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Preface 

This volume consists of contributions from participants in a Research Semester in Low 
Dimensional Topology which took place under the auspices of the International Math-
ematical Research Institute at Ohio State University from February through June 1990. 
The Research Semester was funded by The Ohio State University through a grant from 
University Challenge and included an international conference in March 1990. 

The main topics of the Research Semester included: the geometry and topology of 
3-manifolds, with particular emphasis on hyperbolic 3-manifolds and their interactions 
with number theory; the "new" invariants of 3-manifolds related to quantum field theory; 
plane algebraic curves. 

A number of long term visitors (2-3 months) were in residence at any given time. 
These visitors were: L. Siebenmann (Orsay), T. Yoshida (Tokyo), B. Apanasov (Novosi-
birsk, now Oklahoma), V. Turaev (Leningrad, now Strasbourg) and S. Orevkov (Moscow). 
In addition each week saw additional short term visitors. A list of these visitors and all 
talks is given after this Preface. 

The Research Institute. The International Mathematical Research Institute at Ohio 
State University was founded in 1989 to support a program of visiting research scholars in 
mathematics at Ohio State and to run Workshops and Special Emphasis Programs on topics 
of particular importance and timeliness. The Research Semester on Low Dimensional 
Topology was the first major program of the Institute. Since then the Institute has 
supported workshops on, among others, Nearly Integrable Wave Phenomena in Nonlinear 
Optics, Quantized Geometry, Arithmetic of Function Fields, and L-Functions Associated 
to Automorphic Forms, and a workshop on Geometric Group Theory will take place from 
May to June 1992. The Institute is currently supporting about 20-30 other research 
visitors (mostly short term) per year. The Institute publishes a preprint series as well as 
this book series, which is devoted to research monographs, lecture notes, proceedings, 
and other mathematical works arising from activities of the Research Institute. 

Acknowledgements. First and foremost, the editors thank The Ohio State University 
for its support of this program through the Research Institute. We thank our visitors and 
our fellow topologists at Ohio State for their contributions to the success of this project. 
We also thank the non-academic staff of the Mathematics Department for their help in 
the organization and running of the Research Semester, particularly Marilyn Howard 
(administration and visas), Marilyn Radcliff (expenses), Gena Dacons (administration) 
and Terry England (typing). 

All contributions to this volume were refereed, and the editors thank the referees for 
their invaluable service. Many authors helped us by preparing their contributions in TgX. 
The TgX macros were written by Larry Siebenmann and edited by Walter Neumann, who 
benefited from the TEXpertise of many unnamed people. 

Walter D. Neumann and Alan W. Reid, for the editors, March 1992. 





Program of the Research Semester 

February to June 1990 

The visitors to the program included the speakers listed below and additional short term 
visitors: A. Broughton, T. Chinburg, M. Feighn, J. Gilman, C. Hodgson, K. Millet, 
U. Oertel, J. Harer, J. Ratcliffe, M. Scharlemann, R. Skora, A. Thompson, J. Weeks. 

In addition to the talks listed below, a seminar was run through weeks 13-19 on 
the new 3-manifold invariants of Turaev, Reshetikhin, Viro, and Witten, with talks by 
D. Burghelea, V. Turaev and D. Yetter. 

Week 1 (February 4-10) 
Η. M. Hilden, Universal Groups (3 lectures). 

Week 2 (February 11-17) 
L. Siebenmann, Knot complements—the Tietze conjecture revisited. 
C. Frohman, Knot invariants via intersection homology. 

Week 3 (February 18-24) 
R. Lee, Topological invariants from conformal field theory (2 lectures). 
B. Apanasov, Hyperbolic cobordisms and conformal structures, I. 

Week 4 (February 25-March3) 
W. Whitten, Imbeddings of 3-manifold groups. 
L. Mosher, Dynamical systems and the homology norm of a 3-manifold (2 lectures). 
F. Bonahon, The circle at infinity of a surface and applications. 
B. Apanasov, Hyperbolic cobordisms and conformal structures, II. 

Week 5 (March 4-10) 
Y. Xia, Tate-Farrell cohomology of mapping class groups. 
B. Apanasov, Hyperbolic cobordisms and conformal structures, III. 

Week 6 (March 11-17) 
D. McCullough, A conjectural picture of 3-manifold mapping class groups. 
Lee Rudolph, Generalized Jones' polynomial, symplectic topology, and complex 

plane curves. 
R. Meyerhoff, Anti-length spectrum of hyperbolic 3-manifolds. 

Week 7 (CONFERENCE IN LOW-DIMENSIONAL TOPOLOGY, March 17-20) 
C. Adams, Noncompact hyperbolic 3-orbifolds of small volume. 
B. Apanasov, Nonstandard conformal 3-manifolds and 4-dimensional topology. 
M. Bestvina, The boundary of negatively curved groups. 
L. Kauffman, Combinatorial version of the SL(2)q 3-manifold invariant—spin 

networks and quantum groups. 



viii Program 

D. Long, Peripheral separability. 
P. Melvin, Evaluations of the 3-manifold invariants of Witten and Reshetikhin-Turaev. 
A. Reid, Commensurators of hyperbolic 3-manifolds. 
N. Reshetikhin, Invariants of 3-manifolds connected with finite dimensional Hopf 

algebras. 
H. Rubinstein, Polyhedral metrics of non-positive curvature on three and four-manifolds. 
P. Shalen, Patterson measures, Margulis numbers, and volumes of hyperbolic 3-

manifolds. 
O. Viro, Combinatorial construction of quantum invariants of 3-manifolds. 
T. Yoshida, Floer homology and splittings of manifolds. 

Week 8 (March 25-31) 
R. Brooks, Low eigenvalues of arithmetic manifolds. 
R. Brooks, Isospectral manifolds. 
W. Menasco, Developing a calculus on links in S 3 . 

Week 9 (April 1-7) 
V. Poenaru, The 3-dimensional Poincard conjecture, I, II. 
V. Poenaru, Almost convex groups, combable groups and of universal covering 

spaces of 3-manifolds. 
C. Maclachlan, Fuchsian subgroups of Bianchi groups. 

Week 10 (April 8-14) 
V. Poenaru, The 3-dimensional Poincard conjecture, III, IV. 
V. Poenaru, Killing stable 1-handles in ττψ1 of open 3-manifolds. 
J. Przytycki, Skein module of handlebodies. 
J. Hass, Flows and intersections of curves on surfaces. 
P. Scott, Least area surfaces in 3-manifolds (2 lectures). 
H. Rubinstein, Cubulated 3-manifolds (2 lectures). 
T. Yoshida, A splitting formula of spectral flow and calculation of Floer homology of 

some special homology 3-spheres, I. 

Week 11 (April 15-21) 
C. McA. Gordon, Reducible manifolds and Dehn surgery. 
T. Yoshida, A splitting formula of spectral flow and calculation of Floer homology of 

some special homology 3-spheres, II. 

Week 12 (April 22-29) 
S. Morita, On the structure of the mapping class group and the Casson Invariant. 
M. Shapiro, Automatic structures and 3-manifold groups. 

Week 13 (April 30-May 5) 
V. G. Turaev, New invariants of links and 3-manifolds. 
T. Yoshida, On ideal points of deformation curves of hyperbolic 3-manifolds with 1 

cusp. 

Week 14 (May 6-12) 
M. Baker, Finding homology in covers of 3-manifolds. 
M. Baker, Reminisces on the Cuspidal Cohomology Problem and arithmetic links. 



Program ix 

Week 15 (May 13-19) 
A. Libgober, Topology of affine surfaces and trigonometric sums. 
S. Orevkov, Fundamental group of plane curve complements and the Zariski conjec-

ture, I. 
S. Kerckhoff, Local rigidity and the representation space of link complements. 

Week 16 (May 20-26) 
A. Pazhitnov, Morse-Novikov theory for closed 1-forms. 
S. Orekov, Fundamental group of plane curve complements and the Zariski conjecture, 

II. 
S. Kaliman, On the classification of polynomials in 2 variables. 
D. Yetter, Tangles in cobordisms. 

Week 17 (May 27-June 2) 
S. Orevkov, Some approaches to the Jacobian conjecture. 
J. Corson, Two-complexes of groups. 
W. Neumann, Amalgamation and the invariant trace-field of Kleinian groups. 

Week 18 (June 3-9) 
No talks 

Week 19 (June 10-16) 
R. Penner, Decorated Teichmüller theory (2 lectures). 
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Noncompact Hyperbolic 3-Orbifolds of Small Volume 

Colin C. Adams* 

Abstract. We determine the six noncompact orientable and the six noncompact nonori-
entable hyperbolic 3-orbifolds of least volume. This extends previous results of Meyer-
hoff where he determined the unique noncompact orientable and nonorientable hyperbolic 
3-orbifolds of least volume. Our results are obtained through analysis of horoball diagrams 
for rigid cusps. 

1. Introduction 

In [6], the noncompact orientable and nonorientable hyperbolic 3-orbifolds of least 
volume were determined. We extend those results here to determine the six noncompact 
orientable and nonorientable hyperbolic 3-orbifolds of least volume. See Theorem 6.1 
and Corollary 6.2 for the volumes; the corresponding orbifolds are described in the 
paragraphs preceding the statements of Theorems 3.3,4.2, and 5.2. 

The idea is to analyze horoball patterns in order to list all the possible volumes of 
maximal cusps below a given volume. These results, in conjunction with known cusp 
density results, then yield the noncompact hyperbolic 3-orbifolds of least volume. Similar 
techniques were used in [3] to determine the three smallest limit volumes of hyperbolic 
3-orbifolds. 

In what follows, vo will denote the volume of an ideal tetrahedron in H3 with all 
dihedral angles equal to π /3 . In particular, vo = 1.01494146.. . . We will let v\ denote 
the volume of an ideal tetrahedron in H3 with dihedral angles π /2 , π / 4 and π /4 . In 
particular, v\ = 0.91596544. . . . 

We will work in the upper-half space model of hyperbolic 3-space, denoted H 3 . We 
will think of a hyperbolic 3-orbifold as being obtained by taking the quotient of H3 by 
a discrete group G of hyperbolic isometries. Since all of the orbifolds which we will be 
interested in have a single cusp, we will always assume that the single point at oo on the 
boundary of the upper-half-space model of H3 is a parabolic fixed point for this cusp. 

The pre-image in H 3 of the cusp will be a set of disjoint horoballs, including one 
centered about oo. (The center of a horoball is the point on the boundary of hyperbolic 
space where the horoball is tangent.) The horoball centered about oo appears as a 
horizontal plane with positive ζ coordinate together with all the points above it. 

We will maximize the single cusp in the orbifold by expanding it until it touches itself 
on the boundary. This corresponds in H3 to expanding the set of horoballs equivariantly 
until they first touch one another. 

* Supported in part by NSF Grants DMS-8711495 and DMS-9000937. 



2 Colin C. Adams 

It is convenient to normalize the picture so that the bounding plane of the horoball 
centered about oo has Euclidean height 1 above the χ — y plane. Since the cusp has 
been maximized, there are horoballs tangent to the horoball centered about oo. These 
horoballs will have Euclidean diameter 1 and will be the horoballs of largest Euclidean 
diameter. We call these horoballs full-sized horoballs. 

We call the view of the set of all horoballs looking from oo down toward the χ — y 
plane a horoball diagram or a cusp diagram. See [4] for examples of horoball diagrams 
corresponding to knots. 

Additional background on hyperbolic 3-orbifolds appears in [8]. Additional back-
ground on horoball diagrams and definitions of terms can be found in [1], [2] and [3]. 
All of the hyperbolic 3-orbifolds under consideration will be assumed orientable until 
the last section. 

We will utilize the following lemma which follows from work of Robert Meyerhoff 
in [5], 

Lemma 1.1. If a finite volume hyperbolic 3-orbifold Q contains a set of cusps with 
disjoint interiors such that their total volume is β, then vol(Q) > ß{2v0/sß). 

We include one geometric lemma from [3] which will be helpful in what follows. 

Lemma 1.2. If two horoballs Hx and Hy have Euclidean diameters a and b respectively 
and their centers χ and y are a distance c apart, then there exists a horoball with 
diameter ab/c2. • 

Proof. The shortest hyperbolic distance between the two horoballs can be determined by 
rotating 180° about a geodesic which is a semi-circle of radius c with one endpoint at y 
and with its high point directly above x. Since the hyperbolic distance from Hx to the 
high point on the geodesic is ln(c/a), Hx is sent by the rotation to a horoball centered 
at oo with boundary a horizontal plane at height c 2 / a . The rotation fixes Hy. The 
shortest distance between the two horoballs is unaffected by the rotation and is therefore 
In (c2/ab). 

Since all horoballs are identified in the quotient, there is an isometry in the orbifold 
group which sends Hx to H^. It must then send Hy to a horoball which is a hyperbolic 
distance In(c2 /ab) from Ηχ. Since the boundary of Ηχ is a plane at height 1, Hy 

must be sent to a horoball of Euclidean diameter ab/c2. • 

2. Rigid cusps 
A cusp in a hyperbolic 3-orbifold is called rigid if Dehn filling cannot be performed on it 
and otherwise it is called non-rigid. In [3], it was shown that a cusp is rigid if and only 
if there are singular curves of order other than two going all the way out the cusp. 

Since a cusp is isometric to the quotient of the set of all of the points above a 
horizontal plane in the upper-half-space model of hyperbolic space by a Euclidean group 
of transformations, there are exactly three possibilities for the structure of the singularities 
in a rigid cusp. In all three cases, the cusp contains three singular axes. Denoting the 
orders of the three singular axes as {a, b, c}, the possibilities are {3,3,3}, {4,4,2} or 
{6,3,2}. 
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Lemma 2.1. If the action of the orbifold subgroup fixing oo identifies all of the full-sized 
horoballs in the horoball diagram of the orbifold, then every point of tangency between 
two horoballs lies on the axis of an order two elliptic isometry in the orbifold group such 
that the axis is tangent to both the horoballs. 

Proof Let Hx be a full-sized horoball centered at the point χ in the χ — y plane and 
let Hoo be the horoball centered at oo. Then there is an isometry j in the fundamental 
group of the orbifold such that j{x) = oo. Let y = j(oo). Then j(i?oo) is a full-sized 
horoball, denoted Hy. By hypothesis, there is an isometry k which fixes oo and which 
sends y to x. 

Then koj sends a; to oo and oo to x, while fixing the point of tangency of Hx and 
Η«,. Thus koj is the order two elliptic isometry with axis through the point of tangency 
between Hx and Ηχ. Since elements of the fundamental group of the orbifold identify 
all tangency points between pairs of horoballs to tangency points on H ^ , there must be 
corresponding order two elliptic axes through all points of tangency. • 

Note that once we have normalized so that the boundary of the horoball centered at oo 
has Euclidean height one, the volume of the cusp is one half of the area of a fundamental 
domain in the χ - y plane for the Euclidean subgroup of the orbifold group which fixes 
oo. 

In the next three sections, we will only be interested in orbifolds with volume less 
than υο/4. By Lemma 1.1, a maximal cusp in such an orbifold has volume less than 
\ /3/8. Hence, our goal will be to list those cusps with volumes less than \ /3/8. 

The singularities in the rigid cusps will restrict the placement of the full-sized horoballs 
in the horoball diagrams. Since none of the horoballs overlap in their interiors, the only 
way a vertical singular axis in the upper-half-space model can intersect the interior of a 
horoball is if the horoball is centered at the end of the vertical axis in the χ — y plane. 

3 . { 6 , 3 , 2 } - c u s p 

We examine first the case where the cusp under consideration is a {6,3,2}-cusp. If 
there is more than one equivalence class of full-sized horoballs under the action of the 
subgroup of isometries fixing oo, the least volume for the cusp occurs when a pair of 
full-sized horoballs are centered at the 3-fold and 6-fold singularities, yielding a volume 
in the cusp of at least \ /3/8. Hence, we will assume from now on that there is only one 
equivalence class of full-sized horoballs in the cusp diagram. 

If there is a full-sized horoball which is not centered at any of the singular points in 
the cusp diagram, the least volume cusp appears as in Figure 1(a), with a cusp volume of 
(3/2 + \ /3) /6 = .5386. . . . 

If there is a full-sized ball centered at the 2-fold singularity, then the smallest possible 
area for the cusp diagram occurs when the full-sized horoballs at each of the 2-fold 
singularities touch each other as in Figure 1(b). This gives an area for the fundamental 
domain in the plane of at least l / \ / 3 and a cusp volume of at least Λ / 3 / 6 = .2887. . . . 



Figure 1(a) 

6 

Figure 1(b) 

6 
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If there is a full-sized ball at the 3-fold singularity, the volume is at least \ /3 /8 as 
in Figure 1(c). Note that this volume is also the least volume for the case that we have 
full-sized balls at both the 6-fold and 3-fold singularities. 

The rest of our time will be spent on the case that there is a full-sized horoball at the 
6-fold singularity and nowhere else. The least such volume that can occur is in the case 
that these full-sized balls touch one another, yielding a cusp volume of \ /3/24. This 
is the smallest possible volume of an orientable cusp in an orbifold and it occurs in the 
smallest noncompact orientable orbifold, which was determined in [4]. It is not hard to 
prove that this smallest noncompact orientable orbifold is unique. 

Now, we look at the situation where the full-sized balls centered at the 6-fold singu-
larities do not touch. Let the shortest distance between the centers of a pair of full-sized 
balls be given by d. Throughout the rest of the section, we are assuming d > 1. We will 
find the following lemma useful. 

Lemma 3.1. If d > 1, there cannot be a set of three horoballs which are pairwise 
tangent. 

Proof. If there were such a set of three balls, an isometry exists which would take 
the center of one of them to oo and therefore send the other two balls to two full-sized 
horoballs which are tangent to each other. This implies that the minimal tangency distance 
d is in fact equal to 1, contradicting our assumption that d > 1. • 

Since we are assuming that there is only one full-sized horoball up to the group action, 
we know from Lemma 2.1 that there is an order two axis perpendicular to the order six 
axis and through the point of tangency at height 1. Rotation about the order two axis 
sends the full-sized ball to a ball centered at oo and sends the ball centered at oo to 
the full-sized ball. It also sends the six neighboring full-sized balls, each a distance d 
away from our original full-sized ball, to six smaller balls. We call these smaller balls 
(1 /d)-balls as each of their centers will be a distance 1 /d from the center of the full-sized 
ball. See Lemma 4.3 and the paragraphs following Lemma 4.6 of [3] for more details. 
The Euclidean diameter of these (l/d)-balls is 1 /d2 by Lemma 1.2. 

Define the distances u, ν and w as in Figure 2. We can determine each of them in 
terms of d and β utilizing the law of cosines. 

By symmetry, we will always assume that 0 < β < π /6 . We obtain the following 
equations: 

If the center of a (l/d)-ball comes within a distance 1 of the center of a full-sized 
ball without the two balls touching or if the centers of two (l/d)-balls come within ( l /d ) 
of each other without the two balls touching, then when one of the two balls is put at oo, 
the other will form a ball intermediate in size between a full-sized ball and a (l/d)-ball, 
by Lemma 1.2. Since (l/d)-balls are the biggest balls tangent to full-sized balls, there 
must then be a ball tangent to no ball bigger than itself. The upper hemisphere of this ball 

u2 — d2 + 3/d2 — VSsmß — 3 cos/3 
v2 = 4 ((d/2)2 + l / d 2 — cos/3) 
w2 = d2 + l / d 2 - 2cos/3. 

( 1 ) 

( 2 ) 

(3) 
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Figure 2 

forms a disk of no tangency. (See the proof of Lemma 4.1 in [2] or Lemma 4.6 and the 
proof of Lemma 4.8 in [3]). Hence, there is the equivalent of another full-sized ball in 
the diagram. The least possible volume results when the additional ball is centered at the 
3-fold singularity, yielding a volume of \ / 3 / 8 . 

From now on, we will only investigate the situation where no such disk of no tangency 
exists. Suppose first that a single (1/d)-bal l is shared by a pair of neighboring full-sized 
balls and the ( l /ef)-ball does not touch a third full-sized ball. Since the angles between 
the centers of the (l/d)-balls as measured f rom the center of a full-sized ball that they 
touch must be a multiple of π / 3 , it is easy to see that the center of the single (1/d)-bal l 
is in line with the centers of the two full-sized balls that it touches. Hence d = 2/d, 
yielding d = \f2 and a cusp volume equal to \fZ/Yl = . 1 4 4 3 . . . . In this case, the 
horoball diagram appears as in Figure 3(a) . 

Suppose now that a single ( l / d ) -ba l l is shared by three full-sized balls. Then 1/d = 
d/\/3 yielding d = \ / 3 . The cusp volume is then 1 / 8 = 0.125, with a horoball diagram 
as in Figure 3(b). 

From this point on, we assume that each ( l / d ) -ba l l touches a unique full-sized ball. 
In order that no intermediate balls are created, it must be that the center of each (1/d) -ball 
stays a distance at least 1 away from the center of the nearest full-sized ball. This forces 
w > 1 and hence 

. ^ cP + 1/d2 - 1 
cos/3 < . (4) 

Since we are assuming by symmetry that 0 < β < π/6, we have \ / 3 / 2 < cos β < 1. 
This can only occur when 

y i T W + 7 2 7 3 
d > = 1 . 5 1 5 4 6 . . . . 

2 

We will restrict ourselves to these values of d. 
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Suppose first that a pair of ( l /d)-balls touch each other and no other (l/rf)-ball 
touches this pair. The point of tangency of the two balls must then be directly over a 
2-fold singularity. It follows that 

cos β = d2/4 + l/d2 - l / ( 4 d 4 ) . (5) 

Then (4) and (5) together yield the inequality 

de - 2d4 - 2d2 + 1 > 0. ( 6 ) 
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This has no solutions for 1 < d < (1 + \/5)/2. In order that two (l/d)-balls touch 
each other, it must be that 2 jd + l / d 2 > d. This forces d < (1 + \/5)/2. Thus, the 
only possible solution is d = (1 -I- \ /5)/2 yielding a cusp volume of \/3(3 + \/5)/48 = 
0.18894.. . . 

Suppose now that three (l/d)-balls are tangent in pairs. Lemma 3.1 yields an 
immediate contradiction. 

We now suppose that each (l/d)-ball touches a unique full-sized ball and that none 
of the (l/d)-balls touch each other. In order that no intermediate sized balls are created, 
it must be that the (l/d)-balls stay a distance at least 1 from the full-sized balls that they 
are not touching and that the (l/d)-balls stay a distance l/d from each other. Hence, 
w > 1, yielding Equation 4, and both ν > l/d and u > l /d , yielding: 

cos β < d 2 /4 + 3/(4d2) (7) 

d2 + 2/d2 — \/3 sin β — 3 cos β > 0. (8) 

From (8) we have the following possibilities 

cos β < 3(d2
 + 2 / d 2 W 2 4 - 3 d 4 - 1 2 ( g ) 

or 

( 1 0 ) 

These two equations yield no restriction once d reaches a size of 1.65289.... Since 
we are assuming cos β > v /3/2, (9) can only hold for d > ^ / ( l + i/3) = 1.65289 
For any d > \f2, (10) does not contradict the fact cos β < 1, so in the range 1.51546... 
< d < 1.65289 . . . , we can ignore (9) and only utilize (10). 

However, when d > 1, (10) and (7) cannot hold simultaneously unless d > \/7 = 
1.62658.... Hence, the cusp volume in this case must be at least \/21/24 = 0.19094... . 

In Figure 4, we see the case with the (l/d)-balls each touching a unique full-sized 
ball. Applying an order two elliptic isometry with axis tangent to the horoball centered at 
oo and tangent to the full-sized horoball on the lower left sends the (d, w. l/d)-triangle 
to a similar triangle with edge lengths 1/w, l / d and 1/wd2. The old (l/d)-ball is sent 
to a new ball of diameter 1/tu2d2 by Lemma 1.2. 

Call this new ball a (l/w)-ball. Suppose first that the three (1 /w)-balls corresponding 
to three distinct (l/d)-balls are in fact the same ball. Then the single (l/u>)-ball has its 
center at the center of the equilateral triangle with edge lengths d. Hence, it must be that 
1/w = \ / 3 / d . This fact, together with the law of cosines and the law of sines then forces 
d = \/7. The resulting cusp has volume exactly \ /21 /24, and is depicted in Figure 5. 

We assume now that the (1/?/;)-balls are distinct. If the (Ι/w;)-balls touched full-
sized balls, this would force two (l/d)-balls to touch, contradicting our assumption that 
they do not. The three (1/w)-balls cannot touch each other pairwise by Lemma 3.1. 

In order to prevent the creation of any intermediate sized balls and the resulting disks 
of no tangency, it must be that the (1/w;)-balls stay a distance at least (1/w) from 
the full-sized balls and that the (1/w)-balls stay a distance 1/dw2 from each other by 
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Lemma 1.2. This yields the following two equations: 

cos β < 1/2 + l/d2 (11) 

36 - 228cd2 + 93d4 + 484c2 d4 - 376cd6 - 392c3 d6 + 70<28 + 420c2d* + 
112c4d8 - 138cd10 - 152c3rf10 + 13d12 + 72c2d1 2 - 1 4 c d u + d16 >0 , (12) 

where c = cos β 
In fact, (12) will not be utilized in the argument. Since we are assuming that cos β > 

V /3/2, (11) implies that d < \/l + \/3. However, (11) together with (10) yields 

48 + 72d2 — 24d4 — 36c?6 + 12d8 > 0. (13) 
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This forces d > \ / l + Thus, it must be that d = \ / l + %/3, yielding a cusp volume 
of ( \ /3 + 3)/24. However, in this case, one can check that in fact the three (l /w)-balls 
at the center of the triangle are pairwise tangent. Hence, Lemma 3.1 implies no such 
orbifold can exist. 

We summarize the results obtained in this section so far in the following theorem. 

Theorem 3.2. A maximal {6,3,2)-cusp in a hyperbolic 3-orbifold has volume either 
v /3/24, \ /3/12, 1/8, \ /3(3 + v ^ l / 2 4 or at least v ^ / 8 . • 

We would now like to determine the orbifolds which have a {6,3,2}-cusp with one of 
these possible cusp volumes. Let Q be an orbifold with at least one {6,3,2}-cusp. For 
each of the cusp volumes listed in Theorem 3.2, there is a unique corresponding horoball 
diagram. In each case, Lemma 2.1 and the horoball diagram are enough to determine 
the singular set and a fundamental domain for the corresponding orbifold. The singular 
axes determine how faces on the fundamental domain must be glued in order to yield the 
corresponding orbifold. 

In the case that the {6,3,2}-cusp has volume \ /3 /24, the corresponding horoball 
diagram forces Q to be the quotient of an ideal regular tetrahedron by its orientation-
preserving symmetry group, yielding a volume for the orbifold of VQ/12. The orbifold 
is uniquely determined. 

If instead, the {6,3,2}-cusp has volume \ /3 /12, the horoball diagram must appear as 
in Figure 3(a). The corresponding orbifold is again uniquely determined and corresponds 
to the quotient of an ideal cube, with all dihedral angles π /3 , by the orientation-preserving 
symmetry group of the cube. The resulting orbifold has volume 5υο/24. 

Suppose now that the {6,3,2}-cusp has volume 1/8. Then the horoball diagram 
appears as in Figure 3(b). The action of the orbifold group tiles H3 with tetrahedra, all of 
angles π /6 , π / 6 and 2π/3 . The volume of such a tetrahedron is 2υ 0 /3 . The quotient of 
such a tetrahedron by its symmetry group yields VQ/& as the volume of the corresponding 
orbifold. 

If the {6,3,2}-cusp has volume the orbifold is the quotient of 
an ideal regular dodecahedron by its orientation-preserving symmetry group, yielding a 
volume of 0 .3430 . . . . 

If the {6,3,2}-cusp has a volume of 
λ/21/24, the horoball diagram appears as in 

Figure 4. The action of the orbifold group tiles all of H3 with two ideal tetrahedra. 
The first tetrahedron has dihedral angles a, b and c where cos(a) = 5/ (2 \ /7) and 
cos (6) = 9/(2v /21). 

The second tetrahedron has dihedral angles d, e and / where 
d = π / 3 and e = a. A fundamental domain is obtained by taking half of each of these 
two tetrahedra, yielding a volume of approximately 0.47 . 
Theorem 3.3. A hyperbolic 3-orbifold with a {6 ,3 ,2}-cusp has volume either VQ/12, 
VQ/6, bvo/24 or at least t>o/4. 
Proof. If such a hyperbolic 3-orbifold does not have one of the first three volumes, it has 
a cusp volume of either v^3(3 + VE)/48, V21/24, or at least Λ/Ϊ/8. In the case that the 
cusp volume is 

or V ^ l / 2 4 , we have seen that the corresponding orbifold 
has volume 0.3430. . . or . 4 7 . . . , both of which are greater than VQ/4. Otherwise, the 
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cusp volume must be at least λ/3/8, which by Lemma 1.1 implies that the corresponding 
orbifold has volume at least V(,/4. • 

4. { 3 , 3 , 3 } - c u s p 

A fundamental domain in the x-y plane for a {3,3,3}-cusp is a rhombus. Assume first 
of all that there is a full-sized horoball which is not centered at one of the singular points 
in the plane. Then the shortest distance between two singular points which are identified 
by the Euclidean group action is at least 2. The resulting cusp has volume at least %/3/3. 

Suppose now that there is a full-sized ball at one of the three 3-fold singularites and 
nowhere else. The pattern of (l/d)-balls will resemble the pattern of (l/d)-balls which 
we obtained for the {6,3,2}-cusp when the cusp has one full-sized ball located at the 
6-fold singularity. Hence we will have exactly twice the cusp volumes we found in that 
case. 

Corollary 4.1. A maximal {3,3, 3}-cusp in a hyperbolic 3-orbifold has volume either 
-y/3/12, v/3/6, 1/4, ^ ( 3 + ^ / 2 4 , y/21/12 or at least \ /3/4. • 

For each of these possible volumes of a {3,3,3}-cusp, there is a unique orbifold, 
each such orbifold corresponding to the double cover of an orbifold in the {6,3,2}-cusp 
case. The following theorem is then immediate. 

Theorem 4.2. A hyperbolic 3-orbifold with a {3. 3,3}-cusp has volume either VQ/6, 
VQ/3, 5VO/12 or at least VQ/2. • 

5. { 4 , 4 , 2 } - c u s p 

Suppose first that there is a full-sized ball in the horoball diagram which is not centered 
at one of the singularities. The volume in the cusp is then at least 1/2 as in Figure 6(a). 
If instead, there is one full-sized ball at the 2-fold singularity, the volume in the cusp is 
at least 1/4, as in Figure 6(b). 

Note that if there is more than one full-sized horoball in the cusp, then the least volume 
occurs when there are two full-sized balls and they occur at the two 4-fold singularities, 
giving a volume of at least 1/4, as in Figure 6(c). 

Henceforth, we will assume that there is one full-sized ball which is centered at one of 
the 4-fold singularities. Suppose first that the full-sized balls in the cusp diagram touch 
each other. The volume in the cusp is then exactly 1/8. 

From now on, we will assume that the full-sized balls do not touch. Let d again be 
the shortest distance between full-sized horoballs. Then there is a set of four (l/d)-balls 
touching each full-sized ball. 

Suppose first that four full-sized balls share a single (l/d)-ball which is centered 
at the other 4-fold singularity. Then 2/d = \/2d and d = \/2. The volume of the 
corresponding cusp is then \ /2/8. 

If instead, a (l/d)-ball is shared by exactly two full-sized balls, it must be that 
2/d = d and d = %/2, yielding a volume of 1/4. 
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Figure 6(a) 

From now on, we will assume that no (1/d)-balls are shared by full-sized balls. In 
order that disks of no tangency are not created, we will assume that all (1/d)-balls stay 
a distance at least 1 from any full-sized balls they are not tangent to. Thus, (4) from 
Section 3 holds. 

Suppose first that a pair of (1/d) -balls corresponding to two distinct full-sized balls 
are tangent, and no other (1/d)-ball is tangent to the pair. Then (5) from Section 3 must 
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hold. As in Section 3, the only possible value for d is (1 + v/5)/2. The resulting cusp 
has volume (3 + Λ / 5 ) / 1 6 = 0 .32725. . . . 

Suppose now that there are four (1/d) -balls such that each is tangent to two others 
and they are symmetrically placed around one of the 4-fold singularites. Apply an 
isometry of the group which takes one of the (1 /ci)-balls to the horoball at oo. The two 
(1/d)-balls which were tangent to the first (1/d)-ball are sent to full-sized balls. The 
fourth (1/d)-ball is sent to a horoball tangent to each of these full-sized balls with center 
in line with their centers. Since the centers of the four (1/d)-balls formed a square, this 
new ball will have center a distance 1/Λ/2 from each of the full-sized balls. Hence the 
full-sized balls have centers a distance Λ / 2 apart. However, this forces d = Λ / 2 and 
1/d = l / s f t . Thus, this fourth ball must be a (1/d)-ball. This contradicts the fact that 
every (1/d)-ball is tangent to two others. 

Suppose now that none of the (1/d)-balls touch each other. Then, in order that no 
intermediate sized balls are introduced, it must be that the centers of the (l/d)-balls stay 
a distance at least 1/d apart by Lemma 1.2. This yields both (4) from Section 3 and 

d 4 - 2 ( s i n / ? + cos/?)d2 + 1 > 0. (14) 

This last equation becomes 

d2 + 1 /d 2 — -v/6 — d4 — 1 /d 4 , x cos β < ^ (15) 

or 
„ d2 + 1/d2 + - d4 - 1/d4 , x cos β > - ^ - — . (16) 

By symmetry, we are only interested in the cases where 0 < β < π / 4 so V2/2 < 
cos β < 1. Applying this restriction to (15), we find that (15) does not apply until 
d = 1.5537743 at which time, (15) and (16) no longer restrict cos β. Hence, in the range 
1 < d < 1.5537743, (16) must hold. 

Comparing (16) with (4) yields a contradiction unless 

^ V1 + V3 + V2V3 
d > = 1 .51546. . . . 

2 

This yields a cusp volume of at least (1 + \/3 + Λ / 2 \ / 3 ) / 1 6 = 0 .28690. . . . 
Combining the results obtained so far in this section, we have the following. 

Theorem 5.1. A maximal {4,4,2}-cusp in a hyperbolic 3-orbifold has volume either 
1/8, Λ / 2 / 8 or at least 1/4. • 

The only way for a {4,4,2}-cusp to have volume 1/8 is if the corresponding orbifold 
is the quotient of an ideal regular octahedron by its orientation preserving symmetry group. 
A fundamental domain will be one sixth of an ideal tetrahedron with dihedral angles π /4 , 
π / 4 and π /2 . Hence, the orbifold has volume v i /6 . 

If the {4,4,2}-cusp in a hyperbolic 3-orbifold has volume \ /2/8, the corresponding 
orbifold must come from the quotient of an ideal tetrahedron with dihedral angles π /4 , 
π / 4 and π / 2 by its orientation-preserving symmetry group, yielding a volume of v\/4. 
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Otherwise, the {4,4,2}-cusp has a volume of at least 1/4. Lemma 1.1 then implies 
that the orbifold has a volume of at least WQ / (2 i /3) , yielding the following theorem. 

Theorem 5.2. A hyperbolic 3-orbifold with a {4,4,2}-cusp has volume either v\/&, 
v i / 4 or at least v0/(2y/3). • 

With an analysis of densities of horoball packings, we expect that the lower bound on 
volumes of vo/(2y/3) given in the above theorem could be improved to t ' i /3 . 

6. Conclusions 

Utilizing the results from Sections 3 ,4 and 5 we have the following theorem. 

Theorem 6.1. The six noncompact orientable hyperbolic 3-orbifolds of volume less than 
i>o/4 have volumes u o / 1 2 , w i / 6 , u o / 6 , i>o/6, 5i>o/24 and Ui/4. 

Proof. Α noncompact hyperbolic 3-orbifold must have at least one cusp. If any of the 
cusps are non-rigid, the results of [3] show that the orbifold has a volume of at least 
u i /3 . We can therefore assume all the cusps are rigid. However, a rigid cusp must be 
either a {6,3,2}-cusp, a {3,3,3}-cusp or a {4,4,2}-cusp. The theorem then follows 
immediately from Theorems 3.3, 4.2 and 5.2. • 

Corollary 6.2. The six noncompact nonorientable hyperbolic 3-orbifolds of volume less 
than t>o/8 have volumes va/2A, v\j\2, vq/12, vq/12, 5vo/48 and V\/8. 

Proof. The six orientable orbifolds from Theorem 6.1 all double cover nonorientable 
orbifolds of half their volumes. Any other noncompact nonorientable orbifold will be 
double covered by an orientable orbifold of volume at least VQ /4 , and hence will have 
volume itself of at least v0/8. • 

An investigation into the volumes of hyperbolic 3-orbifolds with multiple cusps will 
appear in a subsequent paper. 
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Combinatorial Cubings, Cusps, 
and the Dodecahedral Knots 

I. R. Aitchison and J. H. Rubinstein 

Abstract. There are finitely many tessellations of 3-dimensional space-forms by regular 
Platonic solids. Explicit examples of constant curvature finite-volume 3-manifolds arising 
from these are well-known for all possibilities, except for the tessellation {5, 3, 6}. 
We introduce the dodecahedral knots Df and Ds in S 3 to fill this gap. Techniques 
used illustrate the results on cusp structures and πι -injective surfaces of alternating link 
complements obtained by Aitchison, Lumsden and Rubinstein [ALR]. 

The Borromean rings and figure-eight knot arise from the tessellation of hyperbolic 
3-space by regular ideal octahedra and tetrahedra respectively. We produce exactly four 
new links in S 3 , corresponding to the tessellations {4, 3, 6} and {5, 3, 6} of Η 3 , and 
united by a canonical construction from the Platonic solids. 

The dodecahedral knot Df is the third in an infinite sequence of fibred, alternating 
knots, the first member of which being the figure-eight. The complements of these new 
links contain πι-injective surfaces, which remain πι-injective af ter 'most ' Dehn surgeries. 
The closed 3-manifolds obtained by such surgeries are determined by their fundamental 
groups, but are not known to be virtually Haken. 

1. Introduction 
Regular tessellations of space-forms by Platonic solids have played a significant röle 
in the exploration and exposition of 3-dimensional geometries and topology. Table 1, 
derived from Coxeter [Col], [Co2], gives all such tessellations, including those by solids 
with deleted vertices. 

Remark 1.1. The tessellations {3, 3, 3}, {4, 3, 4} and {5, 3, 5} are self-dual. The 
links of vertices are respectively tetrahedra, octahedra and icosahedra, the Platonic solids 
with triangular faces. The corresponding edge degrees — 3, 4 and 5, the most famous 
Pythagorean triple — encapsulate the notions of positively-curved, flat and negatively-
curved geometry. 

The corresponding symmetry groups are well-understood in the spherical and flat 
spaceforms, as are the subgroups acting without fixed points. For the hyperbolic tessella-
tions, finite-index torsion-free subgroups exist by Selberg's theorem, with corresponding 
quotient 3-manifolds having finite volume. Infinitely many such subgroups exist. 

The dodecahedral tessellation {5, 3, 3} gives rise to Poincari's homology sphere !P3, 
a manifold ubiquitous in geometric topology, associated with problems of smoothings and 
triangulations of manifolds. A beautiful description of T3 in terms of face identifications 
of a dodecahedron has been given by Seifert and Weber [SW], where another such 
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Solid Tessellations of spaceforms by Platonic solids 
S 3 ®3 H 3 , compact Η 3 , ideal 

tetrahedra {3, 3, 3} none none {3, 3, 6} 

{3, 3, 4} 
{3, 3, 5} 

icosahedra none none {3, 5, 3} none 

octahedra {3, 4, 3} none none {3, 4, 4} 
cubes {4, 3, 3} {4, 3, 4} {4, 3, 5} {4, 3, 6} 

dodecahedra {5, 3, 3} none {5, 3, 4} {5, 3, 6} 
{5, 3, 5} 

Table 1 

compact 3-manifold, the hyperbolic Seifert-Weber space, is also described. The latter 
manifold arises from the dodecahedral tessellation {5, 3, 5}. In both cases, opposite 
faces are identified in a natural fashion. 

The cube is distinguished in that it tessellates all spaceforms. The cubical tessellation 
of M3 gives rise to the 3-dimensional torus, with flat geometry. Euclidean space does not 
admit regular tessellations other than by the cube. Nonetheless, the mysterious connec-
tions between the Platonic solids allows for an intriguing manifestation of dodecahedra 
even in this context. Thurston [Th] has shown how a dodecahedron can be flattened 
into a cube, and then allowed to 'tessellate' M3. Allowing orbifold structures, Thurston 
then shows how this tessellation induces a singular metric on S3, with cone angle π 
concentrated along the Borromean rings. Using the universality of the Borromean rings 
in the construction of closed orientable 3-manifolds as branched covering spaces, Hilden, 
Lozano, Montesinos and Whitten [H*] demonstrate the significance of the dodecahedral 
tessellation {5, 3, 4}: its group of symmetries is rich enough to produce all closed 
3-manifolds. 

Similarly, orbifold structures on links in S 3 arise from the Seifert-Weber manifold in 
the guise of the Whitehead link, and from the tessellation of H3 by cubes with icosahedral 
vertex links via the 52-knot ([Be], [AR1]). Both of these links are universal. 

Other closed hyperbolic 3-manifolds arising from tessellations of HI3 have been 
described in Best [Be], and in Richardson and Rubinstein [RR]. 

The tessellations of hyperbolic space by ideal Platonic solids are of equal interest. 
The most famous contemporary example is {3, 3, 6}, giving the figure-eight knot 
complement (again universal) as quotient ([Th]). An example of a link complement in 
5 3 whose complement is the quotient of {4, 3, 6} is described in [AR1], Thurston 
[Th] also shows that two octahedra of {3, 4, 4} form the fundamental domain for a 
discrete subgroup of symmetries, with quotient again the complement of the Borromean 
rings in S 3 . 

The remaining tessellation {5, 3, 6} of HP by ideal dodecahedra has not been 
considered previously — no explicit link complement in any 3-manifold is known to have 
such a structure. We will construct two such examples in S 3 , obtaining what we call the 
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dodecahedral knots Df and Ds. Whether the tessellation {5, 3, 6} leads to as rich a 
domain as the other dodecahedral tessellations remains to be seen. 

Complements of alternating links 

In each of the cases above, the resulting link in 5 3 is alternating. Investigations of 
the hyperbolic structures of alternating link complements have been given by Lawson 
[La], Menasco [Me], Takahashi [Ta], and more recently by Weeks [We], seeking to 
generalize the beautiful constructions of Thurston [Th]. In each case, the aim has been 
to demonstrate the existence of a complete metric of constant curvature —1 on the 
complement, and to calculate various invariants from such a (unique) structure. This 
invariably necessitates determining a combinatorial description of the link complement 
as the union of two 'ideal' polyhedra, with face identifications, and then decomposing 
these polyhedra into ideal tetrahedra whose shapes and volumes can be calculated. At 
this stage of the procedure, there is no canonical way to proceed, and any structure hidden 
in the combinatorics at the polyhedral level is lost. 

That some beautiful deeper combinatorial structure may have existed has been re-
marked in these papers, but neither revealed nor exploited explicitly. 

Retrospectively, our starting point is two remarks of Thurston [Th]. The first is that 
the figure-eight knot can be arranged on the 1-skeleton of a tetrahedron, as a 'heuristic' 
that the complement admits a tetrahedral decomposition. In fact, there are two simple 
such arrangements, and we develop the second one. Thurston's second remark is that for 
the Borromean rings, face identifications have a beautiful naturality: "Faces are glued to 
their corresponding faces with 120° rotations, alternating in direction like gears" [Th]. 

We describe how, with our arrangement of the figure-eight knot on the tetrahedron, 
these remarks are related, and generalize to face identifications of two identical polyhedra, 
producing all of the examples of alternating links considered. We illustrate with each 
of the ideal regular tessellations of H 3 , producing 4 new links in the process. Our 
favourites, arising from {5, 3, 6}, are a new fibred knot Df, and a knot Ds possessing 
a high degree of symmetry. The existence and simplicity of this combinatorial structure 
of alternating link complements is described in detail in [ALR]. A more general context 
is described in [AR2], 

2. The general construction for 4-valent graphs 

We recall the construction of [ALR], Take an arbitrary finite connected planar graph 
Γ, all of whose vertices having degree 4. We also require that at any vertex, all regions 
meeting at the vertex are distinct. Two-colour the regions of the plane checker-board 
fashion using white and black, with the exterior white by convention. Assign signs ' + ' 
and ' — ' to the white and black regions respectively. Denote the resulting combinatorial 
polyhedron by Iljt . 

Now take an identical copy of Iljt , reverse all colours and signs, and denote the 
resulting polyhedron by ΠΓΤ. Each face (pt of Πρ is a combinatorial n t -gon, with sign 
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allocation σ,, and we identify φ1 with the corresponding face φ\ of Πρ by a rotation 
of (7;.27r/nt, with a ' + ' sign denoting clockwise. 

Denote the resulting topological space by Mp , and let Mp denote Μ ρ with deleted 
vertices. Finally, let -Cr denote the alternating link in S 3 canonically associated to Γ, 
as in Figure 1. Observe that, viewed from the center of any region, crossings are of the 
sign assigned to that region. 

Figure 1 

One of the results of [ALR] is 

Theorem 2.1. Μ ρ is canonically homeomorphic to S3 — L p. Each edge of Mr is of 
degree 4. 

3. The six examples arising from ideal tessellations 

In each case, we describe an alternating link, and face identifications of the corresponding 
pair of identical polyhedra. That the link complement has a complete metric of constant 
curvature —1 follows immediately on declaring each polyhedron to be ideal and regular 
in hyperbolic space. 

Example 1. The Borromean rings. Applying this construction to the graph Γ{3 4} 
underlying the octahedron, we recover Thurston's description of the complement of the 
Borromean rings of Figure 2. The universal cover is the tessellation {3,4,4} of H 3 . 

Example 2. The figure-eight knot. Take a tetrahedron, corresponding to the graph 
Γ{3 3} and 2-colour its faces black and white in the unique (up to symmetry) way so 
that no vertex is surrounded by regions all of the same colour. Assign the sign ' + ' to 
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Figure 3 

the white regions, ' — ' to the black. Now split each edge separating regions of the same 
colour to obtain a 4-valent graph 2-coloured as above. (Figure 3.) 

Carrying out face identifications yields the figure-eight knot complement. The two 
resulting 'bigons' can be squeezed back to a single edge to recapture the face identifica-
tions of tetrahedra as in Thurston's description. Note that in removing a bigon, two edges 
are identified in each polyhedron Π*, from different equivalence classes. Every edge in 
the quotient is thus of degree 6. The universal cover corresponding to this combinatorial 
structure is geometrically the tessellation {3,3,6} of Η3 , giving rise to the complete 
structure on the knot complement. 

Examples 3, 4. Two cubical links. There are two ways to 2-colour the regions of the 
graph Γ{4 3). These are depicted in Figure 4. 

Figure 4 
Proceed exactly as in the last example, observing that the introduction and deletion of 

bigons is unnecessary provided the link associated with such a 2-coloured trivalent graph 
is interpreted according to Figure 5. 

v y 
Λ A 

V V 
A X 

Figure 5 
These two links obtained from the cube arise from the tessellation {4,3,6} of El3, 

and are the links 84 and 8j in Rolfsen's book, depicted in Figure 6. 

In [ALR], 4-valent graphs admitting a collapse to a 2-coloured 3-valent graph without 
bigons are called 'balanced': the construction applied here works for all such graphs. 
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Remark 3.1. These two are the only links in Rolfsen's tables which have balanced 
bigons, in the sense of [ALR], and no triangular regions. 

There is another 3-component link also corresponding to the tessellation {4,3,6} of 
Η3 , described in [AR1], This does not obviously arise as part of our general construction. 

Examples 5, 6. The two dodecahedral knots. The dodecahedron may be depicted 
combinatorially as in Figure 7. 

Up to symmetry and colour interchange, there are two allowable 2-colourings. These 
are depicted in Figure 8, with corresponding knots in Figure 9 denoted Da and Df 
arising from the tessellation {5,3,6} of EI3. The knot Ds has considerable symmetry, 
whereas Df turns out to be fibred. 
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Added in Proof. Alan Reid and Walter Neumann have demonstrated some fascinating 
properties of these dodecahedral knots, in the context of their beautiful work on arithmetic 
structures [NR], 

Hatcher has used similar ideas in [Ha], and it seems likely that Thurston is aware of 
the general construction, particularly since we have found the fibred dodecahedral knot in 
[Ri], referred to by Riley as Thurston's knot'. It is clear from the construction above that 
the complement of Df admits an orientation reversing involution. The complements of 
both D f and Ds contain totally geodesic immersed surfaces with respect to the complete 
metric of constant curvature. 

4. Some fibred alternating knots from balanced links 

We begin with a characterization of a class of colourable graphs. 

Lemma 4.1. Suppose Γ is a connected trivalent planar Hamiltonian graph. Then Γ can 
be 2-coloured with no vertex surrounded by regions of the same colour. 

Such a graph arises by drawing a circle as the equator of the sphere, and adding 
disjointly embedded arcs with endpoints on the equator. Colour one hemisphere white, 
the other black. 

Remark 4.2. The 2-colourings of the cube and dodecahedron described above show 
that a graph with Hamiltonian circuit need not have a unique 2-colouring, and that the 
resulting alternating link may have more than one component. 

A particularly nice class arises by taking the sequence of graphs Γ, generalizing 
Figure 7: instead of 5 arcs in each hemisphere, take 2t — 1 for any natural number t, 
with t arcs at the back meeting the equator in the left and right regions of the front. The 
top arc at the back meets the equator between the front £th-and (t + l) s t-arcs numbered 
from the left. Observe that Γι is a tetrahedron, whereas Γ3 is the dodecahedron. 

Proposition 4.3. Each of the graphs Γ( gives rise to an alternating fibred knot Kt = -Cr,· 
The knot K\ is the figure-eight knot, and K:> is the dodecahedral knot Df. 
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Proof. The resulting link is fibred since the construction yields a plumbing of Hopf bands 
onto two sides of a disc, along the arcs of the graph. We invoke the results of Murasugi 
[Mu] and Stallings [St], who show such links are fibred. 

That the resulting link has one component is a simple induction on t, adding additional 
Hopf bands on either side of the middle edge of each side of the disc. • 

5. Dehn surgeries 
Every non-trivial Dehn surgery on Kt is determined by prescribing a Dehn surgery 
coefficient ρ = (ρ, q) Φ oo. Denote the resulting 3-manifold by Ml p. 

Theorem 5.1. For each ρ φ oo and t > 2, Mtp is irreducible, has universal cover 
homeomorphic to Μ3, and contains an immersed πι -injective surface satisfying the 4-
plane, 1-line condition. Hence Mt p has homotopy type determined by its fundamental 
group. 

Sketch of Proof. Each of the trivalent polyhedra Π* has 2(21 — 2) pentagonal faces, 
four (t + 2)-gons, (121 - 6) edges and (8< - 4) vertices. Each polyhedron can be 
decomposed into (81 — 4) cubes in the standard manner (see [AR1] for example). After 
face identifications, all edges of S3 — Kt have degree (t + 2), 5, or 6. The former two 
values occur along introduced edges joining the centers of the polyhedra through points 
at the center of faces. 

Consider a cube in the ideal cubing {4, 3, 6} of Η3 , and bisect it symmetrically 
into 8 isometric subcubes by planes orthogonal at the centre, and orthogonal to the edges. 
Endow each of the cubes of Πρ with the geometry of one of these subcubes, with the 
distinguished vertex at a vertex of Π^ . The resulting singular metric is complete, and 
has negative curvature at every point. The structure of the cusps is depicted in Figure 10, 
where there are (16i - 8) equilateral triangles in the decomposition of the torus. Such 
pictures occured originally in [Th]. Generators for the homology of the peripheral torus 
of the knot have been labelled. These are sufficiently long for t > 3 that any non-trivial 
Dehn surgery, in the sense of Gromov-Thurston ([AR], [GT]) always yields a closed 
Cartan-Hadamard manifold with negative curvature along the core of the sewn-in solid 
torus, and with the metric away from the cusp remaining unaltered. 

Figure 10 

The immersed surface obtained by taking the union of squares bisecting each of the 
cubes of the decomposition of S3 — Kt is πι -injective, being isotopic to a (singular) 
totally geodesic surface. Since this surface is in the 'thick' part of S3 — Kt, it survives 
to produce an injective surface after surgery. This surface satisfies the conclusions of the 
theorem. For further details, see [ALR], [AR1] and [AR2]. • 
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Remarks 5.2. The symmetric dodecahedral knot also belongs to an infinite family, 
obtained from the trivalent graphs Sjt, k > 1. These are obtained by drawing concentric 
(k + l)-gons in the plane, rotated relative to each other, and filling the annular region 
between them by 2k + 2 pentagons. The results on surgery also apply to this class, when 
k > 2. A similar argument applies to the cubical links described above. 

The resulting closed 3-manifolds are not known to be virtually Haken. 

Remark 5.3. The 14-sided polyhedron corresponding to Ss can be realized in hyperbolic 
space as the fundamental domain of the group action giving rise to Löbell's manifold [Lö], 
the first closed hyperbolic 3-manifold to appear in the literature. 
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Hyperbolic Cobordism and Conformal Structures 

Boris N. Apanasov* 

Abstract In this paper, we briefly survey selected recent developments and present some 
new results in the area of uniformized conformal structures on a complete hyperbolic finite 
volume n-manifold (even closed) related to (n + 1)-dimensional homology cobordisms 
with hyperbolic structures, especially, for the three-dimensional case. 

1. Isometric and conformal group actions and maximal balls 

Let ΗΓ1 be the subspace 

{(xo, •••,Χη) e Rn+l:q(x0, ...,xn) = -xl + x\ Λ + x\ = -1} 

and XQ > 0. The quadratic form q restricts to give a positive definite form on each 
tangent space of BP1 and, consequently, endows ΗΓ" with a Riemannian metric. We call 
this Riemannian manifold the hyperbolic η-space. It has constant sectional curvature 
— 1 and is homogeneous. Its isometry group is the real linear subgroup SO(n, 1) of 
matrices in SLn+i(R) preserving the form q and ΕΓ1. A hyperbolic n-manifold Μ 
is a complete Riemannian manifold locally isometric on EF1. In fact Μ is isometric to 
the quotient ΕΓ/Gm where GM — τπ (Μ) is some discrete torsion free subgroup of 
SO(n, 1) determined by Μ up to conjugation in SO(n, 1). 

The hyperbolic metric in ΕΓ1 endows the (η — 1)-sphere at infinity ÖW1 with a 
conformal structure where SO(n, 1) acts as the group of all conformal automorphisms 
of the sphere. Taking the Poincare ball model of the hyperbolic η-space (in the unit ball 
Bn{0,1)), we have the isomorphism (see [API]): 

{EF1, <9ET, SO(n, 1)} Si {Bn, Sn~\ Möb(n - 1)} 

where Möb(n — 1) is the Möbius group generated by reflections in (n — 2)-dimensional 
subspheres of 51™-1, the sphere 5 n _ 1 has the standard conformal structure induced by 
the Euclidean metric of Kn and the unit ball Β11 has the Poincar6 hyperbolic metric with 
the length differential 

ds=2\dx\^ x £ B 

1 — x r 

* This paper was written while the author was visiting Mittag-Leffler Institut, which he thanks for 
its hospitality and funding. The author thanks Ravi Kulkarni for his patience and helpfulness in 
listening to some of the author's ideas. 
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1.2. Now let us fix a torsion-free, finitely generated group G. An n-dimensional 
hyperbolic structure on G is determined by a pair {Μ,ψ}, where Μ is a hyper-
bolic n-manifold and φ: G —> πχ (Μ) is an isomorphism. We denote the set of all 
hyperbolic structures on G (defined up to isometries of hyperbolic manifolds and in-
ner automorphisms on G ) by <Kn(G). This set is naturally identified with the set of 
conjugacy classes of faithful representations p: G —> SO(n, 1) with discrete image and 
therefore Hn(G) has a natural topology, induce by the algebraic convergence topology 
on Hom(G, SO(n, 1)). Namely, representations are close if they are close on a finite 
generating set. 

As an example, given a closed surface Sg of genus g > 1, 3 ΐ 2 (π ! (Sg)) is the 
Teichmüller space of G = π ι ( S g ) and is homeomorphic to K 6 s ~ 6 . On the other hand, 
given a closed (or finite volume) hyperbolic n-manifold Mn, η > 2, Ήη(π\(Μη)) is 
a point due to the Mostow rigidity theorem [MW]. 

Also there are Morgan-Shalen-Thurston's results which say that Jin(G) is compact 
for a wider class of groups G as a weak version of Mostow rigidity for infinite volume 
hyperbolic manifolds; see [M02] . In fact, one shows 

1.3. Theorem. Let M3 be a hyperbolic 3-manifold, and suppose that G = πι (Μ 3 ) is 
finitely generated. Then for any η > 2, the space "Hn(G) is compact if and only if G 
does not have a decomposition of one of the following types: 
(i) G = A *c Β with C cyclic and of infinite index in A and Β; 
(ii) G = A*c with C cyclic. • 

Notice that it follows that 9 ΐ " ( π ι ( Μ 3 ) ) is compact if and only if Ή 3 ( π ι ( Μ 3 ) ) is 
compact. In particular, we have the following fact. 

1.4. Corollary. If Μ is a finite volume hyperbolic 3-manifold, then 5 ΐ η (π , (Μ) is 
compact for all η > 2. • 

1.5. Given a discrete group G C Möb(n - 1), we define the Nielsen hull HG C I f U 
0 0 " as the minimal convex (in HP1) set containing the limit set L(G) C 5 n _ 1 = dH" . 
Let p:W U dW Ha be the G'-equivariant retraction where, for χ G W\HG, 
p(x) £ dHG is the point with shortest distance to χ and, for χ € ö E P y i i G ) , p(x) is 
the first point of tangency with HG of a horosphere in W with the center at x. 

For a description of the boundary of the Nielsen hull HG, we define (following 
[AP5]) the (strictly) maximal balls in the discontinuity set ii(G') C S 1 " - 1 . Namely, an 
open ball Β C f2(G) is called a (strictly) maximal ball if the sphere of lowest dimenision 
containing the limit subset dB Π L(G) is the sphere dB itself. 

For the case η = 3, the discontinuity set fi(G) C S2 of any finitely generated 
Kleinian group G ( G is discrete with non-empty i i (G) ) whose limit set L(G) is not 
contained in a circle is covered by the family 13(G) of strictly maximal discs, finite 
modulo G. For the case of geometrically finite quasi-Fuchsian groups G C Möb(n), 
an almost similar situation holds (see [AP5]). There we needed the following fact 
([AP5, Th. 6.1]): 

1.6. Theorem. Let G C Möb(3) be a Kleinian group having at least three maximal 
balls B{ C f!(G) with two common limit points x,y € dBi and let int(n_B,) / 0. Then 
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the boundary of the Nielsen hull is a pleated 3-surface in H4 with a conical singularity 
along the geodesic with the end points x, y. Its neighborhood in this surface is an union 
of dihedral angles with the sum of magnitudes less than 2π. • 

The standard notion of a pleated surface (cf. [EM]) arrives from the Krein-Milmann 
theorem on extreme points of a convex hull in Euclidean space (if we take the projective 
Klein model of HP1 in the ball Bn(0, 1) c 1 " ). Here the pleating locus is a geodesic 
lamination (partial foliation) whose leaves of co-dimension one or more may be singular 
(for η = 4, as pages of an open book). 

2. Uniformized conformal structures on manifolds 

2.1. Given an n-manifold Μ , η > 3, by a conformal structure (conformally flat 
structure) on the manifold Μ we mean a (Sn, Möb(n))-structure on M , i.e., a structure 
locally modeled on the standard conformal structure of the n-sphere 5 " = Kn U {oo}. 
In other words, a conformal structure is a maximal atlas on Μ with all changes of charts 
in a Möbius group Mob(n) . Extending chart by chart in the universal covering Μ of 
M , we obtain the developing map d: Μ —> 5 " inducing the holonomy homomorphism 
d*:m ( M ) — Möb(n) . 

A conformal structure c on Μ will be called a uniformized structure (compare [KP]) 
if its development d is not surjective while the holonomy group G — d* (πι (A/)) acts 
discontinuously in the domain Ωο = d(M), i.e., G is a Kleinian group (see [KM]) ; here 
the manifold Ωο/G with the natural conformal structure is conformally equivalent to the 
conformal manifold (M, c). Using the fundamental group π ι ( Μ ) for the marking of 
conformal structures on M , we obtain the space C(M) of uniformized marked conformal 
structures on the manifold Μ . 

2.2. Especially, for a finite volume hyperbolic manifold M , thespace C(M) is naturally 
identified with the set of conjugacy classes of faithful representations 

ρ : π ι ( Μ ) — • SO(n + 1,1) (2.1) 

with discrete image which act discontinuously somewhere in the sphere at infinity Sn = 
<9IF + 1 . Namely, if 

3?(M) C Η ο π ι ( π ι ( M ) , SO(n + 1,1)) (2.2) 

is the subspace of such representations in the representation variety, the group SO(n + 
1,1) acts on the representation variety by conjugation leaving the subspace 5L{M) 
invariant. The quotient space 

7(M) = R(M)/SO(n + 1,1) (2.3) 

is the desired space of conjugacy classes of representations (2.1) and is naturally identified 
with the space Q(M) via the holonomy representation see [LK], [GM] . This yields a 
topology on C(M) defined by the topology of algebraic convergence in the representation 
variety H o r n e l ( Μ ) , SO{n + 1 ,1)) . Immediately from this description, the definition 
of the space "Kn(G) and Corollary 1.4 in the case η = 4, we obtain 
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2.3. Theorem. Let Μ be a finite volume hyperbolic 3-manifold. Then the space 6(M) 
of uniformized marked conformal structures on Μ has a natural compactification C(M) 
such that each of its points corresponds to a faithful representation ρ in the corresponding 
compactification 7{M) with discrete image of ρ{π\ (Μ)) C Möb(3). • 

2.4. The space C(M) contains an open subspace Gq(M) of quasi-Fuchsian structures 
on the manifold Μ which corresponds to an open subspace 7 q(M) C Τ (Μ) of quasi-
Fuchsian representations, i.e., quasi-conformal conjugations 

p: G —• / G / " 1 C Möb(3) (2.4) 

where π χ ( Μ ) = G C IsomE3 C IsomH4 £ Möb(3) and / : S 3 — • S 3 is a quasi-
conformal automorphism of the sphere 5 3 compatible with the action of G. This fact 
follows from Sullivan's stability theorem [SU3]; see also [JM]. 

The first results to obtain some boundary points of the space C(M) as end points 
of smooth curves in the open subspace C q ( M ) , for the case of a closed manifold M , 
was Theorem Β and Corollary 5.2 in [AP2]. These boundary points are similar to cusps 
on the boundary of Teichmüller space 7(Sg) of Riemann surfaces of genus g > 1 
(they correspond to so-called accidental parabolic elements in the holonomy groups; 
see [BR]) and were obtained as limits of bending deformations of the distinguished 
conformal (hyperbolic) structure on the manifold Μ . Here a bending deformation of 
the manifold Μ = IHT/G, G C IsomlHP, gives conformal structures Cbend £ 6,(Λ/) 
which correspond to singular hyperbolic structures on Μ obtained by bending of Μ 
along a totally geodesic hypersurface through some angles. In fact, such a singular 
η-structure on Μ has a pleated n-plane übend C H " + 1 as its universal covering and 
the structure Cbend corresponds to a conformal n-manifold Ω0/<^bend ( π ι where 
the domain Ω0 C H™+1 = 5 " is an invariant component of the holonomy group 
άζ ε η ά (π ι (Μ)) spanned on the (n — 1)-sphere at infinity of the η-cell -Hbend. d/fbend = 

<9Ω0; see [ AP4], [ JM] and [KR] for details. Here we give only the following well-known 
property of such bending structures c b e n d £ Cq{M) (see [AP5]): 

The boundary of the Nielsen hull for the holonomy group 

d £ e n d ( i r i ( M ) ) c M ö b ( n ) (2.5) 

can be isometrically developed in the hyperbolic n-plane H71 C H""1"1. 
Except bending structures in C,(M), now for a 3-manifold M , only stamping 

structures cs tamp 6 Cq(M) obtained by stamping deformations of the distinguished 
structure on Μ along a geodesic I (either with torsion around ί or not) are known; for 
definitions and details see [AP6]. For totally geodesic surfaces Si C Μ intersecting 
along the geodesic ί C M, such a stamping deformation gives compatible simultaneous 
bendings along these surfaces Si and some compression along the geodesic i. The 
type of difference between bending and stamping structures on Μ is described by the 
conic singularity of the boundary of the Nielsen hull for the holonomy group of cstamP» 
<Ctamp(Ti(AO) —like in Theorem 1.6. 

Now we formulate the following three related problems about the space C(M) of 
uniformized conformal structures (see also [AP6, §5] and [AP8]): 
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2.5. Problems. (A) Is the space G(M) compact, especially for a closed manifold M? 
If not, what kinds of boundary points distinct from cusps are there? 

(B) Do all points of the subspace Gq{M) C G{M) of quasi-Fuchsian structures be-
come exhausted by structures obtained by bending, stamping, and stamping-with-torsion 
deformations of the distinguished structure on Μ, especially for the three-dimensional 
case? 

(C) Is the space G(M) of uniformized conformal structures a connected space? 

Below, we will give some advances in this direction. 
2.6. Theorem. The space G{M) of uniformized conformal structures on a closed hy-
perbolic n-manifold Μ, η > 2, with two distinct totally geodesic hypersurfaces is 
non-compact. 

Proof. Actually, we shall show that a limit structure on Μ obtained by a bending 
deformation of Μ in opposite directions along distinct totally geodesic hypersurfaces on 
Μ does not belong to G{M) (this is also true for η = 2). Let us consider the closed 
hyperbolic n-manifold Μ constructed in [AP2, Theorem A], i.e., a manifold with two 
disjoint totally geodesic hypersurfaces. As in Corollary 5.2 in [AP2], by a similar way, 
we obtain a smooth curve 

β: [0,1) — Gq(M) (2.6) 

such that its end point, β{1), is not contained in the space G(M) because its holonomy 
group G(l ) has the following properties: 
(i) G(l) is a Kleinian group in 5 3 with the union of two invariant non-contractible 

components, Ωο and Ωι, as the discontinuity set il(G). 
(ii) The non-contractibility of these components is related to the existence of accidental 

parabolic elements in the group G(l ) which correspond to a loxodromic one in the 
hyperbolic co-compact group ά*0^{π\(Μ)) C IsomH3, i.e., the holonomy group 
for the distinguished (hyperbolic) structure on Μ . 

(iii) The quotients Ωο/Ο(1) and i ) i /G( l ) are non-compact manifolds whose (cusp) 
ends are conformally equivalent to ends of manifolds Μ3/Γ, where Γ is some 
discrete cyclic group of Euclidean isometries. 

Therefore, for the closed hyperbolic n-manifold M, the last non-compactness prop-
erty (iii) contradicts the inclusion /i(l) € G(M). This completes the proof. • 

2.7. Remarks. The point β(1) is a boundary cusp point in the sense of L. Bers [BR]. 
So the second part of the question (A) is still open. In particular, the existence of spatial 
degenerate groups (compare [BR]) is unknown. 

For question (B), an expected answer will likely be positive, since the above circum-
scribed bending and stamping structures c € Gq(M) can give any possible local behavior 
of the limit set (= quasisphere in S 3 ) for holonomy groups; see [ AP5], [ AP6, §5], [AP9], 

The following theorem gives the advance in the problem (C). 

2.8. Theorem. On a closed hyperbolic 3-manifold Μ with a number Ν > 70 of disjoint 
totally geodesic surfaces, there exists an exotic uniformized conformal structure c* that 
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can not be approximated by bending, stamping, and stamping-with-torsion structures on 
M. • 

The proof of this fact is obtained in [AP8] where the exotic conformal structure 
c* Ε G(M) is obtained as the result of some modification of the author's Block-Building 
Construction for Kleinian groups in S3 with wildly (even locally wildly) embedded 
2-spheres as the limit sets. This Block-Building method has been developed in [AT] 
and [AP7]. Also we remark that an obstruction for approximation of c* by bending 
and stamping structures on Μ is the property of the covering by a family 23(G) of 
strictly maximal balls of the discontinuity set for the obtained exotic holonomy group 
G* C Möb(3) described as the condition of Theorem 1.6. As a result, it gives a conic 
singularity of the boundary of Nielsen hull Hq- in H 4 . 

3. Four-dimensional cobordisms with hyperbolic structures 
3.1. Let us fix some closed (for simplicity) hyperbolic 3-manifold Μ and consider the 
space W(M) of all 4-dimensional cobordisms ( W - N 0 , N i ) , dW = N0 U Nx, with the 
following properties: 
(i) W is a geometrically finite hyperbolic cobordism: int( IF) has a complete geo-

metrically finite hyperbolic structure, i.e., there is a decomposition of int(W) into 
a cell by means of cutting along a finite set of totally geodesic hypersurfaces; see 
[AP3, Ch. 5], 

(ii) W is a homology cobordism: for its boundary components, No and N\, the relative 
homology groups are trivial: 

H*{W,N0) = H,(W,N1) = 0. (3.1) 

(iii) The first boundary component of W, No, is homeomorphic to the closed hyperbolic 
manifold Μ and its inclusion No C W induces the homotopy equivalence: 

π . ( \Υ,Ν 0 ) = 0. (3.2) 

We note that due to A. Marden's results [MD], the similar space of 3-dimensional 
hyperbolic cobordisms consists only of trivial cobordisms that are homeomorphic to the 
product of a closed surface Sg of genus g > 1 and a segment. After usual marking 
by the fundamental group, its quotient under the homotopy equivalence is isomorphic to 
T(Sg) xT(Sg) where T(Sg) is the Teichmüller space for Sg —see Bers decomposition 
theory [BR], 

What kind of properties are there for the space W(Ai)? 
First, each uniformized conformal structure c Ε G(M) with geometrically finite 

holonomy group G C Möb(3) having an invariant contractible component of the dis-
continuity set Q(G) corresponds to a cobordism W Ε W(M), intW « H 4 / G , where 
M(G) may be non-compact, M(G) ψ W; see [AT, Theorem 3.2 and Corollary 3.3], 
[TE1], [TE2], 

Second, the following converse statement holds: 

3.2. Theorem. Let Μ be a closed hyperbolic 3-manifold. Then for every cobordism 
(W;N0,Ni) Ε W(M), there is a Kleinian group G C Möb(3) with an invariant 
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contractible component Ω0 of the discontinuity set f2(G) such that either the Kleinian 
manifold 

M(G) = per4 υ N(G)]/G (3.3) 
is the manifold W € W(M) itself (with N0 = TT0/G and NX = [t t(G)\t t0]/G) 
or the manifold W is obtained from a non-compact manifold M(G) by the natural 
compactification of a finite number of its cusp-ends. These cusp-ends are homeomorphic 
to the product of the strip [0, l] χ [0, oo) and either the cylinder S1 χ [0,1], or the 
Möbius band. 

Proof. Firstly, the condition (i) for W gives us a discrete action G C IsomH4 of 
the fundamental group K\{W). Moreover, this action is discontinuous on the sphere 
at infinity and its discontinuity set O(G) has a G-invariant contractible component 
Ωο c ii(G), due to the condition (iii) for W; see [AP3, Ch. 7]. Applying this fact and 
the Tetenov's finiteness theorem (see [TE1], [TE2, Theorem 2], or [AT, Theorem 3.2 
and Corollary 3.3]), we complete the proof. • 

3.3. Remark. Let W t r i v (M) C W(M) be a set of cobordisms W 6 W(M) for which 
the following additional condition holds: 
(iv) W is homeomorphic to the product No χ [0,1] where No C dW. 

For the correspondence between W(M) and C(M), i.e., for the holonomy group 
G C Möb(3) related to a cobordism W € W t r i V ( M ) , we have that M(G) may be 
non-compact and non-homeomorphic to W. This is realized for boundary (cusp) points 
of C Q {M) related to Kleinan groups with accidental parabolic elements — as in Theorem 
Β in [AP2], However, in the compact case, the following is true: 

The holonomy group G C Möb(3) without cusps related (by Theorem 3.2) to the 
trivial cobordism W 6 WTR\V(M) is a quasi-Fuchsian group conjugated by a quasisym-
metric embedding 

f : S2 = 9H3 ·-• S3 

with the Fuchsian group Γ C IsomH3, Μ = El3/Γ, and the limit set L(G) is a 
quasisphere, i.e., f is the restriction to S2 C S3 of a quasiconformal automorphism of 
the sphere S3. 

This fact is a consequence of a deep result of D. Sullivan [SU2]* which is based on 
the following two conditions: 
(1) local unknottedness of the limit set L(G) of a Kleinian group G with two invariant 
components of the discontinuity set (this follows from the condition (iv) on the cobordism 
W)\ 
(2) the uniform self-similarity condition for the limit set L(G). 

This self-similarity condition says that there exists a uniform constant Κ > 0 such 
that, for any point χ 6 L(G) and any small ball B(x, r) with radius r > 0 centered at x, 
there exists a A'-quasi-isometry FT which maps the set 

h(B(x,r)uL(G)), for h:R3 —> Κ3 , h{y) = χ + (y - x)/r, 

* For an independent approach see [MT, Corollary 5.9]. 
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into the limit set L(G). 
In particular, this condition holds for Kleinian groups with the limit sets consisting of 

approximation points [SU1]. On the other hand, the exhaustion of the present limit set 
L{G) by the points of approximation of the group G follows from our conditions on W. 
Namely, the geometrical finiteness of the group G gives that the limit set L(G) contains 
the approximation points and parabolic cusp points only ([BM] and [AP3, Ch. 5]); the 
absence in L(G) of parabolic fixed points is obtained from the compactness condition. 
This completes the proof. • 

3.4. In contrast to the 3-dimensional case, the subset W(M)\W t r i v (M) of nontrivial 
4-dimensional cobordisms W £ W(AI) is non-empty; specifically, for a closed hyperbolic 
3-manifold Μ with a big number of disjoint totally geodesic surfaces. This fact follows 
from our construction in [AT, Theorem 5.1]. 

Moreover, it is likely true that there exists a 1-1 correspondence between this subset 
W(M)\WTR\V(M) of non-trivial cobordisms and the subset C(M)\CQ{M)—compare 
Theorem 2.8. 

It is interesting to correlate this conjecture with the following three points of view: 
First, with the special case of S. P. Novikov's conjecture on triviality of /i-cobordisms 

of the type Κ(π, 1) obtained as the quotients 

where Q(G) is the union of two G-invariant contractible components Ωο and Ωχ, Q0/G « 
M; see [AT, p. 408], 

Second, with the theorem of F. T. Farrell and L. E. Jones [FJ] about ΑΓ-flatness of the 
fundamental group τΐ\ (Μ) of a closed hyperbolic 3-manifold M, in particular. 

Here a group G = πι (Μ) is called A'-flat if the Whitehead group Wh(G χ CN) of 
any group G χ C n , η > 0, is trivial (C n denotes the free abelian group of rank n). Note 
that G χ C° is isomorphic to G itself, Kq{ZG) is a direct summand o f W h ( G χ C 1 ) and, 
for Η > 0, A"_n(ZG) is a direct summand of K0(Z(G χ C n ) ) . Therefore they are trivial 
for a A'-flat group G; see [FJ]. 

Third, with the fact that, for the closed hyperbolic manifold Μ = Η3 / Γ from Theorem 
2.8, the Chem-Simons and ^-invariants for an exotic uniformized conformal structure 
c* € C(M) on Μ are the same as for a complete hyperbolic structure on M, namely, they 
vanish (see [AP9]). 

Here the Chem-Simons invariant and the ^-invariant for (M, c*) are computed in a 
special metric on Μ (we call this metric a "Kobayashi conformal metric") which induces 
the structure c*. In fact, this metric corresponds to the conformally invariant metric 
k(*, *) in the invariant contractible component Ωο C fl(G) c S3 of the holonomy group 
G C Möb(3) for c* S C(M). For any points x,y € Ωο, the Kobayashi conformally 
invariant metric is defined as follows: 

where we take inf over all conformal chains, i.e., couples (xq = x,xi, • • • ,xn = y) 
of points in Ωο and conformal embeddings /,·:£? BI C Ωο of the open ball Β = 

W = M(G) = [B4 U N(G)]/G 

(3.4) 
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5 3 ( 0 , 1 ) C K3 such that , ζ B, = ft(B) where *) is the Poincari hyperbolic 
metric in the z-th ball Bl C Ωο· 

Details and the proof of vanishing for the Chern-Simons invariant and the ^-invariant 
are related to the maximal ball cover of the discontinuity set component Ωο C ii(G) (see 
[ A P 9 ] ) . 
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