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Foreword 

For some considerable time, linear programming has been one of the methods of 
operations research which has been widely known and much applied in Germany 
too, both in the literature ofthe subject and in practice. Its applications range from 
production planning through finance planning and from optimization of traffic 
networks through urban planning. The literature of linear programming includes 
textbooks of a strictly mathematical nature as weil as programmed textbooks for 
those with no previous knowledge of mathematics. 

An objection frequently heard to more extensive dissemination of the theories 
of linear programming in the practical field has been that data wh ich are available 
in practice are at once too inexact and too unreliable to provide the basis for the 
application of "exact" procedures like linear programming. This problem is the 
starting point of the present volume. 

The inexactitude and unreliability of existing data often cannot be disputed. 
Using conventional planning methods, the determination of the effects of these 
inaccuracies is frequently very difficult, if not impossible. In most cases, this is, 
however, possible using sensitivity analysis in the widest sense (i.e., including 
postoptimal analysis and parametric programming), and the amount of effort in
volved is reasonable. My colleague, Professor Gal has been involved in research 
in this field for many years. His decision to undertake the writing of an introduc
tion to and interpretation of the area of linear programming which enables us to 
make statements on the possible effects of data changes, data inaccuracies, and 
decision changes on operational and other problems is, therefore, to be welcomed. 
Sensitivity analysis, as interpreted in the present volume, has been seen by ex
perts - correctly, in my opinion - as the bridge between pure dissemination of 
information and decision making. There is, thus, ample justification for including 
a volume on such an important subject in the "Operations Research" series. 

As the present volume is likely to interest both those working in linear pro
gramming and research mathematicians, the chapters have been written primarily 
with practical application in mind, and an abridged mathematical version has been 
appended to each of them. It is hoped that this will increase the usefulness of the 
volume for a wide range of readers. 

Professor Dr H.-J. Zimmermann 
Aachen, July 1973 





Preface to the (second) English edition 

This edition aims at to bringing the book up-to-date and correcting some errors 
wh ich - in spite of almost endless efforts proofreadings again and again - still 
are found in the (first) English edition. Also, in the organization of References a 
change has been made, which should, hopefully, be of advantage to the reader: 
direct quotations ofliterature are put together as References to each of the chapters. 
At the end of the book a Bibliography is to be found, in which the quoted 
publications and such which deal directly or indirectly with the subject of the 
book, are listed. To offer the reader another help, an annotated bibliography is 
added. 

In order to keep the size of the book in some limits, the author decided to omit 
Section 10-8 (of the previous edition) "Parametric programming in the Trans
portation Problem" hinting, of course, to the relevant literature in the References 
to Chapter 10. 

The author notices with pleasure that his hope, as stated in the Preface to the 
(first) English edition, namely that " ... this will not remain the only work on 
parametric programming in English and ... inspiring others to write new and 
more comprehensive monographs on the subject", has been fulfilled. The reader 
will find several monographs on parametric programming written in English in 
the Bibliography at the end of the book (see also the References to Chapter 4). 

The organization and the structure of the book has been described and explained 
in the Preface to the German edition. From this point of view nothing has been 
changed. 

The author apologizes in this place for being wrong in the Preface to the 
(first) English edition (written in 1978). First, as is pointed out in a study on the 
history of parametric programming I, Gass and Saaty have not been the very first 
authors dealing with parametric programming. Second, claiming, in 1978, that 
" ... there has never been a conference on parametric programming anywhere in 
the world ... " was wrong: In July 1977, AY.Fiacco organized the first Conference 
on Data Perturbation in Washington, D.C. , which is ever since being held every 
year. 

I should take this opportunity of thanking my new/old publisher, W. de Gruyter, 
for taking care of publishing this new edition, while McGraw Hili forgot to notify 
me that the book had been sold out in 1983. I am indebted to Dr. F. Geue for his 
carefully reading the proofs and to Mr Th. Hanne for unifying the bibliography. 
My thanks go also to my second wife, Gisela, who helped me to formulate in some 

I See[II,12jinChapter4. 



x Preface to the (second) English edition 

places the English text and for whom I spoiled our stay in Spain by intensively 
working on this new edition instead of sitting on the beach. 

TomasGal 
Benidorm, Spain /Hagen, Germany, January 1994 



Preface to the (first) English edition 

Parametric programming was first developed over 20 years ago (the first papers 
by Saul I. Gass and Thomas L. Saaty date back to 1955). Since then, theories 
of linear and nonlinear parametric programming have been worked out, solution 
procedures for various cases have been developed, and parametric programming 
has also been used for solving problems of mathematical programming, such as 
decomposition, quadratic-, fractional-, and nonlinear programming. Parametric 
programming has also been applied in various fields of economics, chemistry, 
technology, agriculture, etc. It is, therefore, rather odd, that there are very few 
courses on parametric programming in existence and that, to the author's knowl
edge, there has never been a conference on parametric programming anywhere in 
the world; also, there has been no previous monograph on parametric program
ming in English. 

The manuscript of this book was originally written in Czech in the years 1968 
through 1969. In 1973 it appeared in German. That is why the main theme of the 
work is linear parametric programming. The aims and objectives in writing this 
book are discussed in the Preface to the German Edition. The reader will also find 
there an explanation of why each chapter is divided into two parts. 

The original German edition of this book has here been revised with the aim 
of correcting errors and bringing the new English edition up-to-date. Since the 
first chapter of the German edition (on "Systems, Models and Systems Analysis") 
is now out of date, it has been omitted here. In its place appears a new chapter 
(Chap. 9) on "Multicriteria linear programming". Minor alterations have been 
in almost all chapters, but Chap. 2 (Chap. I in the present English edition), in 
particular, has been extensively revised to include some relations between convex 
polyhedrons and graphs as weil as a newly developed consideration of degeneracy. 
Chap. IO now includes a section on parametrization of transportation problems. 
The author would like to thank Dr W. Hummeltenberg for preparing this section. 

The writer regards it as a honor to find himselfthe author of the first monograph 
on parametric linear programming in English. It is to be hoped that this will 
not remain the only work on parametric programming in English and that the 
present book will make some contribution to the development, application, and 
dissemination of parametric programming, while at the same time inspiring others 
to write new and more comprehensive monographs on the subject. 

The bibliography has been something of a problem. The original German 
version contained a list of 392 works with an appendix containing a further 27. 
Since the appearance of the German book, something like 300 further titles have 
appeared. It was quite simply impossible to include these with the earlier titles in 
a single list. This would have meant altering all references throughout the book. 



XII Preface to the (first) English edition 

The author, therefore, opted for presenting the new ti tl es in a separate list, in wh ich 
each number is indicated by a prime. Almost every day so me new title appears. In 
view of the sheer number of journals and books appearing, it is impossible ever to 
produce a complete list of references, let alone find all the relevant publications. 
We shall simply add new titles to the end of the list until such time as the book 
has actually gone to press. 

By now there exist about 500 direct or indirect references to parametric pro
gramming. The bibliography at the end of the book has been subdivided and is 
designed to provide the reader with a survey of relevant literat ure from various 
aspects. We make no claim to having provided a complete list. It has been put 
together in a way that seemed appropriate to the author, although this is possibly 
not the best conceivable arrangement. 

I should like to take this opportunity of thanking my publisher, McGraw
Hili, for their interest and their cooperation, especially Mr A. von Hagen, Ms 
B. Scholtz, his editorial asistent, and their colleagues. My thanks also go to Dr 
Geoffrey V. Davis for his careful translation and his patience in discussing the 
whole text with me. I am indebted to my wife Dana for reading the proofs. 

Tomas Gal 
Aachen, October 1977 



Preface to the German edition 

Economists and specialists in other fields often meet with failure when they first 
attempt to introduce linear programming (LP) into their operations. The reason 
for this is frequently one of the following factors: 

I. The difficulties wh ich have to be overcome in devising a suitable model. 
2. The uncertainty and inaccuracy of the intial data, the Iinearizing of the -

de facta - nonlinear relationships, the neglect of time (dynamic) factors, the 
determining of originally stochastic data, etc. 

3. The problem of evaluation and interpretation as weil as the application and 
exploitation of the results in practice. 

The aspects mentioned under 2 may possibly inspire specialists with a deep 
distrust of the result of a solved LP problem. It is for this reason that the optimal 
solution of a linear program mayaiso be considered the first step towards the 
solution of a given operational or similar problem. 

The question arises as to whether and to what extent the results of the solution of 
an LP problem may be of practical use, in spite of the "disadvantages" mentioned. 
A first reply to this would be that the optimal solution of the problem as such 
does, in fact, have more of an informative character. 

However, there do exist other possibilities of utilizing this solution and, in a 
certain sense, of eliminating the "disadvantages" mentioned in 2. Such is, for 
example, the aim of sensitivity analysis, by means of which (among other things) 
one may test in what region the values, say, ofthe right-hand side ofthe restrictions 
can be changed, so as to maintain the optimality of the optimal solution obtained. 
The extension of sensitivity analysis into parametric programming also enables 
us to compute all existing optimal basic solutions in relation to their dependence 
on the values of the components of the right-hand side. 

Approaches to the solution of these problems have been provided by the de
velopment of systems theory. On this theory are based systems analysis, systems 
synthesis, systems engineering, and other developments. Nevertheless, there is 
considerable confusion over the symbolism and vocabulary of these branches of 
systems theory. This makes it difficult to characterize them and distinguish them 
from one another in a few words. This is discussed more fully in the first chapter. I 

By way of a summary, let us consider a firm as a system: using the methods of 
systems analysis, it is then possible to devise a linear model which can serve as 
the basis for setting up of the LP model. The methods of sensitivity analysis or of 
parametric programming enable us to follow up the connection between the firm, 

I See the Preface to the (first) English edition. 



XIV Preface to the Gennan edition 

the model, and the optimal solution. From the point of view of an expert (of an 
economist, for example), it is doubtless both important and necessary to be able 
to take into account as many of the changes occuring in the initial factors during 
the course of time as possible. The methods of parametric linear programming 
and sensitivity analysis, in association with the ideas of systems analysis, are 
particularly suited to this purpose. These methods are, thus, no longer the object 
of the investigation; they become it means. 

In the practical application of LP, three main complexes of problems may be 
distinguished. 

I. The setting-up of the linear model. 
2. The computation of the optimal solution. 
3. The evaluation, interpretation, and analysis of the optimal solution. 

The systems analysis approach is of assistance with the first and third complexes 
of problems. If we are dealing with a "normal" linear program, the computation 
of the optimal solution requires nothing but a computer. 

Sensitivity analysis and parametric programming are mainly, though not exclu
sively, of use in dealing with the third complex of problems. Moreover, parametric 
linear programming is an instrument which may possibly be applied to aB three 
complexes of problems. 

It is the aim of this book to elucidate the various methods of sensitivity anal
ysis and parametric linear programming. The main emphasis, however, lies on 
the application of these methods to the most diverse purposes involved in the 
analysis of a model and/or of the corresponding optimal solution, as weB as on 
the combinations of different approaches to the solution of practical problems. 
We shaB also indicate other possible theoretical and practical applications of the 
methods described. 

It is assumed that the reader is familiar with the fundamentals of linear pro
gramming and, therefore, also with linear algebra (vector and matrix ca\culus, the 
theory of systems of linear equations, and inequalities). As an additional aid, the 
fundamental principles of LP have been briefty recapitulated in Chap. 2.2 

Each chapter is divided into two parts. In the first part, the problems are dis
cussed with the aid of examples; the second part is then an abridged mathematical 
presentation which, however, makes no claim to being exhaustive. It is left to 
the reader to decide whether he3 wishes to read both parts or only that wh ich 
corresponds more closely to his4 own particular interests. 

The examples have been chosen with a view to helping the reader to arrive at 
a better understanding of the methods and problems described. They contain few 
unknowns and a few constraints. 

2 See the Preface to the (first) English edition 
3 Or she 
4 Or her. 



Preface to the Gennan edition xv 

The appendix offers an extensive list of references. Not all the authors and titles 
mentioned there have been quoted in the text. The aim was rather to provide a 
survey of the literature which is concemed directly or indirectly with the theory, 
solution procedures, and applications of sensitivity analysis and parametric pro
gramming. A selection of works has been incIuded, in addition, which deal with 
the theory and application of systems analysis as wel1 as a number of textbooks on 
linear programming which make reference to sensitivity analysis and parametric 
programming. 

The author of this book formerly worked in Prague and, after a short stay at 
the University of Louvain in Belgium, took up his present post at the Rhine
Westphalian Technical University of Aachen in the autumn of 1970. The prepa
ration of the German text of this book from an earlier rough manuscript involved 
certain difficulties of a linguistic nature, which were overcome with the assis
tance of several members of the staff of the Department of Operations Research 
in Aachen. I should particularly like to thank Messrs. H. Gehring, W. Hum
meltenberg and Dr U. Eckhardt, as wel1 as Miss I. Teutsch. I am also much 
indebted to the Head of the Department of Operations Research at the University 
of Aachen, Professor Dr H.-J. Zimmermann, for his friendly support during the 
preparation of this book and for enabling me to devote a considerable amount of 
effort to this time-consuming work. Final1y, I should like to express my thanks 
to my publisher, de Gruyter, for their cooperation and their understanding of my 
particular situation . 

Tomas Gal 
Aachen, March 1972 
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1 Basic concepts and notation in linear programming 

This Chapter contains abrief survey of the basic concepts and notation of linear 
programming (LP for short) I . This Chapter and those following have each been 
divided into two parts. The first part is based on illustrative examples, while the 
second part presents an abridged mathematical version of the same information. 

Column vectors are represented by lower-case boldface letters, e.g., x, ai, c. The 
transpose into row vectors is indicated by the symbol T, e.g., xT, cT. The symbol x 
E IRn means that vector x is an element of areal n-dimensional space; x may then 
be represented as an ordered m-tuple (XI, . .. , xm)T ofreal numbers XI, ... , Xm. The 
vector x is also called an m-vector, and the numbers XI, . . . , Xm are also known as 
the elements or the coordinates of the vector x. Matrices will be represented by 
upper-case boldface letters, e.g.,A, B. The transpose of a matrix will be indicated 
in the usual manner by T, e.g., AT, BT. If there are indices needed, vectors are 
characterized by superscripts, e.g., ai, xj, scalars by subscripts, e.g., Xj, Sj. 

At this point, several special vectors and matrices will be noted which frequently 
occur in the text later on. Thus, 

ek = (0, ... , 1,0, ... ,O)T = 

0= (0, 0, ... O)T, 0 E IRn 

o 
o 

o 
I 
o 

o 

a null vector; 

The reader is referred to the (selected) textbooks for a fuH discussion of LP and/or 
linear algebra: r I, 3, 8, 9]. Note that these references are found at the end of this 
Chapter; in the Bibliography at the end of this book there are some more textbooks 
Iisted. 
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1 0 0 . 
o 1 0 . 

.00 

. 00 

1= an (m, m) identity matrix; 

0= 

000 . 1 0 
000 .. 01 

(
0, .. 0) 
.. .. 0 E 

. . .. 
O .. 0 

1-1 The simplex tableau 

IRmxm an (m, m) null matrix. 

All necessary explanations can be illustrated from the following example. 

Example 1-1 Maximize the following objective function (linear form): 

subject to 

XI + X2::; 13 
5xI - 4X2 ::; 20 

-8xI + 22x2 ::; 121 
4xI + X2 ~ 8 

Note that (1-3) is called the nonnegativity conditions. 

(1-1) 

(1-2) 

(1-3) 

The coefficients of the respective variables x I, X2 form a column vector, also 
called the activity vector. Thus, to XI the vector a l = (I, 5, -8, 4)T is assigned, 
to X2 the vector a2 = (I, -4, 22, l)T. The elements of the right-hand side of the 
constraints (1-2) also form a column vectorb = (13, 20,121, 8)T. Those variables 
wh ich may be considered to be the "bearers" of the quantity of an actual or real 
activity (thus, in our case, x I, X2) are called real variables. Hence, the variable 
vector (of real variables) is (XI, X2)T E IR2 , i.e., in general x E IRn , whereas 
matrix A E IRmxn . In our specific case m = 4, n = 2. The inequality system (1-2) 
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is transfonned by means of the slack and surplus variables X3. X4, Xs, and X62 into 
the following system of equations: 

XI + X2+X4 = 13, 
5xI - 4X2 + Xs = 20, 

-8xI + 22x2 + X6 = 121, 
4x I + X2 - X3 = 8, 

Xj ~ O,j = I, ... ,6. (1-4) 

Note that after having transfonned our inequalities into equations we have N = m 
+ n, i.e., 4 + 2 = 6 variables altogether. 

The cost coefficients3 of the slack variables are zero (cf., for example [2, 3, 
5]). Each solution ofthe system (1-4) is a solution ofthe system (1-2), as will be 
shown later. 

It is apparent that, with the variable X3, the coefficient vector is the vector _e4 ; 
in the case ofthe variables X4, Xs, X6, it is the vectors e l , e2, e3. 

As we know, an identity matrix is required for the initial tableau. According to 
(1-4), only the (ei, e2, e3) part is present. The system (1-4), therefore, has to be 
augmented by an artificial variable p, so that, from (1-4) there follows 

x I + X2 + X4 = 13, 
5x I - 4X2 + Xs = 20, 

-8xI + 22x2 + X6 = 121, 
4x I + X2 - X3 + P = 8. 

The nonnegativity conditions are to be valid for all variables, i.e., 

Xj ~ O,j = I, ... ,6,p ~ O. 

(1-5) 

(1-6) 

If the original objective function z = 3x I + 8X2 , which contains the real variables, 
is augmented by the slacks, then the values of the slacks have no effect on the 
value of the objective function, since, as mentioned above, the cost coefficients 
of the slacks are zero. 

If the objective function is further augmented by an artificial variable, then 
the value of the objective function is apparently inftuenced by the value of the 
artificial variable, since this variable is added with the coefficient one.4 

The augmented objective function in Ex. I-I thus reads 

2 In this example x) is a surplus variable, X4, Xs and X6 are slack variables. We shall not 
distinguish between these kinds of variables throughout the text and shall use only the 
term slack variables or simply slacks. 

3 We shall use the term "cost coefficient" rather than the more c\umsy "objective function 
coefficent" 

4 This is true as long as the artificial variable p is basic variable.When p is eliminated 
from the basis, its value becomes zero and it does not influence any more the value of 
the objective function (see also Sec. 1-4). 
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(1-7) 

A frequently used concept is "basis"; this term is used to denote a set of m Iinearly 
independent non-null vectors vj E IRm . Linear independence means that none of 
the given vectors vj can be expressed as a linear combination of the other vectors 
(for an exact description, see, for example, [5, 8, 9]). 

The so-called initial basis is formed by the columns (column vectors) of the 
identity matrix. In our particular case, these are the vectors e1 , e2, e3, e4, where 
ei E 1R4, j = I, ... , 4. Any vector from 1R4 can be uniquely expressed as a linear 
combination of the basic vectors. In this way a l , for example, can be uniquely 
expressed as 

a l = e l + 5e2 - 8e3 + 4e4 , 

i.e., 

In this connection, it should be mentioned that the slack and artificial variables 
can be used to form an initial basis. Those variables, the coefficient-vector of 
which form the basis, are called basic variables. The other variables are called 
nonbasic variables. Setting the nonbasic variables equal to zero gives us a basic 
solution. It follows from (1-5) that the initial basic solution in our example is 

XI = O,X2 = O,X3 = O,X4 = 13,x5 = 20,X6 = 121,x7 = P = 8. 

A solution is said to be feasible if it satisfies the constraints. In our specific case, 
the initial basic solution is feasible, since it satisfies all the equations ofthe system 
(1-5) and the values of all the basic variables are non negative (conditions (1-6». 

If the given problem is solved by the simplex method, the calculations can be 
arranged in tabular form. There are no fixed rules for the setting-up of such 
tableaux. Table I-I represents the initial solution and Table 1-2 the optimal 
solution. All the symbols used in the tableaux will be explained in due course.5 

The basic variables can easily be recognized in each of the tables from the 
unit vectors associated with them. In accordance with Table 1-2, these variables 
are, therefore, x I, X2, X3, and X5. If, in the light of the basic variables from Table 
1-2, the corresponding coefficient vectors of the basic variables are selected from 
Table I-I, the following matrix results: 

5 Note that in almost any professional software the initial data are arranged in a suitable 
form of the initial tableau by means of a matrix generator (for more details, see, for 
example, [7]). 
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Table I-I Initial tableau for Ex . I-I 

Col. No I 2 3 

cB c· 3 

~j I 

0 4 I 

0 5 5 

0 6 -8 

I 7(p) 4 

I 

-L,Pi - 4 
i=1 

Table 1-2 Final tableau for Ex. I-I 

Col.-
No 

I 2 3 

CB 

~j 
3 

I 

3 I I 

8 2 0 

0 3 0 

0 5 0 

~Zj 0 

( 
1 1 00) 5 -4 0 1 

-8 22 0 0 
4 1 -I 0 

4 

8 

2 

0 

I 

0 

0 

0 

4 

8 

2 

I 

- 4 

22 

I 

-I 

5 

0 

3 

0 

0 

I 

0 

0 

7 

5 6 7 8 9 10 

0 0 0 0 b 

3 4 5 6 7 

0 I 0 0 0 13 

0 0 I 0 0 20 

0 0 0 I 0 121 

-I 0 0 0 I 8 

I 0 0 0 0 -8 

6 7 8 9 10 

0 0 0 

4 5 6 7 xB 

11/15 0 -1/30 0 1112 

4/15 0 1/30 0 15/2 

16/5 0 - 1110 -I 43/2 

- 13/5 I 3/10 0 45/2 

13/3 0 1/6 0 153/2 

(1-8) 

In column 2 of Table 1-2, the indices of the basic variables (or the initial basic 
vectors) stand below the symbol p. The set p = {I, 2, 3, 5} is then called the 
basic-index. If p is associated with an optimal basic solution, then we speak of 
an optimal basic-index. The matrix (1-8) is called basis for short and denoted by 
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Table 1-3 Abbreviated form of the final tableau 

eB P 0 0 0 xB 
4 6 7 

3 I 0.i3 -0.03 0 5.5 

8 2 0.26 0.03 0 7.50 

0 3 3.2 -0.1 -I 21.5 

0 5 -2.6 0.3 0 22.5 

ÖZj 4.3 0.16 0 76.5 

B, where B = (al, a 2, _e3, e2). If we are dealing with several bases, we simply 
number the basic-indices in order PI, P2, ... , Pk> ... The corresponding bases are 
then marked accordingly by the corresponding subscripts: BI, B2, ... , Bk. .... 

In column 1 ofTable 1-2, those cost coefficients which are associated with the 
basic vectors stand below the symbol eB. 

In the initial tableau (Table 1-1) the basic-index is denoted by Pt. where PI = 
{4, 5, 6, 7}6. 

The index-set of an variables is denoted by J = {j I j = I, ... , 6} 7 . A subset of 
this set is the index-set P of the basic variables. The complementary sub set <p is 
the index-set of an nonbasic variables; thus, in our particular case, <p = {4, 6}. 

The tableau can be written in abbreviated form by simply omitting the unit 
vectors associated with the basic variables. The abbreviated form of the tableau 
Table I-I is shown in Table 1-3. 

The matrix B (cf. (1-8» possesses an those properties which are required for 
the existence of an inverse matrix8. The inverse is denoted by B- I . Hence, 

(1-9) 

The matrix B- I can always be found in those columns ofthe final tableau in which 
the matrix I stood in the initial tableau. In our case and in accordance with Table 
1-2, this is, therefore, 

( 
0 .7~ 0 -O.O~ 0) 
0.260 0.03 0 
3.2 0 -0.1 -1 . 

-2.6 1 0.3 0 

6 The index 7 stands for the artificial variable p. 
7 The index 7 of the artificial variable p is not included in the set J. 
8 The matrix B is a quadratic nonsingular matrix. 

(1-10) 
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The elements of matrix B-1 are denoted by ßij. The vector r3k denotes the kth 
column of matrix B-1• 

According to (1-5), for instance, the vector b in our example can be expressed 
by the vectors of the initial basis as folIows: 

b = 13e l + 20e2 + 121e3 + 8e4 . (I-li) 

We also say that, with respect to the initial basis, the coordinates of the vector 
bare 13, 20, 121, 8. Multiplying the vector b from the left by the matrix B-1 

(cf. (1-10» gives us the coordinates of the vector b with respect to the basis B. 
Hence, 

where 

in general, 

Xs = (5 .5,7.5,21.5, 22.5)T, 

T 
Xs = (YI, ···,Ym) . 

(1-12) 

(1-13) 

(I-13a) 

In other words, the vector b can be uniquely expressed by the basic vectors 
associated with the basic-index p = {I, 2, 3, 5} as folIows: 

b = 5.5a l + 7.5a2 + 21.5(-e4 ) + 22.5e2 . (1-14) 

The vector Xs is then called the vector b transformed into basis B. 
Similarly, with other vectors: 

where 

B-1a l = yl = el;B-1a2 = y2 = e2;B-1(-e4) = y3 = e3; 
B-1el = y4 = r31; B-1e2 = y5 = r32 = e4; B-1e3 = y6 = r33; 

B-1e4 = ß4 = -e3;B- 1b = Xs = (YI, · ·· ,Yml, 

. T 
yJ = (Ylj' .. . , Ymj) ,j = 1, ... ,6. 

The vector Xs = (5.5, 7.5, 21.5, 22.5)T in which only the values of the basic 
variables are collected is called the basic solution. The vector x~) = (5.5, 7.5, 
21.5, 0, 22.5, 0) T , which contains the values of all variables (except, of course 
that ofthe artificial variable), i.e., also the zeros assigned to the nonbasic variables, 
is called the complete basic solution. 

Let us denote by x the vector that consists of (all) the variables Xj (i .e., of the 
real and slack variables), and by c the vector consisting of all cost coefficients; 
then we obtain 

N 

Z = cTx, i.e., z = L CjXj . 
j=1 

(1-15) 
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In accordance with (1-15) and with reference to Table 1-2, the maximal (optimal) 
value z~~x of the objective function associated with p is given by 

z~~x = (3,8, 0,0,0,0)(5.5,7.5, 21.5,0,22.5, O)T = 3 x 5.5 + 8 x 7.5 = 76.5. 

It is, therefore, superftuous to perform a scalar multiplication of the whole 
vector c by the vector x~), since all non basic variables are zero. In order to 
determine the optimal value z~~x of the objective function, it is, thus, sufficient to 
carry out a sc al ar multiplication of the basic cost vector CB by the basic solution 
vector XB. Hence, 

m 

Z(p) - CTx l' e Z(p) - '" C 'y' max - B B, .. , max - L B •• . 

i=1 

Applied to our example, 

Z~~x = (3,8,0, O)T (5.5,7.5,21.5, 22.5)T = 76.5. 

The last row of Table 1-2 (or Table 1-3) is denoted by Ll Zj with 

Ll Zj = Zj - Cj for all j E J 

and 

(1-16) 

(1-17) 

(1-18) 

. - - T-
Smce, for example, z4 = (3, 8,0,0) (0.73,0.26,3.2, -2.6) = 4.3 and C4 = 0, the 
result is LlZ4 = 4.3.9 

For all j E J 10, the row Ll Zj is designated the criterion row with the criterion 
elements LlZj, which are sometimes called reduced costs. In maximization prob
lems, we speak of an optimal solution if XB ~ 0, i.e., Yi~ 0 for all i, and Ll Zj ~ 0 for 
all j . We sometimes speak of LlZj, all j, as the (complete) dual solution and of XB 

as the primal solution. The assertion "optimal solution" means that the solution 
is primal (XB ~ 0) and dual (Ll Zj ~ 0) feasible (cf. also Sec. 1-5). 

In this connection, it should be noted that a basis B is called an optimal basis, 
if the solution associated with B is optimal. 

Notation note From, e.g., B-1 Fit follows that F is being transformed into basis 
B to which the basic-index p is assigned uniquely. In order to keep in mind that 
this transformation is applied on F, we mark this F by a left superscript "p" to 
show that F is being transformed into B. Hence, 

B-1F = PF. 

9 Note that in the abbreviated tableau Table 1-36 Zj is "listed" only for j 4 p (i.e., j E q». 
I 0 In the abbreviated Tableau, for aB j 4 p. 
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Analogously with some other notation; if there cannot arise any confusion we 
keep the "normal" notation without the left superscript, e.g., LlZj . Only if it is 
inevitable, we shall use the left superscript, i.e., for example, P Llzj' 

1-2 Geometrie meaning 

The inequality system (1-2), (1-3) can be drawn in a system of coordinates (Fig. l
I) . An inequality defines a half-plane (in general: a half-space). If the inequality 
sign is replaced by an equality sign, a straight line (a hyperplane) is obtained 
which forms the boundary of the half-plane (half-space). The solution of a linear 
inequality system (with two unknowns) is then the part of the plane, which is 
common to all half-planes (the intersection of the given half-planes). In this way, 
the coordinates of the boundary points of the half-plane defined, for example, by 
the first inequality x, + X2 ~ 13 satisfy the equation x, + X2 = 13. This can be 
drawn and provided with a short arrow, which characterizes the corresponding 
half-plane. The inter section of the given four half-planes is shaded in Fig. I-I 
and forms a convex polyhedral set" . 

If the given problem is to be solved geometrically, the straight line Zo = 3x, + 
8X2 is drawn for an arbitrary value ZOo This straight line is then moved parallel 
to itself until it reaches the vertex '2 P of the polytope, where the distance of the 
straight line from the origin 0 is greatest. In this position, Z = 76.5. 

The set of all points of the polytope (including the boundary) is called the set 
of all feasible solutions or the solution set. It can be proved (cf., for example, [I, 
3, 4, 5, 8]) that a basic solution is always assigned to at least one vertex of the 
polytope. 

1-3 Types of solution veetors 

The result from Table 1-3 can be expressed in the form of a linear equation system: 

x, + 0.73x4 - 0.03X6 = 5.5 
X2 + 0.26x4 + 0.03X6 = 7.5 
x3+3.2 x4-0.1 X6 = 21.5 
Xs - 2.6 X4 + 0.3 X6 = 22.5 

Note that the artificial variable has been omitted. 

11 If this set is bounded it is ealled a eonvex polytope. 
12 Sueh a point, i.e., vertex, is sometimes ealled extreme point. 

(1-19) 
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z{P) 
IIWI 

Figure I-I 

Setting X4 = X6 = 0, we immediately obtain from (1-19) not only the basic 
solution XB, but also the complete basic solution x~)o 

As can easily be seen from (1-19), all the basic variables depend on the non basic 
variables; namely, 

XI = 505 - 0073x4 + 0003X6 
X2 = 705 - 0026x4 - 0003X6 
X3 = 21.5 - 302 X4 + 001 X6 
Xs = 2205 + 206 X4 - 003 X6 

This result can also be written in vector form: 

505 - 0073x4 + 0003X6 
705 - 0026x4 - 0003X6 
21.5 - 302x4 + 001X6 

X4 XB = 

2205 + 206x4 - 003X6 

The vector XB is called the general solution (associated with basis B)o 

(1-20) 
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Another connection is worth mentioning. According to (1-16), we have z~~x = 
C"äXB, and, according to (1-12), we have XB = B-Ib. Hence, 

(p) _ T _ TB- Ib 
zmax - CBXB - cB . (1-21 ) 

Denoting 

C~B-I = u T , (1-22) 

we obtain 

z(p) = uTb max . (1-23) 

It is known that u is the dual solution (cf., for example, [I, 2, 8, 9]). If the optimal 
value of the objective function in the dual problem is denoted by f~ln' 13 then 

z(p) = fGi) 
max mm (1-24) 

According to (1-22) and taking into account Table 1-2, 
T - -

U = (4.3,0,0.16,0), 

so that, from (1-23), it follows that 

(p) _ - - T _ .!2 ~ _ zmax-(4.3,0,0.16,0)(l3,20, 121,8) - 3 XI3+ 6 XI21-76.5. 

Note that dZj for all j forms the dual complete basic solution whereas u is, in 
analogy to XB, the dual basic solution. 

To take a particular example, let us suppose that the problem (1-1) through 
(1-3) is a maximization of the total profit from manufacturing two products PI 

and P2, subject to the given constraints (1-2), (1-3). Let XI be the quantity of the 
product PI manufactured, X2 the quantity of P2. Let the coefficient CI = 3 in the 
objective function represent the profit (expressed in money units (MU) of, say, $ 
10) per unit of PI, C2 = 8 MU be the profit per quantity unit (QU) of P2 . 

The first of the constraints is a typical capacity restriction. This inequality can 
be interpreted more or less as folIows: a raw material R I is used in equal parts in 
both products PI and P2 at the rate of 10 kg per QU. No more than 130 kg of this 
raw material is available. The coefficients 1, I, and 13 are thus expressed in units 
of 10 kg. 

The second constraint, in the manufacture of one unit of P2, 4 kg of a joint 
product are obtained, which are then incorporated in the product PI at the rate of 
5 kg per QU. A further 20 QU of this joint product are available. The production 
of the joint product must be at least as large as the consumption; thus, 

4X2 + 20 ~ 5x I. 

By multiplying this inequality by -I and rearranging, we obtain 

13 P is the basic-index of the dual solution. 



14 Basic concepts and notation in linear programming 

5x, - 4X2 ::; 20. 

The third constraint: the product P2 incorporates 22 kg of a raw material R2 per 
QU. This raw material becomes available as a by-product from P, at the rate of 8 
kg per unit produced. Raw material R2 can also be bought on the market. But, for 
capacity reasons, the firm cannot use up more than 121 kg of R2. 

The fourth constraint: this is a typical requirement condition and it can be 
interpreted roughly as folIows. For the production of one quantity unit of product 
P" 40 h on a machine Mare required ; for each quantity unit of P2, lOh on this 
machine Mare required. The total time during which the machine is actually to 
be in use for the manufacture of the products must be at least 80 h, because of 
difficulties in converting the machine and the like. The corresponding coefficients 
in the fourth constraint are, therefore, given in 10 h units. 

The activity a' represents the "technology" of P" a2 the "technology" of P2. 
In accordance with the optimal solution, x, = 5.5 QU of product P" and X2 = 
7.5 QU of product P2 are to be manufactured, where the optimal profit is z~~x = 
76.5, i.e., $ 765.'4 Since x3 = 21.5, the minimum total machine time required in 
the optimal production program is exceeded by 215 h. The slack variable X4 = 0 
refers to the full exploitation of the available raw material R,. Furthermore, Xs 
= 22.5, i.e., in the manufacture of 5.5 QU of P, and 7.5 QU of P2 there are still 
2.5 QU of the joint product left over for further use. From X6 = 0 it follows that 
exactly 121 kg of the raw material R2 have been used up. 

1-4 The simplex method 

The reader may ask the question why to leam, how the simplex method works, 
when we have powerfull computers, wh ich are very quick and efficient. It is 
enough, symbolically said, "to push a buttom" and we have the result. In this 
book, however, we deal with postoptimal analysis of the results, so that, in order 
to understand what is all behind, we need to understand the main features of the 
principles of the simplex method. 

The simplex algorithm including all special cases has been described in detail 
in almost all textbooks of linear programming (LP) (cf., for example, [ 2 - 6, 
8, 9]). We shall confine ourselves to illustrating the main principles using Ex. 
I-I. The problem in Ex. I-I, augmented by slacks, can be written as folIows. 
Maximize 

N 

Z = LCjXj 

j=' 

14 These figures are, for illustration, chosen arbitrarily. 

(1-25) 
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subject to 

N 

LäijXj = bi, i = I, ... ,m, 
j=l 

Xj ~ O,j = I, . .. ,N. (1-26) 

In our example N = 6, m = 4; as we know already from the preceding section, to 
start the calculation we need, in our case, an artificial variable, the subscript of 
which is 7. 

After drawing up the initial tableau, the pivot element is to be determined. Two 
selection criteria will be used for this: the optimality criterion and the feasibility 
criterion. Both criteria and their use will now be described. 

The augmented objective function (with artificial variables inciuded) reads 
(generally): 

n t$N u$m 

ZE = LCjXj +0 L ~j + LPi. ( 1-27) 
j=l j=n+l i=l 

This objective function can be divided into two "partial" functions: 

n t$N u$m 

ZN = L CjXj + ° L Xj + ° L Pi (I-28a) 
j=l j=n+1 i=l 

and 
n t$N u$m 

zp=OLXj+O L Xj+ LPi . (I-28b) 
j=l j=n+l i=l 

The augmented objective function is then, evidently, 

ZE = ZN + Zp. 

If Pi = 0 for all i = I, ... , u ~ m, then Zp = 0 results, so that ZE becomes the 
original objective function. For this reason, the simplex procedure is divided into 
two phases. In the first phase, Pi = 0 and Pi non basic variable have to be achieved 
for all i , in order to obtain Zp = O. The computation of the optimal solution of 
the original problem follows in the second phase. Therefore, in the first phase, we 
minimize Zp (or maximize -zp). In the initial solution (in the initial tableau), all 
artificial variables appear as basic variables. If the minimum Zp = 0 is achieved, 
and Pi become non basic variables for all i, then, evidently, Pi = 0 for all i, such 
that Pi are nonbasic variables. 15 

15 Note that the described procedure is only one of several possibilities to generate a 
feasible solution of the original problem (Phase I). Various so called "crash meth
ods" have been worked out and nowadays so called internal point methods are being 
developed [4, 7J. 
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Table 1-4 Initial tableau 

CI PI 3 8 0 0 0 0 b nl ) 
I 2 3 4 5 6 p I 

0 4 I I 0 I 0 0 0 13 13 

0 5 5 -4 0 0 I 0 0 20 4 

0 6 -8 22 0 0 0 I 0 121 -

I ~p 4* I -I 0 0 0 I 8 2 

-p -4 -I 0 0 0 0 0 -8 

ßZj -3 -8 0 0 0 0 0 0 

Note It may happen that we do not succeed in eliminating all artificial variables 
(such that they become nonbasic variables) in the course of Phase 1. This may 
mean that the original system of constraints is not consistent (possesses mutually 
exc1usive constraints). For more on this, see Sec. 10-2. 

Consider now the optimality criterion as applied to our Ex.I-I. The criterion 
u~m 

row is formulated as - 2: Pi" U = 1, and then all negative elements in this row are 
i=1 

found. The absolute values of these elements are then determined and the highest 
selected. Applied to our example, 

max{ 1 - 41, 1 - 11 } = 4. 

The pivot column with the index k = 1 has now been determined. Then the 
feasibility criterion is applied. All positive elements in the pivot column are found 
and the quotients determined: 

,,~k) = ~ ~", ' aik > 0, 
aik 

where k = index of the pivot column. With the data of Ex. 1-1, 

,,(1) _ .!2 _ 13 ,,(1) _ 20 _ 4 ,,(I) - ~ - 2 
~"I - 1 - '~"2 - 5 - '~"4 - 4 - . 

From these quotients the smallest is chosen: 

Q ~in = min{ 13, 4, 2} = 2 => r = 4. 

The pivot row with the index r = 4 has now been determined. At the intersection 
of pivot row and pivot column lies the pivot element, which in our case is Y41 = 4 
(marked by an asterisk in Table 1-4). 

lfthe simplex step (also called pivot step or pivoting) described in the following 
is performed, the artificial variable is eliminated, so that we can go on to Phase Ir. 
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In this Phase, the criterion elements are the elements ~ Zj (cf. (1-17), (1-18». The 
pivot step, which follows the determination of the pivot element, can be performed 
by means of two equivalent procedures. 

I. Let us suppose that s steps have already been performed. Let the elements of 
the sth tableau be denoted by sYij, sYi, and let 5+IYij,S+IYi denote the elements 
of the (s+ I )th tableau, which are to be computed. Let the pivot row be the rth 
row and the pivot column the kth column, so that sYrk > 0 is the pivot element. 
Then, 

s+1 sYrj. 
Yrj = -,J = I, ... ,N, 

sYrk 

5+1 sYr 
Yr = -s -, 

Yrk 

1 sYi/Yrk - sYr/Yik . . . 
s+ Yij = , I = I, ... , m,J = 1, ... , N, I =t r, 

sYrk 

sY sY Sy S 
s+l y," = ' rk - r Y,k . _ I . 

I - , ... , m, I =t r. 
sYrk 

(1-29) 

(1-30) 

(1-31 ) 

(1-32) 

2. The (complete) Gauss-Jordan elimination method (elimination procedure) 
performed step by step. This procedure will now be briefty described using 
OUf example. 

Notes I. Equations (1-29) through (1-32) are only a consequence of the 
elimination method. 

2. The last row in Table 1-4 consists of the usual criterion elements, 
wh ich can either be computed via (1-17), (1-18) or simply by 
reversing the signs of the cost coefficients (in this simple example). 

Consider Table 1-4; divide the pivot row by the pivot element, i.e., 

1 
4 I 4 -I 0 0 0 8 I. 

If the division indicated is carried out, the modified pivot row, MPR for short, is 
obtained: 

1/4 -1/4 0 0 0 1/4 2 I. 

The MPR is entered in the new tableau (Table 1-5) in the rth (i .e., fourth) row. 
The ith element of the pivot column (excluding the pivot element itself) is now 

taken and its sign reversed; the MPR is then multiplied by the number so obtained 
and the result added to the ith row of the given tableau. This procedure is repeated 
with all elements of the pivot column (excluding the pivot element). In order of 
the rows, for our example, this yields the following results. 

Row I . First element in the pivot column (in Table 1-4) is I. Therefore, 
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(-1) x I 1/4 -1/4 0 0 0 1/4 2 I 

yields 

I -1 -1/4 1/4 0 0 0 -1/4 -2 I 

The row so obtained is added to Row 1 of Table 1-4. Therefore, 

+ row 1 o o 0 0 13 I 

yields 

I 0 3/4 1/4 o 0 -1/4 11 

This is row 1 in Table 1-5. 
Row 2. The first element is 5. Therefore, 

(-5)x I 1/4 -1/4 0 0 0 1/4 2 I 

yields 

I -5 -5/4 5/4 0 0 0 -5/4 -10 I 

+ row 2 I 5 -4 0 0 o 0 20 

yields 

I 0 -21/4 5/4 0 o -5/4 10 I 

and this is row 2 in Table 1-5. 
Row 3. The first element is -8. Therefore, 

8 x I 1/4 -1/4 0 0 0 1/4 2 I 

yields 

I 8 2 -2 0 0 0 2 16 

+ row 3 I -8 22 0 0 0 0 121 

yields 

I 0 24 -2 0 0 2 137 I 

and this is row 3 in Table 1-5. 
There is no need to show in details the computation of rows 4 and the criterion 

row. This folJows exactly the same rules. 
Note that, in Table 1-5 , the elements of the criterion row and of the feasibility 

criterion column, wh ich define the pivot column and the pivot row, respectively, 
are also marked by an asterisk and the arrows indicate the leaving or entering 
variables. 

Pivoting on the pivot element in Table 1-5 and using the same rules again, we 
obtain Table 1-6 (presented in abbreviated form). 
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Table 1-5 First iteration 

CB P 3 8 0 0 0 0 0 xB d 2) 
I 2 3 4 5 6 p I 

0 4 0 3/4 1/4 1 0 0 -1/4 II 44/3 

0 5 0 -21/4 5/4 0 I 0 -5/4 10 -

0 f-6 0 24* - 2 0 0 I 2 137 137/24* 

3 ~I I 114 -114 0 0 0 1/4 2 8 

~Zj 0 - 2914* -3/4 0 0 0 3/4 6 

Table 1-6 Second iteration (abbreviated form) 

CB P 3 6 7 xB d 3) 
I 

0 f-4 5116* -1/32 -5116 215/32 43/2* 

0 5 13116 7/32 - 13116 1279/32 1279/26 

8 ~2 -1112 1/24 1112 137/24 -

3 I -11/48 - 1/96 11148 55/96 -

~Zj -65/48* 29/96 65/48 4549/96 

Note that column 7, wh ich is associated with the artificial variable p, is (I) 
equal to column 3 with opposite sign , and (2) it is not needed any more for 
ca\culating the optimum. It will, however, be needed in other connections as the 
4th column of the corresponding 8-1• 

The solution in Table 1-6 is obviously not yet optimal (~Z3 = -65/48 < 0). It is 
therefore necessary to perform a further pivoting. This step will not be described 
here. It is worth noting however, that this step can also be carried out using the 
abbreviated form. The optimal solution, which we obtain as a result of the next 
pivoting is shown in Tables 1-2 and 1-3. As is apparent from these tableaux, the 
corresponding solution is indeed optimal. 

1-5 The dual problem 

To any linear programming problem there exists a dual problem. Altematively, 
for the sake of precision, we may call the original problem the primal problem. 
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The primal and the dual problems are interrelated in a number of ways. The most 
important of these will be explained in the following example. 

Example 1-2 Let the problem of Ex. 1-1 (see Sec. 1-1) be considered a primal 
problem. Formulate the corresponding dual problem and solve it. 

For this purpose, all inequalities in (1-2) should first be of the same type: 

XI + X2 ~ 13, 
5xI - 4X2 ~ 20, 

-8xI + 22x2 ~ 121, 
-4xI - X2 ~ -8, 

XI ~ 0,X2 ~ O. 

Each column of these modified constraints becomes a row in the dual. It follows 
from this that the dual problem has four "real variables" u (, U2, U3 , U4. The vector 
C of the primal problem becomes the vector b of the dual and the vector b of 
the primal problem becomes vector C of the dual. If maximization takes place in 
the primal problem, then there will be a minimization in the dual problem, and 
conversely; the type of the inequalities will also be converse. 

The dual problem we obtain is, thus: minimize 

subject to 

f = 13u( + 20U2 + 121u3 - 8U4 

Ul + 5U2 - 8U3 - 4U4 ~ 3, 
UI - 4U2 + 22u3 - U4 ~ 8, 

Uj ~ O,i = I, . . . , 4. 

The following tableau (Table 1-7) shows the calculation of the minimum of this 
(dual) problem. 

Now, compare the results of the primal (Table 1-2) and the dual problems (step 
2 in Table 1-7). Denote the dual optimal basis by p = {I, 3}. It then follows that 
Z<p) = f<p) = 76 5 max mtn .. 

In the "criterion row" of the dual, we have the values of the primal basic 
variables (with opposite signs), and the basic solution ofthe dual yields the values 
LlZj of the prima\, where the subscripts j are associated with the columns of B-1 

and with the non basic variables of the primal. Hence, (cf. (1-22) and (1-24)), 

uT = c~B-(, 
i.e., 

U T = (13/3,0, 1/6,0). 

That part of the criterion row in the primal which is assigned to the columns of 
B-1, therefore, yields the dual solution uT . 

If the unit vectors are omitted in the final tableau, to each row of the dual a 
column of the primal with opposite signs is assigned and vice versa. 



The dual problem 21 

Table 1-7 Calculation of the minimum of the dual problem 

1 2 3 4 5 6 

step 0 

PI I 5 -8 -4 -I 0 3 

f-P2 I -4 22* -I 0 -I 8 

-LPi -2 -I -14 5 I 1 -11 

step I 

f-pl 15/11 * 39/11 0 -48/11 -I -4/11 65/11 

-t3 1/22 -2/11 I -1/22 0 -1/22 4/11 

-LPi -15/11 -39/11 0 48/11 1 4/11 -65/11 

step 2 

-tl I 13/5 0 -16/5 -11/5 -4/15 13/3 
(x4) 

3 0 -3/10 1 1/10 1130 -1/30 1/6 
(x6) 

0 -45/2 0 -43/2 -11/2 -15/2 76.5 
(xs) (x3) (xI) (x2) 

From this, it follows that, when calculating the primal, the results of the dual 
are also contained in the final tableau (and conversely). 

The following should also be pointed out: 

I . If any primal real variable Xk is not sign-restricted (i .e., Xk ~ 0 does not 
hold), then the kth constraint of the corresponding dual is an equation (and 
conversely). 

2. If the rth constraint in the primal is an equation, the rth (real) variable of the 
dual is not sign-restricted (and conversely). 

The existence of the dual problem and the relationships between the primal and 
dual problems give us reason to speak (in the primal tableau) of a primal and dual 
solution. By primal solution, we mean the solution XB or x~) by dual solution uT 

or pzT. A solution is considered to be optimal if, and only if (iff) it is primal and 
dual feasible . In maximization problems, a tableau contains the primal optimal 
solution if, and only if Yi ~ 0 for all i and ~Zj ~ 0 for all j . It contains the minimal 
solution iff Yi ~ 0 for all i and ~Zj ::; 0 for all j. 


