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Lesen hei t borgen,
daraus erfinden abtragen.

G, C. Lichtenberg,
Sudelbuch F

Preface

The study of ergodic theorems is the oldest branch of ergodic theory. It was
started in 1931 by von Neumann and Birkhoff, having its origins in statistical
mechanics. While new applications to mathematical physics continued to come
in, the theory soon earned its own rights as an important chapter in functional
analysis and probability.

So far, a comprehensive treatment has been neglected, and this book tries to
provide it. Most of its material has not appeared in any other book. This applies
even to older results, but the main body of the results is less than twenty years old
and several interesting topics have just been added in the last decade.

Roughly speaking we ask: When do averages of quantities generated in a
stationary manner converge? In the classical situation the stationarity is de-
scribed by a measure preserving transformation τ, and one considers averages
taken along a sequence/,/0 τ,/° τ2 , . . . for integrable/. This corresponds to the
probabilistic concept of stationarity. More generally, τ can be replaced by an
operator Tin a function space and/° τ1 by Tlf. As Tl is the result of the iterated
action of the same operator we again have some kind of stationarity. Generaliz-
ing further, we study semigroups [Tg, ge G} of operators and limits of averages
of Tgfover subsets /„ c G. The term "ergodic theorem" has been used by some
authors for quite distinct limit theorems, but we reserve it for convergence
theorems dealing with such averages and for their close relatives. This meaning
seems most widely accepted. Among the relatives we count subadditive ergodic
theorems, local ergodic theorems (generalizing the differentiation of integrals),
ratio ergodic theorems and ergodic theorems for information.

The modes of convergence under consideration mostly are norm convergence
for "mean" ergodic theorems, and convergence almost everywhere for "indi-
vidual" (or "pointwise") ergodic theorems. Recently, weak convergence has gained
importance for nonlinear ergodic theorems and almost uniform convergence for
ergodic theorems in von Neumann algebras. Convergence in distribution will not
be considered. Typically, it applies to renormed averages rather than to averages,
and it requires different tools.

I have tried to make the various parts of the book independently readable. The
reader should start with any section which is of interest to him. He will then
notice which previous results enter and find that often just a few will suffice. Of
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course, this implies some redundancy. On the other hand, I hope that this way
large portions of the book can serve as a textbook, and that this approach will
render this monograph useful and readily accessible for non-specialists.

I have not always given the shortest proof. Sometimes a longer proof seemed
more transparent. Another aspect has been the wish to introduce a variety of
methods. In some "additive" ergodic theorems the proof of convergence could
have been simplified by the use of subadditive theorems. However, the longer
additive arguments give access to an evaluation of the limit.

I presuppose knowledge of basic measure theory, and, for many sections, some
functional analysis. But I tried to help the non-experts with references even for
standard theorems.

Surely this book is biased towards my personal interests and even more so
since I have included a number of new results and proofs. But I also tried hard not
to miss any important result and to give it fair coverage. If a good presentation
existed I sometimes may have just quoted it. I apologize in advance to anyone
whose contributions were overlooked.

Concerning convergence almost everywhere the book of Stout [1974] covers
many of the themes in the complement of this book.

Most sections end with Notes containing additional information. But I did
include credits in the main text when it seemed possible without much delay.

Theorems, lemmas, definitions etc. are numbered consecutively in each sec-
tion. A quotation "theorem 2.3.4" refers to chapter 2, section 3, theorem 3.4. A
quotation "theorem 3.4" refers to the current chapter.

My indebtedness extends to many. First, I would like to thank my teacher,
Konrad Jacobs, for generating my interest in ergodic theory, for giving me a
sound introduction, and for suggesting a fertile area of research. I also owe much
to Louis Sucheston and his infectious enthusiasm. I am very grateful to M. Lin,
A. del Junco, Y. Derriennic, G. Keller, M. Akcoglu, R. Nagel, M. Mathieu, H.-J.
Borchers, A. Bellow, R. Jajte, W. Takahashi, J. Fritz, M. Keane, M. Denker and
many others for useful hints and encouragement. Martina Hochhaus helped with
the bibliography. Marrie Powell contributed her unusual skill at mathematical
typing. Special thanks go to Heinz Bauer for inviting the book into this series.

The idea for this book arose in 1976 at the end of a pleasant and interesting
sabbatical I spent at the University of Paris VI. Antoine Brunei and I agreed that
a book covering the whole spectrum of ergodic theorems was badly needed and
planned to write it jointly. Unfortunately, grave personal reasons prevented this.
I am the more grateful to Antoine Brunei for writing the supplement on Harris
processes, a topic to which he contributed so much.

I devote this book to my wife Beate, and to Jeannette Brunei who died of
cancer in 1981. They provided the environment for us in which devotion to
mathematical work was possible.

Göttingen, April 1985 Ulrich Krengel
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Chapter 1: Measure preserving and null
preserving point mappings

We begin with the classical ergodic theorems for measure preserving transform-
ations and with their role in the theory of stationary processes. Then the subaddi-
tive ergodic theorem is proved. We use it to derive the multiplicative ergodic
theorem of Oseledec, a powerful tool in the study of dynamical systems. Recur-
rence is discussed for the wider class of null preserving transformations. The
dominated ergodic theorem provides important estimates of the supremum of
averages. Some topics on measure preserving transformations like weak mixing,
multiparameter semigroups, vector valued ergodic theorems, and the ergodie
theorem for information are postponed although they could be read right away.

§ 1.1 Von Neumann's mean ergodic theorem, ergodicity

1. Definitions and examples. A measurable space (Ω, j/) consists of a non empty
set Ω and a σ-algebra «s/, i.e., a non empty class of subsets of Ω, closed under the
formation of complements and countable unions. A measure μ on (Ω, jaO is a non
negative set function ̂ ; l i /^R + u{oo} with μ(0) = 0 which is σ-additive. The
triple (Ω, <s/, μ) is called a measure space. In the case μ(Ω) = 1, μ is called a
probability measure, and (Ω, jtf, μ) a probability space.

Let (Ω, jtf} and (Ω', j/') be measurable spaces. A mapping τ: Ω -» Ω' is called
measurable (or jtf — ̂ /'-measurable) if τ'1^' = {τ'1 A': A' e j/'} c so . τ is
called a homomorphism of (Ω, j/, μ) into (Ω', £/', μ') if τ is measurable and the
measure μ ° τ ~ χ defined on stf' by (μ°τ~1) (Α') = μ(τ~ι A') agrees with μ'.

τ: Ω -» Ω is called measure preserving if it is measurable and satisfies μ°τ~ι

= μ. In this case μ is called invariant or τ-invariant. A measure preserving trans-
formation will also be called endomorphism (of (Ω, j/, μ)). If τ is an invertible
endomorphism of Ω onto Ω for which τ"1 is an endomorphism, then τ is called an
automorphism.

Examples of endomorphisms of measure spaces turn up in many branches of
mathematics. Perhaps the simplest examples are translations in R" and rotations
χ -» χ + α (mod 1) in [0, 1 [ with Lebesgue measure and, more generally, trans-
lations in locally compact groups Ω with left Haar measure.

Another class of measure preserving transformations in the same space is given
by the continuous grouptheoretic automorphisms of Ω.



2 Measure preserving and null preserving point mappings

A simple number theoretic example can be defined via the expansion
of ω e Ω = [0,1] \ Q as a continued fraction: Identify ω with (ωΐ5 ω2,...) e I\IN,
where

1 1 1
ω=

Now ω -> τω = (ω2, α>3 , . . . ) defines an endomorphism in (Ω, j&, μ) when μ is
the measure with density (1 + x)"1 with respect to Lebesgue measure; see e.g.
Billingsley [1965].

If Ω is a compact Hausdorff space and τ: Ω -> Ω continuous, there always
exists an invariant measure on the σ-algebra si of Baire sets. As we want to
return to this example later and a proof is simple if we make use of Banach limits,
we take this liberty.

A Banach limit L is a linear functional defined on the space /«, of bounded
sequences jc = (x0, jc1 ? . . .) of real numbers such that

(i) L (χ) ^ 0 holds for all χ with x, ̂  0 (i = 0,1,...),
(ii) L((x1,x2,x3,...)) = L((x0,xi,x2,...)) (xe/J and
(iii) L((l,l, !,...)) = !.

Banach limits exist; see theorem 3.4.1. Using a fixed Banach limit L and a fixed
ω e Ω, we can define a positive linear functional μω on the space C(Q} of con-
tinuous functions on Ω by μω(/) = £((/(τ"ω))^=0).

By the Riesz representation theorem (see Bauer [1981]) this linear functional is
of the form μω (/) = \/(ή) μω (αη) for some measure μω on s/. The properties of L
imply that μω is an invariant probability measure.

The classical examples of endomorphisms which have originally motivated the
search for ergodic theorems arise in statistical mechanics. A theorem of Liouville
asserts the invariance of the 6r-dimensional Lebesgue measure under the Ha-
miltonian flow in phase space, see Khintchine [1949].

Still other examples can be found in § 1.4. A rich collection of examples is given
in the book of Cornfeld, Fomin, Sinai [1982].

If (Ω, ja/, μ) is a measure space, &p = &p (Ω, s/, μ) denotes the space of real
or complex valued measurable functions / with \\/\\ρ··=($\/\ραμ)1/ρ <ao,
(l ^ p < oo). eSfoo denotes the space of measurable functions for which
||/||00:-ϊηί{α>0:μ({|/|>α}) = 0} is finite. We shall also write &ρ(μ) or
S£p(.s0) if we want to mention the underlying measure or σ-algebra. {|/| > a} is a
shorthand for {ω e Ω: |/(ω)| > α}. We shall use such a shorthand notation also
for other sets defined by properties of functions. Frequently we abreviate even
further and write μ(|/| > α) for μ({|/| > α}).

Recall that/= g (mod μ) means μ (/Φ g) = 0, and that equality mod μ is an
equivalence relation in the space of measurable functions and in each space Jz?'p.
The space Lp = Lp(Q, s4t μ) of equivalence classes in <£p is a Banach space with
norm II · IL.
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Most of the time we shall not distinguish between elements /e Lp and their
representatives. In all statements involving only a sequence of elements of t£p or
Lp and holding only mod μ, the difference is irrelevant.

The function \A which is 1 on A c Ω and 0 on the complement Ac is called
indicator function of A. A and Β are equal mod μ if the measure of their sym-
metric difference Α Δ Β = (A n Bc) u (Ac n B) is zero. Again, sets which are equal
mod μ will usually not be distinguished. 11 denotes the function = 1 .

A measure ν on si is called μ-continuous if ν (A) = 0 holds for all A e si with
μ(Α) = 0. We then write ν <^ μ. Call ν equivalent to μ(ν ~ μ) if ν <^ μ <| v.

If (Ω, j/) is a measurable space and τ: Ω -> Ω a measurable mapping, the
operator/ -» Tf-=f° τ is called composition with τ. It is a linear operator in the
space of measurable functions on Ω.
A measurable map τ: Ω -» Ω with μ ° τ"1 <^ μ is called null preserving. An inver-
tible null preserving map τ of Ω onto Ω for which also τ"1 is null preserving is
called nonsingular. For null preserving τ the composition operator is well defined
in the spaces of equivalence classes because then/! = /2 mod μ implies/!0 τ
= /2 ° τ mod μ.

We shall make frequent use of the following notions from functional analysis:

Definition 1.1. If £, ?) are normed vector spaces and Τ a linear operator mapping
3E into ?), the worm || T\\ of Γ is given by

|| Γ||= sup Ι Ι Γ / Ι Ι .
11/11 si

Γ is called bounded if || Γ|| is finite, and Γ is called a contraction if || Γ|| ̂  1 . Τ is
called an isometry if || Γ/|| = ||/|| holds for all/.

If a partial order is defined in 3£, the positive cone {/e £:/k 0} of X is denoted
by £+. Γ is called positive if Γ£ + <r 9) +. In the case £ = 7) we speak of a linear
operator (contraction, . . .) in £. J*?(£) denotes the set of bounded linear opera-
tors in 3E. I denotes the identity operator.

If τ is an endomorphism of (Ω, j/, μ) the composition with τ is a positive isometry
in each Lp. If τ is only null preserving or nonsingular, it still is a positive contrac-
tion in L^, but it need not map Lp into Lp for 1 ̂  ρ < oo.

2. Contractions in Hubert space. We denote the scalar product of two elements/
h of a Hubert space ξ) by </ A>. The dual Γ* of a bounded linear operator Tin ξ)
is characterized by <?/,//> = </, Γ*/ζ>, valid for all /and /*.

Lemma 1.2. TjT 7": § — > § w α contraction in a real or complex Hubert space and
ge £, /Ae/T g = Tg holds if and only if g = T* g.

Proof. If, for some g, <g, 7£> = ||^||2, then <g,Tgy is real and
>. We then get
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\\Tg-g\\2 =
^2\\g\\2-2\\g\\2 = Q.

Thus, g = Tg is equivalent to ||#||2 = <g, 7» = <Γ*#,#>. Applying this
equivalence to T* the identity g = T* g follows. D

Lemma 1.3. Let ̂  be a family of contractions Γ m a Hubert space ξ). Then the
orthogonal complement F1 of F= {ge £: Tg = gVTe 3~} is the closure of the
subspace Ν spanned by {h — Th: h e ξ>, Τ e έ?~} .

Proof. Write g_L§0 if g is orthogonal to a subspace §0. Now g 17V ο
= OV/z e $, Te 3T o (T* g - g, > = OVA, T*

Thus TV, and hence also its closure cl N, is orthogonal to the closed subspace F.
As any vector orthogonal to cl Ν belongs to F we have FL = clN. D

The following notation will be used frequently for linear operators T:

SJ'= Sn(T)f-= "Σ Tlf, AJ-.= A,(T)f*= n~l Sm(T)f.
i = 0

If the operator under consideration is S we may also write A„ffor An(S)f. If Γ is
the composition with τ we sometimes write Α „(τ) for A„(T).

Theorem 1.4 (Mean ergodic theorem of von Neumann). If T is a contraction in a
Hubert space ξ), and Ρ the projection on F = {g e £: Tg = g}, then A„f converges
in norm to Pfforfe i), (n -> oo).

Proof. l f f = ( T - P ) h f o T some h then

\\AJ\\ =n-1\\Th-h+T2h-Th + ... + T"h- Τ"-^\\

By approximation this yields \\AJ~\\ -> 0 for all/in the closure of (T— /)§, and
now the assertion follows from Lemma 1.3. π

If τ is an endomorphism in (Ω, s/, μ) and/? = 2, it follows that for any/e Lp there
is an/e Lp with/=/- τ and ||/||p ̂  ||/||p such that ||4,(τ)/-/||ρ -Η. Ο (π -. oo).
Approximation arguments (or theorem 2.1.1) show that this remains true for
1 < ρ < oo. If μ (Ω) = oo the analogous statement does not always hold for ρ = 1;
e.g., take Ω = Κ1, μ = Lebesgue measure, τω = ω + 1, and /= 1[0,ΐ[· F°r

/e L^, \\A„(r)f— f\\m -> 0 need not even hold in the case μ(Ω) < oo. One can
take Ω = [0, 1 [, μ = Lebesgue measure, τω = ω + α (mod 1) with an irrational
a, and a suitable (highly discontinuous)/e Lw. We leave this as an exercise to the
reader.
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3. Absorbing and invariant sets. In many cases the property /= J° τ of the limit
function can be used to find the explicit form off. For future use we discuss the
relevant notions in some more generality than needed here.

Definition 1.5. Let τ be null preserving in (Ω, jtf, μ). A set A e stf is called τ-
absorbing if A c τ'1 A, τ-absorbing mod μ if μ(Α\τ 1 A) = 0, τ-invariani if
τ"1 Α = Α,&ηάτ-ίηναΗαηίτηοάμΊΐμ(ΑΑτ 1A) = 0. An «^-measurable function
/is called τ-invariant if/ = /° τ and τ-invariant mod μ if μ (/Φ /° τ) = 0.

Thus A is τ-absorbing if no orbit ω, τω, τ2 ω, . . . starting in A leaves A. If A is τ-
00

absorbing mod μ the set A1 = A\ [J τ~Ιί(Α\τ~1Α) differs from A only by a set
k = 0

of measure 0 and is τ-absorbing. Similarly, if A is τ-invariant mod μ the set A2

00

= Ν τ~ΙίΑ1 is τ-invariant and equal to ./I mod μ. Thus, in all considerations
t=o

where sets of measure 0 do not matter, we need not distinguish the notions τ-
invariant and τ-invariant mod μ. A real valued / is τ-invariant if and only if
{/> a} is τ-invariant for all α e K. A complex valued/is τ-invariant if both the
real and the complex part are τ-invariant. These observations can be used to
show that for functions/ which are τ-invariant mod μ there exists a T-invariant/'
with μ(/Φ/') = 0, and we need not distinguish the notions τ-invariant and τ-
invariant mod μ for functions either.

For any null preserving τ the family £ of invariant sets clearly is a σ-algebra.
By the above remarks a function/is τ-invariant if and only if it is ./-measurable.
If τ is an endomorphism and μ finite, the σ-algebra «/ can be used to to express the
limit / of An (τ)/ as a conditional expectation:

Let ̂ bea sub-a-algebra of s/, such that the restriction of μ to & is σ-finite.
Recall that for any /e Ll (Ω, jtf, μ) there exists (by the Radon-Nikodym
theorem) an/0 e Lx which is «^-measurable and satisfies

and that/0 is uniquely determined mod μ./0 is called the conditional expectation
off with respect to ̂ , and denoted by E(f\^} or by Ell(f\tF) if we emphasize
the fact that the basic measure is μ. It follows from the Jensen inequality that the
map/-> E(f\^} is a contraction E& in each space Lp(Q, sf, μ).

Proposition 1.6. If τ is an endomorphism in (Ω, «s/, μ), and μ σ-finite on the σ-
algebra «/ of τ-invariani sets, then, for any fe L2( , <stf, μ), the norm-limit J of
An(^fisgivenbyJ=E(f\J}.

Proof. We may assume μ(Ω) < oo./is «/-measurable. For any A e «/ we have
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J f° τ1ίάμ = J fdμ because A is τ-invariant and τ an endomorphism. Now J fdμ
A A A
= <Λπ(τ)/, !,<> -> </,1Λ> = J/ί/μ because strong convergence implies weak
convergence, α

Definition 1.7. A null preserving transformation τ in (Ω, ,ί/,μ) is called ergodic if
all τ-invariant sets Λ have the property that μ(Α) = 0 or μ(Αύ) = 0.

Thus, τ is ergodic if the space cannot be decomposed into two non trivial τ-
invariant subsets. If an endomorphism is ergodic and 0 < μ(Ω) < oo, the limit/is
simply given by/= μ(Ω)"1 \fdμ. This means that for large η the space average
μ(Ω)"1 \/άμ is very close to the time average Α π(τ)/. The important ergodic
hypothesis in statistical mechanics is the assumption that these two averages are
asymptotically equal for the endomorphisms arising in the Hamiltonian flow in
phase space. Von Neumann's theorem made it clear that the limit of the time
averages does exist in the sense of L2-convergence and that it is equal to the space
average in the ergodic case. The question of ergodicity of the transformations
constituting the Hamiltonian flow was left open. For many endomorphisms the
proof of their ergodicity is fairly simple, but for some, including the endomorph-
isms coming from the Hamiltonian flow, the question whether they are ergodic is
very deep; see the Notes.

4. Criteria of ergodicity. We end this section by describing some general neces-
sary and sufficient conditions for ergodicity. They do not go very far beyond
reformulations of the definition. The proof of the ergodicity for specific examples
usually requires arguments which exploit the specific nature of the examples.

(a) For general null preserving τ we can just say that τ is ergodic iff each
measurable τ-invariant function/is constant μ-a.e. This follows from our above
remarks on τ-invariant sets and functions. (As usual "ifF' means "if and only if).

(b) If τ is nonsingular, τ is ergodic iff μ (A) > 0 implies that the complement of
+ oo

A* = \J r~kAisa nullset. A* is the smallest τ-invariant set containing A. An
k = - o o

obvious equivalent condition is that μ (Α) > Ο, μ (Β) > 0 imply the existence of an
integer k with μ(τ*ΑΓ\Β)> 0.

Proposition 1.8. For an endomorphism τ of a finite measure space (Ω, «£/, μ) each
of the following conditions is equivalent to the ergodicity of τ:

(el) μ(Λ) >0 => μ((Λ~)<) = 0, where A~ = \J τ~*Α\
k = 0

(e2) μ(Α) > Ο, μ (Β) > Ο => Ik ^ 0 with μ^ΑηΒ) > 0;

(e3) For all Α, Β etf, lim n~l "Σ μ(τ-*Λη£) = μ (Α) μ (Β) μ (Ω)'1;
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(e 4) There exists a family M er $2 such that the linear combinations of the
functions 1£ (£"e Jt) lie dense in L2 and which has the property that Αη(τ)\Ε
converges weakly in L2 to a constant;

(e5) Forallf,gEL2, lim n
fc =

Proof. The equivalence of (el) and (e2) to ergodicity follows because
r^A'cA' and μ(τ~ι Α~} = μ(Α~) imply μ(Α~\τ~ιΑ~) = (ί. Von Neu-
mann's theorem yields the existence of the limit in (e 5) (and hence in (e 3) and
(e 4)) and the limit is </ £>· If τ is ergodic/is constant so that the identity (f, 1 >
= </, 1> implies/^ μ(Ω)~1 </,!>. But </^> = </, 1 ><!,*> μ(Ω)-1. Taking
/= iA,g= 1B we get (e 3). If τ is not ergodic, (e 3) and hence (e 5) cannot hold
because (e 2) doesn't. The equivalence of (e 4) is obtained by an approximation
argument. D

Notes

Koopman [1931] observed that, using Liouville's theorem and the measure preserving
property, the Hamiltonian flow could be studied via the induced group of unitary
operators in Hubert space. This idea led von Neumann [1931] to a proof of his ergodic
theorem via spectral theory.

The measure theoretic concept of ergodicity seems to go back to Birkhoff and Smith
[1928], who used the term metrically transitive, still favoured by some authors.

Sinai [1963] announced a theorem which - roughly speaking - says that a system of«
balls of equal diameter following the laws of elastic reflection in a cubic box is ergodic. No
published proof of this result seems to exist. Sinai [1970] considered the movement of only
one ball in a 2-dimensional domain with smooth strictly positive curvature (dispersing
billiards). This was simplified and generalized by Bunimovich-Sinai [1973]. Also Kubo
[1976], Kubo-Murata [1981], Gallavotti [1975], and Keller [1977] contributed to this
subject.

Assuming, in addition, "finite horizon", Gallavotti and Ornstein [1974] proved that
dispersing billiards are isomorphic to Bernoulli shifts.

We refer to Bunimovich [1982] for a survey on recent developments in this area.

§ 1.2 Birkhoff s ergodic theorem

1. Discrete time. Our next aim is to give a proof of George D. Birkhoff's famous
pointwise ergodic theorem. For later use we formulate some of the arguments in
the more general operator theoretic setting. We write

(2.1) Ms
nf=M2ix(S1f,...,SJ),

and
Mro/=
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When this notation is applied to an endomophism τ, Τ will be the composition
with τ.

The key step in the proof of the pointwise ergodic theorem is the following
maximal ergodic theorem, which was discovered for endomorphisms by Yosida-
Kakutani [1939] and for general positive contractions in L^ by Hopf [1954]:

Theorem 2.1. Let Τ be a positive contraction in L{ (Ω, jtf, μ). For real valued

/e L! put En = [MJ^ 0} (= (MSJ^ 0}) and E^ = (J En. Then
n = l

f ίάμ > 0 and f fdμ > 0.
J *f I -"— J ./ I ^~

En £QO

Proof. We follow the elegant argument of A.M. Garsia [1965]: For
k = 1,...,«, (Ms

nf}+ ^ SJand hence/+ T(MSJY ^f+ TSJ= Sk+1f. Thus
/^ S,,f— T(M%f)+ holds for k = 1,..., η because it is trivial for k = 1. Passing
to maxima one obtains/^ M%f— T(M%f)+. Now integrate over En:

En

Ω
\

En

Ω Ω

because J/ζί/μ ^ j ΤΗάμ holds for h e L\ . A passage to the limit yields the second
inequality, α

This proof is a bit miraculous. In section 3.2 a discussion of the filling scheme will
provide a longer but more intuitive proof.

The following maximal ergodic inequality was already known to Wiener
[1939] . It admits also a simple direct proof (see theorem 5.2), and suffices for the
proof of BirkhofFs theorem given in theorem 7.3.

Corollary 2.2. If τ is an endomorphism in a measure space (Ω, Λ/, μ), then

holds for any real valued fe Li and α > 0.

Proof. It is enough to prove \\f\\i ^ αμ(Λ) for arbitrary sets A of finite measure
contained in {MJ^ a}. Put En<A = {M„(f- al J ^ 0}. By theorem 2.1,
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J (f— α!^)ί/μ ^ 0.
En,A

For any ω ε A a {Mn/Sj: a} there exists a k 5Ξ n with Akf(oj) Si α. This implies
Sk(f— a1) (ω) ^ 0 and Sk(f— αΐ^) (ω) Si 0. Thus A is contained in En A, and

1= J /^ = α J \Αάμ = α,μ(Α). D
En,>4 £n, X

Theorem 2.3 (BirkhofTs ergodic theorem). If τ is an endomorphism in a measure
space (Ω, <£/, μ) andfe L^ (real or complex) , then the averages Anf converge μ
— a.e. to some τ-invariant f with \\f\\i ^ ||/||ι· For each τ-invariant A e jtf with
μ(Λ)<οο

(2.1)

Proof. First consider a real valued /. Because of

= (n + irlSn+Lf= (n + 1)

the functions/" = lim sup„_>00^„/and// = lim ̂ „..^^„/are τ-invariant. We
show that/" and/1 assume the values ± oo only on a set of measure 0:

For any β > 0 the τ-invariant set D = {/" > β} is contained in the union of
the increasing sequence {Μπ/^ β}. By the maximal inequality μ{Μη/^. β)
^ β'1 H / l l i - Hence μ(ΰβ) ^ β~^ \\f\\i- Passing with β to infinity/" < oo a.e. fol-
lows. By symmetry /' > — oo a.e., and μ(/' < α) = μ(— lim sup A„(— /) < α)

If .4n/does not converge a.e. there exist rational numbers α < β such that the
set Β = {/' < α < β <f" } has positive measure, μ (Β) cannot be infinite because
α < 0 or β>0. By the τ-in variance of Β the function /' = (f— )\B has the
property that /' ° xk vanishes outside B for all k ^ 0 and Β = (ω: 3«
^1 with S„f'(co)>0}.

The maximal ergodic theorem implies βμ(Β) 5S j fdp.
Β

A symmetric argument with/" = (a — /) 1B gives us J/ί/μ ^ αμ(#). Together
Β

this contradicts α < β.
We have shown that/" =/* a.e., and that these functions μ — a.e. assume only

finite values. By the decomposition / = f* —f we may assume fe L\ for the
proof of 11/11 ! ^ 11/11 !. The lemma of Fatou then yields

\Jd\L = fliminf/ln/o^ ^ liminf $Α^μ - \fd\L

where the last equality follows from J/° τ^άμ =
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To prove the last statement in the theorem we may assume Ω = Α, μ(Ω) < oo,
and/ ̂  0. For any ε > 0 there exists a Κε ^ 0 such that gE = f— (f Λ Κε) has norm
\\gt ||!<ε. Now

shows that the sequence Anfis uniformly integrable. As any uniformy.integrable
sequence converging μ-a.e. converges in Z^-norm, the assertion J/ίίμ = |/#μ
follows from \Anf— \fdμ.

For complex valued / one can use the decomposition into the real and the
imaginary parts to prove the existence of the limit, and observe |/|

The condition (2.1) determines/uniquely: We can assume that μ is σ-finite. There
exists a set Ω0 e 3 such that every A e J with μ(Α) < oo is contained mod μ in
Ω0, and μ is σ-finite on Ω0 η ././vanishes in QC

0 and is given by E(f\ «/) in Ω0. In
particular, if τ is an ergodic endomorphism in a σ-finite infinite measure space,
then /must vanish for all/

2. Continuous time. We have stated the ergodic theorem for a single endomorph-
ism τ. Sometimes one is interested in a continuous time motion of the points ω,
and in a corresponding continuous time theorem. There is no difficulty to derive
such a result from theorem 2.3. By Ά flow {τ,, t e R} we mean a group of measur-
able transformations τ,: Ω ->· Ω with τ0 = identity, xt+s = τί ° rs, (t, seU). The
flow will be called measure preserving if the τ, are measure preserving. The flow is
called measurable, if the map (ω, /) -> τ, ω from Ω χ Κ1 into Ω is && — jtf-
measurable, where d is the completion of the products-algebra d ® ̂  of stf
with the Borel sets, and the completion is taken with respect to the product μ" of μ
on j/ and the Lebesgue measure λ on $?. The completely analoguous definitions
can be given for semiflows (τ(, / ^ 0}, (in which the τ, need not be invertible). If
{τ,, / ^ 0} is a measurable measure preserving semiflow in a σ-finite measure
space, and if/: Ω ->· R is integrable, the function /defined by /(ω, t) =/(τ,ω) is,
for all Τ > 0, integrable in Ω χ [Ο, Γ] (Fubini), and, hence, for μ-a.e. ω e Ω the

n-l
integrals |/(τ,ω)ί/ί are well-defined. Note that J f(rtcai)dt = Σ Ρ(τ\ώ) with

ο ο ί = οι
F(a>) = J f(xto))dt and that Fis integrable. Therefore the ergodic theorem im-

o η
plies that n~l\f(tt<u)dt converges a.e. when the integers η tend to infinity. The

ergodic theorem also implies w"1 F0 ° τ\~ι -> 0 a.e., where F0 = J |/° τ,\dt. For η
T n _ ο

^ T<n + l, I J/°T tifr — J/°t (<//| ̂  /^οτ""1. Thus the convergence a.e. of
r ° °

Τ l J /° τ( dt when Γ tends to infinity along the reals is a rather trivial conse-
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quence of the discrete time theorem. Many of the discrete parameter theorems in
this book will have such continuous parameter analogues and we shall usually
not care to state the latter.

There is, however, another class of continuous parameter theorems which will
be of more interest to us. These are the local ergodic theorems. They assert the
convergence of continuous time averges over time intervals [0, e] when ε -> 0
+ 0. They were introduced by N. Wiener [1939] for measurable measure pre-
serving flows. In this case they are a consequence of a form of the fundamental
theorem of calculus, which says that for Lebesgue integrable/on [0, oo [ one has

1 S + £

lim- |/(ί)Λ=/(ί)
«-»ο ε s

for A-almost all s; see Royden [1968: Ch. 5].

Theorem 2.4 (Wiener's local ergodic theorem). If (Ω, &?, μ) is a σ-finite measure
space and (τ,, / ^ 0} a measure preserving measurable semiflow,fe ^^ (μ), then

ε
lim ε"1 |/(Γαω)ί/α =/(ω) holds μ-a.e..

ί-»0 + 0 Ο

Proof. Let TV denote the complement of the set of points (ω, /) in Ω χ [Ο, οο[ with

lim ε-1 /(τ, + αω)ί/α =/(τ,ω) and \&Νω = {te [0,oo[: (ω, t)e N} and 7V
E-+0 + 0 0

^ ί
= (ω e Ω: (ω, /) e N}. For μ-almost all ω, J /(ταω) dot is well defined for all / and

ο
/(ω, α) is integrable in each [Ο, Γ] . The fundamental theorem of calculus implies

= 0 for these ω.
= 0 follows, and, by Fubini, A-almost all ί have the property that μ (TV)

= 0. But N* = τ,"1 7V°. As τ( is measure preserving μ (TV0) = 0 follows. D

The integrability of /(ω, · ) with respect to λ is also clear for bounded/, when the
τ, are not necessarily measure preserving. If μ (TV*) = 0 for almost all t > 0 and the
τ, are null preserving μ (TV) = 0 follows for all / > 0. Therefore the above argu-
ment also proves:

Theorem 2.5. Ι/(Ω, si ', μ) is a σ-finite measure space and (τ,, t ^ 0} a null preserv-
ing measurable semiflow with the property that

μ(τ~1Α) = 0 forallt>0 implies μ(Α) = 0
then

ε
lim ε 1 J/(T tc )i/f =/(ω) μ-a.e.

ε-»0 + 0 Ο

holds for all bounded measurable f.
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3. Uniform convergence. Simple examples like the Bernoulli shifts (§ 1.4) show
that ^„/need not converge everywhere even when Ω is a compact topological
space, and τ and/are continuous. However, for some interesting examples one
obtains even uniform convergence by the following special case of the mean
ergodic theorem in Banach spaces:

Theorem 2.6. Let Ω be a compact metric space with metric ρ. If τ: Ω ->· Ω is con-
tinuous, and the functions A„f, (n ̂  1), are equicontinuous, then Anf converges
uniformly in Ω.

(Recall that the functions/,, are called equicontinuous if for any ε > 0 there exists
δ > 0 such that ρ (ω, ω') < <5 implies |/π(ω) — /„(ω')| < ε for all ή).

Proof. Let @(ώ) denote the closure of the orbit {ω, τω,. . .} of a point ω. If some
g e C(i2) is 0 on 0 (ω), then μω (g) = 0, where μω is the linear functional construc-
ted in subsection 1 of § 1.1. Thus μω((Ρ(ω)) = 1.

By the Birkhoff theorem there exists an ω* e &(ώ) for which Λπ/(ω*) con-
verges to some finite/(ω*). Given ε > 0 find δ > 0 by the equicontinuity of the
A/and then find m with ρ (τ™ ω, ω*) < δ. | A/M - Anf(xmto) \ tends to 0 for
n -> oo, since all but 2m terms in the sums cancel and/is bounded. \Anf(im<o)
— Anf(io*}\ < ε implies \A„f((o) —/(ω*)| < 2ε for large η. As ε was arbitrary
\imA„f(( ) exists.

By the compactness of Ω there exist ω1;..., ωκ e Ω so that the open δ — balls
Bk with these centers cover Ω. If Ν is large enough, then | ̂ „/((yk) — f(ojk) \ < ε,
for n~^.N and k = 1,..., Κ. If ω is arbitrary there exists k with ρ (ω, o>ft) < δ. Now
\A„f((a) — /i„/(c ft)| < ε shows that the convergence is uniform, α

Example. Consider the d-dimensional torus Ω = [0,1 [d, which is a compact
group with coordinatewise addition mod 1. Take some a = (a l 5 . . . , ad) e Ω, for
which a1? a 2 , . . . , ad, 1 are integrally independent, i.e., m{ = m2 = ... = md = 0

d
shall be the only integers for which Σ <y-kmk is an integer.

fc = l

The translation τ: ω -» ω + α clearly preserves the d-dimensional Lebesgue
measure μ = λά. τ is ergodic. This can be proved using Fourier analysis; see e.g.
Petersen [1983: p. 51]. We sketch a proof using only measure theory. First show-
by induction on d that the sequence . . . , —2α, —α, Ο, α, 2α, 3α,... is dense in Ω:
As all these points are different there is an accumulation point, and, hence, for
any ε > 0, a k e Z with 0 < |α·| < ε f i d , where α· = &a; mod 1. Because of the
induction hypothesis the line {xa':xelR} through a' = (a' l s . . . , a^) and
(0,0,. . . , 0) lies densely in Ω. (It intersects {0} χ [0,1 [d~1 in a dense subset.) For
any point ζ on this line there is some ma' (m e Z) in an ε/2-neighbourhood of z.
Thus, for any y e Ω, there is some mkoc in the ε-neighbourhood of y. (A similar
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argument shows the density of the "forward orbit" a, 2a, ... . , which was already
known to Kronecker [1884]).

Now let A be a τ-invariant set of positive measure, and let 0 < η < 1 be given.
For 5, C ε j/ we say that 5 fills out (1 -η) of C when μ (5 n C) ̂  (1 -f/)/z(C).If
ξ > 0 is sufficiently small one can fill out (1 — η) of Ω with say k (ξ) disjoint cubes
of side-length ξ which lie at a strictly positive distance of each other. There are
arbibrarily small ξ such that A fills out (1 — η) οι some cube Q of side length ξ. By
the density statement above, we now can find k (ξ) disjoint translates τ1 €ξ of €ξ.
As τ' A = A, A fills out (1 — η) of i'Q, and, hence, (1 — η)2 of Ω. As η > 0 was
arbitrarily small μ (A) = 1, and the ergodicity of τ follows.

An application of theorem 2.6 to this example now proves the theorem of Weyl
[1916] on uniform distribution mod 1:

Theorem 2.7. If τ in Ω = [0, 1 \_d is the translation mod 1 by α = (al5 . . . , ad)
f/ze numbers a l5 ..., ad, 1 are integrally independent, then, for each continuous/,
Anf converges uniformly to

Proof. It is simple to check that the Λ,,/are equicontinuous. By the ergodicity the
limit must be the constant $fdμ. D

Sometimes Weyl's theorem is spelled out for Riemann integrable functions, but
this is really an equivalent formulation which can be obtained by a simple appro-
ximation. (To prove convergence a.e. for/e &Ί one needs a maximal inequality
even in this special case).

Notes

Birkhoff [1931] has based his proof on the following (weaker) maximal inequality: If Fa is

the τ-invariant set {lim sup ̂ „/^ a}, then J fdμ ^ αμ(^).
F«

He actually has formulated his a result only for indicator functions/ = 1B (in the setting
of a closed analytic manifold having a finite invariant measure). Khintchine [1933] then
showed that Birkhoffs result remained true for integrable/on an abstract finite measure
space. (Therefore theorem 2.3 is called Birkhoff-Khintchine-Theorem in a few countries.
However, Khintchine himself emphasized that the idea of his proof was precisely that of
Birkhoff).

BirkhofFs theorem (for finite μ) easily implies norm convergence of Anfin Lp for/ε Lp
(l ^ p < oo ), and therefore contains the special case of von Neumann's theorem which
motivated his work. As BirkhofFs paper appeared earlier, it is of interest that von
Neumann's theorem was proved first and was known to Birkhoff.

The original proof of Yosida-Kakutani's maximal ergodic theorem, which used ideas of
Kolmogorov [1937], remains of interest; see Petersen [1983]. Simplified and alternative
arguments (sometimes for continuous time or special cases) were given by Riesz [1931],
[1932], [1942], [1945], Pitt [1942], Hopf [1947], Dowker [1950] and others. Kamae
[1982] gave a proof using nonstandard analysis. Using some of his ideas, Katznelson and
Weiss [1982] gave a short proof without explicit use of a maximal ergodic theorem.
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E. Bishop [1966], [1967], [1968] gave a proof of BirkhofFs theorem using upcrossing
inequalities similar to those in martingale theory; see §4.1. These inequalities are construc-
tively valid, but BirkhofFs theorem is not. Nuber [1972] has sought conditions which
constructively imply the conclusion of BirkhofFs theorem.

The first ratio ergodic theorem was proved by Stepanov [1936] (in the ergodic case) and
Hopf [1937]: If τ is an endomorphism of a σ-finite (Ω, jtf, μ),/ε &Ί and g e 3?f , then
S„f/S„g converges a.e. on each {Skg > 0}. This is now a special case of the Chacon-
Ornstein theorem.

It is easy to see that BirkhofFs theorem implies the convergence a.e. of
+ n

£*/'= (2n + 1)~ 1 Σ e2"iU/° τ* for fixed λ e R. This was strengthened by Wiener and
t = - n

Wintner [1941] who proved:

Theorem 2.8. If τ is an automorphism of a finite measure space, then there exists, for each
/e Jz?!, a nullset Nf such that, for coe Nc

f, B*f(a>) converges for all Ae R.

Wiener and Wintner [1941 a] also investigated when F(t) =/(τ,ω) is almost periodic and
+i _ _

studied lim (2/)"1 J F(s + u)F(s)ds, where Fis the complex conjugate function.
-r

Speed of convergence. When a convergence statement has been proved, one of the ques-
tions of interest is whether one can assert something about the speed of convergence. The
famous law of the iterated logarithm is an example where a positive result is possible. In
the form proved by Hartman and Wintner [1941] it can be stated in our language as
follows: If μ(Ω) = 1, τ is an endomorphism, Tf = f° τ, /has integral J/ίίμ = 0 and L2-
norm ||/||2 = 1, and if/, /° τ, /° τ2, ... are independent, then

lim sup y4M//J/21oglogn/M = 1 μ-a.e. .
«-»00

By symmetry lim inf = —1, so that A„f= 0 ((n~1loglogn)1/2) a.e. Independence is
crucial! No general positive ergodic theoretic result of this type is possible even for slower
speeds. Indeed, Krengel [1978a] has shown: If τ is an ergodic endomorphism of the torus
[0, 1 [ with Lebesgue measure, and (aj any null sequence of positive numbers, there exists
a continuous f with integral 0 and

(2.2) \imsupci-1\Anf\ = ao a.e..

On the other hand, Halasz [1976] proved: For any non decreasing sequence (cn) of posi-
tive numbers with c{ ^ 2 and tending to oo, and for any ergodic automorphism of [0, 1 [
there exists A with λ(Α) = \ and | S„ \A — n/2 1 ^ c„ for all n. Thus, the convergence can be
arbitrarily fast.

The following deep theorem of O'Brien [1983] contains a limit version of Hal sz' result
and (2.2) for measurable/:

Theorem 2.9. If (b„) is a sequence of positive numbers tending to oo and satisfying
lim inf n'1 b„ = 0, there exists τ and a { + 1, — \}-valuedfwith lim sup b~n

l Snf= 1, and this
f can be constructed in such a way that the sequences /, f° τ, f° τ2, ... and — / — f° τ,
—/ο τ2, ... have the same joint distribution.

Kakutani and Petersen [1981] proved another strengthening of (2.2) for measurable/:
They construct, for any sequence (b„) of positive numbers with divergent sum, a bounded

Jk
measurable / with integral 0 and sup | Σ biA-J\ = 00 a.e. Dowker and Erd s [1959]
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k

showed the existence of a bounded/with J/rf/l = 0 for which Σ btf° τ* fails to converge in
i=1

measure on any subset of [0, 1 [ having positive measure, and with sup | £ btf° τ1 1 = oo
i = l

a.e., see also Halmos [1948]. Baum and Katz [1965] showed: Σ μ(| Anf\ > ε) /η converges
for /with \fdμ - 0 if/,/° τ ... are independent.

The uniform boundedness principle implies that the existence of a sequence απ tending
to oo, with lim sup x„\\A„f— Pf\\ < oo for all/, is equivalent to \\A„ — P\\ -»· 0. It is there-
fore easy to see that there is no speed of convergence in von Neumann's mean ergodic
theorem.

There are a few positive results on speed of convergence for specific transformations
and functions; see e.g. Kuipers and Niederreiter [1974], or Kowada [1973].

Non-integrable functions. If τ is an ergodic endomorphism in a probability space, and a
non negative /has a infinite integral, then BirkhofFs theorem implies lim A„f=ao,
because n"°°

lim inf Anfl· lim A„ (/ Λ k) = f (/ Λ k) άμ for all k .
n-»oo n-»oo

J. Aaronson [1977] has proved that also other norming factors of Snf than n"1 cannot
produce convergence a.e. to a non zero finite function:

Theorem 2.10. If τ is an ergodic endomorphism of a probability space (Ω, jtf, μ),/^ Ο, and
\fdμ = oo, then for any sequence (b„) of positive reals, one has either

(2.3) limsupi>~15„/= oo a.e. or
n-»oo

(2.4) liminf^SJ^O a.e..

There is a similar theorem for σ-finite measure spaces; see also Aaronson [1979].
Aaronson [1981] also considered this problem for functions /which need not be non

negative: If bjn is non decreasing and tends to oo, then (2.3) or (2.4) hold with S„f
replaced by |5B/|. In the case where the/° τ' are independent Feller [1946] proved this
assertion for arbitrary non decreasing sequences. But in the general ergodic case the
condition bjn ->· oo cannot be deleted: Aaronson [1977] gave an example of an /with
J I/I άμ = oo and Snf/n -* 1 a.e. A related result is that of Kesten [1975], who showed that
lim inf A„f> 0 a.e. if £„/-» oo a.e. .

Let (a„) be a non decreasing sequence of positive numbers. Tanny [1974] showed that
the condition lim inf ak.Ja„ > 1 for some k > 1 implies that for any ergodic τ in a proba-
bility space and all/ lim sup/° τ"/αη = oo a.e. or lim sup/° τ"/αη = 0 a.e. O'Brien [1982]
proved that the condition is also necessary.

Dowker and Erd s [1959] have given several more examples: E.g. they showed that
Snt g/Siik l)g maY diverge for ergodic automorphisms of a σ-finite measure space.

Del Junco and Steele [1977] have shown that for any ergodic endomorphism τ in [0, 1]
(which Lebesgue measure) and for any increasing sequence 0 < b^ ίΞ b2 ̂  of integers bn

with n~lbn -» 0 there exists an indicator function /= \A such that lim sup ό"1 Σ /°τ'
ί = η

= 1 μ-a.e. and the corresponding lim inf is 0 μ-a.e. (Wiener and Wintner [1941 a] have
made a similar observation; see also Pfaffelhuber [1975]).

By an example of Burkholder [1962] the averages considered in BirkhofFs theorem
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may diverge a.e. after an application of a single conditional expectation operator. Isaac
[1973] has studied similar questions for ratios.

We refer to Kuipers and Niederreiter [1974] for the theory of uniform distribution
modi.

For abstract ergodic theorems in a Boolean algebra and in a logic, see Bunjakov [1973],
Dvurecenskij and Riecan [1980], and Pulmannov [1982].

§ 1.3 Recurrence

1. The conservative and dissipative part. We call a null preserving τ recurrent if,
00

for all A e s#, μ-almost all ω e A belong to the set Aret = A n (J x~kA of points
fc=l

returning at least once, and infinitely recurrent if, for all A e Λ/, μ-almost all
ω e A belong to the set

00 00

Ainf = {CUE Α: τ* ω e A for infinitely many k ^ 1} = A n (~] (J τ kA.
n=l k=n

~*A set IV e <stf is called wandering if the sets τ~* W (k ^ 0) are disjoint, or, equiva-
lently, if no point in W returns to W. τ is called conservative if there exists no
wandering set of positive measure. Finally, τ is called incompressible, if there
exists no A e ̂  with A <= τ"1 A and μ (τ"1 Α \ ) > 0. Passing to complements
one sees that τ is incompressible if and only if τ -1 Β c Β implies μ(Β\ τ"1 Β) = 0.

Theorem 3.1 (Recurrence theorem). Let τ be null preserving in a measure space
(Ω, stf, μ). The following conditions are equivalent:

(i) τ is conservative,
(ii) τ is recurrent,
(Hi) τ is infinitely recurrent,
(iv) τ is incompressible.

Proof, (i) => (ii): For any A the set A 0 = A \ Aret of points in A which never return
is wandering, and, hence, a nullset.

(ii) => (iii): For any Ae s&, u(A0) = 0. The set T~kA0 is the set of points which
visit A at time k for the last time. If ω £ A does not return to A infinitely often

00

there must be some k 2; 0 with ω e τ ~ Ι ( Α 0 . Hence Aini = A\ [J r~kA0 differs
from A by a nullset. k=0

(iii) => (ii) is trivial.
(ii) => (iv): If τ"1 Β c: Β, then the sequence τ ~k B, k = 1, 2, ... is decreasing, and

00

Β\τ~ι Β = B\ [J T ~ k is the set of points in B which never return. As τ is
fc = l

recurrent μ(Β\τ~1Β) = 0.
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(iv) => (i): If W is wandering put A = τ~* W. Clearly τ * B <= 5. By the
fc = 0

disjointness of the sets T ~ k W w e have W7^ Β\τ~ι B. Hence μ(^) = 0. D

Clearly, if τ is an endomophism of a finite measure space, there cannot exist a
wandering set of positive measure, and, therefore, τ must be infinitely recurrent.
This is the recurrence theorem of Poincare [1899], perhaps the oldest result in
ergodic theory. Actually, Poincare was most interested in a topological type of
recurrence, which can be deduced from the result stated above: If Ω is a topologi-
cal space with a countable basis @t <= s/, and τ is infinitely recurrent, then almost
every ωε Ω returns infinitely often to any neighborhood of itself. To see this,
observe that the union E of all sets A\Ainf with A e & has measure 0. If U is a
neighborhood of some ω e Ec, there is an A e J1 with ω e A c: U. As ω φ Α \ Ainf,
ω returns infinitely often to A, and, hence, to U.

In general, if μ is σ-finite one can find a maximal subset of Ω on which τ is
conservative.

Theorem 3.2 (Hopf decomposition). If τ is null preserving in the σ-finite measure
space (Ω, s/, μ), there exists a decomposition of Ω into two disjoint measurable sets
C and D, the conservative and the dissipative part, such that

(i) C is τ-absorbing,
(U) the restriction of τ to C is conservative, and
(Hi) D = Ω\€ is an at most countable union of wandering sets.

If τ is even nonsingular, C is τ-invariant and there exists a wandering WQ with D
+ 00

= (J τ]ί WQ. (τ is called dissipative if Ω = D.)
k= — oo

The proof is based on an exhaustion argument. As this type of argument is used
frequently, let us explain this simple technique: Let P be a certain property of
measurable sets in the σ-finite measure space (Ω, jtf, μ) which is such that any
subset of a set with this property again has property P. As μ is σ-finite, there exists
a finite measure ν equivalent to μ. Put a: = sup (ν(Λ): A has property P}. Pick

f j e d with property P and v(Al) ^ 2~1a1. lfAlt..., A„ have been deter-

mined, put απ+1 = sup {v(A): A has property Ρ and A c Ω\ (J Ak}. Then find
k=l

η oo

Αη+ιαΩ\ (J yifcwithpropertyPsuchthatv(^4n+1) ^ 2~1απ+1. Let j = [J At.
k=l i=l

The complement Ω2 οίΩ1 is such that no subset of Ω2 with positive measure has
property P. Moreover, if Ω is the disjoint union of Ω( and Ω'2 such that Ω\ is a
countable union of sets with property P, and no subset of Ω'2 has positive measure
and property P, then Ω^ coincides up to nullsets with Ω\.

Proof of theorem 3.2. Take the property of being wandering and put Ωι = D, Ω2
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= C. As τ"1 W is wandering if W is wandering we see that τ'1 D <= D up to
nullsets. Hence C is τ-absorbing mod μ. Changing C on a nullset we can assume
that it is τ-absorbing.

If τ is nonsingular, also τ W^is wandering if H^is, and we can infer that D and C
are τ-invariant. W0 is constructed as follows: Take the Ai from the construction of

Z), put Af = (J τ*Λ,·, and
k= -oo

^o=U(^\U/*) · °

Also for general null preserving τ the description of D can be made somewhat
more precise: Put W1 = At, and for η ^ 1 put

i = 0

Then the sequence D„ = [J τ ' Wn is increasing with union D, and each Wn is
wandering. i = 0

The following complement to the Hopf decomposition has been observed by J.
Feldman [1962] in a more general situation. We leave it as an exercise.

Proposition 3.3. Also in the case where τ is an endomorphism, C is τ-invariant.

Halmos [1947] proved that the powers of a conservative τ are conservative. In
fact we have:

Theorem 3.4. If τ is null preserving in a σ-finite measure space (Ω, j/, μ), the
dissipative parts Dn of τ" are the same for all η ^ 1.

Proof. If W is wandering for τ it is wandering for τ", so that D1 <= D". Now

let W^, W2, ·.. be wandering sets for τ" with union D". Put h = Σ 2. k \Wk. Then
h is strictly positive on D" and *=1

Σ Α ° τ ί η - Σ 2'* £ WT'"^ Σ 2-"^ 1 on Ω.
i = 0 fc=l i = 0 k = l

If D" is not contained in D1 = D, there exists an ε > 0 and A c C with μ(Α) > 0
and h ̂  ε\Α. Now

Σ 1Α°τι£ε-1 Σ Αοτ^β'^Σ (Σ A°0°T j ̂  ε"1« on Ω.
ί = 0 i = 0 j = 0 i = 0

But then no point in A can return to A more than ε"1 η times, a contradiction to
AcC. Ώ
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The transformation k -> k + 1 on Ω = Ζ with the counting measure is an
example of an ergodic measure preserving invertible transformation which is
dissipative. This is essentially the only invertible example because of the last
assertion in theorem 3.2. In particular a nonsingular ergodic τ in a non atomic
measure space must be conservative. There exist endomorphisms in non atomic
σ-finite measure spaces which are dissipative and yet ergodic; see § 3.1 (Notes).

Proposition 3.5. If a null preserving transformation τ is conservative and Α τ-
absorbing mod μ, then A is τ-invariant mod μ.

Proof. We may assume τ~ι A r> A by modifying A on a nullset. Almost every
point of £ = τ~1Α\Α returns to E. But τ"1 A => A implies that, for all ω e E, the
orbit τω, τ2 ω, ... is contained in A <= Ec. Thus E must have measure 0. D

It follows that a conservative null preserving transformation is ergodic if and

only if μ (A) > 0 implies μ(( (J τ~*Λ)0 = 0.
fc = 0

2. Induced transformations. If τ is recurrent, the return time

rA (ω) ;= inf [k ^ 1: rkcoe A]

to A e sf is finite a.e. in A. In the measure preserving case we can evaluate the
integral of rA:

Theorem 3.6 (Recurrence theorem of Kac [ 1 947] ) . If τ is a conservative endomor-
phism of(Q, j/, μ) and A e jtf, then

In particular, if τ is ergodic and μ(Α) > 0, then J r^i/μ = μ(Ω).
A

Proof. We may assume 0 < μ(Α) < oo. Put A0 = A and

Rk is the set of points in A with rA (ω) = k. For k ^ 1 , Ak is the set of points in Ac

which visit A for the first time at time k.
We have μ(ΑΙ[) = μ^+1) + μ(Κ)ι+1), (k ̂  0), and, hence,

= Σ

By the recurrence of τ, /ζ (A 0) = Σ μ(Α)> which implies lim μ(Α^ = 0. Now the
k = l k-»oo
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assertion of the theorem follows from
OO 00 00 00

/i( U τ-Μ) = Σ ΜΑ) = Σ Σ
η = 0

= Σ kμ(Rk) = \rAdμ. D
k = l Λ

Higher moments of rA have been studied by Blum and Rosenblatt [1967] and by
Wolfowitz [1967].

For conservative null preserving τ, we can define a map τΑ of Aret into A by
ω -> τ1"-4 (ω) ω . ω is mapped to the place where it first returns to A . Because of τΑ

 1 Β
00

= \J Rkm~kB, this map is measurable and null preserving. It maps Ainf into
k = l

Ainf and one has τΑ.ηί = τΑ on Ainf. Neglecting a nullset, we assume A = Ainf. τΑ
is called the transformation induced by τ on A. Obviously, τΑ is conservative.

Theorem 3.7 (Kakutani [1943]). If τ is a conservative endomorphism of
(Ω,£/,μ), the induced transformation is an endomorphism of (A, Ans/, μΑ),
where μΑ is the restriction of μ to A.

Proof. Take some measurable Β c= A, and put BQ = Β and

We have

μ(Β) = μ(Β{) + μ(Β1) = μ(Β'1) + μ(Β'2)

= Σ μ(Βΰ + Um μ(ΒΛ * Σ

But B'k is the set Rkni~kB = Rk^A
l B. Thus μ (Β) ^ μ(τΑ

ι Β). The theorem
now follows by an application of the following lemma to τΑ. D

Lemma 3.8. If τ is conservative in (Ω, «a/, μ) and μ(τ~1Α) ^ μ (A) holds for all
A e j/, then μ is τ-invariant.

Proof. Otherwise there exists an A with μ(Α) > μ(τ~ιΑ). Construct A0, Λ ΐ 5 . . .
Ri, R2, ... as in the proof of the Kac recurrence theorem. Then μ(Α) > μ(τ~1Α)

... ^ MW = μ (A) yields a
contradiction, α k-1

Proposition 3.9. If a null preserving transformation τ in (Ω, «s/, μ) is conservative,
and «/ is the σ-algebra of τ-invariant sets, then «/ r>A is the σ-algebra of τΑ-
invariant sets. In particular the ergodicity of τ implies that ofτA.
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Proof. IeJ means that ω e /is equivalent to τω e /, and, hence, to τ2 ω e /, etc.
Therefore ω e /Ι η /is equivalent to τΑω e A n /, and Λ η /is τ^-invariant. If, for
some /', A n /' is not τ^-invariant, there exist an ω e Λ such that ω e /' and
τχω £ /', οτωφΓ and τχω e /'. So the equivalence of the assertions τ" ω e /' must
fail for some « and /' is not τ-invariant. D

Sometimes it is useful to reverse the process of inducing a transformation on a
subset: Let τ be an endomorphism of (Ω, «s/, μ) and let R1} R2, . . . be a partition of
Ω, i.e., the Rt form a sequence of disjoint measurable sets with union Ω. Let Ω0

= Ω, Ω; = (J /?fc, and Ω* = {(&, ω) : k ^ Ο, ω e ΩΛ}, and for measurable
fc = i+l

A c t put μ* ({£} χ Λ) = μ (Λ). We have defined a measure space consisting of
disjoint copies of the i t Define an endomorphism τ* in £2* by

(Ο, τω) if

If we identify Ω with {(Ο, ω) : ω e Ω0}, then τ£ = τ. This is Kakutani's skyscraper
construction. Clearly one can do the same thing with a null preserving τ and come
out with a null preserving τ*. If τ is an automorphism of (Ω, jtf, μ), τ* is again an
automorphism. If τ is nonsingular, τ* is. Clearly τ* is ergodic if and only if τ is
ergodic. Therefore the skyscraper construction is a very simple way of construct-
ing ergodic automorphisms in non atomic infinite measure spaces. Simply start
with an ergodic automorphism, say, in the unit interval, and choose the Rk with

Notes

In his famous book, Hopf [1937] described the decomposition Ω = CuZ) for invertible
transformations, and, in 1954, for the much more general situation of a positive contrac-
tion in LI, see section 3.1. But concepts like wandering set or induced transformation have
no equally simple and intuitive extensions to the operator case. Sucheston [1957], Helm-
berg [1965], [1965a], [1966], Simons [1965], [1971], Wright [1961], Roos [1964],
Tsurumi [1958], Choksi [1961], Helmberg and Simons [1969], and others have therefore
studied the case of non invertible null preserving transformations. One can split D further
into the set of points in D whose orbit enter C and the rest, see Kopf [1982], [1978].

Call two measure spaces isomorphic mod 0 if - after deleting nullsets N and N' from Ω
and Ω'-there exists a bijective map φ:Ω\Ν^>Ω'\Ν' such that φ and φ-1 are measurable
and μ ° φ ~l = μ'. Endomorphisms τ and τ' in Ω and Ω' are called isomorphic mod 0 if such
a φ can be found with τ' ° φ = φ ° τ; the sets N,N' shall be such that Ω\Ν and Ω'\N'
are invariant under τ and τ' respectively. Two dissipative automorphisms τ and τ' in
σ-finite spaces (Ω, s/, μ) and (Ω', si', μ') are isomorphic mod 0 if and only if the measure
spaces (W0, W0r\si, μψο) and (lVO,Wori^',^Wi) are isomorphic mod 0, where

+ 00 +00

W0, W'Q are the sets with Ω = (j τ"^0,Ω'= (J i'k W^ constructed in theorem 3.2.
k- - oo k= - oo



22 Measure preserving and null preserving point mappings

In particular the set W0 is determined uniquely up to measure theoretic isomorphism
mod 0; see Krengel [1968/69: part I], where also dissipative flows are classified by show-
ing that they are isomorphic to a flow is: (ω0, t) -»· (ω0, t + s) in a space WQ χ IR, with a WQ
which is uniquely determined mod 0. The recurrence properties of nonsingular flows and
null preserving semiflows were discussed in part II of this paper. Helmberg [1969] has
derived a number of results on the mean recurrence time of measure preserving flows and
semiflows, thereby giving a subtle continuous time version of the theorem of Kac.

If τ is an automorphism of a probability space (Ω, d, μ), and we put, for some A e jtf,
νΑ(ω) = τΑ(ώ) (toe A), vA(a>) = Ο (ωε Ac), then τνΑ is again an automorphism. Neveu
[1969] has studied the question, when, for a random variable ν: Ω -> Ζ+, τν is again an
automorphism. It turns out that ν must be such that τν is obtained by iterated compo-
sitions of induced transformations on a decreasing sequence of subsets of Ω.

Related results for more general groups of automorphisms were given by Geman and
Horowitz [1975].

Jacobs [1967] has shown that the assertion of the Poincare recurrence theorem remains
valid if one replaces the stationarity assumption ^ = ^ ° t ~ 1 b y a recurrence property for
the measure: Let μ be a probability measure on a complete, separable, metric space and let
τ: Ω ->· Ω be continuous. If the orbit μ ° τ ~ *, μ°τ~2,... of μ returns into each neighbor-
hood of μ (in the weak topology given by μη ->· μ if \fd^n -> \fd\i for all bounded con-
tinuous/), then the orbit τω, τ2ω,... of μ-a.e. ω returns into each neighborhood of ω
infinitely often.

Kurth [1975] considered homeomorphisms τ of a topological space Ω with countable
basis and with a finite invariant measure, and gave a decomposition related to Poincares
theorem into departing points, asymptotic points and recurrent points.

Barone and Bhaskara Rao [1981] studied the recurrence theorem for finitely additive
measures on a σ-algebra. Then a.e. point is k times recurrent for fixed k, but not necessari-
ly infinitely recurrent.

The following result of Khintchine [1934] is proved in many books (and never applied):
If τ is an automorphism of a probability space, then for ε > 0 and Β e jtf there exists L such
that any interval of length L contains at least one k with μ (τ1 Β η Β) ̂  μ (Α)2 — ε.

D. Maharam [1964] has "extended" nonsingular transformations τ of Ω to endomor-
phisms τ of Ω χ 1R+ mapping the fiber of ω onto the fiber of τω. τ is conservative iff τ is
conservative.

§ 1.4 Shift transformations and stationary processes

1. Canonical representation of processes. We now discuss a class of examples
which is of great importance in probability theory.

Let (E, &) be a measurable space and / Φ 0 an arbitrary index set. The pro-
duct space EJ is the space of all functions ω: «/->£". If ω, is the value the function
ω takes in ye J, the map Χ··, ω ->· o>j is called they-f/z coordinate map and Xj(co)
= a>j they'-th coordinate of ω. In the case J= Z+ we can identify ω with the
unilateral sequence (ω0,ωι,ω2,...), and in the case J = Ζ with the bilateral
sequence (...,ω^, ω0, ω1? ω2,...).

An .Ε-valued random variable Ζ denned on an abstract probability space
(Ω', j/', P) is nothing but a measurable map Ζ: Ω' ->· E. A family Υ = {Yjje J}
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of E-valued random variables is called an E-valued stochastic process with para-
meter space J. We may write yj = A1} ° Y, when Υ is considered as a map Ω' -> .E1·7.
£is called state space of Γ. The product σ-algebra & J is the smallest σ-algebra in
£"J containing all σ-algebras Xj~l2F (je J). Υ can be considered as a random
variable (Ω', j*') -» (EJ, ^J).

The distribution of Z is the measure P ° Z"1 on ̂ , and the distribution of Υ is
the probability measure P°Y~1 on J5"·7. For distinct 71?y2, . . . ,7„e / and
Λ) = ΟΊ» • • • » 7 « } ' -EJo can De identified with E". The map 7Jo:
(o-*(Yh(ω),..., y}n(ω)) is an i1"-valued random variable (for the σ-algebra &n

— &:Jo). The distribution of YJo is called the η-dimensional marginal distribution
corresponding to {j\, ...,j„}.

The distribution of Υ is uniquely determined by the finitedimensional marginal
distributions: P° Y~l is the unique measure on ̂ 3 such that

je Jo jeJ0

holds for all finite J0 cr J and all choices of A^f e 3F.
If {μ,·,7 e J} is a family of probability measures in (E, ̂ ) the product measure μ

= Yl μj is the unique probability measure in EJ such that
jeJ

j6 Jo je Jo

holds for all JQ and all choices of AjE !F. The random variables Yj (je J) are
called independent if

jeJ0 jeJo

holds for all /0, and all A-}. Thus, the random variables Yj (je J) are independent
iff P ° Y~l is the product of the distributions μJ, = P ° Yf1.

Now assume J = Z or J = Z +. The shift Θ: EJ -> EJ is the transformation de-
fined by Α^(θω) = Xk+1 (ω). The shift in Ω ··— E1 is often called bilateral shift. It is
bijective and both θ and "1 are measurable with respect to si = «^"z. The shift in
Ω+ — E1* is measurable with respect to s/ = ̂ z+ and surjective, but not inver-
tible. It is called unilateral shift. (It will be convenient to use some notation like Θ,
s/, Xk both in Ω and Ω+. It should always be clear from the context, which inter-
pretation applies).

If E is a topological space, the unilateral shift is continuous in the product
topology, and the bilateral shift is even a homeomorphism.

The simplest way to define a 0-invariant measure in Ω is to take a product
measure. It is easy to see that μ = Hye ζ μ/ is 0-invariant iff all μ^ are identical.
The automorphism θ in (Ω, s/, μ) is then called a (bilateral) Bernoulli shift. Uni-
lateral Bernoulli shifts are defined in the same way in Ω+ with μ = Π/εζ+ μ, an<3
identical μ}.
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Random variables Yj(jeJ) are called identically distributed if their distri-
butions μj agree. Consequently, if Υ = (Y0, Yl, . . .) is a sequence of independent
identically distributed random variables, the distribution μ = P ° F-1 of 7 is the
the shift invariant measure used for the definition of a Bernoulli shift.

n-l
Kolmogorov's strong law of large numbers asserts that η'1 Σ ^converges

<t = 0
almost surely (i.e., P-a.e.) to E(Y0) = J Y0dP, when the Yt are real valued, inde-
pendent, identically distributed, integrable random variables. Let us see how this
follows from BirkhofFs theorem. We need the ergodicity of Bernoulli shifts and
show a bit more:

An endomorphism τ of a finite measure space (Σ, &, v) is called mixing if
(4.1) lim ν(

holds for all A, B e 36. Mixing implies ergodicity because (4.1) cannot hold for A
= Β when A is a τ-invariant set with 0 < ν (Α) < ν(Σ). Let j/(w, «) denote the σ-
algebra which is generated by the σ-algebras X^1 ̂ (m^k^n,k^± oo). If θ is
a Bernoulli shift, μ(Αηθ~"Β) = μ(Α)μ(Β) holds for all A e d (klt k2),
Β e sf ΟΊ,72) witri ̂ i ^ ^2 < °° an<iA =72 < °° as soon asA + n> k2, because μ
is a product measure and 0~" Β e ̂  (^ + n,y2 + «). Thus
(4.2)

holds for all A, B in the union of the σ-algebras st(k, Γ) with k, l Φ ± oo. This
union is dense in j/ in the metric d(A, A') = μ(ΑΔΑ). Therefore (4.2) holds for
all A,B&stf and θ is mixing. „_1

Now put Kx = {ω e Ω + : lim n~l X X0 ° ofc (ω) = £(Γ0)} and AT,

= {ω' e Ω': lim «-1 Σ Ιϋ(ω') = E(Y0)}. BirkhofTs theorem implies μ(Κχ) = 1.
Xk = X0° ek"and \ = Xk° Yyidd Ky = Y~l (Kx), so that P(Ky} = (Ρ ο y-i) (j^)
= μ(Κχ) = \. But this is the assertion of Kolmogorov's strong law.

Here we have applied the ergodic theorem only to a function on Ω+ depending
on only one coordinate. But we could take any integrable function/: Ω+ ->· R,
and then the sequence/0 6k would in general not be a sequence of independent
random variables. Thus, even in the special case of a Bernoulli shift the ergodic
theorem is strictly more informative than the strong law. The main usefulness of
the ergodic theorem, however, is due to the fact that there are many processes Υ
= ( Y0, Ylf . . . ) for which Ρ ° Y~l is 0-invariant although the YQ, Y^, ... are not
independent.

If Y= (Y0, yl5 ...) is an i'-valued process, the distribution μ = P° Y'1 is Θ-
invariant iff μ = P° Y~l ° 0'1 = Ρ°(θ ° Y)~*. Now Θ°Υ is the process
(Yls Y2, · · ·) for which the time scale is shifted by one. It is therefore natural to
introduce the following definition: An E- valued stochastic process Υ = (Ypj e f)
with J = Ζ or J — Z+ is called stationary if Υ and θ ° Υ have the same distri-
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bution. As the distribution is determined by the probabilities of events of the type
{ Ytl e AI, . . . , Ytne A„}, we have the equivalent definition: Yis called stationary if

(4.3)

holds for all «, all choices of Ai} . . . , A„ e & , all tlt . . ., tn e Z + (or Z), and for s
= 1, (and hence for all 5). Intuitively, a process is stationary if the random mech-
anism generating the process is invariant under a translation of the time scale.

For a process Υ = ( Yt, t e J) with J = R or J = R + , observed continuously,
one can proceed very similarly: For an additive semigroup /we define a family of
shifts 0, in the space EJ by Xs(0ta)) = Xt+s((D), where Xs is the j-th coordinate.
One can then call Υ stationary if the distribution is ̂ -invariant for all SE J. This
is the case when (4.3) holds for all ti, . . . , tn e J and all s e J. (This time it is not
sufficient to ask for the validity of (4.3) for a single s, because R is not a group
generated by a single element).

Let us return to the case of discrete time. By the definition of stationarity a
process is stationary if it generates an endomorphism. Conversely, an endomor-
phism generates many stationary processes:

Proposition 4.1. If τ is an endomorphism of a probability space (Ω, stf, μ), (Ε,
a measurable space, and f: Ω — » E measurable, then the sequence (Ζ,=/°τ1,
(i ^ 0)) is a stationary process. Similarly, if τ is an automorphism, (Zf, (/ e Z))
is stationary.

Proof. If η e N, A x, . . . , A„ e & and tl, . . . , / „ e Z + (or Z) are given, we have

π

Corollary 4.2. If Υ = (Y{, i e /) is an Ε-valued stationary process on (Ω', j/', P),
(J = Ζ or Ζ+), andf: EJ -> E measurable, then Yi=f0ei°Y (i e J) defines an E-
valued stationary process. (For J = Z+ this means that Yi =f(Yi, Yi+1, Yi + 2, ···)
is stationary).

Proof. Assume J = Z+. Apply proposition 4.1 with Ω+ instead of Ω, and take τ
= θ and μ = Ρ ° Υ'1. The stationarity of Ζ = (Z0, Z l 5 . . . ) implies that μ ° Z~l is
shift-invariant in Ω+ = £2+. We have μ°Ζ -1 = P° Y~l ° Z'1 = P° (Z° Y)~l.
But Ζ ° Υ is the process Ϋ = (Y0, Yl,...). The same proof works for J = Z. D

For example, if the process Y0, Y!, ... is real valued and stationary, the process
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i + M-l
Yi defined by the moving averages ί^ = Μ"1 Σ Yk,M>l fixed, is stationary.

k = i
Clearly, the Yf will in general be dependent even if the ^ are independent.
For the probabilist, the object of primary interest is the stationary process, and
not the measure preserving transformation. Therefore, it is of interest to express
the ergodicity of Θ in terms of the process:

If Υ = (Yj,j e Ζ + ) is defined on (Ω', j/', P), call B e si' invariant if there exists
some A e j/ (in Ω+) such that

(4.4) B={(Yn, Yn+l, Yn + 2,...)eA}

is true for all η ^ 0. This is equivalent to the existence of an A* e sd with Β
= Y~1A* and θ'1 A* — A*. One direction of this equivalence ist obvious: If such
an ^* exists, we have 0-"Λ* = Λ* and £ = Υ~ίθ~ηΑ* = {(Y„, Yn+l, ...)e A*}
for all « ̂  0. If A with (4.4) exists A must be 0-invariant mod μ, because
Υ-1(ΑΑΘ~1Α) = {(Υ0, Yit...)eA and (Ylt Y2,...) φ Α} υ {(Y0, Ylt.'..) φ A
and (Yj_, Y2,...) φ A] is empty. (A = θ 1A need not hold!) In section 1.1 we have
sketched how to find for Λ a 0-in variant^2 with// (AAA 2) = 0. It is an exercise to
show that (4.4) implies Β = Υ'1 A2, so that we can use A2 for A*. The invariant
sets in Ω' for the process Fform a σ-algebra./', and we have f = Y'1 <?, where
«/ is the σ-algebra of 0-invariant sets in Ω+. We could also call a set B' e $i'
invariant mod Ρ if there exists an A e j/ for which P(B'Δ {(Y„, Υη+ί,...) e A})
= 0 is true for all n; but then, again, we could use the same arguments to show
that these are just sets B' which differ from an invariant Β on a set of ̂ -measure 0.

Once we have a concept of an invariant set for a stationary process, we also
have a concept of ergodicity. Υ is called ergodic if any invariant set Be s#' satis-
fies P(B) - 0 or P(BC) = 0.

Proposition 4.3. If Υ = (Y0, Y I , . . . ) is stationary and ergodic and f . Ω+ -> E is
measurable, then the process Y= (Y0, 71?...) defined by Yi=f(Yi, Υ ί + Λ , . . . ) is
ergodic.

Proof. We have Ϋ = Ζ ° Y. If Ϋ is not ergodic there exists an invariant Β for the Ϋ-
process such that 0 < P(B) < 1. For Β there exists a shift-invariant set A in Ω+

with B= Y~1A. Put A = Z"1 . It is straightforward to check that the inva-
riance of A under the shift in Ω+ implies the 0-invariance of A. Therefore Β
= Y~l A is invariant for the 7-process, a contradiction to the ergodicity of Y. D

BirkhofFs ergodic theorem, spelled out for stationary processes instead of endo-
morphisms τ, now has the following form:

Theorem 4.4. If Y0, Y^ ... is a stationary real valued process and Y0 is integrable,

then lim«-1^ Yk = E(YQ\J').
n-»oo k = 0
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This follows in the same way from BirkhofFs theorem as Kolmogorov's strong
law.

We have discussed stationarity for a process Y= ( Y p j e /+) defined on an
arbitrary probability space. Now note that X = (Xj, j e /+) is the identity on Ω +.
Therefore the distribution μ = Ρ ° Υ'1 agrees with the distribution of X. Hence,
all probability statements on J^can be expressed in terms of A". For this reason X
is called the canonical representation of processes with distribution μ.

2. Remote σ-algebras. The σ-algebra stf^ = (~] s/ (n, oo) in Ω + and in Ω = Ez is
n = 0

called the (right) remote σ-algebra. (Also the term tail σ-algebra is in use). In Ω we
00

can also define the left remote σ-algebra <£/_„ =

= Y~l jtf(m, n) is the smallest σ-algebra in Ω' in which the random variables Yj
(m ^j ^ n,j Φ + oo ) are measurable.

<o= Γ1 ^'(«,oo)(=r-1^J and j/'_ao= Π ^'(-οο, -Λ)
M = 0 Π = 0

are the right and left remote σ-algebras of Y. Events like {ω' e Ω':
n-l

lim η"1 Σ ^*(ω/) ^ α} or {ω' e Ω': yk(o/)e Bk for infinitely many k} belong to
n-»oo fc = 0

<«·
The σ-algebra «/ in Ω+ is contained in s/^ because of At J => Ae stf

= jtf(Q, oo ) => A = Θ~"Α e si(n, oo), (n ̂  0). Similarly «/' c s/'^ for processes
with index set Ζ +.

We call a σ-algebra trivial (with respect to a given measure) if it contains only
nullsets and their complements. Ergodicity means that the σ-algebra of invariant
sets is trivial. Therefore a stationary process Y= (Yj,je Z+) for which s/'^, is
trivial must be ergodic. If ν is a measure on a σ-algebra ^ and $Q, $γ are sub-σ-
algebras, ̂ 0 c: ̂ x (mod v) shall mean that for all B0 e ̂ 0 there exists a B1 e ̂ t
with ν5 J = 0.

Proposition 4.5. If(Ypj e /) is α bilateral stationary process, we have <?'
(mod Ρ) αηίί J a so ̂  (mod μ).

Proof. Because of J cj/ = ja/(— oo,+oo) there exists for any A e «/ and for any
e>0 an « £ e N and an AEE s/(— ηε, +οο) with μ(ΛεζΜ)<ε. For all «, A
= 0""^ and μ = /ι ° ~" imply μ(ΑΑθ~"Αε) < ε. But 0~"yi, e j*(- ηε + n, oo),
so that ^ can be approximated arbitrarily well by sets in s/(m, oo) where m is
arbitrarily large. This implies A e j/^ mod μ. Applying Γ"1 also ./' c: sd'^
mod Ρ follows, α

These observations yield an alternative proof of the ergodicity of Bernoulli shifts.
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One simply has to apply Kolmogorov's zero-one-law which asserts that sf'^ is
trivial for any process (Yj,j e Ϊ or Z+) consisting of independent random vari-
ables YJ. The following theorem of Blackwell and Freedman [1964] shows that
the triviality of the remote σ-algebra is, in fact, equivalent to an asymptotic
independence condition:

Theorem 4.6. If ( Y j , j e ' Z . + ) is any sequence of random variables defined on
(Ω', «s/', P), the remote σ-algebra s/'^ is trivial if and only if each B e <fl?" satisfies

(4.5) lim sup \P(A nB) - P(A)P(B)\ = 0.
M->OO A e j f ' ( n , a o )

Proof. For any A e stf'^ and any ε > 0 there exists an nE and an Αε e £/(ηε, oo)
with Ρ (Α Α Α ε) <ε.Α.$Α belongs to each j/'(«, oo) we can apply (4. 5) to Β = Aeto
get Ρ(ΑηΑε) = Ρ(Α)Ρ(Αε). Passing with £ to zero we arrive at P(Ar\A)
= P(A)2, so that P(A) e {0, 1}. Conversely, suppose sf'^ is trivial and fix Β e so' .
By the backward martingale convergence theorem (see Doob [1953: thm. 4.2,
382]) the sequence EP(\B\<stf'(n, oo)) of conditional expectations converges a.e.
and in L j -norm to EP(iB\ d'^, which equals P(B) because of the triviality of
jtf'^. For any A e J/'(n, oo),

Hence (4.5) follows. D

3. Recurrence times. Let Υ = ( YJ, j ε Ζ + ) be a stationary process and let A ' be of
the form A' = {YeA} = Y~1A. For example, A' = {Y0 e A0] or A = {Y0 > ̂
+ Y2}. The set Λ may depend on infinitely many coordinates. We assume
P(A')>Q.

Let PA(B') = P(A')~1P(A'r\B') denote the conditional probability of B'
given {Ye A}. PA° Y~l is the normalized restriction of μ = P°Y~l to A.

By the recurrence theorem μ-a.e. point of A belongs to the set Ainf of points
ω e A returning to A infinitely often under Θ. We delete the P-nullset
7"1(^4\^4in/) from Ω'. This does not affect the distribution of Y. Then, for all
ω' e A' there are infinitely many « e Ν with ( Yn (ω'), Y„ +1 (ω'), · · . ) e A , so that the
random variables R0 = 0,

*ί+1(ω') = inf {η > Λ, (ω'): (Υη(ω'\ Υη+1(ω'), . . .)ε Α}, (i ̂  0)

are finite in A'. The recurrence times are given byTi = Ri — Ri-i, (i ̂  1). If ̂ (ω)
= inf {« ^ 1: θ"ω e A} is the return time studied in section 1.3 and ω = Υ (ω1),
then /?;(ω') is the time of the i-th return of ω to A. Formally, we have Γ;(ω')
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= ΓΑ(θΚί-ι(ω>)ώ). Therefore (YRl, YRi+1,...) (ω') is the point 0^(ω), where ΘΑ is
the transformation induced by the shift on A. Combining Theorem 3.6, propo-
sition 3.8, corollary 4.2 and proposition 4.3 we have proved:

Theorem 4.7. Let Υ = (Y t , / ^ 0) be an Ε-valued stationary process, and let f be a
measurable map from Ω+ into E. Assume A e j/ and μ (A) > 0. Then the process

Ui=f(YRl,Yltt+1,...) ( i ^ O )
on (Α', Α' n j/', PA) is stationary. The process (Uh i ^ 0) is ergodic if Υ is ergodic.
In particular the processes T= (Th i ̂  1) and V = (V^ i ̂  0) vwiA ^ = YR. are
stationary, and they are ergodic if Υ is ergodic.

It is clear that an analogous theorem holds for bilateral processes.

4. Bilateral extensions of unilateral processes. In a way, bilateral stationary
processes are simpler than unilateral processes because the bilateral shift is inver-
tible. It is therefore of interest that in all probabilistic questions on stationary
processes we may assume that the process is bilateral if Ε satisfies very mild
regularity assumptions.

Call (E, &) a Borel space if there exists a bijective map ψ οί Ε onto a Borel
subset £" c IR1 which is measurable in both directions. E.g., Polish spaces (i.e.,
complete separable metric spaces) and Borel subsets of such spaces with their
Borel σ-algebra are Borel spaces.

Theorem4.8. If Y= ( Y j j e /+) is a unilateral stationary process defined on a
probability space (Ω', j/', P) and taking values in a Borel space (E, J5"), then there
exists a θ-invariant probability measure μ on Ω = Ez such that the distribution of
(XjJ ^ 0) in (Ω, jj, μ) agrees with that of Y.

Proof. For any set A e stf (— n, +n) there exists a measurable subset A(n) ofE2"+ x

such that A - {ω e Ω: (Χ-Η(ω), ..., Χη(ώ)} e A(n)}. If we put
μ(Α) = Ρ({ω' e Ω': (7Λ_π(ω'),.. . , ^+η(ω')) e A(n)}}, then the stationarity of Y
implies that this definition is independent of k as long as k ^ n, and also that the
same number is assigned to μ(Α) ΊΐΑ is considered as an element of the σ-algebra
Λ/(— (η + 1), n + 1). Thus these definitions of the marginal distributions of
(X-n,..., X„) are consistent. An application of the Daniell-Kolmogorovexten-
sion theorem (see e.g. Jacobs [1978]), completes the proof. D

It is a simple consequence of proposition 4.5 that the ergodicity of a unilateral
stationary process is equivalent to the ergodicity of its bilateral extension.

5. Further examples of stationary processes. A class of examples of great interest
in probability theory and in prediction theory is provided by the stationary


