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Preface

This book is a presentation of the principles of selection in plant breeding. It is
intended for students in plant breeding and genetics, as well as for plant breeders
and applied geneticists. The principles of selection described can be used by
breeders of agronomic, horticultural, and forestry plants.

Most of the economically important traits are quantitatively inherited. An
understanding of selection theory in plant breeding must be based upon knowl-
edge of the inheritance of such traits. Variance and covariance components are
used for the prediction of selection response. The covariance between relatives
and the estimation of variance and covariance components are therefore treated
in some detail. Much attention has been given to the statistical problems in-
volved in precise estimation of such components from experiments.

Selection methods in plant breeding depend on the natural reproductive sys-
tem. They can therefore be classified according to crops that reproduce by self-
fertilization, cross-fertilization and by asexual means. Topics such as autotetra-
ploidy and synthetic varieties are also taken into consideration and may seem to
be overvalued. However, since autotetraploidy is very important in some crops
the impact polyploidy has on selection procedures must be an integral part of a
book on selection in plant breeding. The theory of synthetic varieties has been
largely developed in the last few years and has therefore been treated in some
detail. In hybrid breeding, cross-fertilization is used in a way not occurring in
nature. Hybrid breeding is discussed in connection with cross-fertilizing crops,
though it is also used in naturally self-fertilizing crops.

Success of selection in plant breeding is influenced by the types of gene action
involved in the expression of the traits to be selected. The theory of selection is
easier if epistatic gene action is omitted. Experiments have generally shown that
epistatic variance is usually very low in comparison to additive and dominance
variance. Furthermore, the precision of estimates of epistatic variance is usually
low. This is mainly a consequence of the linear model used for their estimation.
Nevertheless, since some investigations have shown that there is a certain
amount of epistatic variance it seems justified to give the extended quantitative
genetic model including epistasis in the introductory chapters. The importance of
epistasis is discussed in the chapters on selection for specific types of varieties.

The theory of selection cannot be treated without a certain degree of math-
ematical and statistical handling, and a plant breeder who wants to compare
different selection procedures must use the formulae as given in the book to
determine the response to selection. To assist those less familiar with the math-
ematical treatment, the formulae are elucidated by simple numerical examples
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throughout the book. They may be skipped over by readers more familiar with
selection theory. Some knowledge of genetics and statistics is assumed; in most
cases, however, this does not go beyond the well-established methods and tech-
niques which today are part of introductory plant breeding courses.

Matrix notation is used in chapter 12, dealing with selection for several charac-
ters. The reader not familiar with matrix algebra will find a short introduc-
tion in the appendix, although this is not intended to replace a textbook on linear
algebra. Other topics in the appendix are fundamental probability distributions,
the general linear model, the principle of least squares, and the error of variance
components.

The critical reading and helpful comments of our colleagues Prof. M. Huhn
(Kiel), Dr. Sabine Franken-Bembenek (Gießen) and Dr. L. Frese (Braun-
schweig) are gratefully acknowledged. We also thank Dr. Q.S.Trang (Hannover)
who wrote parts of the chapters on tetraploids. We are especially obliged to Prof.
C.O. Qualset (Davis, California) and Dr. A. Rosielle (Ames, Iowa) for their
careful reading of the manuscript, their numerous proposals and their revision of
the English text. We deeply appreciate the effort and interest these colleagues
devoted to our book. We are responsible for any errors or faults in treatment
which remain. Special thanks go to Mrs. Ruth Peters, Miss Jutta Freye and Mr.
M. Stümper (all from Hannover) for their help in the preparation of the
typescript.

Finally we thank the Walter de Gruyter Publishing Company and especially
Dr.-Ing. Rudolf Weber for the care he has given to the production of this work.

November 1985 Günter Wricke
W.Eberhard Weber
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1. Basic population genetics

A population is a group of individuals of the same species with different genetic
structures, sharing space and time. In higher animals the only way for reproduc-
tion and propagation is mating between individuals. Dobzhansky (1953) called
such populations "Mendelian populations". Falconer (1981) used the term
"population" in this sense. But in plants mating between individuals is not the
only way that the population can survive. Other mechanisms are self-fertilization
and vegetative propagation. Therefore in this book the term "population" is not
restricted to Mendelian populations.

In the case of sexual reproduction the genotypes themselves are not trans-
mitted to the next generation. Gametes are formed and the genotypes of the next
generation arise from the fusion of gametes. There is a great difference between
cross-fertilizing and self-fertilizing plant species. In cross-fertilizing species the
genotypes of the next generation differ from the genotypes of the previous
generation. But in pure self-fertilizing species the individuals are completely
homozygous and all of the gametes produced by an individual are identical. Since
two gametes of the same individual unite, the progenies are genotypically iden-
tical with the parents. Genetic recombination is then restricted to the rare event
of cross-pollination.

In vegetatively propagated cultivated plants no sexual process is involved, and
the genotypes remain unchanged through time. Genetic changes are possible
only by mutations, which shall be neglected in this context. Many crops which
are propagated vegetatively in culture, show a certain degree of cross-fer-
tilization in nature and consequently genetic recombination.

Some cultivated crops are autopolyploid. The genetic behaviour of autopoly-
ploids is quite different from diploids. This has important consequences on the
plant breeding system chosen for crop improvement goals. The basic population
genetics of autopolyploids is treated in a separate section.

1.1 Vegetatively propagated species

The population consists of different genotypes, which do not exchange genetic
material by sexual processes. It should be noted that in most cases sexual repro-
duction is possible, and the breeder makes use of this fact. Single genotypes are
highly heterozygous, and therefore the progeny of a cross shows large genetic
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variation. This normally is the basis for selection. The progeny can be regarded as
a new population.

To characterize the population, it is only necessary to describe the distribution
of genotypes. We can expect, that the number of loci, which contribute to genetic
variation, is high. A rough estimate of the number of loci in higher organisms is at
least 50,000. Kamalay and Goldberg (1980) estimated the number of structural
genes of tobacco at 60,000. Therefore the number of possible different genotypes
is extremely large. As an example consider the number of different genotypes in a
cross of two clones, which differ at 50 loci, and that each clone has two different
alleles at each locus.

Number of different gametes of clone 1: 250

Number of different gametes of clone 2: 250

Number of different genotypes in the hybrid: 2100 « 1030

The genetic structure of a population of vegetatively propagated plants is un-
known. Even in the very simple case, where different genotypes of the population
are derived from one cross, four different alleles are possible at each locus. At
these loci the frequency of genotypes in the population can be calculated in the
following way:

If parent 1 has the alleles B^ and B2 and parent 2 the alleles B3 and B4, the
genotypes BiB^, B^B^, B2B3 and B2B4 can be produced, all with the expected
frequency of ̂ . No homozygous genotypes arise when the B alleles are all differ-
ent from one another. Homozygous progeny at the B locus are possible only
when both parents carry a common allele. For example, in the progeny of
B1B2 χ B1B3 % of homozygotes B1B1, and f of heterozygotes (^ each of B1B2,
B1B3 and B2B3) are expected. The probability that the two parents carry a
common allele depends on the history of the parents and the number of different
alleles which exist. Later we will discriminate between alleles identical by descent
and alike in state (see page 16). Only when the breeder crosses two related par-
ents, may a genotype be homozygous due to alleles identical by descent; other-
wise it can only be homozygous for alleles alike in state or heterozygous. In
general we expect that the genotypes arising from a cross between two parents
will be heterozygous at a large number of loci.

1.2 Cross-fertilizing species

The theory of population genetics in standard textbooks (Li 1955, Crow and
Kimura 1970, Wricke 1972, Falconer 1981, and others) can be applied to this
case. Since this book is mainly concerned with selection in plant breeding, only
some general remarks are made, which are necessary to understand selection
theory in cross-fertilizing crops. In cross-fertilizing species the population is a
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Mendelian population in the definition of Dobzhansky (1953). The genetic
material is recombined each generation. Only the genes are transmitted from
generation to generation, not the genotypes. In each generation they are reasser-
ted and form new genotypes.

The population can be described in terms of genotypic or allelic frequencies. If
there is no doubt, we follow other textbooks and use the term "gene frequencies"
to mean allele frequencies. However this is imprecise, since it is allelic frequency
rather than gene frequency which is meant.

One locus with two alleles

At first we consider a single locus with two different alleles B and b. Then three
genotypes BB, Bb, and bb are possible. Let the absolute frequencies of these
genotypes be x, 2y and z. From these frequencies we can deduce the gene fre-
quencies. BB genotypes carry two B alleles and Bb genotypes one B and one b
allele. Therefore the frequency of allele B is 2x + 2y = 2(x + y). In a similar way
the frequency of b is 2(y + z).

It is convenient to use relative frequencies. If the number of individuals in the

population is N, the relative frequency for B is p = ——-— = ——— and for b
2N N

is q = — = with p + q = 1. In the following, p and q are called gene

frequencies.
We now assume, that there is random mating, that is that mating occurs with-

out regard to genotype. This is equivalent to a random combination of gametes.
The genotypic frequencies of the next generation can be obtained as follows:

^\^ male
^•\^ gametes

female ^\^
gametes ^\^^

P B
q b

P B

p2 BB
pq Bb

q b

pq Bb
q2 bb

The genotypic frequencies therefore are given by/?2 for BB, 2pq for Bb and q2 for
bb. If we consider the gametic output of the genotypes of this generation we again
get/?2 + pq = p for B andpq + q2 = q for b, since/? + q = 1. Therefore the geno-
typic frequencies after one generation of random mating are not changed in the
following generations.

The genotypic frequencies following random mating can be calculated from
the gene frequencies in the following way:

(pB + qb)2 =p2BB+2pqBb + q2bb.
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This principle is called the Hardy-Weinberg principle or Hardy-Weinberg law
and was first shown independently by Hardy (1908) and Weinberg (1908) (see
also Keeler (1968) for early contributions of W. E. Castle (1903)). The population
is in equilibrium after one generation of random mating. Therefore the Hardy-
Weinberg principle is sometimes called Hardy-Weinberg equilibrium. This prin-
ciple holds only in the absence of mutation, migration, selection, and random
drift, which lead to change in gene frequencies. The effect of mutation and migra-
tion on single loci will not be considered in this book. Random drift is negligible if
the population size is large. This is not true for many breeding programs, and
random drift can be important. The effect is lowered for quantitative traits which
are inherited by several genes. Though the loss of some favourable alleles cannot
be avoided if the population size is small, the breeder still can improve the trait if
selection occurs for the remaining favourable alleles.

Selection also may be the reason that the Hardy-Weinberg relation is not
reached. Since this book deals with selection in plant breeding, some remarks are
necessary on selection as a force to change frequencies of alleles in a population.
This type of selection plays an important role in the theory of evolution. Nor-
mally we assume that all genotypes have the same probability of contributing to
the gametic pool of the next generation. If selection occurs this probability is not
equal for all alleles. It is said that the genotypes have different fitness values.
Genotypes with high fitness values contribute more alleles to the next generation
than genotypes with low fitness values. This type of selection is called natural
selection and should not be confounded with deliberate selection by the breeder,
which is called artificial selection. Selection in plant breeding means artificial
selection. But natural selection cannot be avoided in breeding programs. The
breeder also uses selection methods related to natural selection. For example, a
breeding population may be inoculated with diseases or parasites so that all
nonresistant plants die. This may be regarded as natural selection in an artificial
environment. This selection technique has become very important for in vitro
cultures. The breeder sometimes also screens material under natural environ-
mental pressures, as for example in a test on winter hardiness under extreme
climatic conditions. Natural selection is discussed in more details in chapter 5.

For a population in Hardy-Weinberg equilibrium the frequency of hetero-
zygotes is 2pq in the case of two alleles. This value reaches a maximum at/? = q
= 0.5. Then 50 per cent of the genotypes are heterozygous. Figure 1.1 illustrates
the relationship between gene frequencies and the distribution of genotypes. The
equilateral triangular of de Finetti (1926) is used. The genotypic frequencies are
found as follows. Given the allelic frequencies p for B and q for b, the cutting
point of the vertical axis at p and q (p = 0.4 and q = 0.6 in figure 1.1) with the
parabola y2 = xz is M. χ, 2y, and ζ are the genotypic frequencies for BB, Bb, and
bb, respectively (see page 3). The length of the three perpendiculars from Μ on
the three sides are the desired genotypic frequencies x, 2y, and z. The correspond-
ing genotypes are given in the opposite corners.
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If the frequency of one allele is rare, the genotypic frequency of the corre-
sponding homozygous genotype is very rare, but there may be a reasonably high
frequency of heterozygotes. This is illustrated in table 1.1 for low frequencies
of b.

This example shows that the majority of rare alleles is carried by heterozygotes.
If a rare allele is completely recessive, its presence is predominantly concealed in
phenotypically normal heterozygotes. If all three genotypes are distinguishable it

Table 1.1 Frequencies of heterozygous (Bb) and homozygous (bb) genotypes if the
allele b is rare.

frequency
of b

0.1
0.05
0.01

?

genotypic
Bb

0.18
0.095
0.0198

2pq

frequencies
bb

0.01
0.0025
0.0001

I2

ratio of
b (in hetero-
zygotes Bb) to
b (in homo-
zygotes bb)

9
19
99

P
q

proportion of
the b alleles
carried by
heterozygotes
Bb

0.90
0.95
0.99

P

frequency of B 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-_ I I I I I I I I [ I I

f r e q u e n c y of b 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Figure 1.1 Genotypic frequencies as functions of the gene frequencies.
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2p Q
is possible to calculate . This is a rough way of determing whether a

population is in Hardy- Weinberg equilibrium. For completely dominant traits
only two phenotypic classes exist. In this case it is possible to estimate the fre-
quency of the recessive allele q by the square root of the proportion of recessive
genotypes. This proportion is q2 if the population is in Hardy- Weinberg equilib-
rium. With this information it is possible to calculate the frequencies of all geno-
types for a Hardy- Weinberg equilibrium population. However, it is not possible
to conclude if the population is in Hardy- Weinberg equilibrium, since dominant
homozygous genotypes cannot be distinguished from heterozygous genotypes.

Multiple alleles at one locus

The number of different alleles at one locus in a population may be larger than
k (k — 1)two. With k alleles, there are k homozygous and - heterozygous geno-

types. As in the case of two alleles, equilibrium is reached after one generation
of random mating. This is easily seen as follows (see also Falconer 1981): We
regard one allele and make no distinction between the other (k — 1) alleles. We
then effectively have a two-allele situation and equilibrium is reached in one
generation for the two alleles, as shown previously. Since we can regard each
of the alleles in a similar fashion, the result is true for all k alleles.

With multiple alleles the proportion of heterozygous genotypes is increased.

This proportion is at maximum if the frequencies of all alleles are equal, i. e. — . In
κ

(k — 1)this case the proportion of the heterozygous genotypes is — - - .
κ

If we denote the frequencies of the alleles Bt (i = 1 , . . . , k) as/?,· (/ = 1 , . . . , k), we
can derive genotypic frequencies from gene frequencies in a similar way to that
for two alleles. We get

(Σ ρίΒί)2

+ 2Plp2BlB2 + ... + 2Pk_,pkBk_iBk.

Table 1.2 gives an example for three alleles with different frequencies.
Multiple alleles are widespread in natural populations, as was shown in many

species for genes which can be made "visible" by electrophoresis of isoenzymes.
In this book we are mainly concerned with selection on characters for which no
specific genes can be identified. So we do not know how many alleles are present
in the population for the loci responsible for the inheritance of quantitative
characters. But we know that we can reach equilibrium genotypic frequencies
with one generation of random mating even in the case of multiple alleles. This is
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Table 1.2 Gene frequencies and genotypic frequencies for 3 alleles at one locus.

gene

Pi

1_
3
1
2

0.5
0.8

frequency

P2

1_
3
1_
4

0.4
0.1

Pi

1
3
1
4

0.1
0.1

genotypic frequencies
BiB,

Λ
1
9
1
4

0.25
0.64

B2B2

P\

1
9
1

16

0.16
0.01

«3^3

Pi
1
9
1
16

0.01
0.01

B,B2

2/^2

2
9
1
4

0.40
0.16

B,B3

2Pip3

2
9
1
4

0.10
0.16

£2*3

2/>2/>3

2
—9
1
8

0.08
0.02

per cent
heterozygotes

66.7

62.5

58.0
34.0

important, because for many situations discussed in this book, it is assumed that
the population is in equilibrium.

Two loci

In the preceding section it was shown, that the "Hardy-Weinberg" relation is
attained with one generation of random mating irrespective of the number of
alleles at one locus. For two loci, however, equilibrium is not reached in one
generation.

Consider two loci, B and G, with two alleles each and denote the frequencies of
the alleles B, b, G and g by p, q, r and s, where p + q = 1 and r + s = l. pBG, pBg,
pbG and pbg are the frequencies of the four possible gametes. At equilibrium the
association between the alleles of the two loci is random, which leads to the
following gametic frequencies:

gamete BG Bg bG bg
frequency pBG = pr pBg = ps pbG = qr pbg = qs

If the gametic frequencies are different from equilibrium frequencies, the popula-
tion is in gametic phase disequilibrium, measured by the coefficient of dis-
equilibrium

At equilibrium this coefficient is zero, since

A numerical example is given in table 1.3. This example indicates that the equilib-
rium is reached only gradually. The initial population consists of^BBgg and
^BbGg genotypes. The gametic frequencies can be derived from the genotypic
frequencies of the same generation in the usual manner from the formulae given
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Table 1.3 Genotypic and gametic frequencies and coefficient of disequilibrium.

genotype frequency

BBGG f,=p\G

DBljg J2 — ^PacPBg

BBgg f,=p2
Bg

BbGG /4 = 2pBGpbG

OO\jg /5 — ifscPbg T ^PBgPbG

Bbgg ff, = IpsgPbg

hhna f n2
DOljIj Ji — pba

DD<jg JS — t-PbcPbg

bbgg /9 = pi.

gamete frequency

«XT /-^ f ι f | f 1 f j f

Bg PBe=(f2 + 2f3+fs/2+fl

bG Phr· ^ ( f& ~\~ /^ /2- j -2 / -T~l~ f\

bg Pbg = C/5/2 + /6 + /8 + 2/

gametic phase disequilibrium d

— Ό r Ph D Phr

numerical example
generation
0

0

0

1
3

0

2
3

0

0

0

0

generation
0

1
!)/2 6

3
^ 6

1
3 6

1
')/2 6

1
18

1

1
36
6
36
9
36
2
36
8
36
6
36
1

36
2
36
1

36

1

7
36
17
36
5
36
7
36

1
36

2

49
1296
238
1296
289
1296
70

1296
68

1296
238
1296
25

1296
70

1296
49

1296

2

135
648
297
648
81
648
135
648

1
72

oo

4
81
16
81
16
81
4
81
16
81
16
81
1

81
4
81
4
81

00

2
9
4
9
1
9
2
9

0

oo (general)

p2r2

2p2rs

p2s2

2pqr2

4Pqrs

2pqs2

q2r*

2q2rs

q>s2

oo (general)

pr

ps

ar

qs

0
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in the example. The genotypic frequencies of the next generation are derived with
the aid of the chess-board method. The coefficient of disequilibrium is halved
each generation. From this example it is seen, that from a practical point of view,
equilibrium is essentially reached after a few generations.

Two special cases lead to equilibrium in one generation. In the first case all
genotypes are double heterozygotes BbGg. This is an important case in self-
fertilizing species (see chapter 1.3). In the second case the population is built up
from the cross of two plants. For example, if BBGg is crossed with BbGG, we
have p = f, q —- 5, r = |, and s = 5. The genotypic frequencies of the cross are
^BBGG^BbGG,^BBGgand^BbGg. The gametic frequencies arepBG = τβ,ρΒβ
= Pbc = ̂ 6 and pbg = -fe. Therefore pBG = ρ · r, pBg = p · s, pbG = q · r and phg
= q · s showing that the gametes derived from the cross are in gametic phase
equilibrium and consequently the resulting population is in equilibrium.

Linkage

Genes are located on chromosomes (we neglect genes located elsewhere in the
plasma). Since the number of different chromosomes is limited and depends on
the species, many genes are located on the same chromosome. These genes are
linked. The degree of linkage is a function of the distance between loci on the
same chromosome and is measured by the probability that alleles of different loci
are exchanged during meiosis. This probability is called recombination frequency,
c. In case of no linkage this value is 0.5, and means an exchange between alleles
occurs in 50 per cent of events. This is expected if the genes are located on
different chromosomes, or, if at least one crossing-over occurs between two genes
on the same chromosome. In case of linkage, c is less than 0.5 with the limiting
value of c = 0, when no recombination occurs.

Linkage only influences the frequency of types of gametes produced by double

heterozygotes. The frequency of gametes produced by - — genotypes ispBG — pbbg

and pBa = PbG = ̂ · The gametic frequencies produced by — — are2 β 2 bG
c 1 — c

/"BG - Pbg — ~andpBg = pbG = —-—. Gametes of the parental types are more fre-

quent if c is less than 0.5. We have therefore to distinguish between the two types
BG Bg

of heterozygotes. Double heterozygotes -— are in coupling phase and —— in
bg bG

repulsion phase.
The equilibrium condition is not changed by linkage, but the approach to the

equilibrium is delayed. The disequilibrium coefficient is multiplied by (1 — c)
each generation. Genotypic and gametic frequencies under linkage for the same
genotypic frequencies in generation 0 as in table 1.3 are given in table 1.4. It is
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Table 1.4 Linkage and the coefficient of disequilibrium (example of table 1.3 with a
recombination frequency of c = 0.25).

genotype

BBGG

BBGg

BBgg

BbGG

BG/bg

Bglbg

Bbgg

bbGG

bbGg

bbgg

gamete

BG

Bg

bG

bg

frequency

/2

/3

Λ

/S.

/6

/7

Λ

/9

frequency

PBG

A.G

numerical
generation

0

0

0

1
3

0

2
3

0

0

0

0

0

generation
0

3
12
5
12
1

Ϊ2
3

Ϊ2

example

1

9
144
30
144
25
144
6

144
18
144

10
144
30
144
1

144
6

144
9

144

1

35
Ϊ44
61

T44
13

Ϊ44
35

Ϊ44

2

1225
20736

4270
20736

3721
20736

910
20736
2450
20736

1586
20736
4270
20736

169
20736
910

20736

1225
20736

2

137
576
247
576
55
576
137
576

36
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BG
assumed that the two heterozygous genotypes are of the constitution - — . Since

bg
BG Bgwe must discriminate - from — — , the frequency /5 of table 1 .3 must be split into
bg bG

BG
two frequencies /5 and /5r for the coupling phase - — and repulsion phase

bg
Bg
- — . From the gametic frequencies, /5c and /5r are calculated as follows:
bG
fsc = IpsoPbg and/5r = 2pBgpbG.

The gametic frequencies are given by the relations

PBG =

P» = '

,and

Pbg =

The coefficient of disequilibrium d, in generation t can be calculated from the
coefficient in generation (i — 1) or 0 by the formula

Figure 1 .2 shows the decrease of dt with t for several degrees of linkage.

0.25

0.20

0.15

0.10

0.05

0

= 0.01

0 1 2 3 4 5 6 7 8 9 1 0
generation

Figure 1.2 Decrease of the disequilibrium coefficient d for two linked loci in successive
generations of random mating, starting with genotypes BBGG and bbgg at equal
frequencies.
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The number of generations necessary to halve the coefficient of disequilibrium
is called median equilibrium time /0 5 (Crow and Kimura 1970). This is given by

In 0.5

If c is small, ln(l — c) κ — c and

0.693
'0.5

For example, for unlinked loci (0 5 = 1, but for c = 0.1 t κ 7, i.e., 7 generations
are necessary to halve the disequilibrium. The gametic phase disequilibrium is
often called linkage disequilibrium irrespective of whether there is linkage or not.

Multiple alleles at two loci

If there are more than two alleles at one or both loci, the disequilibrium cannot be
fully described with one disequilibrium coefficient. Let the number of alleles at

locus Β be kB and at locus G be kG, then ~ 1)M/Cc ~ 1}

, 2 / \ 2 / 4

disequilibrium coefficients between all possible pairs of alleles exists. For
example, with alleles / and^' at locus B and m and n at locus G the disequilibrium
between the two pairs (i,j) and (m, ri) is measured by

"y' mn = PimPjn ~ PinPjm ·

At equilibrium all disequilibrium coefficients are zero and the frequencies of
gametes can be calculated from the marginal frequencies of the alleles, for
example

Pirn = PiPm-

In a population not at equilibrium the genotypic frequencies can be calculated
from the gametic frequencies, and the gametic frequencies of the next generation
from the genotypic frequencies. As for two alleles linkage delays the approach
but does not change the equilibrium values.

With multiple alleles the change of a single disequilibrium coefficient after one
generation of random mating is more complex than for two alleles.

We consider the case of three alleles at each locus in more detail. Let the alleles
at the first locus be B, b and β and at the second locus be G, g and γ with a
recombination value c between the two loci. Then the disequilibrium coefficient
between the pairs Bb and Gg is

d G · bg — PsoPbg ~ PsgPbG ·

After one generation of random mating this coefficient is reduced to
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d'BG.he = (i-c)dBG.he-c(i-c)\\\
with | A | as the determinant of the matrix A of the gametic frequencies of the
previous generation

/PBG P Bg P By
A = I PbG Pbg

\P G P g Pfy<

(matrices and determinants are explained in the Appendix A 2).
The disequilibrium coefficient is therefore also influenced by the alleles β and γ

not directly involved. If there are only two alleles at one locus, a row or column of
A contains zeros. Then | A | is zero and the change of the disequilibrium coeffi-
cients is the same as in case of two alleles at each locus.

More than two loci

If more than two loci are considered, the approach to the equilibrium is very
complex. As for two loci, linkage does not affect the equilibrium, but the ap-
proach is delayed. At equilibrium the frequency of a specific gamete can be
calculated from the marginal frequencies of the corresponding alleles. For
example, if there are three loci B, G and H, the frequency of the gamete B1G3H2 is
given by

The genotypic frequencies can be calculated from the gametic frequencies in the
same way as was described for two loci. To calculate the gametic frequencies of
the next generation from the genotypic frequencies of the previous generation,
the linkage relationship between the loci must be known.

Genes on the same chromosome form a linkage group. With three genes B, G,
and //, the linkage is fully described by 3 recombination values CBG, CBH and CGH.
Figure 1.3 shows a linkage group for 4 genes. At first the fourth locus is not

1α 1b 2α 2b

Β

G

H

K

Figure 1.3 Linkage group of 4 genes.
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considered. To understand why CBH cannot be calculated from CBG and CGH, it is
necessary to describe the recombination process during meiosis, where the
chromosome number is halved. A recombination of alleles between loci B and G
can occur if there is a crossing-over between two nonsister chromatids. There are
four possibilities, la with 2a, la with 2b, Ib with 2a or Ib with 2b. If a single
crossing-over has occurred the probability that a gamete has a recombination of
alleles is \, as in the case of free recombination. For example, if a crossing-over
has occured between the chromatids Ib and 2a between B and G, then the
gametes BG, Bg, bG and bg are produced in equal proportions. Now the same
considerations hold for the loci G and H. A recombination between B and H is
possible if there was a crossing-over between B and G or G and H. But it is also
possible if there were two crossing-overs, one between B and G and one between
G and H, since different chromatids may be involved. For example, two crossing-
overs, the first between Ib and 2a, and the second between la and 2a, lead to the
recombination probability of 5, while other cases, for example the first and the
second crossing-over between Ib and 2a, do not lead to a recombination between
B and H. Therefore it is not possible to calculate CBH from CBG and CGH, the
recombination values between B and G and between G and H. Furthermore, with
four or more loci in a linkage group, all possible linkage parameters for pairs of

k(k — 1)loci cannot fully explain all recombination values. For k loci there are

parameters for pairs of loci. At all 2k different types of gametes exist. Since the
sum of all gametic frequencies is 1 and complementary gametic types have the
same frequency (see table 1.5), we need 2< i~1 — 1 parameters. For k — 4,
k(k — 1) = 6and2*~1 — 1 = 7. The last parameter describes the linkage between

pairs of pairs. For six or more loci higher order parameters are also nec-
essary. This concept of describing linkage between several loci in a linkage group
was first introduced independently by Jones (1960) and Schnell (1961 a). We only
describe the case of four loci; and for a general theory the reader is referred to
these papers. The parameter p of Jones is equivalent to c used in this book.
Schnell used λ = 1 — 2c. This approach has some advantages in deriving general
formulae. Let us return to four loci (figure 1.3). The six parameters CBG, CBH, CBK,
CGH, CGK, and CHK describe the relation between pairs of loci. The last parameter
CBGHK is defined so that 1 — CBGHK is the probability of no recombination between
loci B, G, //, and K. The use of these linkage parameters for calculation of the
gametic frequencies is demonstrated in table 1.5 for the three loci Bio H and the
four loci Β to K in figure 1.3 (for the calculation of the gametic frequencies see
also Jones 1960). In both cases the gametic frequencies sum up to 1.



l .2 Cross-fertilizing species 15

Table 1.5 Gametic frequencies of the genotype BGHK/bghk from fig. 1.3.

3 loci (B to H)

PBGH — Pbgh ~

PsGh = PbgH =

PBgh = PbGH ~

PBSH = PbGh =

• CBH + CGH
2 4
CBH + CGH ~ CBG

7

CBG + CBH ~ CGH
7

CBG + CGH — CBH

4 loci (B to A)

PBGHK —

PaOHk = PbghK =

— PbgHk =

= PbGMt =

1 CBGHK
2 2~

CBGHK CBG "t" CBH + CGH
~2 4
CBGHK CBG + CBK + CGK

CHK

_ _ CBGHK CGH + CGK
PbGUK — PBghk ~ - ; --- Τ

_ _
— PbgHK —

CBH + CBK + CGH

PBgHk — PbGhK ~
+ CG

CBGH*T
; —

CBGHK

PBgkK — PbGHk ~
CBG

One-locus model

In later sections gametic phase equilibrium is normally assumed. Since more than
one locus is usually involved, this is not reached with one generation of random
mating. Gametic phase equilibrium is also necessary for the so-called one-locus
model. In this model, several loci may be considered, but the effects are described
for each locus individually. The term "one-locus model" is derived from the
assumption that no effects exist which arise from specific combinations of loci. If
gametic phase equilibrium has not been reached, covariances between the effects
of different loci exist which disturb the analysis of the one-locus model.
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As for two loci with two alleles so in the general case the approach to equilib-
rium is more rapid in the first generations of random mating. Therefore, for
practical purposes, populations can be regarded as close to equilibrium after a
few generations of random mating even in the case of several loci.

Inbreeding

Inbreeding means intermating of individuals who have common ancestors. This
has consequences on the genotypic distribution of the offspring. As long as lin-
kage is not considered, it is sufficient to consider only one locus to examine the
effects of inbreeding.

The related parents may have the same replicate of an allele of one of the
common ancestors. Then there is a specified probability that both parents may
transmit this allele to the offspring. In this case the offspring has two identical
alleles which are replicates of the same allele of the common ancestor, and we say
that the two alleles are identical by descent. For example, this allele may be B, and
the offspring might have the genotype BB. There may be other individuals in the
population with genotype B B where these alleles are not identical by descent but
only alike in state. The following considerations may clarify what is meant by
these definitions.

The number of possible ancestors depends on the number of generations
traced back into the past. With every generation the number of ancestors is
doubled. Ten generations back each individual has 210 = 1024 ancestors, 20 gen-
erations back about 1 million. Therefore, each individual must have related
ancestors. The definitions given only make sense if we define a base population in
which no individuals with alleles identical by descent exist, and the alleles of all
homozygous genotypes are regarded only as alike in state.

Inbreeding coefficient

The effect of inbreeding is measured by the inbreeding coefficient F. F is the
probability that two alleles at a locus of an individual are identical by descent
(Malecot, 1948). The inbreeding coefficient depends on the mating system. In
animals, related individuals can be mated. Most plants can also be self-pollinated
and this is the strongest form of inbreeding.

There is another measurement which is closely connected with the inbreeding
coefficient. This is the probability that two individuals carry alleles at a locus
which are identical by descent. This probability was called the "coefficient de
parente" (Malecot, 1948). Kempthorne (1957) describes this as the coefficient of
parentage, but Falconer (1981) uses the word coancestry. This is best explained
by example. We regard individual A'with alleles x1 and x2 and individual Υ with
alleles y^ and y2 and calculate the probability P(xt = y}), where xt may be χγ or
x2 and yj may be y{ or y2. We get



l .2 Cross-fertilizing species 17

= y2)
where cpxy is the coefficient of coancestry. The connection between the inbreeding
coefficient F and the coefficient of coancestry is given by

F (individual) = φ (parents of the individual).

Two methods are proposed to find the inbreeding coefficient of an individual in
the general case. The first method uses path coefficients in the pedigree, the other
method uses the coefficient of coancestry and explains the coefficient between
individuals in generation t by the coefficients in generation t — \. Both methods
are explained with examples.

Path coefficients in the pedigree

We would like to compute the inbreeding coefficient of an individual Z that has
parents A and B. All paths from A back to a common ancestor of A and B and
forward to .Smust be considered. Figure 1.4 gives a hypothetical pedigree, /is a

Figure 1.4 Pedigree diagram.

common ancestor of A and B, and one path is ACEIGDB. The contribution of
this path is given by (^)" = (j)7,« being the number of genotypes in this path. It is
assumed that /is not inbred. The probability, that / transmits the same allele to E
and G is 3, the probability that E transmits the allele received from /to C is also \
and so on. The inbreeding coefficient is the sum of the contributions of all paths.
The three possible paths are ACEIGDB, AC EI H B and AC ΕΙΚΗ Β.

If the common ancestor itself is inbred, the contribution of the corresponding
path to the inbreeding coefficient is increased. We again regard the path
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ACEIGDB and assume that the inbreeding coefficient of/ is F,. The probability
that / transmits the same allele to E and G is \. If / transmits different alleles (this
probability also is |), they are identical by descent with the probability F,. There-
fore the total probability that /transmits alleles which are identical by descent to
£ and (718^(1 + F,) and the contribution of the path therefore is (|)7(1 + F,). Ina
similar way the contribution of the path A CEIHB is (|)6 (1 + Fj) and of the path
ACEIKHB is (i)7(l + FK). The results are summarized in table 1.6.

Table 1.6 Calculation of the inbreeding coefficient of Z with paths (fig. 1.4, F, = 0).

path

ACEIGDB 1

A CEIHB 6

ACEIKHB 1

total

inbreeding coefficient of K
0 0.25 Fk

1
Ϊ28
1
64
1

128

1 = 0.03125

1
Ϊ28
1

64
1+0.25

128

1 0.25
32 + 128 °·°33^

1
128
1

64
l + F k

128

1 Fh*n ι
-° 32 + 128

Coefficient of coancestry

The coefficient of coancestry is explained using the pedigree in figure 1.5. The
inbreeding coefficient of Ζ is equal to the coefficient of coancestry φχγ of X and
Υ. Χ or Υ or both can be replaced by their parents in the following way:

Ψ BY) = Ψχο) = Ψ AD + ΨΒΟ

We consider an allele of A' and ask if this allele is identical by descent with an allele
of 7. The probability, that the allele of X has come from parent A is \. The

Figure 1.5 Pedigree diagram for the coefficient of coancestry.
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probability that the allele of X has come from B also is ^. Only one half of the
alleles of A and B have been transmitted to X. Therefore φχγ = %(φΑΥ + φΒγ)·
The other relationships are derived in a similar way.

With the relation

Ψχγ = -^(<PAC + ΨΑΟ + <Puc + ΨΒΟ)

we can express the coefficient of coancestry of the actual generation (A' and F) in
terms of the preceding generation (A, B, C and D). This can be used to construct
similar formulae for the inbreeding coefficient. Two coefficients of coancestry are
of a special interest: <pxx and φλχ . φχχ is the coefficient of coancestry of a
genotype with itself. We regard one allele and ask for the probability that a
randomly chosen allele is identical by descent with it. The probability of choosing
the same allele is \. If the other allele is chosen this probability also is \, the
probability that it is identical by descent is Fx. Therefore

φΑΧ is the coefficient of coancestry of a genotype with its offspring. From figure
1.5 it can be shown that this coefficient is

The coefficient of coancestry can be used to derive recurrence equations for the
inbreeding coefficients of regular mating systems to produce inbred genotypes.
The two most important systems are self-fertilization and full-sib mating. The
increase of the inbreeding coefficient is more rapid in case of self-fertilization, but
this procedure only can be used in plants and if self-fertilization is not prohibited
by a natural mechanism like self-incompatibility. For both systems the inbreed-
ing coefficient is given in terms of the inbreeding coefficients of previous
generations.

a) Self-fertilization
If A is the parent in generation (t — 1) and Z the offspring in generation t, we get

FZ = ΨΑΑ = jO + FA)

and the recurrence equation
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Z

Figure 1.6 Pedigree diagram for full-sib mating.

b) Full-sib mating
To calculate the inbreeding coefficient after full-sib mating we need the inbreed-
ing coefficients of the two preceding generations. The pedigree for full sibs is
given in figure 1.6. From this figure we find

(ΨΑΑ + 2<PXB + ΨΒΒ)

since φΑΒ = Fx. Therefore we get the recurrence equation

/? = ^(1 + 2^-1 + 3-2)·
Table 1.7 gives the inbreeding coefficient for the first generations under selfing
and full-sib mating, for an initial inbreeding coefficient, F0, of zero.

Table 1.7 Inbreeding coefficient after continuous selfing or full-sib mating.

generation

0
1
2
3
4
5

10

20

selfing

0
0.5
0.75
0.875
0.938
0.969

0.999

1.000

full-sib mating

0
0.25
0.375
0.500
0.594
0.672

0.886

0.986

The complement of the inbreeding coefficient is called the panmictic index Ρ
(Wright, 1951) with Ρ = 1 — F. Sometimes the formulae are simplified if the
panmictic index is used. So, for selfing we get
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showing, that the percentage of heterozygosity is halved every generation.
So far we have considered only one locus. The inbreeding coefficient is the

same for all loci. Regarding all loci together, the inbreeding coefficient gives the
expected percentage of loci of a genotype which are identical by descent. This
also holds in the case of linkage.

Finally, we consider the genotypic frequencies for a population with an in-
breeding coefficient F. In the case of two alleles homozygous genotypes Β Β and
bb may carry alleles identical by descent with probabilities pF and qF. The proba-
bility is 1 — Fthat the genotypes do not carry alleles identical by descent. There-
fore the total frequencies of the three genotypes are

(l-F)=p2+pqF for BB,

2pq(\ -F) for Bb,

qF+q2(i-F) = q2+pqF for bb .

In the general case of A; alleles we find ptF + p f ( \ — F) = pf + pt(l — pt)F for
homozygous genotypes BiBi and 2pipj(i — F) for heterozygous genotypes B^Bj.

Linked loci

We now may ask, what is the probability that two loci are simultaneously iden-
tical by descent, if the inbreeding coefficient for each locus is F? In case of
unlinked loci this probability is F2. But for linked loci no general form can be
given. For two linked loci Haldane (1949) introduced a generalized inbreeding
coefficient. Schnell (1961 a) extended this principle to an arbitrary number of
linked loci and called the probability that several loci are identical by descent
simultaneously the function of inbreeding. For linked loci this probability is
higher than for unlinked loci. The function of inbreeding plays a role in the
covariance between relatives when there is interaction between loci. We come
back to this problem in chapter 3.2. Here we only can say that the function of
inbreeding of two linked loci is not the same if the same inbreeding coefficient is
reached by different mating systems, as for example by selfing or full- sib mating.
The reason is that with more generations there is more opportunity for linked loci
to recombine. Gallais (1974) introduced the term link. The link g, is the proba-
bility that two alleles from different loci are transmitted simultaneously over t
generations. The link depends on the degree of linkage between corresponding
loci, but is not zero for unlinked loci.
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Hybridization

The opposite effect of inbreeding is achieved with hybridization. While with
inbreeding the precentage of heterozygotes is reduced, with hybridization this
percentage can be increased to a higher level than in an equilibrium population.
If we consider one locus and cross only BB genotypes with bb genotypes, the
whole population is completely heterozygous. Another way is to cross a single
genotype to a sample of individuals from a population. If the population has a
gene frequency of 0.2 for B and 0.8 for b, the population derived from a cross of
this population with a single genotype BB contains 80 percent heterozygous
genotypes Bb. Finally, if we cross individuals from two populations with differ-
ent gene frequencies, the hybrid population also can contain more heterozygotes
than expected under equilibrium conditions. If the frequency of the B allele isp^
in population 1 and p2 in population 2, and if q1 and q2 are the corresponding
frequencies of b, the hybrid population contains the genotypes BB, Bb and bb in
the frequencies ptp2,Pi #2 +/72#i andq1q2. The cross of two homozygous geno-
types and of a homozygous genotype with a population can be regarded as
limiting cases with the fixation of one allele in both or one population. Table 1.8

Table 1.8 Frequency of heterozygotes in a hybrid population (p^ and p2 are the fre-
quencies of the B allele in the two initial populations, in brackets after one generation of
random mating).

Pi \.

0
0.2

0.5
1

Pi

0 0.5

0.0(0.0) 0.5(0.375)
0.2(0.18) 0.5(0.455)

0.5(0.375) 0.5(0.5)
1.0(0.5) 0.5(0.375)

Pi 0.5
(/>! - 0.5 n) (0.375)+ 0.5/»!

- 0.5/,?)

0.8

0.8(0.48)
0.68(0.5)

0.5(0.455)
0.2(0.18)

0.8 - 0.6p!
(0.48 + 0.2^!

1.0

1.0(0.5)
0.8(0.48)

0.5(0.375)
0.0(0.0)

I- Pi
(0.5 - O.Spl)

Pi

p2 ( 02 — O.S/J?)
0.2 -f- 0.6^?2(0.18 ~1~ 0.8/?2

0.5(0.375 + 0.5p2 - 0.5/ii)

Pi +P2 ~ 2ΡιΡ2
(Pi +P2

-0.5(Pl+p2)2)

gives the frequency of heterozygotes for several values of p^ and p2. The fre-
quency of heterozygotes after one generation of random mating is added in
parenthesis. The hybrid population has then reached the Hardy-Weinberg
equilibrium. From this table it is seen that the difference between the frequency in
a hybrid population and at the Hardy-Weinberg equilibrium is always positive,
since

(Pi+P2- ·P^-
(Ρ1+Ρ2Ϋ
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Small populations

Two properties of small populations have considerable importance in population
and quantitative genetics: (1) random drift and (2) inbreeding. Random drift is
the fluctuation in gene frequencies caused by chance or sampling variation. The
direction of drift is unpredictable. Random drift may lead to a loss of alleles,
either desirable or undersirable. The breeder can diminish the danger of loosing
favourable alleles by using large population sizes. The reader who is interested in
random drift in connection with evolution, is referred to other textbooks (for
example Li 1955, Crow and Kimura).

Populations built up from a small number of genotypes are inbred. The aver-

age inbreeding coefficient is — — , where N is the number of genotypes. Consider a

population of N individuals, which are not inbred and not related. The proba-

bility of self-fertilization is — if there is no incompatibility system which prohibits

selfing. Since the inbreeding coefficient after selfing is |, the average inbreeding

coefficient is - . For example, if a population is built up from 1 0 individuals, the2N
average inbreeding coefficient is 0.05. It should be noted that the average in-
breeding coefficient is not reduced if the population size is larger in later gener-
ations. This is very important, since the population often is very small in early
stages of a breeding program. The stage at which the population size is the
smallest is often called a bottleneck. At this stage also the probability of losing
favourable alleles by random drift is maximum.

We now consider the average inbreeding coefficient after several generations of
random mating in a small population. We first assume that the population size is
constant N in each generation. Consider the second generation. Again the proba-

bility that genes identical by descent form a zygote is —— . For the remaining

portion the probability of being identical by descent is given by the inbreeding
coefficient of the preceding generation. For the second generation we get

and generally

Using the panmictic index Ρ = 1 — F we get
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Inbreeding may also occur if selfing is not possible. This is the situation in plant
species with a self-incompatibility system. In the first generation no inbreeding
occurs. But in the second generation for all genes not linked to the incompati-

bility loci the inbreeding coefficient is —, where N is the population size of the

first generation. Therefore self-incompatibility delays the inbreeding only by one
generation. The effect of different sexes is similar. But here the situation can be
more complicated if the ratio of males to females is not equal. We will not discuss
this point here.

If the number of individuals is not the same in subsequent generations, the
effective population size Ne must be considered. Λ^ is the harmonic mean and is
defined by

Ne is more influenced by generations with lower numbers of individuals and is
smaller than the arithmetic mean of the Nt. Therefore the inbreeding coefficient is
higher if, with the same total number of individuals, the number of individuals is
not constant over generations. This is shown in table 1.9. This also emphasizes
the importance of "bottleneck" on the genetic structure of populations sub-
sequent to a severe reduction in population size.

Table 1.9 Effective population size and inbreeding coefficient.

generation
ί

1
2
3
4

ff.

inbreeding coefficient
after generation 4

equal size
ff,

10
10
10
10

10

( ι \4
1 1 1 — I

( 2 - l o J
= 0.1855

unequal size
W,

8
3

20
9

6.46

/ 1 \4
1 1 1 1

\ 2 · 6.46 J
= .2756

The calculation of the inbreeding coefficient with the effective population size is
only an approximation. In the example above the exact inbreeding coefficient is
Fl = ̂  = 0.0625 after generation 1, F2 = % + f F^ = 0.2188 after generation 2,
*s = το + TO F2 = 0.2383 after generation 3 and F4 = -fe + j| F3 = 0.2806 after
generation 4. This is in good agreement with the inbreeding coefficient calculated
from the effective population size.
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1.3 Self-fertilizing species

In self-fertilizing species selfing is the natural reproductive mechanism. There-
fore, natural populations consist of several to many nearly homozygous lines.
Crosses between them occur, but generally at low frequencies. The exchange of
genetic material between individuals is reduced and restricted to such cross-
pollinations. The behaviour of such populations is similar to that of vegetatively
propagated species because homozygous genotypes also reproduce only identical
genotypes on selfing.

For breeding purpose the breeder builds up populations from crosses between
homozygous lines. The cross between two homozygous lines is called the F^
generation or more simply the F^ (The symbol F should not be confused with the
inbreeding coefficient of the preceding chapter 1.2.) The F^ -generation is homo-
geneous and has the highest degree of heterozygosity. For example, if we cross
the homozygous lines BBccddv/ith bbCCDD, the genotypes of the Ft are all of the
form BbCcDd. To get genetic variation, it is necessary to produce the F2 by selfing
the /i- For one locus we now have the segregation 1 BB : 2 Bb : \ bb. Therefore in
the ^-generation 50 per cent of the genotypes are heterozygous for each locus at
which the parental lines differed. The other 50 per cent are homozygous, and the
alleles are identical by descent (see page 16). Formally an ^-generation has an
inbreeding coefficient of 0.5, but in self-fertilizing species this concept is not
generally followed. In cases in which the concept of inbreeding coefficients is used
in self-fertilizing species, the ^-population is regarded as the base population
with noninbred individuals, i.e. F = 0.

Another property of the ^-generation is important. At each segregating locus
the population is in Hardy- Weinberg equilibrium. There are only two alleles with
gene frequencies of p = q = 0.5. As we will see in chapter 2, many formulae are
simplified under these conditions.

Since reproduction is by selfing, we can use the formula (1 .1) on page 21 for the
panmictic index, to get the percentage of heterozygotes in generation Ft, if we
bear in mind, that in the generation /j the panmictic index Pl = 1 :

Gene frequencies are not changed, but the number of homozygous genotypes
increases with t. Therefore the population can no longer be regarded as a popula-
tion in Hardy- Weinberg equilibrium. The true equilibrium is reached when all
genotypes are homozygous, and this equilibrium is reached slowly even for one
locus.
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Linkage

We now have to consider two linked loci. For a random mating population we
saw that the coefficient of disequilibrium is a function of the genotypic fre-
quencies in the initial population, the number of generations of random mating
and the recombination value. For unlinked loci the gametic output of the F^-
generation is in gametic phase equilibrium. For example, if we cross
BBGG χ bbgg, the /i consists only ofBbGg genotypes and produces gametes BG,
Bg, bG, and bg in equal proportions. This is no longer true, if B and G are linked.
In terms of the recombination coefficient, c, the relative frequencies are

1 — c c c , 1 — c ,
—j-BG-.-Bg-.-bG-.—j-bg.

1 — cThe ratio of parental types to exchange types is . In case of complete linkage
c

only the parental gametes BG and bg are produced.
Table 1.10 gives the relative frequencies of genotypes in F2 for several recom-

bination frequencies. We now consider later generations. The formulae for F2, F3,
F4 and Fx are given in table 1.11. Often the breeder makes a cross to combine
genes which are closely linked from two parents. If linkage is strong, homo-
zygous genotypes having the desired new combination of genes are rare as can be
seen in table 1.10. In such cases the progeny must be large enough to find at least
one recombinant. Finally, we note that in case of dominance of B over b and G
over g the gametes BG and bg are in coupling phase and the gametes Bg and bG in
repulsion phase. Homozygotes BBGG and bbgg can only produce gametes in
coupling phase and homozygotes BBgg and bbGG gametes in repulsion phase.
Heterozygotes BbGg may be the result of the union of coupling phase gametes

Table 1.10 Genotypic frequencies in F2 for various recombination frequencies (c), the
parents being BBGG and bbgg.

genotype

BBGG or bbgg

BBgg or bbGG

BbGG, Bbgg,

BBGg or bbGg

BG/bg

Bg/bG

c = 0.5

0.0625

0.0625

0.1250

0.1250

0.1250

0.2

0.16

0.01

0.08

0.32

0.02

0.1

0.2025

0.0025

0.0450

0.4050

0.0050

0

0.25

0

0

0.5

0

c

(1

c2

T
c(

(1V*

c2

2

-c)2

4

1-c)
2

-c)2
*" /

2
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BG\ (Bg\ (BG
-— I or of repulsion phase gametes -— . The two types of heterozygotes
ξ) \bG) \ bg

Bg\
and — 1 produces gametes of the coupling type and of the repulsion type in the

/
ratio of (1 — c): c and c:(\ — c) respectively. The selfed progeny or the backcross
to the bbgg genotype of the double heterozygotes are used to estimate the recom-
bination value c (see for example Bailey 1961 or Srb et al. 1965).

More than two loci

For one locus 3 genotypes are possible in F2 and subsequent selfing generations.
In Fx finally no heterozygotes exist and two types remain. Now, if we have k loci,
the number of possible genotypes in F2 simply is 3k. The breeder of line varieties is
searching for the best homozygous combination. With one locus, this best geno-

2'"1 - 1type has a probability of £ in F2, in F, and \ in F^. Therefore the proba-

bility of finding the best homozygous combination for k unlinked loci, is (£)* in
/2'-1 -A*

F2,1 —— I in F, and (j)* in F^. This chance is extremely low, even in Fx, if k is

not very small. If the breeder makes selections in several steps, he may be content,
2'"1 + 1not to lose a favourable allele. This probability is f for one locus in F2, m

Ft and again \ in F^, since in F^ there are no heterozygotes. As can be seen, this
probability is somewhat better in early generations, but also low if many loci are

Table 1.12 Probability of desired genotypes in self-fertilizing species for k loci.

k

1
2
3
4
5

10
20
50

100

k

F2
a

0.25
0.0625
1.6 -10"2

3.9-10"3

9.8 -10~ 4

9.5 -10~ 7

9.1 -10~1 3

7.9 -10~3 1

6.2 -10~6 1

W

F2
b

0.75
0.5625
0.422
0.316
0.237
0.056
3.2-10~ 3

5.7-10~7

3.2· 10~13

(!)*

F3
a

0.375
0.141
0.053
0.020
7.4 -10'3
5.5 - 10~ 5

3.0·10~9

5.0·10~2 2

2.5·10~43

(I)1

3
b

0.625
0.391
0.244
0.153
0.095
9.1 -10~ 3

8.3-10'5
6.2· ΙΟ'11

3.9-10-21

(t)*

F4
a

0.4375
0.1914
0.0837
0.0366
0.0160
2.6 - 10~ 4

6.6·10~8

i . i - io - 1 8

1.3-10-36

(^

Κ
b

0.5625
0.3164
0.1780
0.1001
0.0563
3.2- 10~3

1.0-10~ 5

3.2 -10'13

1.0 -10~ 2 5

(A)*

F~

0.5
0.25
0.125
0.0625
0.0313
9.8 -10~4

9.5 -10'7
8.9-10-16

7.9 -10~ 3 1

(tf

a: best homozygous type
b: no desired allele lost
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considered. If there is linkage between the loci, the chance for some combinations
is higher and reduced for other combinations.

Table 1.12 shows the probability, to find the desired types for k unlinked loci.
From this table it can be seen that for more than 10 loci no real chance exists of
finding the desired genotype.

Partial selfing

Some plant species like Brassica napus (rape) and Viciafaba (field beans) show
self- and cross-fertilization simultaneously. For these species there is a continous
exchange of genetic material within the population. We treat these species under
self-fertilizing species, since they are bred like self-fertilizing crops. In this case
cross-fertilization must be prevented in breeding programs. Natural populations
show behaviour more similar to cross-breeding species, and an equilibrium is
reached with homozygous and heterozygous plants. Compared with cross-
breeding species, the percentage of heterozygotes in equilibrium populations is
reduced. We consider only one locus. The equilibrium is reached only gradually.
We assume that the amount of selfing is constant over generations and is denoted
by s. The limiting values of s are 1 for self-fertilizing and 0 for cross-fertilizing
species.

On page 19 the recurrency relation for continuous selfing was given. The in-
breeding coefficient Ft can be calculated from the inbreeding coefficient /j^.
These inbreeding coefficients should not be confused with the designation for
generations after a cross of homozygous lines which are also denoted by Fin the
literature. The relation is

_ 1 .

If the proportion s is self-fertilized, this relation is

If the inbreeding coefficient of the initial population is F0, the inbreeding coeffi-
cient after t generations following Kempthorne (1957) is

From this formula it is seen, that equilibrium is approached slowly and that in the
limit as t tends to oo
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Note that the inbreeding coefficient of each generation, and therefore also at
equilibrium, depends only on the rate of self-fertilization, but not on the gene
frequencies.

If two alleles B and b with frequencies p and q are regarded, the genotypic
frequencies at equilibrium are (Wright 1921)

for BB genotypes
2-s

/ s \
2pq(i —F) = Ipq 1 — for Bb genotypes and

V 2~SJ

q2+pqF=q2+pq· 2-s for bb genotypes.

These equations show that with partial self-fertilization, the frequencies of the
two homozygous genotypes are increased by the same amount and the frequency
of the heterozygous genotypes is reduced.

The limiting values of s lead to the Hardy-Weinberg equilibrium (s = 0) or to a
ratio of p : q for BB and bb homozygotes (s = 1).

The general equilibrium for arbitrary values of s was given by Wright (1921)
and therefore sometimes is called "Wright's equilibrium law" (Li 1955). Table
1.13 gives the inbreeding coefficient and the frequency of heterozygotes at
equilibrium for various values of s and p.

Table 1.13 Inbreeding coefficient (F) and frequency of heterozygotes for various fre-
quencies of genes (p) and degrees of selfing (s).

s

0
0.2
0.5
0.8
0.9
1.0

F

0
0.11
0.33
0.67
0.82
1.00

frequency of heterozygotes

p = 0.1 p = 0.3

0.18 0.42
0.16 0.37
0.12 0.28
0.06 0.14
0.03 0.08
0 0

p = 0.5

0.50
0.44
0.33
0.17
0.09
0

1.4 Autotetraploid species

A diploid genotype contains two homologous sets of chromosomes, one from the
male parent and one from the female parent. During meiosis, gametes with one
homologous set of chromosomes are formed, and the parental chromosomes are


