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Preface 

This book has been designed as an introductory textbook on an elementary 
level with emphasis on application in the behavioral sciences, yet, it is of 
sufficiently methodological orientation to being used as a one-semester 
course for undergraduate studies that requires only a limited background 
in high school algebra, except for the more technical, starred chapters. 
Furthermore, it can be used as a supplementary text in connection with 
broad coverage textbooks in statistical analysis, or even as a self-instruction 
manual, for beginning graduate students in comprehensive programs of 
economics, sociology, psychology, education, system and industrial engineer-
ing, or related fields. Equipped with this material the student should be able 
to work out simple problems for himself arising in his specific field of study. 
For this purpose a number of problem sets are given for self-instruction. 
The present book emerged from a half-year lecture course, repeatedly taught 
at the University of Bielefeld, the University of California, Santa Barbara 
and at the Technical University Munich - in different departments, to 
students of different backgrounds. 

Formally the book is organized in 10 chapters, for some chapters, e.g. 3*, 
4* and 9*, technical supplements and survey-type material have been added 
to enhance better understanding of key concepts. 
It attempts to be well balanced given its limited scope between methodology, 
statistical analysis and techniques. For the uninitiated among the readers it 
appeals more to intuition and common-sense reasoning, yet the material is 
presented in a reasonably rigorous fashion. Various options are left to the 
reader regarding further study on more advanced technical aspects, for this 
purpose a bibliography is added. Finally, this is to express my great appreci-
ation to de Gruyter, Berlin for its cooperation in designing the book and 
for making possible last-minute changes in the text. 

Bielefeld, März 1980 Hans W. Gottinger 
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Part I. 
Foundations of probability and utility 





1. Methodology of Statistical Analysis 

1.1 Conception of Statistics 

All conceptions of statistics agree that statistics is concerned with the collec-
tion and interpretation of data. The data may be pertinent to an immediate 
practical action or decision, for instance, which best course of action - if 
available - to pursue under a situation of uncertainty or complete ignorance. 
But data may enhance knowledge without being immediately pertinent to 
a practical action, as in measurements of outcomes of natural laws or physi-
cal processes. 
In application, the distinction between practical action and enhancement of 
knowledge is rarely clear-cut. Often, in real-life situations, it turns out that 
provision of knowledge is a sine qua non condition for choosing reasonable 
actions. 
An essential ingredient of problems called „statistical" is that the relevant 
data are imperfect; we must always deal with uncertainty. 
It is natural to ask why there should be a separate discipline of statistics. 
Certainly data are often collected and interpreted by people with little or 
no knowledge of statistics. The justification for statistics as a separate disci-
pline lies in the hope that there will be general principles common to diverse 
applications. Some statistical principles consist of little more than common 
sense, and while statistics must ultimately be consistent with common sense, 
the implications of common sense in complicated problems are far from ob-
vious. Much statistical reasoning can be conveyed by informal discussion 
of examples that illustrate simple uses and misuses of statistics, but for a 
deeper grasp of the subject, a more systematic and formal development is 
needed. Broadly speaking, the modern approach to statistics can be charac-
terized by the words inference and decision, which refer to the processes of 
drawing conclusions and making decisions in the light of available data, or 
determining what additional data should be obtained before concluding 
and deciding. 'Conclusion' is used here in a technical sense, defined by 
J.W.Tukey (1960), as 'a statement which is to be accepted as applicable to 
the conditions of an experiment or observation unless and until unusually 
strong evidence to the contrary arises'. 

1.2 History of Bayesian Statistics 

A systematic treatment of utility and subjective probability according to 
Ramsey, de Finetti and Savage has stimulated the discussion on the founda-
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tions of mathematical statistics and its relationship to statistical inference. 
The core of this discussion is based on the 'behavioristic' interpretation of 
a statement (rather than of a 'theorem') implicitly derived by the English 
Clergyman Thomas Bayes (1763)*. 
The proponents of this behavioristic interpretation of Bayes' statement are 
called Bayesians and their arguments have led to the Bayesian analysis in 
statistics. There are different kinds of Bayesians, but they all agree at least 
on the following point: It is possible to draw statistical conclusions from 
the conditional probability P(H|E), that is the probability of a hypothesis 
Η (to be true) given that the event Ε has been observed (to be true). The 
so-called 'Bayes Theorem' then is a trivial consequence of the product 
axiom of probability theory. However, it is more than a belief in this 
'theorem' that distinguishes someone to be a Bayesian, it is the general 
acceptance of the idea to use a concept of intuitive probability in statistical 
theory and practice, to motivate this concept on a decision-theoretic basis 
and beyond that to find many applications in the experimental sciences. 
There are two essential characteristics of Bayesian statistics and they can 
be listed in a simplified manner as follows. 
(1) Probability evaluation is based on experience, intuition, and personal 

assessment combined with a number of consistency criteria relating to 
a rational person. 

(2) Treatment of statistical data is continuously revised on the basis of new 
information, or evidence that is available to the decision maker (stat-
istician). 

Modern Bayesian statistics, in general, rests on three main construction 
blocks, consisting of: 

(1) the game-theoretic studies of von Neumann and Morgenstern. 
(2) the statistical works of J. Neyman and A. Wald. 
(3) the subjective probability interpretations of F. P. Ramsey, B. de Finetti, 

B. O. Koopman, L. J. Savage et al. 
Some of these elements have been developed within the classical statistical 
theory. A combination of all of these elements, however, forms the found-
ations of Bayesian analysis. Furthermore, there are two external factors 
that support this view, e.g. the philosophical attitude that most or all 

* Th. Bayes, 'An Essay towards solving a problem in the Doctrine of Chances,' Philo-
sophical Transactions of the Royal Society 53, 370-418 (Reprinted in: Biometrika 45, 
1958,293-315). 
In crude form Bayes derived the statement that the probability of a 'certain cause' will 
be subject to change given that certain events will occur. In this statement the probability 
concept is used inductively for the first time by inferring from a small sample to the whole 
population. 
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scientific inferences result from 'inductive' rather than 'deductive' reason-
ing and the psychological viewpoint that 'statistics is a theory of the uncer-
tain environment in which man must make inferences'. (Petersen and Beach, 
1967), e.g. that human information processing is just an 'inconsistent' case 
of optimal information processing of data as required by statistical in-
ference. Much of what Bayesian statistics has received as inputs in terms 
of new ideas is based on results obtained in experimental areas (such as 
psychology); to some extent, therefore, one could speak of a behavioral 
approach to statistical methodology. Although this process started from 
Bayes' fundamental work and reached the time of de Laplace, it has been 
cut off after de Laplace and only quite recently has been rediscovered by 
the 'Bayesians'. It is therefore illuminating to give a brief account of the 
main events in the development of statistical methodology. In the nineteenth 
century there was an increasing awareness among statisticians that a con-
nection between probability theory and various methods of using data in 
a consistent fashion should result in a construction of a theory of statistical 
inference. Such a theory would permit predictions on the basis of a wise 
use of data and with tools provided by probability theory. 
There were studies in this direction by Quetelet, W. Lexis, F.Y. Edgeworth, 
K. Pearson, culminating in the work of R.A. Fisher's Statistical Methods 
for Research Workers (1925). J. Neyman developed Fisher's ideas further 
and around 1940, say, statistical theory was firmly based on this s tandpoint-
'Fisher as seen through Neyman's eyes' (F.J. Anscombe, 1961) - which still 
prevails among eminent contemporary statisticians, although their number 
is slightly decreasing over the past decade. Since 1940 the theory of statistical 
decisions emerged paralleling the more orthodox theory of the Neyman-
Pearson school. 

In the more recent theory you structure any statistical problem as a decision 
problem where the statistician is engaged in a game against nature, and the 
only way of gaining information is by doing experiments. Again here two 
phases can be distinguished. The first phase was introduced by A. Wald's 
Theory of Statistical Decision Functions (1950). This theory still adopts a 
frequentistic interpretation of probability. The second phase is truly 
'Bayesian', it emphasizes the point that the structure of a decision problem 
consequently requires a behavioristic interpretation of probability, that is 
a non-frequentistic concept of personal probability. 
Now, what is it that makes the Bayesian method so attractive for many 
experimental situations that are not restricted to social or behavioral 
sciences but also extend to certain problems in the natural sciences (see 
I.J. Good, (1969)). 
What are the specific prerequisites for the application of the Bayesian 
method, what specific kinds of information do we need? 
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• First of all, we need a statistical specification in an observational model 
in which observations are assumed to be realizations of random variables 
represented by a set of conditional probability distributions, conditional 
by a set of parameter values (states of nature). Let us assume, we have a 
finite number of states of nature, say m, and denote them by 0 1 ; . . . 0m, and 
furthermore let us have a finite number of outcomes, denoted by t l 51 2 , . . . tn. 
Then we can calculate for all m · η combinations of states and outcomes the 
direct probability of an outcome, given a state, denoted by P(t|0). 
• Second one needs a utility or loss function indicating the relative desir-
ability of available decision acts for a given set of parameter values. 
• Third, one needs a marginal probability distribution over the parameter 
space, i.e. an a priori (subjective) probability distribution. 
Now the first condition has been universally accepted by all relevant 
schools of statistics, e.g. by the Bayesians as well as by the classical school -
there is no disagreement about that. The second condition has been in-
troduced by A. Wald, but only the third requirement is typical for the 
Bayesian method. It is this requirement which is most controversial for 
classical statisticians, and, as we shall see, centers around the validity and 
interpretation of Bayes' theorem. 
Let us first deal with the third requirement (in natural conjunction with 
the first one), which, in general, leads to the inference rather than the de-
cision problem, and then see how and why Bayes' theorem is essential 
for its formulation. 
In the frequentistic interpretation of probability in terms of the limit of 
long-run frequencies it is impossible for the statistician to measure un-
certain events (which are not repeatable) by probabilities. 
In the frequentist's view an uncertain event on which no past history exists, 
is either considered to be not measurable by a probability or the probability 
of zero or one (and one does not know which) is assigned. 
'If we ask the probability that the 479th digit in the decimal expansion of 
π is a 2 or a 3, most people would say 2/10, but the frequentist, if he answers 
the question at all, must say 0 or 1, but that he does not know which'. 
(J. Cornfield, 1967, p. 44). The frequency concept in connection with the 
construction of significance levels, errors of type I or II, confidence intervals 
etc. only answers the question as to how certain we feel on the basis of the 
given data (a posteriori distribution) but does not answer the question as 
to how certain we feel in advance when we still don't know the data (a 
priori distribution). 
We could characterize an individual's state of uncertainty with respect to 
a proposition by the betting odds he would offer with respect to it. Consider 
an event (proposition) A and let Ρ (A) be the probability of this event, for 
which you would receive $ 1 in case the proposition A is true, otherwise 
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you receive nothing. Let A be the proposition 'it will rain tomorrow' and 
somehow you arrive at a probability (estimate) of Ρ (A) = 1/3 = p. Then, 
in other words, you would be willing to pay 33 cents in exchange for receiv-
ing $ 1 provided the event A occurs or the proposition A is true. This is 
equivalent in ordinary language to saying that you bet on an amount $ 1 
at odds ρ to 1 — ρ on the occurrence of A. In some way ρ could be considered 
as your entrance fee to enter a betting contract. Of course, if ρ is greater than 
unity, you are certain to lose whether or not A is true. You wouldn't con-
sider such a bet 'fair' and most likely refuse to accept such a bet. On the other 
hand, suppose you want to bet on 'rain' and pay ρ = 20 cents, and also bet 
on 'no rain' and pay q = 30 cents, in this case your betting partner wouldn't 
consider such a bet as fair, since whatever proposition turns out to be true he 
would have to pay $ 1 and only receives 50 cents in return. Such a probability 
assignment could be termed 'incoherent'; to have a coherent assignment you 
have to select probabilities which sum up to one. Hence, fair betting implies 
coherent assignments of probabilities and this can be shown to satisfy 
Kolmogorov's finite additivity axioms of probability theory (see Chapter 
2. .1). [Also, the notion of conditional bets can be introduced by considering 
events which are not mutually exclusive, i.e. if an individual smokes he will 
develop lung cancer, if he doesn't then there is no bet.] The construction of 
personal probabilities via a betting contract is obviously related to the 
concept of conditional probability and this again will quite naturally lead 
to the formulation of 'Bayes' theorem'. This will be shown next. In the 
following exposition we draw heavily on Cornfield's review. 
Let there be two classes of proposition, A and B, every class contains mu-
tually exclusive propositions. For simplicity, let us first assume that class 
A contains two propositions: an individual has or has not developed lung 
cancer during some definite time interval. The class Β may contain two 
propositions, either the individual is found to be a smoker or a non-smoker. 
Extension to more than two possibilities in each class presents no difficulty. 
Now the proposition space would consist of four points 

Α , Β ^ A j B 2 , A 2 B „ A 2 B 2 , 

all A's and B's are not mutually exclusive. Ax B t would mean 'the individual 
has developed lung cancer and is a smoker'. P(Aj), P(Bj) would be the 
unconditional probabilities, but one could also define the conditional pro-
bability P(Ai IBj), i.e. the probability of developing lung cancer given that 
one is a smoker. It could be defined by 

(1) P(A1 |B I) = P(A1B1)/P(B1). 

Now on the basis of Kolmogorov's axioms of finite-additive probability 
together with (1) we could derive Bayes' theorem in a straight-forward 
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fashion. By symmetry, and dropping the subscripts we have 

(2) P(B|A) = Ρ (ΒΑ)/Ρ (A) = P(AB)/P(A), 
so that Ρ (AB) = P(B|A). Ρ (A). 

As can easily be seen, Β is the union of the mutually exclusive events A l B, 
A 2 B, . . . so that P(B) = P(A!Β or A 2 B or...), and by the additivity axiom 

P(AiB or A 2 B o r . . . ) = P(A,B) + P (A 2 B)+ ..., 

hence (3) P(B) = ^ P ^ B ) . 
Now (2) can be changed to 

(4) P(A iB) = P(A i)P(B|A i). 

If we start from (1), reformulate the numerator according to (2), and the 
denominator according to (3) and (4) we get 

(5) P(A|B) = P ( B ' A > P ( A ) 

Σ ρ ( Β Ι Α ί ) ρ ( Α ί ) 
i 

This is 'Bayes' Theorem'. 
Making a notational change by identifying the propositions A 1 ,A 2 ) . . . 
with states of nature θ 1 , θ 2 , . . . , and the propositions B ^ B j , . . . with the 
outcomes t 1 ; t 2 , . . . , we have 'Bayes' Theorem' in the form. 

(6) P ( 0 | t ) = v
P ( t | g ) P ( g ) , where 

1 l p ( t i m e y 

P(0|t) is referred to as the a posteriori probability (posterior probability), 
P(0) as the a priori probability (prior probability), and P(t|0) as the like-
lihood. 
(6) expresses the fundamental fact of 'learning by experience' in terms of 
the relation of prior and posterior probability. 
It is the interpretation of this result which has triggered most of the con-
troversy rather than the mathematical deduction, which is, without doubt, 
a correct one. 
Let us first observe some properties of this relation. 
(1) If P(t|0) = 1 and yet t (not t) has been observed (to be true), then P(0|t), 
the posterior probability, is zero, i.e., an initially plausible hypothesis is 
rejected by the test. 
(2) If P(t|0;) is the same for all i, then the posterior probability is equal to 
the prior probability, i.e., any additional information would not change the 
posterior probability. 
(3) If P(0) = 0 then also P(0|t) = 0. If a proposition is initially false, then 
no information whatsoever will change the initial probability assessment. 
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I. In the philosophy of science an influential school of thought stressed the 
view that scientific conclusions based on past observations are not deduc-
tive. The theory of inductive inference originating with the work of David 
Hume in the last century has been elaborated and virtually extended to a 
philosophical school of thought by Rudolf Carnap. 
Carnap's Logical Foundations of Probability (1950) is just a straight-forward 
extension of his general principles of induction in scientific inference. Harold 
Jeffreys in his Theory of Probability (1961) devised five 'essential' rules of 
inductive inference under which 'Bayes' Theorem' could be subsumed as 
representing one important case of probabilistic inference. 
II. Bayes' theorem has been accepted and used by Laplace, but some decades 
after Laplace the first critical voices have been heard. They centered around 
the construction of prior probabilities, in particular, how could one justify 
any assignment of probabilities to various states of nature. There were ob-
jections by Boole and Cournot, but much later - in the development of the 
theory of statistical inference under K. Pearson and R.A. Fisher -Bayes' 
theorem was not used at all and outrightly rejected by R.A. Fisher (1941). 
'The theory of inverse probability [i.e. Bayes' theorem] is founded upon an 
error and must be wholly rejected. Inferences regarding populations from 
which known samples have been drawn, cannot by this method be expressed 
in terms of probability'. This questions the possibility of assigning prior 
probabilities to various states of nature. Frequentists, in particular, are 
troubled by the concept of prior probability. H. Cramer (1946) points out: 
'... the foremost weakness of this argument is that the prior frequency 
function π(ητ) is in general completely unknown... Also irrespective of this, 
the argument suffers from the fundamental error that the true value of m is 
in most cases not the result of a random trial and may therefore never be 
regarded as a stochastic variable. Usually m is simply to be regarded as a 
fixed though unknown constant . . . and on the whole under such circum-
stances no prior frequency function exists. Bayes' theorem is therefore 
practically useless for the theory of error and its use in this field should be 
replaced by the method of confidence limits.' 

This and similar criticisms will probably in many cases be based'on special 
interpretations of the probability concept. These points of view imply, 
roughly, that one only accepts the probability of something if this something 
can be registered in experiments which can be repeated. The probability 
can then be approximated by the relative frequency of this something in a 
long series of trials. On the other hand, if the numerical value of a probability 
is interpreted as representing the degree of belief a prior probability state-
ment (on some parameter or state of nature) should be fully legitimate. 
Yet, it should be mentioned that while an advocate of subjective probability 
will find no 'ideological' barrier to apply Bayes' theorem in statistical in-
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ferences, the theorem can be used when making these inferences by a non-
Bayesian. One cannot criticize Bayes' theorem on grounds that it is used 
by Bayesians, as come critics do, since provided non-Bayesians agree that 
statistical inferences should be based on an revision of data in the light 
of new information there is no effective alternative open to them other 
than Bayes' theorem. However, the trouble is, that they have to find a fre-
quency interpretation for the prior probabilities, whereas the Bayesian is 
much more flexible in view of his probability concept. Let us see where the 
real source of difficulty is located. 
If θ is a random variable with a well-defined frequency distribution, which 
is known then the frequency distribution is the prior probability function 
and there should be no controversial point between Bayesians and non-
Bayesians in this case. Controversies will arise if θ is an unknown constant 
(not a random variable) and has no past history. Then according to the 
frequentist the probability is not defined, the Bayesian, however, would 
apply his subjective probability concept. It is obvious that the effect of the 
prior probability on the posterior probability will be diminishing to the 
extent that more and more information will become available through the 
likelihood which would modify the initial prior probability. As a conse-
quence of this, two scientists (or statisticians) having initially quite different 
priors will eventually arrive at the same posterior probabilities when faced 
with a sufficiently large body of data - provided the priors are all non-zero. 
This fact has been rigorously proved in a paper by D. Blackwell and L. E. 
Dubins (1962). 
As regards the nature of prior probability assignments the Bayesian would 
certainly utilize any information contained in samples of past data to con-
struct his prior, in this case it is said that his prior is 'data-based' (A. Zellner, 
1971,2.3). This does not necessarily mean that all conditions will be satisfied 
that permit the specifications of a frequency distribution, e.g., if we deal with 
small samples of data, for instance. In other cases prior information 
may be obtained on the basis of introspection, casual observation or even 
from plausibility arguments, this could be referred to as a 'non-data-based' 
prior. It is clear that differences of opinion between statisticians are most 
likely to occur by the use of non-data based priors. To arrive at a prior 
probability judgment it is often convenient, and in the spirit of the Bayesian 
approach, to separate information (as represented by data or other sources) 
from probability analytically and to consider the process under which 
different degrees of subjective information will induce corresponding pro-
bability evaluations. One can then argue that the probability assessments 
represented by the prior have a sound information-theoretic basis. Work in 
this direction has been done by Gottinger (1973, 1974). 
A particular problem which could arise is the case of complete ignorance 
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or 'knowing a little'. In this case it has been suggested by H. Jeffreys (1961) 
that if the unknown parameter θ lies in some finite range its probability 
distribution should be taken as uniformly distributed. This proposal cor-
responds to the Laplacean principle of 'insufficient reason' where equal 
probabilities are assigned to completely unknown states. 
As R.L. Plackett (1966) observed, when the number of observations is 
sufficiently large the likelihood will have a sharp peak at the maximum 
likelihood estimate of Θ, so in forming the posterior distribution only a 
small interval of the prior distribution is relevant. Therefore it is sufficient 
to introduce a 'locally uniform' or 'gentle' prior distribution for an unknown 
parameter centering around the maximum likelihood estimate, but taking 
any form outside the range since these values get multiplied with only 
negligibly small likelihoods so that the posterior distribution is barely 
affected by this. 
III. The concept of a loss function - as introduced by A. Wald - is essentially 
a counterpart of von Neumann-Morgenstern's utility function (1947) which 
came up around the same time. It is another basic element of Bayesian 
analysis, however, here the emphasis lies on 'decision' rather than 'in-
ference'. A. Wald and some of his followers were inclined to think of any 
statistical inference problem in terms of a statistical decision problem. This 
view seems plausible for certain activities of the statistician (such as hypo-
thesis testing which could be looked upon as preferring certain decision 
rules over others), but would not pertain to problems where the statistician 
only wants to observe and then draw conclusions on the basis of observa-
tions - such as choosing between rival cosmological theories, or in a medical 
diagnosis problem where conclusions may result in decisions (regarding 
the medical treatment of the person concerned) but they may also be valuable 
for themselves. In a statistical decision problem we consider m possible 
states of nature 0 l5 0 2 , . . . , 6m, and η possible outcomes t1 ; t 2 , . . . , tn. We 
assume that the statistician (decision-maker) can choose among a set of 
possible decision acts, denoted by a1, a 2 , . . . , a r. Now define a decision func-
tion as a real-valued function with the characteristic property 

Hence a decision function is a rule which assigns for a given state of nature 
an act a to the outcome t. 
Consider a finite number, say p, of possible decision functions d^a,^ tä), 
d2(ak , t ;) , . . . ,dp(ak , t ;) , among which you have to find the 'best' decision 
function. In order to establish a selection criterion A. Wald introduced the 
concept of a loss function l(a, Θ) that could have a positive, negative or 

d(ak , t i) = 
= 1, if t; results in a, 
= 0, otherwise. 

k 
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zero value. By choosing among decision rules you would prefer rules which 
result in the smallest losses. By definition, l(a, 0) is a random variable. The 
loss function, as a real-valued function, is in fact the negative counterpart of 
von Neumann-Morgenstern's utility function. Therefore, all their utility 
axioms that are required to prove the existence of such a function apply 
equally to Wald's loss function. One particular result of von Neumann-
Morgenstern that matters here is the continuity property for gambles. 
This property is a direct consequence of the archimedean type axiom of 
utility theory. Roughly, the property implies that as long as there do not 
exist infinitely large positive or negative utilities (losses) it only matters 
that utilities (losses) are ordered according to their expected values. 
Suppose you have three losses 1*, 1*, 1* with 1* < 1* < 1*. According to 
the continuity property we claim that 1* = (ρ* 1*, ρ* 1*) where (...,...) is 
a gamble with p* e (0,1), p* = 1 - p*. 
Furthermore we would have 

1* < (Pl*> Plf) for Ρ > Ρ*» 
If > (plf, plf) for p* > p. 

On the right-hand side we observe the expected loss (gamble), the problem 
then is to minimize the expected loss: 

E[l(d, Öj)] = X E K a k , ö ^ d K , g j p f t ^ ) = R(d, Θ,), 
i k 

the risk function. 
Having defined the expected loss we would like to choose those decision 
rules that improve the risk function stepwise. We say a decision rule d j is 
at least as good as d 2 if and only if E p f d ^ 0j)] ^ E[l(d2 ,0j)] for j = 1,2, 
..., m. If the strict inequality holds for at least one j then we say d! dominates 
d2- A decision function is admissible if it is not dominated by any other 
decision function. 
To compute the expected value of l(a, 0) over all possible states of nature, 
we set E(l(a, 0)] = ^ l(a, 0j)P(0j|t) for every possible a. To choose an a 
which would minimize E[l(a, 0)] is called Bayes' decision rule, given the 
chosen prior probabilities. Thus there is a family of Bayes decision rules, 
corresponding to the possible prior distributions for the states of nature. 
It can be proved that Bayes' decision rule is both necessary and sufficient 
for admissibility. This would put everyone - arguing for admissibility but 
denying the existence of prior probabilities - in an almost untenable position 
since every decision rule which is admissible is also a Bayes' decision rule 
relative to a particular set of prior probabilities. Finally, a few words should 
be said about the relationship of the decision and inference in Bayesian 
statistics. 
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In business and industry, actions must be and are taken in the face of 
uncertainty about nature. In such a framework the application of decision 
theory seems most natural and profitable, although technical problems such 
as assigning prior probabilities and specifying utilities will arise. The scien-
tist, on the other hand, seeks to broaden and deepen his understanding of 
the laws governing his science. He performs experiment after experiment, 
and essentially revises his findings in the light of new information provided 
by additional experiments. Decisions are involved but often they are coupled 
with problems of inferences. 
When the aim of a statistical analysis is that of describing or making in-
ferences about nature, whether this will be the population of a country or 
the laws governing a physical or social process, in these cases the highly 
structured theory of decision making may not be so appropriate. One view 
of the Bayesian approach to statistics, motivated by such considerations as 
these, is that it provides a vehicle for the reduction of data, transforming 
problems into 'no-data' problems, the data being used to generate a poste-
rior distribution. Summarizing, the Bayesian approach to statistical in-
ference is based on an argument of the following form: 
(i) It is the business of the scientific experimenter to revise his opinions in 

an orderly way with due regard to internal consistency and the data, 
and so 

(ii) one has to develop techniques for the orderly expression of opinion 
with due regard to internal consistency and the data, but 

(iii) the only orderly expression of opinion with due regard to internal 
consistency is the Bayesian one, and 

(iv) the only orderly revision of those opinions with due regard for the data 
is through Bayes' theorem, therefore 

(v) the Bayesian approach to statistical inference is the most 'natural' one. 

1.3 A Quality Control Example 

More than by any philosophical discourse on Bayesian analysis it is illu-
minating to introduce the key Bayesian ideas by a simple example, modified 
from one originally given by Schlaifer (1969). The purpose is only to give 
you some concrete feeling for the important ideas. Technical terms will be 
defined mostly in the context, and details will be developed later. 
An automatic machine has just been adjusted by an operator, and we are 
uncertain as to how good an adjustment has been made. In principle it is 
possible to make an exhaustive and mutually exclusive list of events or states 
of the world that are relevant to the problem: one of these events surely 
obtains but we are uncertain as to which one. The word "event" can be inter-
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preted informally as "something that might happen" or "something that 
might be true." But an event may refer to something that has occurred already 
but is unknown to us, and this is the situation in the example we are now 
presenting. The events of the example can be described by the probability 
ρ that the machine will turn out a defective part. For simplicity it is assumed 
that there are only four events (representing adjustments of the machine) 
and they can be described by values of ρ: ρ = .01, .05, .15, .25. 
You can think of ρ in terms of betting odds (see Sec. 2.3). Whichever ρ 
is of the four possibilities - .01, .05, .15, .25 - we assume that it will remain 
constant during the production run now being contemplated, which consists 
of 500 parts. 
If we knew that ρ = .01, which represents the best possible adjustment, we 
would be satisfied with the operator's adjustment. If, on the other hand, 
we knew that ρ = .25, we might be tempted to change the adjustment in 
the hopes of improvement. Suppose that there is a mechanic who can, 
without fail, put the machine in the best possible adjustment. We are 
told that the time needed by the mechanic to make the necessary ad-
justment should be valued at & 10. The problem is to decide whether or not 
to incur this $ 10 cost. 
We shall for the moment assume that just two acts or decisions might be 
taken: (1) acceptance of the adjustment, that is, do not check it; (2) rejection 
of the adjustment, that is, have it checked by the master mechanic. 
For each possible combination of event and act, we assess the expected 
net cash flow that will ensue if that act is taken and that event obtains. To 
explain this, we shall assume first that $.40 is the incremental cost needed 
to rework a defective part, regardless of how many defective parts are 
produced. The incremental cost of a non-defective part is, of course, $0. 
Now if the probability ρ of a defective part is .01, the probability of a non-
defective part is 1 — ρ = .99. To calculate the expected cost of a defective 
part for a production run of one, given the best adjustment, we weight 
$.40 and 0 by the respective probabilities, .01 and .99, as follows: 

(.01) $.40 +(.99) $0 = $.004. 

If we equate the probability with long-run relative frequency, this equation 
can be interpreted as follows. In the long-run, .01 of the parts are defective 
and an incremental cost of $.40 is incurred, .99 are non-defective and the 
incremental cost is 0. On the average in the long run, then, the cost of defec-
tives per part produced, the expected cost per part, is $.004. Since a decision 
is to be made about a production run of 500 parts, we then multiply $.004 
by 500 to get $2.00, the expected cost of defectives per 500 parts produced, 
that is, per production run. The use of long-run frequencies is introduced to 
help to visualize the concept of expectation. Expectation and probability 
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also have meaning even if there is a single unique choice, never to be repeated; 
then the idea is that of betting odds, not long-run relative frequencies. 
Similar calculations for ρ = .05, ρ = .15, and ρ = .25 give expected costs for 
the act of acceptance as $10, $30, and $50. 
For the act of rejection, the computation is even simpler. Regardless of the 
event that obtains, the mechanic achieves the best adjustment ρ = .01,, so 
that the expected cost of defective product is 

500[(.01) $.40 + (.99) $0] = $2.00. 

In addition to this we must count the $10 for the mechanic's time, which 
also is the same regardless of the machine's actual adjustment. Hence the 
expected incremental cost for rejection is $2.00 + $10 = $12.00 

All this information can be summarized in a payoff table. This is a two-way 
table in which the row headings are possible events, column headings are 
possible acts, and the entries are expected incremental profits or costs, as 
the case may be, for each event-act combination. Table 1-1 is the payoff 
table for the present problem. 

Table 1-1: Payoff Table 

Event Act 

Ρ Acceptance Rejection 

.01 $ 2* $ 12 

.05 10* 12 

.15 30 12* 

.25 50 12* 

With this information alone it is frustrating to decide whether to accept or 
reject. Acceptance is clearly the better act if ρ = .01 or .05, but rejection is 
better otherwise, as is indicated by the asterisks in Table 1. If the event is 
known, the best decision is obvious, but the problem is a problem of un-
certainty as to which event obtains. Your decision depends on your assess-
ment of the probabilities to be attached to the four possible events. How 
do you arrive at the needed probabilities? Suppose that there is extensive 
evidence on the history of the fraction of defective parts in 1000 previous 
long production runs under similar conditions in the past, and that this 
history is summarized in Table 1-2. The needed probabilities are assessed 
by the relative frequencies. 
The basic criterion for decision can now be applied: choose that act for 
which expected cost is lowest (or, for which expected net revenue is highest). 


