every colline-
ation is induced by a linear transformation of F 3 . Here, this applies to Μ and H, 
see (11.26 and 28). 

13.8 Corollary. For F e {Μ, H}, the full collineation group of S/^F is equal 
to PGL3F. • 

13.9 Warning. For F = C, conjugation is an automorphism, and therefore the map 

of ^ 2 F yields the collineation [C, a ] of 2P2F with 

C = e GL 3F . 

For a diagonal matrix 

(jci , x2, x3)C ι—> (χι , x2, * 3 )C 
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is an involutory collineation of SP2C, whose fixed points are precisely the points 
of 2P2R viewed as a subplane of SP2C. In the case F = H, the analogous definition 
would not even give a well-defined map. For example, with the standard Hamilton 
triple i,j,k of Μ (11.16), one has (J, k, 0)E = (j,ij,0)M = (1, /, 0)H and 
(], k, Ö)H = (-;", —k, 0)H = ( j , k, 0)H = (1, i, 0)Η φ (1, - / , 0)H = (Τ,ϊ, Ö)H. 
On the other hand, conjugation does give rise to a polarity of SP2F in all cases, 
see (13.12). 

Polarities and their motion groups 

13.10 The dual plane SPjF. The symmetry of the roles of points and lines in 
the axioms of a projective plane SP (21.1) allows us to interchange the notions 
of points and lines; in this way, we obtain another projective plane, called the 
dual plane SP*. This yields the following duality principle: If a statement is true in 
all projective planes, then its dual statement, obtained by interchanging the words 
'point' and 'line', is equally true. 

Now we redescribe the construction of the projective plane SP2F in a way which 
is particularly suited to determine its dual plane; the latter will be denoted by SPjF. 
The points of SP2F are the 1 -dimensional subspaces of F3 as a right vector space, 
and via homogeneous coordinates (13.2) the lines correspond to the 1-dimensional 
subspaces of F3 as a left vector space; recall that the homogeneous coordinates of 
a line are determined up to a common factor from the left. Incidence is described 
by equation (13.2(*)). Thus, we obtain the dual plane SPjF instead of SP2F when 
we reverse the order of multiplication in F, passing to the opposite field Fo p: 

SP*F = (Fop) . 

Note that in our context, for F e {R, C, H}, we have that F°p = F and therefore 
2P2F = SP^F; · η general, this is true if, and only if, F admits an antiautomorphism. 

13.11 Definitions. A duality of a projective plane SP with point set Ρ and line set 
is a collineation of SP onto its dual plane SP*. A duality can be described as 

a bijection π of the disjoint union Ρ Ü SB onto itself exchanging Ρ and ££ and 
having the following property: 

ρ is incident with L if, and only if, L77" is incident with ρπ 

for all ρ e Ρ and L e This condition is equivalent to 

(pq)n = pn Λ qn and (L λ Μ)π = V7Μπ 

for distinct points p, q and distinct lines L, Μ. A polarity is a duality which as a 
bijection of Ρ Ü X is involutory, i.e., satisfies 

{ρπ)π = Ρ and {Uy = L 
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for all ρ £ Ρ and L Ε The line ρπ is called the polar of p, and the point Ln 

is the pole of L. A collineation γ of S? is said to commute with the polarity π if 
for every point ρ one has ριπ — ρπγ. This is equivalent to Ly7r = L777 for every 
line L. The collineations commuting with a given polarity form a subgroup of the 
group of all collineations. 

13.12 The standard elliptic polarity and the standard hyperbolic polarity of 
SP2F, IF G {R, C, H} are constructed using the following two Hermitian forms 
on F3 : 

(χ I y )± := xjy\ + xiyi ± X3>3 

for x = (xi,x2, X3), y = (y\,y2, ys) e F3 . 
By mapping 1 - and 2-dimensional subspaces of F3 to their orthogonal spaces 

with respect to either ( | )+ or ( | )_, one clearly obtains polarities π+ and π~ 
of respectively, which will be called the standard elliptic polarity and the 
standard hyperbolic polarity. In homogeneous coordinates, they have the following 
description: 

π * : P2¥ ie2F : {x\,x2, Ker(jt7 x j 
%2W P2F : Ker (χ { x2 x 3 ) (XT, xi, ±χξ)¥ . 

Note that these maps are well-defined, since conjugation is an antiautomorphism 
of F. For later use, we remark that obviously 

(1) π " = ir+L0 , 

where t„ is the linear collineation 

In affine coordinates, t„ is given by (x, _y) i-> (—jc, — y), cf. (13.7). In other 
words, l() is the unique involutory homology having the point ο — (0, 0) as center 
and the line at infinity as axis (12.13). 

We now want to determine the (linear) collineations which commute with these 
polarities. Among them are the collineations induced by linear transformations U 
of F3 which are unitary with respect to the Hermitian form ( | )±, i.e., satisfy 

(*) (Ux I Uy)± = (x\y)± for all x, y e F3 . 

The unitary transformations form a subgroup of GL3F, which is denoted by U3F 
in the case of ( | ) + and by U3(F, 1) for ( | )_. If F = R, it is more customary 
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to call these transformations orthogonal and to write O3M and 0 3 (M, 1) instead of 
U3M and U3(K, 1), respectively. 

13.13 Proposition: Motion groups of SfSF. The elliptic motion group and the 
hyperbolic motion group of SP2F, defined as the groups of all linear collineations 
which commute with the standard elliptic or hyperbolic polarity, respectively, co-
incide with the groups 

PU 3 F = {[A] I A G U 3 F } and PU3(F, 1) = {[A] | A G U 3 (F, 1) } 

of collineations induced by the respective unitary transformations. 

Proof We give a direct proof adapted to our special situation; for a more conceptual 
approach in a general setting see Baer [52] IV.5 Prop. 1, p. 144 ff. 

To simplify notation, write ( | ) for either ( | ) + or ( | )_ , and let π stand 
for 77-+ or 77", and PU3 for PU 3 F or PU3(F, 1), accordingly. By definition, 
(jcF)77 = x1, the orthogonal space of χ G F 3 with respect to ( | ). Let Φ be 
the motion group belonging to π. Obviously, PU3 c φ . We have to show the 
converse inclusion. 

It is well known that every element A g GL 3 F has a (uniquely determined) 
adjoint A* G GL 3 F satisfying 

for all x j e F 3 , see e.g. Porteous [81] Prop. 11.26, p. 207 ff. Using the adjoint, 
we find for y e F 3 that 

(Ay)"1 = { χ I χ e F 3 , Ο I Ay) = 0 } = { jc | je G F 3 , ( A * x | y) = 0 } 

Now let A be such that [A] G Φ, that is, (Ay)-1 = A<y-) for all y e F 3 . By (1), 
this translates into 

for all y e F 3 . Since every line of 2P2F is of the form y1- = ( jF)7 7 for a suit-
able y G F 3 , condition (2) says that the collineation of S ^ F induced by A*A fixes 
every line and, hence, every point. In other words, A*A leaves every 1-dimensional 
subspace of F 3 invariant, and thus is of the form 

(A*x\ y) = (x\ Ay) 

(1) 

= A * " V ) · 

(2) A * A ( / ) = / 

(3) A*A — c • id 

for a suitable c G F x . Moreover, in the case F = H , it follows at this point al-
ready that c must belong to the subfield M, because this subfield is the center of HI. 
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However, for other reasons, the fact that c e K will presently be obtained in gen-
eral, the case F = C included. 

From the definition of ( | ), it is immediate that the 2-dimensional sub-
space F2 χ {0} is positive definite with respect to ( | ) not only in the elliptic 
case, but also in the hyperbolic case, in the sense that, for 0 φ χ e F2 χ {0}, the 
value (χ | *) e R is positive. If we choose j c ^ O from the non-trivial intersection 
of the 2-dimensional subspaces F2 χ {0} and A - 1 (F 2 χ {0}), then 0 < ( χ | x ) 
and 0 < (Ax \ Ax) = (A* Ax | jc ) = (cx | x ) = c ( j c | x ) . I t follows that e e l 
and c = c > 0. 

Now, it is important that the real scalars c and b = 1 jyfc belong to the center of 
F and are fixed under conjugation. The first property implies that the linear trans-
formation Β — bA induces the same collineation of 2F as A. Using (3), we ob-
tain, moreover, that (Bx | By) = (bAx \ bAy) = b2(A*Ax | ;y) = c~] (cx \ y) = 
c~lc(x I y) = (χ I y) for all x, y e F3 , which means that Β is unitary. Thus, 

On the subspace F2 = F2 χ {0} < F3 , both Hermitian forms ( | )+ and ( | )_ 
of (13.12) induce the same Hermitian form (a, b) ι->· ~a\b\ -\-a2b2 for a — (αϊ, αι), 
b — (b 1, bi) G F2 . The group U2F of unitary transformations of F2 with respect 
to this Hermitian form appears in the following description of stabilizers of the 
elliptic and hyperbolic motion groups. 

13.14 Proposition. The stabilizer Φ() of the point ο = (0, 0, 1)F in the elliptic mo-
tion group PU3F and the stabilizer of ο in the hyperbolic motion group PU3(F, 1) 
coincide. 

The stabilizer leaves the line W = Ker (0 0 1) invariant and is transitive 
on the set of its points. On the point set of the affine plane = -^F, identified 
with F2 according to (13.3), Φ„ acts as the group 

Addendum. In the commutative cases F e {R, C}, the homotheties μί· : m>-
for c € F, IIcII2 = 1 belong to U2F. For F = H, the homothety μ,, is not a 

linear transformation of the right Ε-vector space H2 unless c € R. The group of 
all homotheties μ(· with ||c||2 = 1 is isomorphic to Spin3R in this case (11.25). 
Thus 

Proof of (13.14). The orthogonal space of (0, 0, 1)F with respect to both Hermitian 
forms ( I ) ± is the 2-dimensional subspace F2x{0} = Ker (0 0 1) representing 

[A] = [ß] e PU3. • 

{ 0 ^ I t / e U 2 F , c e F , ||c||2 = 1 } . 
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the line W. A transformation in U3F or in l ^ F , 1) leaving (0,0, 1)F invariant 
therefore leaves W = F2 χ {0} invariant, as well. Since the Hermitian forms ( | ) + 

and ( I )_ coincide on F2 χ {0}, the transformations in question in both the elliptic 
and the hyperbolic case are precisely those which are represented by the matrices 

(1) {U a) With U e U 2 F a n d ü G F ' ä ü = 1 ' 

The group of these transformations is transitive on the set of 1 -dimensional sub-
spaces of F2 χ {0}, that is, on the set of points of the line W. A point not on W 
with affine coordinates (jc, y) e F2 has homogeneous coordinates (x,y, 1)F; the 
image point under the collineation induced by transformation (1) has homogeneous 
coordinates 

F = F 

and affine coordinates , where c = a 1. Thus our proposition is proved. 

If F is commutative, then the transformation (*) = (c
 c ) (*) is linear, 

and for cc — 1 it obviously belongs to U2F. • 

In the sequel, we determine various orbits of the motion groups. 

13.15. The standard elliptic motion group PU3F of 9>2F, F e {R, C, H}, is flag 
transitive, i.e., it acts transitively on the set of all incident point-line pairs. 

Proof. For a given flag ρ c L, there is a basis (b\ ,b2,b^) of F3 which is or-
thonormal with respect to the positive definite Hermitian form ( | ) + and satisfies 
ρ = b 1F, L = b\W + /?2F. The assertion now follows because U3F is (sharply) 
transitive on the set of orthonormal bases. • 

The Hermitian form ( | )_ differs from ( | ) + in that there are 'isotropic' 
vectors χ φ 0 satisfying (χ \ jc)_ = 0 . For the point ρ — jcF of S^F, this is 
equivalent to saying that ρ is incident with its polar under the standard hyperbolic 
polarity 77". This situation is covered by the following general notion. 

13.16 Definition. Let π be a polarity of a projective plane. A point ρ is said to 
be absolute if ρ is incident with its polar ρπ; dually, an absolute line is a line L 
which is incident with its pole L77. 

Obviously, the set of absolute points and the set of absolute lines is invariant 
under every collineation commuting with the polarity π . 
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13.17 Proposition: Orbits of the hyperbolic motion group. 

(a) The set of absolute points of the standard hyperbolic polarity π~ of <3*2^> 
F e {R, C, M}, is 

l ) F | * , y e F , ||χ||2 + ||;ν||2 = ΐ } . 

The set of exterior points, i.e., of non-absolute points which are incident with 
some absolute line, is 

E = {(x,y,\)¥ I ||*||2 + M|2 > 1 } 

U { (x, y, 0)F I 0 φ (χ, y) e F2 } . 

The set of interior points, i.e., of points which are not incident with any absolute 
line, is 

I = {(x,y, 1)F I \\xf + | |j | |2 < 1 } . 

(b) The group PU3(F, 1) is transitive on Q, Ε and I. It is even flag transitive on 
the 'interior hyperbolic plane' (the geometry consisting of the interior points 
and of the lines through interior points). 

(c) The lines through interior points are precisely the polars of exterior points. 

Remarks. 1) It is clear that the hyperbolic motion group cannot act flag transit-
ively on the 'exterior hyperbolic plane' whose lines are all the lines through exterior 
points, because through every exterior point there are different kinds of lines (abso-
lute lines, non-absolute lines without interior points, and lines with interior points), 
which cannot be transformed into each other by hyperbolic motions. 

2) Via the collineation s ^ F = ^ F of (13.3), the set Q of absolute points corre-
sponds to the unit sphere in the affine point set F χ F = R2" (n = 1, 2, 4). The 
point set I of the interior hyperbolic plane becomes the 'interior' (= bounded) 
complementary component of the unit sphere, and Ε corresponds to the exterior 
component, together with the points at infinity. 

Proof of (13.17). By (13.14), the orbits of the stabilizer <P„ of ο = (0,0, 1)F in 
the hyperbolic motion group PU3(F, 1) are the subsets Sr corresponding to the 
spheres of positive radius r e Ε in F χ F, 

Sr = {(x,y,l)¥\x,ye¥, ||x||2 + ||y||2 = r } , 

and the point row { (x, y, 0)F | (0, 0) φ (χ, y) e F2 } of the line W at infinity. 
The set Q of absolute points, the set Ε of exterior points, and the set I of interior 

points are invariant under the hyperbolic motion group PU^F, 1). The explicit de-



54 1 The classical planes 

scriptions of Q, Ε and I given in (a) and the transitivity assertions stated in (b) now 
may be inferred from the following facts, which shall be established subsequently. 

1) The point (1, 0, 1)F e S, is absolute. 
2) The point (0, 0, 1)F is an interior point, and its orbit under PU.3(F, 1) contains 

points from every sphere Sr of radius r < 1. 

3) The point (0, 1,0)F on W is an exterior point, and its orbit under P l ^ F , 1) 
contains points from every sphere Sr of radius r > 1. 

Flag transitivity on the interior hyperbolic plane is then obtained from known 
transitivity properties of Φ0. Indeed, Φ(, is transitive on the set of lines through 
ο = (0, 0, l ) F e /, as Φ„ is transitive on the points of W. 

In the following proofs of assertions l ) -3) , we use the explicit description of ττ~ 
in homogeneous coordinates given in (13.12). 

Proof of X). (1,0, 1)F c Ker ( 1 0 - 1 ) = (1, 0, 1)¥π 

Proof of 2). The lines through (0, 0, 1)F are of the form Ker (a \ a2 0 ) ; none of 
them contains its pole Ker (αϊ «2 0 ) π = (ä\, αϊ, 0)F, because a\ä~\+a2Ö2 > 0. 
Hence, these lines are not absolute, and (0, 0, 1)F is an interior point. The matrix 

with t e R, τ = 1η(ί + V i + 1 2 ) belongs to U3 (F, 1) and maps (0,0, 1)F to 
(0, t, V1 + ?2)F. For t > 0, this point can be rewritten as (0, r "1 , 1)F, where 

and t > 0 can be chosen such that r 1 is any preassigned number between 0 and 1. 

Proof of 3). The point (0, 1,0)F is not contained in its polar (0, 1,0)F17" = 
Ke r (0 l 0 ) , i.e., it is not absolute. It is contained in the line Ker( l 0 l ) , 
which is absolute: K e r ( l 0 l Y~ = ( l , 0, - l ) F c Ker ( l 0 l ) . The ma-
trix ( * ) maps (0, l, 0)F to (0, yj\+t2, t)¥. For t > 0, this is the point (0, r, l )F , 
where r is defined as above; for a suitable t > 0, the radius r takes on any given 
value greater than l . 

Thus, (a) and (b) are proved. As to assertion (c), note that the interior point 
ο = (0, 0, l )F is contained in the line Ker (0 l 0 ) , which is the polar of the 
exterior point (0, l, 0)F. Assertion (c) now follows, because, according to (b), the 
hyperbolic motion group is transitive both on Ε and on the set of lines through 
interior points, and because hyperbolic motions respect the polar relation. • 

r = y/l +t~2, 
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13.18 Notes. Here we record further polarities which, together with the standard 
elliptic polarity and the standard hyperbolic polarity, represent all equivalence 
classes of polarities of S ^ F except the discontinuous polarities of SP2C. 

According to a theorem of Birkhoff and von Neumann, cf. Baer [52] IV. 1 Prop. 2, 
p. 103 and IV.3 Theorem 1, p. 111 or Taylor [92] Theorem 7.1, p. 53, every polar-
ity of SP2IF rnay be derived from some non-degenerate Hermitian form (χ, y) 
f(x, y) on F3 accompanied by an involutory antiautomorphism a of F. (Notice that 
the other possibility appearing in the general form of that theorem, which is formu-
lated for projective spaces of arbitrary dimension, is excluded for projective planes. 
It concerns the case of a non-degenerate alternating bilinear form, instead of a 
Hermitian form; in particular, the underlying field then is necessarily commutative. 
However, every alternating form on a vector space of odd dimension is degenerate.) 

For F = R, there is no (anti-) automorphism except a = id. For F = C, we 
are not interested in the multitude of possibilities arising from non-continuous 
(anti-)automorphisms, so we only consider the cases a = id and a = conjugation 

For F e {R, C} it is then easy to see (essentially by Sylvester's theorem) that, 
up to equivalence, there is only one polarity other than the standard elliptic and 
hyperbolic polarities of SP2R and SP2C, namely the polarity ρ of SP2C obtained 
from the standard bilinear form 

of C 3 , see e.g. Lewis [82] Sect. 3, p. 256 and Sect. 4, p. 261. The absolute points 
of ρ form a conic C, with a connected complement P2C \ C. This property dis-
tinguishes ρ from π+, which has no absolute points, and from π~, whose set of 
non-absolute points is disconnected (13.17). 

For F = H, the classification of polarities up to equivalence may be obtained 
from Dieudonne [71] Chap. I §§6,8 together with Dieudonne [52] §19, p. 383; 
the result can also be found in Lewis [82], For a = conjugation there are just 
the standard elliptic polarity and the standard hyperbolic polarity (Lewis [82] 
Sect. 5, p. 263; cf. also Baer [52] Chap. IV Appendix I, Application 2, p. 130, 
Dieudonne [71] p. 16 (end of §8)). 

A polarity of SP2H accompanied by any other involutory antiautomorphism may 
also be described using a non-degenerate sA^w-Hermitian form g accompanied by 
conjugation, and up to equivalence there is just one possibility (Lewis [82] Sect. 6, 
p. 264), given by 

(11.26). 

3 

3 
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For the corresponding polarity, one can again show that the set A of absolute points 
is non-empty and that the set of non-absolute points is connected. In contrast to 
the complex case, however, A is not what one would like to call a conic, because 
non-absolute lines carry more than two absolute points. 

The two further polarities presented here, one of 2C and the other of ^ H , 
are analogous to the standard planar polarity of the octonion projective plane dis-
cussed in (18.28) ff. The method of classification presented there for F = Ο also 
works for F e {R, C , H } , see (18.31). This offers an alternative approach to the 
classification of polarities as indicated here. 

14 The planes over R, C, and EI as topological planes 

In this section, we study the topological properties of the projective planes over 
F e {R, C, H} . Primarily, we shall show that they are examples illustrating the 
subject matter of this book, topological projective planes. This means that the geo-
metric operations in S^F1 are continuous with respect to a topology introduced in a 
rather standard way. The proof of this result will work for an arbitrary topological 
field in place of F . 

More generally, we shall consider the point sets P^F of the projective spaces of 
arbitrary finite dimension d. We introduce their natural topologies, and we show 
that they are manifolds. The section closes with a description of the Hopf maps 
associated with the fields F . 

14.1 The topology on a projective space over F . For d e N, we consider 
as a right vector space over F . The 'points' of projective d-space over F are the 
1-dimensional subspaces of F < / + 1 , hence the point set of this space is 

P d ¥ : = { jcF I 0 φ χ e F i / + I } . 

Of course, F d + 1 is also a left vector space over F , the set of whose 1-dimensional 
subspaces will be denoted by 

P J F : = { Wx I 0 φ χ ε F d + 1 } . 

If F is not commutative, then P^F and P^F differ. The latter space is identified in 
a natural way with the set 

HtdF : = { / / < ¥ d + l I dim Η = d] 

of hyperplanes of F ^ 1 , since the hyperplanes are precisely the kernels of nonzero 
linear forms, and since a linear form is determined by its kernel up to a scalar 
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factor from the left. Thus, there is a bijection 

(1) P^F : Fx Ker(x , x2 · · • xj+ι) , 

where χ = (χι, JC2, ..., jc^+i) e F J + 1 \ {0}, and where (jc] x2 • · · jc^+i ) is to 
be interpreted as the matrix representation of a linear form with respect to the 
standard basis. 

For d = 2, this agrees with the construction of the projective plane ^ F as in 
(13.1 and 2), with point set P2F and line set £ß2F = W2¥. 

In order to introduce topologies on P^/F and = P^F, we use the natural 
topology on F = E" (n = 1 ,2,4) , defined by the norm ||a||2 = äa, and we 
consider the product topology on F J + I . The spaces P^F and P^F will be endowed 
with the quotient topologies, cf. (92.19), determined by the canonical maps 

ϋ : \ {0} Pd¥ : χ h^ xF 
and 

: F J + 1 \ {0} 

A topology on ^ F is obtained by transfer via the bijection (1). This topology 
may also be viewed as the quotient topology determined by the map 

Ker : F ^ 1 \ {0} -> : (χι, x2, x<i+\) ^ Ker(x , x2 ••• xd+l ) . 

With respect to these topologies, the maps •&*, and Ker are open maps. In 
order to see this for one has to prove that, for an open subset U c F i /+1 \ {0}, 
the image #(£/) is open in P^F. By definition of the quotient topology, this is 
equivalent to showing that the inverse image ($(£/)) is open in \ {0}. 
Now, (#(i/)) - U { # " ' ( # ( * ) ) I xeU} = | J U F X I xeU] = U¥x = 
| J {Ua I a € F x } is the union of the open sets Ua. For -&* and Ker, the assertion 
is obtained analogously. (The same argument proves a similar general assertion 
about the quotient topology of orbit spaces, see (96.2). The projective space P^F 
is the orbit space of F ^ 1 \ {0} under the action of the multiplicative group F x by 
scalar multiplication from the right, and similarly for P*,F.) 

By definition, the spaces P</F and P^F = 3^/F are interchanged if we switch 
the right and left vector space structures of ¥ d + i . Equivalently, we may replace 
the field F with the opposite field Fop , in which the order of multiplication is 
reversed. Therefore, the duality principle of (13.10) extends as follows: Any true 
statement about P^F depending only on properties of F which are shared by Fop 

(e.g., topological properties) is equally valid for P^F. 

Note. A description of these topologies has been given by Pontryagin in 1938, 
see Pontryagin [86] Sect. 27 Example 48, p. 183. There, the topology on WjF 
is introduced by a different method, which, more generally, is used to define 


