
de Gruyter Expositions in Mathematics 18 

Editors 

Ο. H. Kegel, Albert-Ludwigs-Universität, Freiburg 
V. P. Maslov, Academy of Sciences, Moscow 

W. D. Neumann, The University of Melbourne, Parkville, 
R.O.Wells, Jr., Rice University, Houston 



de Gruyter Expositions in Mathematics 

1 The Analytical and Topological Theory of Semigroups, K. H. Hofmann, 
J. D. Lawson, J. S. Pym fEdsJ 

2 Combinatorial Homotopy and 4-Dimensional Complexes, H. J. Baues 

3 The Stefan Problem, A. M. Meirmanov 

4 Finite Soluble Groups, K. Doerk, T. O. Hawkes 

5 The Riemann Zeta-Function, A.A. Karatsuba, S. M. Voronin 

6 Contact Geometry and Linear Differential Equations, V. R. Nazaikinskii, 
V. E. Shatalov, B. Yu. Sternin 

7 Infinite Dimensional Lie Superalgebras, Yu. A. Bahturin, A. A. Mikhalev, 
V. M. Petrogradsky, Μ. V. Zaicev 

8 Nilpotent Groups and their Automorphisms, Ε. I. Khukhro 

9 Invariant Distances and Metrics in Complex Analysis, M. Jarnicki, P. Pflug 

10 The Link Invariants of the Chern-Simons Field Theory, E. Guadagnini 

11 Global Affine Differential Geometry of Hypersurfaces, A .-M. Li, U. Simon, 
G. Zhao 

12 Moduli Spaces of Abelian Surfaces: Compactification, Degenerations, and 
Theta Functions, K. Hulek, C. Kahn, S. H. Weintraub 

13 Elliptic Problems in Domains with Piecewise Smooth Boundaries, S. A. Na-
zarov, B. A. Plamenevsky 

14 Subgroup Lattices of Groups, R.Schmidt 

15 Orthogonal Decompositions and Integral Lattices, A. I. Kostrikin, 
P. H. Tiep 

16 The Adjunction Theory of Complex Projective Varieties, M. Beltrametti, 
A. Sommese 

17 The Restricted 3-Body Problem: Plane Periodic Orbits, A.D.Bruno 



Unitary Representation Theory 
of Exponential Lie Groups 

by 

Horst Leptin 
Jean Ludwig 

W 
DE 

G 
Walter de Gruyter · Berlin · New York 1994 



Authors 

Horst Leptin 
Fakultät für Mathematik 
Universität Bielefeld 
Universitätsstraße 25 
D-33615 Bielefeld 
Germany 

Jean Ludwig 
Departement de Mathematiques et 
d'Informatique 
U. F. R. de Mathematiques, 
Informatique et Mecanique 
lie du Saulay 
F-57045 Metz Cedex Ol 
France 

1991 Mathematics Subject Classification: 22-02; 22Exx 

Keywords: Lie groups, solvable groups, exponential groups, unitary representations, 
orbit method, harmonic analysis 

© Printed on acid-free paper which falls within the guidelines of the ANSI to ensure permanence and durability. 

Library of Congress Cataloging-in-Publication Data 

Leptin, Horst, 1927-
Unitary representation theory of exponential Lie groups / Horst 

Leptin, Jean Ludwig. 
p. cm. — (De Gruyter expositions in mathematics ; 18) 

Includes bibliographical references. 

Die Deutsche Bibliothek — Cataloging-in-Publication Data 

Leptin, Horst: 
Unitary representation theory of exponential Lie groups / by 
Horst Leptin ; Jean Ludwig. — Berlin ; New York : de Gruyter, 1994 

(De Gruyter expositions in mathematics ; 18) 
ISBN 3-11-013938-3 

NE: Ludwig, Jean:; GT 

© Copyright 1994 by Walter de Gruyter & Co., D-10785 Berlin. 
All rights reserved, including those of translation into foreign languages. No part of this book 
may be reproduced in any form or by any means, electronic or mechanical, including photocopy, 
recording, or any information storage and retrieval system, without permission in writing from 
the publisher. 
Printed in Germany. 
Disk Conversion: Lewis & Leins, Berlin. Printing: Gerike GmbH, Berlin. 
Binding: Lüderitz & Bauer GmbH, Berlin. Cover design: Thomas Bonnie, Hamburg. 

ISBN 3-11-013938-3 
1. Lie groups. 2. Representations of groups. I. Ludwig, Jean, 

1947- . II. Title. III. Series. 
QA387.L46 1994 
512'.55—dc20 94-27983 

CIP 



Table of Contents 

Preface VII 

Chapter 1 
Solvable Lie Groups, Representations 1 

§ 1 Bases in solvable Lie algebras, exponential groups 1 
§ 2 Invariant measures, group algebras 9 
§ 3 Induced representations 15 
§ 4 The dual of an exponential group 33 
§ 5 Kernels of restricted and induced representations 52 
§ 6 Smooth functions and kernel operators 65 

Chapter 2 
Variable Structures 99 

§ 1 Variable structures 99 
§ 2 Unitary representations of variable groups and algebras 103 
§ 3 Variable Lie groups and Lie algebras 114 

Chapter 3 
The Duals of Exponential Variable Lie Groups 133 

§ 1 The continuity of the Kirillov map 133 
§ 2 The continuity of the inverse Kirillov map, part 1 140 
§ 3 The continuity of the inverse Kirillov map, part II 178 

Definitions and Symbols 197 
References 199 





Preface 

The reason for and the purpose of this book is to present a full proof of Theorem 
1 in chapter III: The Kirillov map Κ from the space g*/G of coadjoint G-orbits 
onto the unitary dual G of the connected, simply connected exponential Lie group 
G with Lie algebra g is a homeomorphism. 

This theorem solves one of the basic problems of the unitary representation 
theory of locally compact groups for the class of exponential Lie groups, namely 
the concrete and explicit determination of the unitary dual G of the group G as a 
topological space. It is, in a sense, the widest possible extension of the Kirillov-
I. Brown theorem for the nilpotent case. Let us briefly sketch its content: 

Let G be a connected, simply connected solvable Lie group, g its Lie algebra 
and Ε the exponential mapping from g into G. We say that G is exponential, if 
£ is a diffeomorphism from g onto G. Let I be a real linear form on g, i.e. an 
element of the linear dual g* of g. 

A subalgebra f) of g is called subordinate to I, if /(f)') = 0, f)' = [f), f)] the 
commutator algebra of f). In this case the formula 

χ(Ε(χ)) = eil(x), xsl), 

defines a unitary abelian character of the subgroup Η = E{fj) corresponding to f). 
We set 

ττ(1, f)) = indg* 

for the unitary representation of G, induced from the character χ of Η. 
After some basic work of Dixmier, A. A. Kirillov published in 1962 his funda-

mental paper [17], in which he proved: 
If G, resp. g is nilpotent, then 

- 7r(/, f)) is irreducible if and only if dim f) is maximal among the dimensions 
of subalgebras of g subordinate to /. 

- If 77-(/, f)) € G, then 7r(/, 1)) = π(1) is independent of f). 
- G acts on g* via the coadjoint representation. The elements /, I' e g* are in 

the same G-orbit if and only if π(1) and π(1') are equivalent. 
- Every π e G is of the form π (I) for some / e g * . 

These results can be expressed in the following more concise form: 
For / e g * let Ω/ c g* be the orbit of I and set 

K(il/) = 7T(0 e G 
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Then Κ : Πι K(ili) is a bijection from the orbit space g*/G onto the unitary 
dual G of G. 

The mapping Κ (or sometimes its inverse) is called the Kirillov map. Kirillov's 
result parametrizes set-theoretically in a most satisfactory way the dual G. How-
ever, Q*/G and G both bear natural topologies and already Kirillov himself had 
proven that Κ is continuous. His conjecture, namely that AT is a homeomorphism, 
was proved only in 1973 by I. D. Brown [6]. It is easy to see that, in the nilpotent 
case, it suffices to prove the conjecture only for g-step nilpotent algebras g with k 
free generators (see [6]). The core of Brown's proof consists in the fact, that these 
algebras, resp. groups have an abundance of symmetries, more precisely: Every 
linear automorphism of g/g' extends to an algebra automorphism of g. 

Already in 1957 Takenouchi had shown that also for an exponential group G 
every Π € G is monomial, i.e. of the form Π(1, f)) for some / e g* and certain 
/-subordinate algebras f) C g [34]. Later, in 1965, Bernat was able to extend 
Kirillov's theorem to general exponential groups: There exists a canonical bijection 
Κ : G*/G G, see [1], 

While for nilpotent groups the representation π (I, {)) is irreducible if and only 
if dim f) is maximal among the /-subordinate subalgebras f), already the "ax + b"~ 
algebra Κα φ Εb with [a, b] = b shows, that this is no longer true for exponential 
groups. The answer to this irreducibility question was given in 1967 by L. Pukan-
szky: 7r(/, fj) is irreducible if and only if the linear submanifold / + f)1 of g* is 
contained in the orbit fit [28]. One year later Pukanszky proved the continuity of 
the Kirillov map Κ for general exponential groups [29]. Left open for a long time 
was the question whether Κ was also open, i.e. a homeomorphism from Q*/G onto 
G. The first substantial result in this direction came 1984 from H. Fujiwara [10]. 
He proved that g*/G contains a dense open set, which Κ maps homeomorphically 
onto a dense open set of G. This book, finally, contains in its chapters II and III 
the complete proof of the Kirillov conjecture: For all exponential groups, Κ is a 
homeomorphism from Q*/G onto G. 

It is worth mentioning that the analogous problem for the primitive ideal-space 
of the enveloping algebras of exponential Lie algebras recently has been solved by 
O. Mathieu [22]. 

Contrary to the nilpotent case there are no "free models" for general exponential 
groups and in general the inner structure of these groups is on the one hand various, 
on the other rather rigid, which implies that there is no way to extend Brown's 
method directly to the exponential case. This led Jean Ludwig to the idea to force 
the necessary amount of flexibility of the objects by extending the category of 
groups and algebras to the category of variable objects. This idea and the basic 
steps of the actual proof in chapter III are due to him. Ludwig reported on it first 
at the conference on "Harmonische Analyse und Darstellungstheorie topologischer 
Gruppen" in Oberwolfach, summer 1987. 

The textbook literature on solvable Lie groups and their representations is very 
limited, still the 1972-volume [2] by Bernat et al. is the main source in this field 
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and apparently no monograph exists, which exposes the theory beyond the type I-
groups, in particular the fundamental work of Pukanszky [30], [31]. In this context 
we point the interested reader to the excellent survey article of C. C. Moore in the 
Proceedings of the 1972 Williamstown conference [23]. In any case, this situation 
caused us to include a relatively long first chapter in this book, the content of 
which will be sketched below. 

Chapter I starts in § 1 with a general discussion of exponential Lie groups. § 2 
contains fundamental facts on homogeneous spaces, quasiinvariant measures and 
group algebras. In § 3 we define and study induced representations. The central 
result is Mackey's imprimitivity theorem. We give a complete proof of the theorem 
in its general form for arbitrary locally compact groups, with a minor, unessential 
restriction: For the sake of transparency we suppose that on the homogeneous space 
G/H there exists a relatively invariant measure. Also included in § 3 are results on 
intertwining operators and an irreducibility criterion for induced representations. In 
§ 4 we come back to exponential Lie groups. After studying polarizations we prove 
Bernat's results, i.e. the bijectivity of the Kirillov map. § 5 contains two theorems 
with the precise description of the kernels of the restriction TT\H of an irreducible 
representation of G onto a closed subgroup H, resp. of the induction ind^7r of 
TT 6 Η. This problem, resp. the problem of decomposing TT\H and ind^7r of course 
has been studied extensively in the literature; from the many papers by Corwin, 
Greenleaf, Grelaud, Lipsman and others we cite only Fujiwara [10], who proves 
a precise formula for the decomposition of TT\H into irreducible representations of 
H. 

§ 6 is more or less independent of the rest of this book. Based on Ludwig's 
paper [21] it treats the following problem: Let π = νηά^χ e G be given. The 
quotient G/P is diffeomorphic with some R"1 and the representation space of π 
can naturally be identified with L2(Rm). Then for any / e L'(G) the operator 
7r(/) is a kernel operator, i.e. there exists a function i / on Rm χ Κ™ such that 
(7τ(/)ξ)(χ) — JRm Κf(x, y)$(y)dy. Problem: Which kernels occur in this fashion? 
For nilpotent G it is known that for every Schwartz function F e ^(Rm χ Μ"1) 
there exists / e L'(G) with F — KF, see [14]. For exponential groups such a 
result cannot be expected, for the following reason: The parametrization of G/H 
via Rm depends substantially upon the choice of "coexponential bases" in g for the 
polarization p. In the nilpotent case a change of the basis induces a bipolynomial 
diffeomorphism of the parameter space Rm, which is compatible with polynomial 
decay and Fourier transform. In the general exponential case however exponential 
functions enter the picture and these are incompatible in particular with Fourier 
transform. Whether our theorem 12 is optimal we do not know, in any case it is the 
best we could prove for the moment. Certainly it guarantees the existence of finite 
rank operators in the image TT(L}(G)) for every π e G. For more applications 
of this theorem see [21]. It is in order to mention here also the remarkable result 
of D. Poguntke [27]: Let G be a connected locally compact group and Π E G. 
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If 7 t ( C * ( G ) ) contains the compact operators, then 7 7 - ( L ' ( G ) ) contains rank-one 
projections. This is false for non connected groups [26]. 

Chapter II contains the foundation of the theory of variable structures, in partic-
ular of variable groups and algebras and their representation theory. Obviously this 
theory has intimate connections with other existing theories, e.g. with the modern 
theory of groupoids, with bundles and above all with contractions. Here we do not 
discuss these connections and don't even cite the papers of Renault, Fell, Saletan 
etc. In § 3 we show that there exists a functor 1 from the category of variable Lie 
groups into (but not onto!) the category of variable Lie algebras. For every variable 
Lie group G with algebra 1(G) there exists the exponential mapping Ε : 1(G) -> G 
which also in the variable case is a local homeomorphism. For exponential G the 
map £ is a global homeomorphism. 

In chapter III finally we prove the Kirillov conjecture for general variable ex-
ponential groups. § 1 contains the continuity part of the proof. Already here the 
use of variable structures simplifies matters substantially. In order to show that 
also the inverse A"1 of the Kirillov map is continuous we of course apply induc-
tion on dim G = dim g, where G, resp. 0 is the underlying manifold, resp. vector 
space of the variable structure. With relatively simple arguments the problem is 
reduced to the case where all algebras pg, constituting the variable Lie algebra 
g — Ρ Χ Q — (J Ρ Χ pQ, have the same one dimensional center 3. Then, as usually 

peP 

for real solvable Lie groups, one has to distinguish two cases: Case 1: Infinitely 
many quotients pQ/% contain a one dimensional minimal ideal; or Case 2: Infinite-
ly often there exist minimal two dimensional ideals in pQ/$. Although the basic 
ideas of the proof appear already in Case 1, treated in § 2, considerable not only 
technical complications occur in Case 2, which is treated in § 3. 

The process of writing this book was for more than one reason complicated and 
non linear. Certainly this will have left traces, although we have tried to do our 
best in detecting, correcting and removing misprints, inconsistent notations etc; in 
this respect we just hope for the lenience of the reader. The same wish we have 
with respect to colleagues who feel that their work is insufficiently or even not at 
all regarded. As one can see we have quoted only such facts and results which are 
indispensable for our purposes, in particular for our proofs. Moreover, to keep the 
book selfcontained, in particular in chapter I, we gave our own proofs whenever 
possible. This means under no circumstances that e.g. we claim priority. We hope 
that this attitude is justified by the fact that this book is not a monograph on an 
established, well defined mathematical field, but the representation of new methods 
and results in such a field. 

Bielefeld and Metz, December 1993 Horst Leptin 
Jean Ludwig 



Chapter 1 

Solvable Lie Groups, Representations 

§ 1 Bases in solvable Lie algebras, exponential groups 

We assume the reader to be familiar with the basic facts of the theory of Lie groups 
and their algebras: If G is a real η dimensional Lie group then its Lie algebra g 
is the η dimensional vector space of the left translation invariant vector fields on 
G. For every JC € g there exists a unique one parameter subgroup in G, which we 
denote by eRx or [etx\t e R}. Thus t etx e G is the smooth homomorphism 
from Μ into G, for which 

is then defined by E(x) = ex. We will also use the notation exp. It is known that 
Ε is an analytic mapping. If {£>,}" is a linear basis for 9, then 

defines a local coordinate system in a neighborhood of the unit element e of G, 
the so called canonical coordinates of the first kind. 

More important for many purposes are the canonical coordinates of the second 
kind. These are defined by the mapping 

They are particularly usefull, when the basis = {b\, bi, · · • , b„] of g is a Malcev 
basis or a Jordan-Holder basis: Let 

(*/)(£) = if(ge'x)\r=o • 

The exponential mapping 

E.Q-+G 

(ξι, L·, •··, ξ n)-> Ε(ξφι)Ε(ξ2^) • Ε(ξΜ . 

η 
Qk = gkm := Y^Rbi 

i=k 

be the subspaces generated linearly by bk, bk+\, • · · ,b, 
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Definition. The basis of g is a Malcev basis or briefly an Μ basis, if all g* are 
subalgebras of g and g*+i is an ideal in g* for k = 1, 2 , . . . , n, with gn+l = 0 . 

is a Jordan-Holder basis or JH basis, if 20 is a Malcev basis and the sequence 
is a refinement of a composition series. 

So an Μ basis 20 is a JH basis, if for k = 1,2,... ,k either g* is an ideal in g 
or g*+i is an ideal and g*_i/g*+i is an irreducible g module. Evidently Μ bases, 
resp. JH bases exist if and only if g is solvable. 

It is clear that for every normal series in g, i.e. every series g = f)i D fo D · • • D 
l)m D 0 of ideals Iy in g, there exists a JH basis 20 such that fyj = (20) for suitable 
kj, j = 1,2,..., m. To see this we may assume that {i)7} is a composition series. 
This implies that all quotients t)j/l)j+ \ are g irreducible, hence dim (f)7/i)7+i) < 2. 
If dim (f)7-/f)j+|) = 2, then [ f j j , Ϊ)y] c i)y+i and any subspace ο with dim α = 
dim ί);+1 + 1 and f)j D α D f)7+i is an ideal in l)j. Adding such subspaces to the 
chain of the t)j we obtain a refinement g = gi D g2 D · · · 3 g« of the series {f)y}. 
Then any set 20 = {bk\ C g with g^ = Rbk(Bgk+1 is an JH-basis with f)y = g^(2ö) 
for suitable kj. 

Now let 2ft = {bj} be a fixed M-basis of the solvable Lie algebra g. Then the 
following proposition holds: 

The mapping 

is bijective and bianalytic from R* onto the connected, simply connected solvable 
Lie group G, defined by g. 

The well known proof is an immediate consequence of the following, equally 
well known fact: Let Ϊ) be an ideal of codimension 1 in g and Η the corresponding 
analytic closed normal subgroup of G. If g = R a φ f) and R = E(Ra) is the one 
parameter subgroup defining a, then G = R κ Η is the semidirect product of R 
and Η and {ξ, χ) —>· Ε {ξ a) χ is a bianalytic map from R χ Η onto G. 

If a Malcev basis 20 is fixed, we will frequently identify i e l " with its image 
£"&(£) ε G, so G, as a manifold, "is" R" and the one dimensional subspace 
j j c e l " , jc,= 0 for ι ^ j} is the one parameter group eRb'. In this sense we can 
write 

where the yj are real analytic functions in ξ. Assume that f) = g* for some k is an 
ideal, hence Η = {x e R" ; jt,· = 0, i < k} is the corresponding normal subgroup in 
G. Then the functorial properties of the exponential mapping imply, that the coset 
E{x)H for χ G g depends only on the coset χ + ί) in g. Consequently the functions 
yj(£) in (1) depend for j < k only on the i < k. This implies 

Ε®:ξ = {ξ i,6,···, ξη) Ε*{ξ) = Ε{ξφχ)Ε{ξ2^)... Ε(ξΜ 

(1) 
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(2)Lemma. Let be a JH basis and j\ — 1, • • ·, ji the sequence of indices, 
for which the Qjt are ideals, thus jk+\ < jk + 2. Then Ε is a local diffeomorphism 

in = Σ G 0 if and only if all determinants Dk = ^ (jc°) (jk+i = jk + 1). 

resp. D k = ( - are nonzero. 

This is clear, because the product Π Dk is the determinant of the Jacobian f 
k= ι ^ ' 

of Ε in JC°. 
We will now study the conditions, under which the exponential mapping is a 

global diffeomorphism, i.e. G is an exponential group in the sense of the 

Definition. An exponential group is a connected, simply connected solvable Lie 
group G, for which the exponential map £ is a diffeomorphism from the Lie algebra 
g of G onto G. 

We start with the indecomposable groups of dimension 2 and 3. 
η — 2 : There exists exactly one algebra 

s 2 = R e θ Rb with [a, b] = b 

with the group 

S2 = R κ R with (*i , * 2 ) 0 ί , yi) = (*i + y\,e~ytx2 + >2) , 

thus a = δι — jc292 , b = d2 . Here (and in the sequel) we use the notation dj — 
So clearly eRa = Rx {0}, eRb = [ 0 | x l and 

Ε{ξχα)Ε{ξ^) = {ξχ,ξ2) . 

Let 
00 k 7 1 

-V Λ V " Z e
 ~

 1 

Then one verifies easily that in S2 the coordinates of the first kind are given by 

which shows that S2 is exponential. 
η = 3 : There are two different types: The three dimensional Heisenberg algebra 

F>, = R f l ® R f c © R c with [a, b] = c 
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and group 

Hi = R 3 with (xi ,x 2 ,x3)(yi ,y2,y3) = + y i , x 2 + y2,x3 + y3 + xiy2) . 

thus a = 3i , b = + X\d3 , c = 83 , 

Ε(ξχα + + Μ = (ξι,ξ2, & + , 

and Hi is exponential. 
Now let Λ = Λι + ϊλ2 6 C x . We set 

s(A) = RZ>i ®Rb2®Rb3 

with 

[^1, ^2] = + A2^3 
[b 1, b3] = —A2&2 + λιί>3 . 

and group 

5(A) = R x C with (*, w)(y, v) = (x + y, e~Xyu + υ) 

which means that 5(A) = 1 κ C is a semidirect product with minimal normal 
subgroup C, if A2 φ 0. With x2 + 1x3) = (xi, x2, x3) e 5(A) the bj are given 
by 

b\ = 3i - (A1X2 - A2jc3)32 - (A2JC2 + AiX3)93 , b2 = d2 , b3 = 93 

and the exponential mapping in the complex coordinates ξ2 + ϊξ3 by 

(3) Ε ( ξ φ ι + i 2 b 2 + 6 * 3 ) = ( ξ ι ,Ζ ( -λξΟ(ξ2 + ι '6)) · 

We see that 5(A) is exponential if and only if Αι φ 0, hence S(i) is (up to 
isomorphisms) the only nonexponential simply connected solvable Lie group in 
dimensions = 3. In this case the complement of the image of Ε is the set of all 
elements (2irk, 0) e 5(0 with k e Ζ \ {0} and E(2Μλ + χ) = E(2Μλ) = 
(2TTk, 0) f o r all k e Ζ \ {0}, x e R b2®Rb3. 

It turns out that the absence of S(i), resp. s(i) is responsible for a simply con-
nected solvable group G to be exponential: 

Theorem 1. Let G be a connected, simply connected solvable Lie group of dimen-

sion η and let Q be its Lie algebra. The following conditions are equivalent: 

(i) No factor group of G has closed subgroups isomorphic with S(i). 

(ii) No ad χ, χ e g, has non zero purely imaginary eigenvalues. 

(iii) Ε is injective. 

(iv) Ε is surjective. 
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(ν) Ε is a diffeomorphism from 9 onto G. 

Proof. If (i) does not hold then g contains an ideal f) and elements x, y, ζ £ i) with 

(4) [x, y] - — z(mod I)), [x, z] = ;y(mod fj) . 

This means ad χ (y + iz) = i(y + /z)(mod f)) , hence i is an eigenvalue of ad x. 
On the other hand, if i is an eigenvalue of ad x, then there is _y + iz in the com-
plexification g c of 9 with (ad JE — i)(y + iz) = 0, i.e. [x, Y] = —z, z] = y. 

Let α be a maximal ideal with ζ £ α and b c 9 an ideal with α C b and such 
that b/α is minimal in 9/0. Then necessarily ζ e b, hence y = [x, z] C b and 
( Μ ι φ b)/o = s(i), which implies J/A = S(i) for the subgroups J and A of G 
corresponding to b and a. Thus we proved (i)<S>(ii). 

For the rest of the proof we use induction. The theorem is true for dimensions 
1,2 and 3, so let us assume that it is true for all connected, simply connected 
solvable groups of dimension less than n. 

Let m be a nonzero minimal ideal in 9 and Μ its corresponding connected 
normal subgroup in G. We set 9 = g/m, resp. G — G/M for the quotients, 
similarly ä = a + m e g, χ = χ Μ e G for a € g, χ e G. Now assume that (i) and 
(ii) hold. 

Let a,b € G with E{a) = E(b), hence E{a) = E(ä) = E(b), which implies 
ä = b, because dim G < η — 1 and clearly (ii) holds also for g and G. But ä = b 
implies that R ö + m = R H m = i) is a subalgebra and dim f) < 3. Certainly (i) 
is true for f), hence Ε is injective and so E{a) = E{b) implies a = b, which means 
that (iii) is true for g and G. 

Now let χ G G. As G satisfies (i) and (ii) there exist ä = a + m € g with 
χ — xM = E(a), which means χ — E(a)y with y 6 M. Again f) = ]RiZ + m i s a 
subalgebra of dimension < 3, hence £ is a bijection from I) onto the corresponding 
subgroup H. As χ € Η there exists be f) with E(b) = x. This shows that Ε is 
surjective, i.e. (iv) holds for g and G. 

To prove (iv) =>· (ii) let a be an element in g and A = ad a. With the same 
notation as above we see that E(Tt) = E(u) for u e g implies that Ε is surjective 
from 9 onto G, hence (i) through (v) hold for g and G, in particular A has no purely 
imaginary eigenvalues on g/m. Again consider the subalgebra ϊ) := Μα + m with 
corresponding subgroup H. For χ € Η there exists « e g with χ = E(u), hence 
χ — E(u) in G. But χ — E(tä) for some / e M , and because Ε is one to one on g 
it follows that ü = tä, i.e. u e f). This proves that Ε is surjective from i) to Η and 
consequently f) is not isomorphic to s(i), in particular A has no purely imaginary 
eigenvalues on m. 

Next we show (iii)=>-(i): We assume that Ε is injective, but that there exist 
an ideal t in g and a subalgebra f) with \)jt = 5(1), which means that there are 
elements a, b, c in g, independent modulo 6, with [a, b] + c, [a, c] — b e t. We 
know that we can choose a and b such that for the cosets a = a + t, we have 
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Ε (a) = E(a + b) in the quotient H/K c G/K. This means that there exists q € Κ 
with E{a)q = Ε (a + b) in G. But j := R a φ 6 is a proper subalgebra of 0 and 
Ε is injective on j, hence Ε is bijective and consequently there exists d e j with 
E(d) = E{a)q — E(a + b). Since Ε is injective this implies d = a + b, which is a 
contradiction, because a + b j. 

We have proved the equivalence of conditions (i)-(iv). Evidently (v) implies 
(iii) and (iv), so finally we have to show that a bijective Ε is a diffeomorphism, 
i.e. that the Jacobian of Ε is regular in every point χ € q. For this we will use 
lemma (2). Let m be a minimal non zero ideal in g. 

If m is central we may assume that m = Rb n . Then, with the notation of (1) 
and ξ = , £ > , · · · , ξη~ι, 0), we have 

yn(& = yn(,£) + ξη , 

hence = 1. We take m as last ideal of a JH-series and 20 as the corresponding 
JH-basis. Then we can apply induction and lemma (2): From dim g/m = η — 1 
we see that Dk φ 0 for k < I, while D/ = Jg = 1. 

If m is not central, then the centralizer c is an ideal in g. If dim g/c = 2, then also 
dim m = 2 and we could find some χ e 9 such that ad x|m would have eigenvalues 
±1, which is excluded by (ii). Thus g = R a ® c . Let be a composition series 
passing through c and m, i.e. with f)2 — c, f)/ = m, and let S8 be a corresponding 
JH-basis. 

η 
Then f)2 = ^2Rbt, m = Rbn or m = Ri>„_i Θ and ad bu restricted to 

1=2 

m, has an eigenvalue Λ = Λ] + ιλ2 with λι φ 0. We will only treat the case 
dim m = 2. 

Because m is central in f)2 we see that for any χ e i)2 the restrictions of ad 
and ad {£\b\ + x) onto m coincide, hence for ξι φ 0 the subalgebra + 

φ m is isomorphic with s(A) and formula (3), after applying the isomorphism 
n-2 

ξη-ι · 1 + ξ n • i ξη-Φη-ι + ξηΚ from C onto m, gives for χ = Σ ξ Λ the 
1 = 2 

relation 

E ( έ ^ ) = E ~ e2(t0tn)b„-l + 

+ {β2{ξ\)ξη-\+βλ{ξΧ)ξη)Κ), 

where βχ{ξχ), β2(ξχ) are defined by ? ( - λ £ ι ) = ^(£1) + ϊβ2{ξ\) . From (1) we get 

Ε iih-J = O l (& , y 2 ( i ) , · · · , yn-2(i), u>, {ξ'), w z { g ) ) 
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with ξ = {ξ \ , ξ2, ·• · , in - i ) e Κ" 2. Hence the last two coordinates of 

Ε ^ Σ Μ ^ are given by 

>>„_,(£) = u ; , ( f ) + " e 2 ( i i ) tn 

This yields for the Jacobian of ξ„) (yn-i, yn)'· 

(dy\ _(βλ{ξλ), -e2{£x)\ 
V3 J 

and 

D, = εχ{ξχ)2 + β2(ξι)2 = |?(-λ£,)|2 > 0 

for all ξ\ € R, because λ] φ 0. This ends the proof of Theorem 1. 

It is clear from theorem 1 that closed connected subgroups and simply connected 
quotients of exponential groups are also exponential; moreover we have 

Proposition 1. Let G be as in theorem 1. If Η is a closed connected subgroup of G 
with corresponding subalgebra I), then Η is exponential if and only if Η — E(\)). 

This follows immediately from theorem 1 and the functorial properties of the 
exponential mapping. 

Let Η be a closed subgroup of the Lie group G. The coset space G/H of all 
left cosets jc = xH, χ e G, is also a manifold. If G is solvable, connected and 
simply connected of dimension η and Η is connected of dimension /, then G/H is 
diffeomorphic with We want to describe this diffeomorphism explicitly by 
means of the exponential map and suitable bases in the Lie algebra g of G. 

Let f) be the Lie algebra of the closed subgroup H. Then g/f) is an f) module, 
hence there exists f) composition series of g/f), i.e. f) invariant subspaces g = 
gi D . . . D gr D gr+i = f), such that the quotients gj/gj+i are f) irreducible, so 
dim (gj/gj+ι) is 1 or 2. Slightly incorrectly we will call such a series {gy};=i>...,r+i 
an f) composition series of g/f). 

Definition. A coexponential basis for f) in g is a set Söf, = {b\, b2,..., ba) of 
elements bj e g, independent modulo f), such that 

(i) {bj Θ f)}j=i d> with bj — Σ is a refinement of an f) composition series 
i=j 

of g/f) and 



8 1. Solvable Lie Groups, Representations 

(ii) the mapping 

d 

: (Σ^Α^) Ε(ξφχ)Ε{ξφ2)···Ε{ξ^ά^ 
7=1 

maps bi χ Η diffeomorphically onto G. 

d 
It follows that for a coexponential basis Söf, the mapping χ = Σ ξ j b j —» 

ι 
e)H € G/H is a diffeomorphism of bi onto G/H. 

Proposition 2. If G is connected, simply connected solvable, then for every subal-

gebra f) of 0 there exist coexponential bases. 

Proof. Let t be a subalgebra with f) c t c g. If {b\,..., bd) is a coexponential 

basis for Ε in g and {c\,... ,Ck} a coexponential basis for \) in t, then obviously 

{b\,... ,bd , ci,... ,Ch) is coexponential for Ϊ) in g. So we only need to consider 

the case that {j is a maximal proper subalgebra of g. If g' = [g, g] c i), then i) is an 

ideal and any b φ ί) can be taken as a coexponential basis. Otherwise g = g' + I). 

As dim g' < dim g, induction allows us to assume that g' contains a coexponential 

basis {b}, resp. {b\, b2} for g'n(). We claim, that this basis is also coexponential for 

ij in g. We consider only the case [bx, b2}. With Β = E(Rbi)E(Rb2) C G' we have 

G = B(G' η Η), hence G = G'H = BH. From jc>> = x'y', x, x! e B, y, y' G H, we 

get x'~lx = y'y~l e G'DH, hence χ = χ', y = because {b\, b2} is coexponential 

for g'nf) in g'. Thus E^ is bijective from (Rb] ®Rb2) χ Η =: bxH onto G. Clearly 

£•(, is a local diffeomorphism from a neighborhood of {0} χ {e} onto a neighborhood 
η 

of the unit element e in G. Let {b^,..., bn) be a basis of f), so that χ = Σ $jbj —> 
ι 

F{x) = Ε{ξφ\)Ε(ξφ2)... E(£nbn) is a diffeomorphism F of a neighborhood of 

O e M " onto a neighborhood of e. If q : χ —»· q{x) e g is a polynomial mapping of 

g into g without constant and linear terms, then also χ —> E(q(x))F(x) is a local 

diffeomorphism. Now fix an element (χ0, ho) = {£\b\ +£%b2, ho), in b x H. Then, 

since the ad y for y e g' are uniformly nilpotent, it is easy to see that there exists 

a g' valued polynomial <7(̂ 1, £2) without constant and linear terms, such that for 

X = + he Η 

E^x + hh°) = Ε(.χϋ)Ε^(ξ{,ξ2))Ε^χ, h)h° . 

Hence Εf, is also locally diffeomoφhic in (χ0, h°). 
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§ 2 Invariant measures, group algebras 

The existence of Haar measures, i.e. of left invariant Radon measures in Lie groups, 
is a simple consequence of the existence of left invariant cotangent fields on the 
underlying manifold, see [5],ch. Ill, § 3.16. The construction shows also at once 
that the Haar modulus of the Haar measure dx of the group G is given by 

A c ( x ) = I det Ad x\~l 

where Ad χ is the adjoint transformation on the Lie algebra g of G, defined by 
χ e G. If G is connected, then clearly det Ad χ > 0 for all χ e G, hence 
Ag(jc) = det Ad X -1 . 

If G is solvable and simply connected, then the Haar measure is explicitly given 
by dx = άξ]άξ2 • · · άξη, where the ξ j are the canonical coordinates of the second 
kind defined by a given Μ basis 95 of the Lie algebra g of G. This follows 
immediately by induction on dimg and the following trivial fact: If the locally 
compact group Γ is the semidirect product of the closed subgroups Λ and B, i.e. 
Γ = Α χ Β with normal B, then the (left) Haar measure dy of Γ is the product 
measure of the Haar measures dx of A and dy of B, i.e. d y — dxdy. 

If Η is a connected closed subgroup of G and SSf, — {b[, b2, . . . , b^} a coexpo-
d © — nential basis for f), then b = ^ parametrizes the coset space G = G/H. It is 

_ ι 
known that G carries an essentially unique relatively G-invariant positive Radon 
measure dx, but this measure is in general not equivalent to the Lebesgue measure 
on b. However, for particular choices of S t̂, one can describe dx explicitly and 
simply by use of the Lebesgue measure on b. 

Again let G, Η, g and I) be as above. As we had mentioned, the Haar moduli Δc 
and Δ« of G and Η are given by Δ 0 (λ) = det Adgjc-1, Δ//(>) = det Ad^y"1. 
We set 

= d e t A < W " ' 

for y G H. Here Ad0/i,(;y) is the transformation induced by Ad0(;y) on the quotient 
space g/f). If y = exp h with he I), then Ad y = ead h, thus in this case 

X%(exp h) = g—trace ad^ h 

This shows that ^w( e xP Ό = 1 whenever ad h is nilpotent, in particular 

x%(y) = 1 for all y e G' η Η 
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So x^j has a unique extension to a continuous homomorphism, again denoted by 
X^j, from G'H into the positive reals: 

X°H{xy) = xG
H{y) tor X e G\ y Ζ Η . 

If Μ is a closed normal subgroup in G, then Δ^ = ΔG\M and ΔΑ(Χ) = 
)ΔΜ( int jc)-1 where G = G/M, χ = xM e G and Aw(int x) is the Haar 

modulus of the restriction of the inner automorphism int χ : y -» jryx"1 on M. If 
Μ C Η, Ή = Η/Μ C G, then it follows that 

(5) χψχ) = XG
H(X) for xexeH . 

Now let g = 0i D 02 D · · Ο D 0 r + i = 0 be a composition series of 
0, so m := Qr is a minimal non zero ideal in g. There exists a coexponential 
9ft(, = {bj}j for I) in 0, so that {bj φ f)}; (see the definition) is a refinement of 
{0/ + f)}i· This means that for every i with 0, + f) Φ 0,+i + i) there is a j with 
bj € g„ resp. bj, bj+] e 0,· and by Θ f) = g, + f) = Rbj Θ (gI+) + ()), resp. 
= Rbj © Rbj+1 φ (g,+i + f)). Let £(, be the diffeomorphism from bi χ Η onto G 
defined by Söf,. If ξ = (ξ\, .. • ξά) e and y e Η, we denote the element 

d 
y) by (£, in particular for any function / on G we set 

ι 

m y) := f(E&bi)E(t2b2) - ·. Etfdbd)y) . 

and denote the Lebesgue measure on bi, resp. Rd by άξ, i.e. άξ\άξ2 • •. άξα· Then 
we have 

Theorem 2. With the above definitions and notations for every integrable function 
f on G, i.e. f e L1 (G), the following formula holds: 

[ f(x) dx = f [ f(ξ,y)χG
H(y)dydξ. 

JG JW J Η 

For the proof we use induction on η = dim g and consider first the case in 
which m := g r C f). Let Μ — E(m), hence Μ = Rl, I = 1 or 2. We set g -- g/m, 
i) = f)/m etc. Then {g,}i<,<r-i is a composition series of g and ^ = {bj} with 
bj = bj + m eg a coexponential basis for f) in 0. We have Ε (Rbj) — Ε (Rbj) Μ 
in G = G/M and for any / e L1 (G) the theorem holds. Let / be integrable on G. 
Then / , defined by /(JC) = f f(xz)dz for χ = xM e G, is in 0(G). Theorem 2, 

Μ 
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(5) and Weil's formula [2], [32] yield 

[ f(x)dx = [_f(x)dx = f f_J (ξ, y)x^(y) dyd£ = 
JG JG JRd J Η 

= [ f f(t,y)xcH(y)dydt. 
J W J Η 

So in this case theorem 2 is proved. 
If m £ () we set t = f> + m. If ί) Π m = 0, then m - Μbd or m = Rbd~\ θ U d , 

Κ = Η χ Μ and {bd}, resp. {bd-\, bd) is coexponential for f) in t, moreover x^(y) 

is the Haar modulus of int y - 1 , restricted to Μ : Δχ ( γ ) = A//(j)ÄAi(int for 
y e Η. This gives immediately theorem 2 for Κ and H. If ϊ) Π m Φ 0, then the 
first part of our proof applies, because ί) Π m is a minimal ideal in t. So again the 
claim holds for Κ and Η. 

Since m e t , the theorem is true for G and K, i.e. if SÖ* = {b\,b2,bc}, 

c = d — 1 or d — 2, is the coexponential basis for t, then 

[ f(x)dx = [ [ f(£,w)xGH(w)dwd£ = 
JG J R'' J Κ 

= [ f ί ί{ξ,ξ'^)Χκ{ξ'^)χΚΗ^άξ'άξ . 
J R<' JW-c J Η 

If m is not central, in particular if dimm = 2, then m c 0', hence Μ c G' and 
χ^ is trivial on M. But if m is central and not in g', then Μ is a commutative 
direct factor of G, so again χ%(ζ) — 1 for ζ e M. This implies y)Xn(y) = 

xGK(y)xKH(y) = hence 

[ f{x)dx = i f f me,y)x%(y)dyd?d€= [ [ my)x$(y)dyd£. 
JG J R'· JW-'· J Η J R* J Η 

So theorem 2 is proved. 

It is known (see e.g. [32] ch. 3, § 3), that there exists a relatively invariant 
measure on the coset space G = G/Η. We want to express this measure explicitly 
in terms of the coordinates ξ e First we remark that we can extend χ^ to 
a continuous homomorphism χ from G into The quotient G/G' is a real 
vector space with (G'H)/G ' as a closed subspace. Hence there exists a closed 
complementary subspace, i.e. a closed subgroup D in G with G' C D, G/G' = 

D/G' Θ ( G ' H ) / G I t follows that G = DH and that 

Xixy) = X%(y) for xeD, yeH 
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defines unambigously an extension χ of χ% with χ(χ) = 1 on D. For / e ^o (G) 
we set 

W ) = / f(x)x(x~l)dx 
JG 

and as before 

fix) = / f(xy)dy for χ = xH eG. 
Jh 

We claim that / = 0 implies Ix(f) = 0: Let e be the unit element in G. Then 
theorem 2 yields 

W ) = [ [ / ( f . y^xÜWdyde = 
JW J Η 

= / / f(^y)x(i,er1dydi^ [ f(J)x(i,e)-1di = 0 
JW J Η JRD 

with £ = = e)H g G. Since / —> / is a positive, surjective, linear 
mapping from ^oC^) o n t o ^o(G) it follows that there exists a positive Radon 
meassure d x x on G so that 

[ f(x)x(x)~xdx = ί 1(ξ)χ{ξ,βΥχάξ= [_f(x)dxx 
JG J W JG 

for all / e ^ ( G ) . For these / and a e G we have fa = ( f ) a , where fa(x) = 
f(ax), (f)a(x) = f(ax) = 7(öJ). This implies 

Lfa(x)dxX= / f(ax)x(x)~ldx = χ(α) / f(x)x(x)~ldx , 
J G J G J G 

hence dx(ax) = x(a)~ldxx, i.e. dxx is relatively invariant with modulus χ{α)~λ. 
Summing up we have shown most of 

Theorem 3. Let Η be a connected closed subgroup of G and let G = G/Η the left 
coset space. There exists a coexponential basis for f) in g, which defines a global 
coordinate system s ξ —> ξ = (ξ, e)H e G. In these coordinates an essentially 
unique relatively invariant measure dx~x on G is given by the formula 

[_f(x)dxx= [ /(?)*(£, e)-1^ 
JG J RD 

in which χ is a real character of G, extending χ^ = Δ^Ι^Δ^1. For a e G one 
has dxax = χ(α)~ιdxx. 


