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Foreword 

The history of pteridine biochemistry reflects the history of biochemistry in 
general, extending from classical bioorganic chemistry through their function as 
enzyme cofactors into the present field of acting as signals within immunological 
networks. After establishment of the xanthopterin, isoxanthopterin, and leuco-
pterin structures by Purrmann in 1941, these nitrogen-rich heterocycles were 
treated as obscure wing pigments present in some butterflies or as end products 
originating from a sideway of purin or of folic acid catabolism. They were 
mentioned in the chapter of descriptive biochemistry textbooks as a sort of 
curiosity. It took more fourteen years, till Patterson et al. published, in 1955, the 
isolation of a very specific and potent growth factor for the flagellate, Crithidia 
fasciculata, from human urine, and the structural elucidation of what they named 
biopterin. Using a biopterin-free diet and germfree rats, we proved in 1963, that 
this growth factor was no vitamin for the mammal. It was Kaufman who in the 
same year demonstrated its cofactor function: biopterin came out, in its reduced 
form, as the natural cofactor of phenylalanine hydroxylase. With this proof pterins 
became, at the level of classical dynamic biochemistry, a curiosity for the under-
standing of atypical phenylketonuria. Our own demonstration in 1972, that re-
duced pterins and especially biopterin are possibly involved in cellular electron 
transfer, still remains obscure. It was in 1963 when we isolated, from royal jelly and 
honey bee pupae, another polyhydroxyalkyl pterin which obviously was a bio-
pterin precursor from the guanosine pathway and which, after some discussions, 
we named as neopterin. This pterin was in the bee associated with biopterin at a 
constant ratio. However, neither biopterin nor neopterin came out to be the 
vitamin which could explain honey bee queen establishment. It again took quite 
some time till the first author of this book came to Martinsried with a uv-spectrum 
which finally proved to be neopterin and which became of ever increasing interest 
as a marker for activation of the human immune system. With this background we 
now begin to open a new chapter in the understanding of pteridines: they seem to 
be members of a universal class of signals in the field of biosemiotics, the 
understanding of which is just at its beginning. May this laboratory manual not 
only be of practical use in medicine but also help to raise an increasing interest in 
the upcoming field of studies on signal- mediated biological networks. 

Adolf Butenandt Heinz Rembold 





Preface 

The discovery of strongly fluorescing compounds in urine specimens from pa-
tients with malignant diseases in our laboratory in 1969, paved the way to 
recognize in the early 1980's that neopterin, a small heterocyclic molecule belong-
ing to the class of pteridines, is synthesized and released by human monocytes/ 
macrophages after stimulation by interferon gamma. Then, its quantitation in 
various body fluids has been proposed as a sensitive in v/vo-marker for the 
activation of the cellular immune system in diverse fields of clinical medicine. 

Numerous investigations by different research teams in different countries have 
confirmed this expectation. Today, neopterin determination gains growing impor-
tance within the repertoire of laboratory methods: it provides information on the 
activation state of the cellular immune system in vivo, and research in quite 
different clinical settings has demonstrated neopterin concentrations very often to 
carry predictive significance for the course of diseases. The determination of 
neopterin concentrations in biological fluids has been demonstrated to be of use 
in medical disciplines as diverse as oncology, infectiology, transplantation medi-
cine, autoimmunology and transfusion medicine. 

Concomitantly, great efforts have been made to inquire into the biochemical 
fundamentals of enhanced neopterin biosynthesis. The question why the human 
macrophage synthesizes so much larger amounts of neopterin than other cells, 
remains an enigma teleologically. However, details of the regulation of pteridine 
biosynthesis have been elucidated during recent years in sufficient detail to 
understand at least mechanistically the varying ratio between neopterin and other 
pterin derivatives synthesized by different cells under different conditions. More-
over, these investigations have revealed relationships between pteridine metabol-
ism and other biochemical pathways such as tryptophan catabolism and bio-
synthesis of nitric oxides from arginine. These relationships are far from being 
understood in all detail and appear to have great potential for future research. 

We felt that at this stage it might be useful to present the various facettes of 
knowledge on neopterin as an immunological activation marker in a monograph. 
This volume contains a collection of chapters dealing with various aspects of 
neopterin. These cover fundamentals of cytokine-induced pteridine biosynthesis 
in different human and non-human cells and cell lines, and methodological issues 
of determination of neopterin and related compounds in supernatants of cell 
culture systems and in cellular extracts, and also in various body fluids in research 
and routine laboratory settings. The main part of the exposition is devoted to 
describe, in sufficient detail, clinically oriented topics concerning behavior and 
diagnostic interpretation of neopterin data in different pathological situations, 
ordered by disease classification. 



Vili Preface 

The book is intended to provide a compendium of important procedures and 
observations. Whereas also most recent scientific literature was incorporated to 
make the presentation as timely as possible, no attempt was made to cover all 
articles having been published on a topic. Papers were selected for inclusion if 
they seemed to enlighten aspects making the stream of exposition particularly 
compelling; exclusion of a paper by no means intends to indicate unimportance of 
that work per se. 

Pteridines comprise a group of substances with fascinating chemical pecu-
liarities, and their ubiquitous occurrence in practically all living cells contrasts 
sharply with the relative scarceness of firmly established biochemical knowledge. 
We are confident that pteridines deserve more attention from biochemical and 
medical researchers, and we hope that this volume might contribute to this aim. 

Innsbruck, April 1991 H. Wächter · D. Fuchs · Α. Hausen 
G.Reibnegger · G. Weiss 

E. R. Werner · G. Werner-Felmayer 
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1 Pteridines 

The term »pteridines«, coined for a class of at that time unidentified pigments 
from wings of lepidoptera, originates from the Greek name for wing, pteron 
( Wieland and Schöpf, 1925; Schöpf and Becker, 1936). Today it designates the 
bicyclic nitrogenous ring system pyrazino-(2,3-d)-pyrimidine which is formally 
derived from a pyrazine fused with a pyrimidine. Derivatives of this parent 
compound bearing small substituents such as neopterin and biopterin are termed 
»unconjugated pteridines«, derivatives with larger residues, e.g., folic acid, 
riboflavin and methanopterin, are named »conjugated pteridines«. Pteridines are 
classified as pterins (derivatives of 2-amino-4-oxo-3,4-dihydropteridine) and 
lumazines (derivatives of 2,4-dioxo-l,2,3,4-tetrahydropteridine) (Pfleiderer, 1964). 

Pteridine 

o o 

Pterin 
H 

Lumazine 

o 
NH—( Gil! ) n = l t o 8 

unconjugated pteridine: 
Neopterin 

conjugated pteridine: 
Folic acid 

Figure 1.1: Chemical structures of pteridines. 

In nature, pteridines occur in different oxidation states: fully oxidized (aromatic) 
pterins, 7,8-dihydropterins and quinonoid 5,8-dihydropterins, and 5,6,7,8-tetra-
hydropterins. 
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1.1 Historical remarks 

1 Pteridines 

Pteridines were isolated from wings of butterflies (Hopkins, 1889). Despite long-
standing investigations on their nature, elucidation of the structure of these 
pigments was achieved only after several decades (Purrmanrt, 1941). He showed 
that the insect pigments, xanthopterin, isoxanthopterin and leukopterin, contain 
the pteridine moiety. Stokstad at the Lederle Laboratories was the pioneer to 
isolate folic acid. This work led to the resolvement of the structure and to the 
synthesis of this vitamin (Angier et al, 1945). Biopterin was identified in human 
urine (Patterson et al., 1956), neopterin in bees (Rembold and Buschmann, 1963). 
Neopterin was then isolated from human urine (Sakurai and Goto, 1967). Kauf-
man showed for the first time that an unconjugated pterin is metabolically active: 
5,6,7,8-tetrahydrobiopterin serves as the cofactor for aromatic amino acid monox-
ygenases (.Kaufman, 1963). A further pterin, molybdenum cofactor, was found in 
molybdenum containing enzymes such as nitrate reductase, sulfite oxidase, 
xanthine oxidase, aldehyde oxidase and formate dehydrogenase. Due to the 
extreme lability of the cofactors, only their oxidized forms were isolated and 
characterized as pteridines (Johnson et al., 1984). 

Albert suggested that the biosynthesis of pteridines may start from purines 
(Albert, 1957). Indeed, guanosine triphosphate (GTP) was converted into 
pteridines in a cell free enzymic system (Reynolds and Brown, 1964). GTP is 
considered to be the precursor of natural pteridines including folic acid, 
riboflavine, methanopterin and unconjugated peridines. 

1.2 Occurrence 

Unconjugated pteridines, for instance xanthopterin, isoxanthopterin and leuko-
pterin, are found in high concentrations as pigments of insects, amphibia, reptiles 
and fish {Blakley, 1969; Ziegler and Harmsen, 1969; Forrest and VanBaalen, 1970). 
They occur, however, ubiquitously, albeit in very small amounts, in many living 
cells (Iwai et al., 1970; Rembold and Gyure, 1972; Wächter et al., 1980; Gerisch et al., 
1982; Loidl et al., 1982). 
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1.3 Biosynthesis 
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The biosynthesis of pteridines starts from GTP {Brown, 1971). The first step is 
catalysed by the enzyme GTP cyclohydrolase I which cleaves the imidazole ring of 
the purine. Then, the C-8 of the starting compound is removed as formate, and the 
ribosityl residue is converted to a 1-deoxypentulose by Amadori rearrangement. 
As first isolable intermediate, 7,8-dihydroneopterin triphosphate is produced by 
forming the pyrazine ring. This intermediate is the key precursor in the bio-
synthesis of folate, riboflavine, methanopterin, tetrahydrobiopterin and neo-
pterin. A simplified scheme of the biosynthetic pathway leading to tetrahydrobio-
pterin is shown in Figure 1.2. 

Guanosine-5"-tr iphosphate 
(GTP) 

J G T P cyclohydrolase I 

Λ II I phosphatases 
7,8-dihydroneopter in 

J^ Λ Η 
H o N ' 

Τ f< 
R 

7,8-dihydroneopter in-
triphosphate 

6-pyruvoy l - tetrahydropter in syn thase 

sepiapter in reductase 

5,6,7,8-tetrahydrobiopter in 

Figure 1.2: Simplified scheme of pteridine biosynthesis from guanosine triphosphate. 

The ability to synthesize folates has been lost by vertebrates and several other 
organisms during evolution but they have retained the biosynthetic capability for 
pterins, such as tetrahydrobiopterin, neopterin and molybdopterin. 
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1.4 Biochemical functions 

1 Pteridines 

1.4.1 Conjugated pteridines 

Tetrahydrofolate cofactors play a significant role in thymine synthesis and in the 
trànsfer of one-carbon groups in various reactions in purine, pyrimidine and 
amino acid metabolism (Stokstad and Koch, 1967). A cofactor being structurally 
related to folic acid is found in methanogenic bacteria and is referred to as 
methanopterin. It is involved in the reduction of carbon dioxide to methane. The 
structure of methanopterin has been elucidated only recently ( VanBeelen et al., 
1984). 

1.4.2 Unconjugated pteridines 

Several biological functions of unconjugated pteridines are known. The try-
panosomid parasite of moscitos Crithidia fasciculata requires biopterin as growth 
factor CBroquist et al., 1955). 5,6,7,8-Tetrahydrobiopterin functions as cofactor for 
mammalian aromatic amino acid monooxygenases (Kaufman, 1963), oxidative 
cleavage of etherlipids (Tietz et al., 1964), and the conversion of arginine to 
citrulline and nitric oxide ( Tayeh and Marietta, 1989; Kwon et al., 1989). Aromatic 
aminoacid monooxygenases are involved in hydroxylation of phenylalanine, 
tyrosine and tryptophan. Thereby, they control biosynthesis of the neurotransmit-
ters dopamine, norepinephrine and serotonin. Lacking biosynthesis of tetra-
hydrobiopterin causes severe neurological illness by accumulation of phe-
nylalanine and deficient production of neurotransmitters. Insufficient availability 
of tetrahydrobiopterin is responsible for the atypical variants of phenylketonuria. 
Phenylketonuria is a genetic defect caused by either a defect of the phenylalanine 
hydroxylase apoenzyme (classical form) or of the tetrahydrobiopterin cofactor 
(atypical form, tetrahydrobiopterin deficiency). Phenylketonuria is diagnosed by 
screening at birth for abnormally high concentrations of phenylalanine in blood. 
In case of tetrahydrobiopterin deficiency, a comparatively small oral dose of 
tetrahydrobiopterin leads to a decrease of serum phenylalanine concentrations. 
This defect of the cofactor is responsible for about 1-3% of phenylketonuria 
patients {Danks et al., 1976). Depending on the defect leading to decreased 
production of tetrahydrobiopterin, altered pteridine concentrations in body fluids 
can be used to further characterize atypical phenylketonuria. Biopterin levels are 
elevated when dihydropteridine reductase deficiency leads to low availability of 
tetrahydrobiopterin ( Watson et al., 1977; Curtius et al., 1979; Niederwieser et al., 
1984; Niederwieser et al., 1985). The most frequent defect is low or lacking activity 
of 6-pyruvoyltetrahydropterin synthase. This enzyme eliminates the triphosphate 
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group from dihydroneopterin triphosphate. In this defect, called dihydropteridine 
synthase deficiency, the concentrations of biopterin are low; levels of neopterin, 
dihydroneopterin and 3'-hydroxysepiapterin are high. Concentrations of all 
pteridines are low in case of GTP cyclohydrolase I deficiency. Molybdopterin is 
part of the molybdenum cofactor. This cofactor plays an important role in 
molybdenum containing enzymes, e.g. sulfite oxidase, xanthine oxidase and 
nitrate reductase. In humans, the excretion product of the molybdenum cofactor 
is urothione, a sulfur containing pterin the structure of which has been elucidated 
(Goto et al., 1969). The synthesis of the molybdenum cofactor is impaired in 
patients with an inborn metabolic error. These patients suffer from a combined 
defect of sulfite oxidase and xanthine oxidase. 
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2 Neopterin 

Neopterin was discovered in larvae of bee, in worker bees and in royal jelly 
(Rembold and Buschmann, 1963a, 1963b). The chemical structure (see also Figure 
1.1) was identified by comparison with newly synthesized material as 2-amino-4-
hydroxy-6-(D-erythro-1', 2', 3'-trihydroxypropyl)-pteridine. 7,8-Dihydroneopte-
rin triphosphate is produced during biosynthesis from guanosine triphosphate as 
first isolable intermediate (Jones et al., 1967). Four years after the discovery of 
neopterin, 25 mg of the compound were isolated from 500 liters of human urine 
(Sakurai and Goto, 1967). 

Increased concentrations of urinary neopterin were reported in patients with an 
extremely rare variant of atypical phenylketonuria (Kaufman et ai, 1975; Nieder-
wieser et al., 1979). In the same year, raised urinary neopterin concentrations were 
reported in patients with malignancy and with viral infection ( Wächter et al., 1979). 
These results were confirmed by several groups within the next few years (Rokos et 
al, 1980; Stea et al., 1981; Dhondt et ai, 1982). It was suggested that increased 
neopterin may originate from the immune response of patients directed against 
tumor cells or virally infected cells (Hausen et al., 1981). Subsequently, it was 
shown that antigenic stimulation of human peripheral blood mononuclear cells 
leads to neopterin release into cell culture medium (Fuchs et al., 1982; Huber et al., 
1983), and finally, that human macrophages produce neopterin in vitro when 
stimulated by interferon gamma (Huber et al., 1984). Since then, the results of 
numerous investigations in vitro as well as in vivo are consistent with the view that 
neopterin biosynthesis is closely associated with activation of the cellular immune 
system. 

2.1 Chemical characteristics 

In this paragraph, only those chemical properties of neopterin are discussed which 
are of importance for its measurement in biological samples. The sensitivity of 
neopterin to photodecomposition is of primary importance in the clinical labora-
tory because specimens of body fluids sometimes may be stored for days before 
being analysed. Generally, there are no problems met when specimens are 
protected from light, for example, by tin foil. Neopterin is better soluble in water 
than in organic solvents and, therefore, cannot be extracted by such solvents. 
Neopterin and its hydrogenated forms can be characterized and determined by 
ultraviolet spectra or ultraviolet absorption, respectively. Neopterin is aromatic 
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and strongly fluorescing in its fully oxidized form, and can, therefore, be measured 
with high sensitivity by using its native fluorescence. The reduced species, 7,8-
dihydroneopterin and 5,6,7,8-tetrahydroneopterin do not fluoresce and, hence, 
require oxidation to neopterin before fluorescence measurement. The reactivity 
and redox potentials of reduced forms of 6-substituted pterins such as neopterin 
and biopterin are virtually identical (Fukushima and Nixon, 1979; Huck, 1983). 
Oxidation of 7,8-dihydroneopterin and of 5,6,7,8-tetrahydroneopterin with io-
dine, ferricyanide or manganese dioxide in acidic solution yields neopterin almost 
quantitatively. In alkaline environment, however, 5,6,7,8-tetrahydroneopterin is 
converted by oxidation preferentially to pterin (cleavage of the side-chain), and 
only trace amounts of neopterin are formed. Autoxidation of tetrahydroneopterin 
yields neopterin, xanthopterin and pterin. Autoxidation of 7,8-dihydroneopterin 
yields neopterin and xanthopterin. The aerobic oxidation of 5,6,7,8-tetra-
hydroneopterin was investigated in some detail (Armarego and Randies, 1983). 
The compound is oxidized to quinonoid 7,8-(6H)-dihydroneopterin which rapidly 
looses the side chain and forms 7,8-dihydropterin. Then, water is added across the 
5,6-double bond, the intermediate is further oxidized aerobically, and rearranges 
to 7,8-dihydro-xanthopterin. 

2.2 Catabolism 

High concentrations of total neopterins are detected only in urine of humans and 
primates, very low concentrations in dog but not in mouse, rat, guinea pig and 
hamster urine (Duch et al., 1984). In monkeys, the organs with highest concentra-
tions of GTP cyclohydrolase I are pineal gland, small intestine, liver and kidney. 
The highest concentrations of total neopterins are observed in liver, spleen, pineal 
gland, kidney and lung. A similar distribution of radioactively labelled 5,6,7,8-
tetrahydrobiopterin has been previously reported {Hennings and Rembold, 1982). 
The pterins are present as aromatic, dihydro- and tetrahydro- forms within the 
tissues. 

Neopterin and 7,8-dihydroneopterin are found in serum and urine in remarka-
bly constant ratio. This has been demonstrated with freshly collected and uni-
formly handled specimens (Levine and Milstien, 1984). The ratio of aromatic 
neopterin to total (aromatic plus acid-oxidizable) neopterin was 0.45 for urine and 
0.43 for serum. It has been reported that more than 70 % of total neopterin are 
present as 7,8-dihydroneopterin in cerebrospinal fluid (Howells et al., 1986). In 
homogenates of macrophages stimulated by interferon gamma, the ratio of 
aromatic neopterin to total neopterin of about 1:3 ( Werner et al., 1989) is similar to 
the value found in serum and urine. 

Studies on the catabolism of neopterin in humans are not available at present. 
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However, the similar ratio of aromatic neopterin and 7,8-dihydroneopterin in 
culture supernatants of macrophages, in serum and in urine suggests that both 
compounds are excreted mainly unmetabolized. The catabolism of neopterin in 
humans and primates differs from the degradation pathways in rats, however, 
where a pterin deaminase is known to convert pterins into lumazines (Rembold, 
1970). Folic acid and riboflavin do not function as source of neopterin in humans. 
While 7,8-dihydroneopterin is an intermediate in the biosynthesis of these vita-
mins there is no reversibility of the metabolic pathways from folic acid and 
riboflavin back to dihydroneopterin. 

2.3 Biochemical and physiological relevance 

(See also Chapter 5 for a more extended discussion of these issues.) A biochemi-
cal and physiological function of neopterin or 7,8-dihydroneopterin is not estab-
lished at present. The production and release of both components accompanies 
activation of macrophages in vitro as well as in vivo. The activation of macrophages 
is induced by action of interferon gamma. Exposure of macrophages to interferon 
gamma leads to enhanced capacity to secrete partly reduced forms of molecular 
oxygen, such as superoxide anion and hydrogen peroxide. The secretion of 
hydrogen peroxide by macrophages is a two-step process: activation by interferon 
gamma induces only the capacity to produce large amounts of hydrogen peroxide. 
This priming step must be followed by a stimulus for secretion, such as interaction 
with microorganisms, immune complexes, or soluble secretagogues, for instance 
phorbol myristate acetate. Only the first step is paralleled by synthesis of neo-
pterin. The release of hydrogen peroxide, however, is not accompanied by further 
secretion of neopterin (Nathan, 1986). Interferon gamma induces indoleamine 
2,3-dioxygenase activity in macrophages simultaneously with neopterin release 
( Werner et al., 1987).This enzyme degrades the essential amino acid tryptophan to 
N-formylkynurenine. From this intermediate, kynurenine, anthranilic acid and 
3-hydroxyanthranilic acid are formed ( Werner et al., 1987). However, a biochemi-
cal connection between both processes, if present, remains to be demonstrated. 
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3 Measurement of Neopterin 

Neopterin occurs in two forms: fully oxidized aromatic neopterin and reduced 
7,8-dihydroneopterin. Both neopterin and 7,8-dihydroneopterin are excreted by 
activated macrophages. Approximately 30-50 per cent of total neopterin deriva-
tives are already present in the oxidized, fluorescent form ( Werner et al., 1989). 
Neopterin is found at similar percentage in serum and urine (43 % and 45 % of total 
neopterin is in the oxidized form) when measured in freshly collected and 
uniformly handled samples {Levine and Milstein, 1984). It is discussed by some 
authors whether determination of aromatic neopterin or total neopterin is more 
advantageous in clinical use. The data hitherto show that the diagnostic informa-
tion does not depend on which neopterin derivatives are chosen. Consistent with 
these observations is a study conducted on patients infected with human immu-
nodeficiency virus type 1 : assessment of aromatic neopterin in one laboratory and 
of total neopterin in another, yielded essentially equal diagnostic conclusions 
(.Fuchs et al., 1989). Some problems are encountered when measuring neopterin in 
biological samples: its sensitivity to light induced degradation and, particularly, 
the lability of 7,8-dihydroneopterin to oxidative reactions must be accounted for. 
Dependent on pH-value, 7,8-dihydroneopterin is easily degraded to variable 
extent into dihydroxanthopterin, xanthopterin and pterin if collection is not 
immediately followed by analysis. Thus, it is recommended to determine the 
aromatic neopterin but not total neopterin when assessment of activated cellular 
immunity is attempted. Because virtually all determinations of neopterin in 
connection with cell-mediated immunity have been performed by measurement 
of aromatic neopterin, only this method will be considered in the following. 

3.1 Historical remarks 

Neopterin was for the first time isolated from puppae of bees by anion exchange 
chromatography followed by paper chromatography {Rembold and Buschmann, 
1963a, 1963b). For the first isolation from human urine, colored urinary com-
pounds were removed by column chromatography, and pteridines were then 
absorbed on charcoal (Sakurai and Goto, 1967). Pteridines were eluted, separated 
by anion exchange chromatography, and neopterin was identified by chemical 
reactivity and ultraviolet absorption spectra. Later, a gas chromatographic-mass 
fragmentographic method was decribed allowing determination of neopterin and 
of other pterins in urine (Röthler and Karobath, 1976). A method for separation 
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and analysis of pterins and pteridines by high performance liquid chromatography 
(HPLC) following oxidative treatment of samples was subsequently used by many 
authors for biochemical studies (Fukushima and Nixon, 1979). In the first investi-
gation of urinary neopterin concentrations from patients with viral and malignant 
diseases, measurement was by HPLC without oxidative pretreatment of speci-
mens ( Wächter et al., 1979). Subsequently, this method was adapted for use in 
routine laboratory {Hausen et al., 1982), for automated analysis (Fuchs et al., 1982) 
and, in modified version, for determination of neopterin in serum ( Werner et al., 
1987a). Additionally, radioimmunoassay techniques were developed for rapid 
measurement of neopterin in large numbers of specimens (Rokos and Rokos, 
1983; Nagatsu et al., 1984). 

3.2 Measurement by reversed phase HPLC without 
pretreatment of samples 

3.2.1 Principle 

This section describes analytical methods allowing rapid separation and sensitive 
quantitation of neopterin in large numbers of samples. In particular, the tech-
niques were designed with the aim of avoiding laborious sample clean-up steps 
and pretreatment with preservatives. An analytical technique fulfilling these 
requirements was developed for measurement of neopterin in urine by reversed-
phase HPLC on an octadecylsilica column. In addition to neopterin quantitation, 
this method allows determination of urinary creatinine within the same chroma-
tographic run. This is of vital importance when using urine: as a compound which 
is excreted in quite constant amounts over time, creatinine concentration helps to 
correct for physiological variations of urine concentrations. Since unpurified 
specimens are analysed, short guard cartridges packed with the same material are 
used to protect the main column. The analytes are eluted with Soerensen buffer 
(aqueous 15 mmol/1 potassium phosphate at pH 6.4). After separation, neopterin 
is measured by its native fluorescence and creatinine by ultraviolet absorption. 

3.2.2 Collection of samples 

When collecting urinary samples, daily neopterin excretion is of interest. How-
ever, collection of 24 hours urine is not easily accomplished in clinical routine. 
Use of the first morning urine and calculating the ratio neopterin per creatinine, 
yields very satisfactory results (Fuchs et ai, 1982). 

Aliquots of urinary specimens are collected for subsequent neopterin analysis. 
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The samples are immediately protected from light by enveloping them in tin-foil 
covers and then analysed or stored at -20 degree Celsius until measurement. All 
operations are performed strictly avoiding exposure to direct sunlight and unnec-
essary exposure to other sources of light. 

When protected from light, urinary samples are stable for at least six months at 
-20 degree Celsius, for two weeks at 4 degree Celsius and for two days at room 
temperature. 

3.2.3 Preparation of standard solutions 

Standard solutions for neopterin and creatinine are prepared by dissolving 130 mg 
dithioerythritol, 0.2 g sodium hydroxide and 10 mg neopterin in 10 liter of distilled 
and degassed water. The mixture is then stirred in the dark for 10 hours (solution 
A). In addition, 226 mg creatinine are dissolved in 125 mliter degassed Soerensen 
buffer (0.015 mol/liter potassium dihydrogen-phosphate, pH 6.4, solution B). 
Finally, 125 mliter A and 125 mliter Β are combined and diluted to a final volume 
of 1 liter with Soerensen buffer. Thus, the standard solution contains 494 nmol/ 
liter neopterin and 2.00 mmol/liter creatinine. Aliquots (e.g., 10 mliter) are stored 
at -20 degree Celsius in the dark up to 8 months until use. 

3.2.4 Procedure 

Advantageously, a fully automated HPLC system is employed. In the laboratory 
of the authors, the following configuration is used: a Model LC 5500 liquid 
Chromatograph, System 8055 air-actuated auto-injection device, Fluorichrom 
fluorescence detector, UV absorbance detector and Vista 402 data system (all 
from Varian, Palo Alto, CA, USA). Figure 3.1 shows the configuration of the 
HPLC system used. 

Aliquots of urine (100 μϋίεΓ) are diluted and mixed with 1 ml of Soerensen 
potassium phosphate buffer (15 mmol/1, pH 6.4) containing in addition 5.4 mmol/ 
1 disodium diaminoethylene tetraacetate in order to dissolve urinary sediments. 
Diluted aliquots of urine (10 μϋίεΓ) are injected by the automated sampling device 
into the chromatographic system. For protection of the analytical column, a guard 
cartridge is used (e.g. Hibar LiChroCart, 4x4 mm, E. Merck, Darmstadt, Germany; 
packed with 7 μηι reversed phase C-18 material LiChroSorb, RP18, E. Merck). 
A ready-to-use cartridge is used for chromatography (e.g. Hibar Li-ChroCart, 
125x4 mm, E. Merck·, packed with the same material as the guard cartridge). The 
cartridges are fitted in a column holder (Auto Fix II, E. Merck) at 25 degree Celsius. 
Chromatographic elution is performed with degassed Soerensen potassium phos-
phate buffer, 15 mmol/liter, pH 6.4, at column temperature of 25 degree Celsius 
and a flow rate of 0.8 mliter per minute. Neopterin is quantitated by its native 
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Figure 3.1: Configuration of a fully automated high-performance liquid chromatography 
system for simultaneous determination of neopterin and creatinine in human 
urine. 

fluorescence (353 nm excitation, 438 nm emission wavelengths, retention time 
about 4.2 minutes). Neopterin concentration is related to creatinine concentration 
being determined by UV absorption at 235 nm wavelength in the same chroma-
tographic run (retention time about 2.8 minutes). Concentrations of both analytes 
are calibrated by external standard method. The arrangement of samples on the 
autosampler is as follows: two urinary controls (aliquote of a urine with known 
neopterin concentration are stored frozen until use), standard, five samples, 
methanol, six samples. The cycle time between two samples is about 9 minutes 
when using the described technique. About 100 analyses can be easily performed 
within one day. After chromatography of about 100 samples, the column has to be 
cleaned by a methanol-water gradient at flow rate of 0.3 mliter per minute. The 
composition of eluent is changed by linear gradient from 100% water to 100% 
methanol during 10 minutes. Then, pure methanol is maintained for 30 minutes. 
Finally, composition of eluent is reversed again from 100% methanol to 100% 
water during 10 minutes. This purification procedure markedly prolongs lifetime 
of one cartridge; normally, a cartridge can be used daily for at least three weeks of 
for at least 1500 samples. 

Figure 3.2 shows a chromatogram of a urinary sample obtained using the 
described method. The right lane monitors the fluorescence detector, the left lane 
shows the ultraviolet absorption detector. 



3.3 Measurement by reversed phase HPLC with on-line deproteinisation 

UV absorption — f l u o r e s c e n c e 

17 

Figure 3.2: Typical chromatogram of a human urine specimen. 

3.2.5 Performance characteristics 

Analytical sensitivity was determined to be 120 fmol neopterin per injection and 
36 pmol creatinine per injection at a peak-to-noise ratio of 5:1. Thus, the detection 
limit is 72 nmol neopterin/liter urine which is one order of magnitude below the 
lowest concentrations occurring in human urine. 

Within-run precision was 4.7% and day-to-day precision 5.8% for the ratio 
neopterin per creatinine. Mean recovery of 99.3% was obtained for this ratio. 
Neither other studied pterins nor urinary components interfered with the pre-
sented method. Due to its sensitivity, precision, accuracy, specificity and prac-
ticability the method is well suitable for application in a clinical routine labora-
tory. 

3.3 Measurement of neopterin by reversed phase HPLC 
with on-line deproteinisation 

3.3.1 Principle 

Direct determination of neopterin in serum, cerebrospinal fluid, cell culture 
supernatants or cell homogenates is complicated by high protein content and by 
500-fold lower neopterin concentration in these media when compared to urine. 
Fukushima and Nixon (1979) have developed a method to measure total amount of 
neopterin derivatives using the following procedures: oxidation of reduced 
pterins, acidic precipitation of protein, purification on a first ion-exchange col-
umn, accumulation of analytes on a second ion-exchange column and, finally, the 
actual measurement by reversed phase HPLC. By modifying the above-described 
procedure, a method has been developed by the authors which measures simul-
taneously neopterin and creatinine in serum by reversed phase HPLC ( Werner et 


