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Preface

"This book is intended to serve as a guide to the student of probability theory."
That sentence stands at the beginning of the Preface to my book Probability Theory
and Elements of Measure Theory, which was published in 1972 (by Holt, Rinehart
and Winston, Inc., New York) and in 1981 in a second edition (by Academic Press
Inc., London, Ltd.). Now 23 years later a new book is appearing, bearing a new
title: Probability Theory.

The question naturally arises whether and to what extent the contents and the
aims of this new book have changed. The second part of this question is easier to
answer: The aim remains the same, to serve as a reliable guide to those studying
probabiliy theory. The answer to the first part has several components: On one
hand, the first part of the old book devoted to measure theory has been eliminated.
Actually it has been extensively re-worked and was published in German (first
edition 1990, second 1992), under the title Mass- und Integrationstheorie. An
English translation is in preparation. All this in response to a wish expressed by
many earlier readers. The part of the older book devoted to probability theory
has been extensively re-written. A new conception seemed necessary in order to
better orient the book toward contemporary developments. An introductury text
can no longer claim to bring the reader to the absolute frontiers of research. The
pace of the latter in probability theory has been far too rapid in the last two
decades. A book like this must, however, open up for the reader the possibility of
progressing further with minimal strain into the specialized literature. I kept this
requirement constantly in mind while writing the book. The idea of a guide is also
to be understood in this sense: The reader should be led to hike through basic
terrain along well-secured paths, now and then even scrambling up to a particular
prominence in order to get an overview of a region. After this he should be
prepared to forge ahead into less-developed parts of the terrain, if need be with
special guides or, if research drives him, to penetrate into wholly new territory on
his own.

Among the most significant features of the book, a few should be emphasized
here: Commensurate with its importance, martingale theory is gone into quite
early and deeply. The law of the iterated logarithm is proved in a form which
goes back to V. Strassen; this considerably sharpens the classical theorem of
Ph. Hartman and A. Wintner. Two long chapters are devoted to the theory of
stochastic processes. In particular, Brownian motion - nowadays a fundamental
mathematical concept - and the Ornstein-Uhlenbeck process are discussed in great
detail. Also the style of exposition has changed: Some redundency was consciously
built in here and there. The decisive determinant of the value of a textbook is,
however, the reliability and precision of what it promulgates. Reliability includes
the demand that the text must be self-contained in the sense that proofs always
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be complete: The reader must not be referred to exercises in order to reduce the
length of a proof. So the only prerequisite for reading this book is a sufficient
knowledge of measure and integration theory. Any standard textbook devoted to
this subject will provide the reader with the necessary background and details.

This book is much more than a pure translation of the German original
(cf. BAUER [1991] in the Bibliography). It is in fact a revised and improved
version of that book. A translator, in the strict sense of the word, could never do
this job. This explains why I have to express my deep gratitude to my very special
translator, to my American colleague Professor Robert B. Burckel from Kansas
State University. He had gotten to know my book by reading its very first German
edition. I owe our friendship to his early interest in it. He expended great energy,
especially on this new book, using his extensive acquaintance with the literature
to make many knowledgeable suggestions, pressing for greater clarity and giving
intensive support in bringing this enterprise to a good conclusion.

I thank Dr. Oldfich Ulrych from Charles University, Prague, for his skill and
patience in preparing the book manuscript in TgX for final processing. My family
deserves thanks for their sacrifices, understanding and consideration. Finally,
I thank my publisher Walter de Gruyter & Co. and, above all, Dr. Manfred Karbe
for publishing my book both in English and in German.

Erlangen, May 1995 Heinz Bauer
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Interdependence of chapters

II

VI VI
(without §28)

VII
\

\

VIII -*

IX

The sequence I-III, V-VII corresponds to a more classically oriented treatment
of the theme "limit behavior of sums of independent random variables".

The dotted-line path from IV indicates that direct access from there to the
theory of stochastic processes in chapter VIII (say, up to §43) is possible.

The dotted line from VII indicates that a knowledge of §31 (up to and including
Theorem 31.1) from this chapter suffices for chapter IX.
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Introduction

Even chance is not unfathomable;
it has its regularity.

(NOVALIS, Fragmente}

Probability theory owes its existence to the desire to gain mathematical insights
into processes governed by chance, and in particular to discover and investigate
any laws at work in such processes. Thus the task of developing mathematical
models for the study of experiments involving chance stands at the very beginning
of the development of probability itself. Originally the primary interest was
in the chance mechanisms in gambling games. The search for mathematical
models and methods that would permit deeper insights into the ambient space
we inhabit stands at the very beginning of the development of geometry. The
question of a better understanding of the course of games of chance played a role
in the history of probability analogous to that played by questions about land
measurement in geometry. Geometry has long since abandoned the restricted
line of development suggested by this initial problem and with more sophisticated
concepts and methods — for example, differential geometric, algebraic-geometric,
and topological — turned to new kinds of question. However, probability
theory did not go through a corresponding metamorphosis until more recent
times. In fact, as a mathematical theory whose concepts and construction
satisfy the usual demands of rigor, it did not even exist before 1933, when
A.N. Kolmogorov anchored it in analysis by using a general notion of measure
and a theory of integration built on it. Since that time, it has not just gone
beyond the original task of modelling chance phenomena. More importantly, in
the course of its development, especially in recent years, it has erected bridges
to other mathematical disciplines in which originally no connection to probability
whatsoever was discernible. Among such disciplines, besides number theory and
ergodic theory which came rather early into the scope of probability theory, are
the theory of partial differential equations and differential geometry. Surprisingly,
confirmation of old results, but above all new points of view and insights, are
gained which, though formulatable without any knowledge of probability theory,
are not always provable, much less fully transparent, without it.

In view of this multifaceted development, the challenge of writing a quite new
book on probability theory is especially attractive. One must not neglect the
classical repertory, but at the same time new developments must be given their
due. The author tried to keep this obligation in mind.

This book presupposes a basic knowledge of measure and integration theory,
as is to be found in many standard textbooks. How this is deployed in probability
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theory is presented in the first chapter. The concepts of probability space, event,
random variable, expected value, variance and distribution are the main features
there. In particular, the reader will get some feeling for the intuition-enhancing
special jargon of probability theory. The second chapter treats the concept of
(stochastic) independence, which gives the theory its distinctive characteristic and
raises it above the plane of general measure and integration theory.

The power of these ideas is first demonstrated in chapter III in studying the
Law of Large Numbers. The form of this law discovered by N. Etemadi will be
proved. One of its applications which is basic to the further developments concerns
the limiting behavior of sums Sn = Χι + ... + Xn, in which X\, X-z,... is an
independent sequence of identically distributed, integrable, real random variables.
The Zero-One Laws of Borel, Kolmogorov, and Hewitt-Savage find a natural place
in this chapter. Closely linked to this is the extensive chapter IV on martingales,
which simultaneously accomplishes several tasks within our overall program: It
makes available the concept of conditional expectation and that of a martingale,
which is so indepensable to the modern theory. Among the many topics where it
finds application, mention should be made of the Strong Law of Large Numbers
and the whole broad area of stochastic processes. The investigation of the limiting
behavior of sums Sn begun in chapter III is then continued in chapters V-VII,
chapter V being devoted to preparing the necessary tools from Fourier analysis.
This chapter also presupposes some knowledge of measure theory in Polish and
in locally compact spaces. The Fourier-transform technique is brought fully to
bear on the Central Limit Theorem in chapter VI, the last section of which is
devoted to the Gauss measures and normal distributions in higher dimensional
euclidean spaces. Chapter VII concludes the study of the sums Sn: Using ideas
of A. deAcosta the Law of the Iterated Logarithm in V. Strassen's formulation is
proved.

The vast and particularly current theme of stochastic processes (which, as
already mentioned, is anticipated in chapter IV) gets treated in the last two
chapters (VIII and IX). Chapter VIII deals with the construction of processes
having pre-assigned finite-dimensional distributions and with the question of
realizing these processes subject to certain requirements on their paths. Two
extensive and important classes of processes are studied: Markov and Gauss
processes. Special attention is given to Brownian motion as a stochastic process,
the related Ornstein-Uhlenbeck process, and the Poisson process.

The last chapter, IX, is almost exclusively devoted to a deeper study of
Brownian motion. First, the various connections with martingale theory are
brought to the fore and the behavior of Brownian paths investigated. Then
examples of stochastic integrals are discussed in order to get Brownian motion
into the role of a stochastic "integrator" and to be able to discuss the Ornstein-
Uhlenbeck process at the end. Finally, the strong Markov property of Brownian
motion is treated and its significance illustrated with numerous examples of its
applicability. In the course of this, partial differential equations enter the picture
for the first time, notably the Laplace and the heat equation. The reader is perforce
led into the questions of Stochastic Analysis. These and other questions will be
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investigated just deeply enough to show the reader the newer directions of research
and stimulate him to further study.

The exposition is accompanied with many examples. Their job is to make the
principal results more understandable to the reader and to demarcate them from
questions leading farther afield. The many exercises that accompany the text are
designed to deepen it, as well as to provide the reader with the means of testing
his understanding and assessing his prowess.

The book easily contains enough material for a two-semester, four-hour-per-
week course. But it can be worked through in different ways, some of which are
indicated in the schematic on page x.

In conclusion, a few words about the background in measure and integration
theory expected of the reader. First of all, this comprises general measure theory
and the integral built from it, including product measures (but only involving
finitely many factors). In studying martingales some knowledge of equi-integrable
sequences of functions will be supposed. The regularity properties of Borel
measures come to the fore in chapter V and later in chapter VIII. From chapter V
onward a few (but critical) uses of compactness properties of the weak topology
are made. To make things a little easier for the reader, specific references (at
first frequent but later only occasional) are given to the author's book Mass-
und Integrationstheorie (= BAUER [1990] in the bibliography). These will be
encoded by the letters MI, for example, in the form MI, Theorem 21.4· Moreover
the notation used in MI will be employed here; the most important of these are
assembled in the notation index on page xi.





Chapter I

Basic Concepts of the Theory

The goal of probability theory is to provide methods of describing and analyzing
experiments with random outcomes. In particular, mathematical models for an
adequate study of such experiments involving chance have to be developed. In
such experiments we are interested in the observation of "events" or "random
magnitudes", as well as the calculation of the "probability" with which such events
occur, or the "expected values" of such magnitudes. Consequently, the first job of
the theory is to find an appropriate framework in which to define and study these
concepts.

The principal goal of this chapter is to set up these and other basic ideas of
the theory. The notion of a probability space and the associated measure and
integration theory prove to be fundamental for this undertaking.

§1. Probability spaces and the language of probability
theory

1. First of all we'll be concerned with a throw in a dice game. The events to
be studied are, at the most primitive level, those which are colloquially described
as "a k was thrown" (k = 1,2, . . . , 6 ) . These events — they'll later be called
elementary events — correspond in a one-to-one manner with the natural numbers
1, 2 , . . . , 6 used to name them. But more complicated events are also of interest:
the number thrown is even, or it is odd, or it is not a 1. Obviously these events can
be identified with sets formed from the numbers 1,2, . . . , 6; namely with {2, 4,6},
{1,3,5} and (2,3,4,5,6}, respectively. In this way these events appear as subsets
of the set Ω := (1, 2, 3, 4, 5,6}. Any outcome whatsoever of this experiment can be
described via the relevant numbers thrown as a subset of Ω; and conversely, every
subset of Ω can be interpreted as such an event. Among the subsets of Ω are, in
particular, the empty set 0 and the set Ω itself; they represent the impossible event
(no number at all is showing after the throw) and the certain event (at least one of
the numbers 1, 2 , . . . , 6 is showing). In this way the set of all events or outcomes
is identified with the power set «^(Ω) of Ω.

This identification has a noteworthy property. If A and Β are subsets of Ω,
that is, events, then it is intuitively clear what we are to understand by "A or Β",
"A and Β", and "not A". By means of the identification described above these
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events will be represented by the sets A U B, A n B and CA, respectively. We can
then speak of the algebra, even the σ-algebra ^"(Ω) of events.

In our dice game we further speak of the probability of the event Ε or the
probability of the occurrence of the event E. This probability is a real number
P(E) assigned to E. There is thus a function

on hand. If η throws are made in succession, the event E will occur in, say,
k of them and in the other n — k of them the event "not E"= E will occur. It
is "practically" certain that the quotient k/n, which measures the frequency of
occurrence of the event E, will deviate from \E\ / |Ω| by less than any prescribed
ε > 0 if η is sufficiently large. Here \E\ denotes the number of elements in the set
E C Ω. This fact of life, known as the "law of large numbers", leads us to regard
the quotient \E\ / |Ω| as the probability of the event E, that is, leads us to define

(1.1) P(E] := ||| (E 6 <?(«)).

Prom (1.1) the following properties of the function Ρ are immediate: Ρ > 0,
P(0) = Ο, Ρ(Ω) - 1, P(E) € [0, 1] and P(E U F) = P(E) + P(F) for two
"incompatible" or "disjoint" events E and F, that is, events E and F with
Ε Π F = 0, whose simultaneous occurrence is impossible. Thus P is a content
and, on account of the finiteness of Ω, even a measure on «^(Ω), with the
"normalization" Ρ(Ω) = 1. Evidently, Ρ is the only measure on ^(Ω) which
is so normalized and for which the "elementary events" {fc}, k = 1,2,. . . ,6, are
all "equi-probable" , that is, for which

This requirement of equal probability for the elementary events corresponds to the
demand that the die be "fair" , not "loaded" .

2. Had we discussed, instead of this experiment, another, say the tossing of
a coin or three consecutive throws of the die, we would have formally reached the
same end. In the first of these cases, Ω would be the set {Η, Τ} consisting of the two
(distinct) symbols Η (for "head") and Γ (for "tail"). In the second case Ω would
comprise all ordered triples (^1,^2,^3) from among the numbers 1,2, . . . ,6. In
both cases «^(Ω) is identified as the set of all events and the relevant probabilities
are given via (1.1) as measures on «^(Ω) with the normalization Ρ(Ω) = 1.

In the examples considered up 'til now Ω was always a finite set and all subsets
were interpreted as events. The next example will show that it can be otherwise
when infinite Ω are involved.

3. A gun is being fired on a target range. Despite any possible preliminary
practice, the point struck by the bullet can be regarded as random. Too many
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hard-to-account-for factors influence it; for example, unsureness in the eye and
hand of the shooter, mechanical malfunctions (or just minute irregularities) in
the gun, air currents along the firing range, etc. The events in which we are
interested are then of the following kind: The hit occurs in a prescribed subset E
of the target, for example, in one of the twelve rings of a bullseye. This example
already clearly shows how events can be identified in a very natural way with
subsets E of Ω. The probability P(E) of such an event E can be taken to be
approximately proportional to the two-dimensional Lebesgue measure X2(E) of E;
thus we define

(1.2)

In doing this we must, of course, require that E be a Borel subset (or at least
a Lebesgue me.asurable subset) of Ω. Nevertheless, the structure of (1.2) is
analogous to that of (1.1).

Whereas until now we were inclined to interpret all subsets of Ω as events,
here the limited scope of the Lebesgue-Borel measure forces us to regard only
certain subsets (that is, hits in such subsets) as events, namely the Borel subsets
of Ω. This proves to be completely adequate for practical needs. It is of
paramount importance that despite differences from the earlier examples, we have
here formally the same situation: The set J/ of these (Borel) events is, just like
<^(Ω), a σ-algebra in Ω, the σ-algebra of all Borel subsets of Ω. It appears here
in the form of the trace on Ω of the σ-algebra ^2 of all Borel subsets of R2,
that is, in the notation introduced in MI, (1.4), J/ — Ω Π«^?2. The function Ρ
defined via (1.2) is again a measure on this σ-algebra, satisfying the normalization
Ρ(Ω) = 1. Once again we encounter a measure space (Ω,Λ/, Ρ) with the same
normalization on P.

In the axiomatic founding of geometry, algebra, topology and other areas
of mathematics concepts like point and straight line, number, neighborhood,
etc. are not defined intrinsically. Similarly it has turned out that for the
construction of a theory of probability intrinsic definitions of concepts like "event"
and "probability" are not necessary, and in fact, to avoid logical difficulties and
to give the theory the broadest and easiest applicability, such definitions are
not worth attempting. Just as in the other areas of mathematics mentioned,
in probability theory everything comes down to the formal properties of the
concepts. We owe to the Russian mathematician A.N. KOLMOGOROV (1903-
1987) — cf. KOLMOGOROV [1933] — the idea that normalized measure spaces can
serve for the construction of a theory of probability which meets all the customary
demands of rigor in mathematics. Lebesgue 's original investigations of the measure
and integration concepts were purely geometrically motivated and geometric ideas
were in the foreground during their development. It was E. BOREL (1871-1956)
who first demonstrated the utility of this theory for solving probabilistic problems,
in connection with the law of large numbers: In BOREL [1909] the connection
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between probability and the countable additivity of measures is made for the
first time. Kolmogorov's vision of founding probability theory on the concept of
a normalized measure space has become the accepted orthodoxy.

The basic context for denning probability-theoretic concepts is therefore always
a (generally arbitrary, given) normalized measure space. It is frequently designated
(Ω, J/, P), where Ω is a set, j/ a σ-algebra in Ω and Ρ a measure on stf normalized
by Ρ(Ω) = 1. Every measure normalized in this way is called a probability measure.
Every measure space involving such a probability measure is called a probability
space. These concepts come up as early as §6 in MI. Because measures are
increasing functions, all probability measures satisfy

(1.3) 0 < P(A) < 1 (A e J/).

The elements of the σ-algebra S/ are called events. By means of Ρ a number
P(A) is assigned to every event A e J/; it is called the probability of A, or of
the occurrence of the event A. The points ω Ε Ω are called elementary events.
An arbitrary set of such elementary events, that is, an arbitrary subset of Ω is
occasionally interpreted as a "theoretically possible event". When this is done, the
events encompassed by J/ are correspondingly interpreted as "observable events".
At this point the "scope problem" of measure theory obtrudes upon us; this is the
problem, discussed at the end of §8 in MI, of the size and invariance properties of
the σ-algebra J/.

It should be mentioned that in most concrete examples of probability spaces
(Ω, J/, P) the singleton sets {ω}, ω e Ω, are all indeed events in the σ-algebra s/.
This property is, however, not part of the definition of a probability space and is
not a consequence of it, as the reader can confirm with easy examples.

While the general concepts and theorems of probability theory deal with
an arbitrary probability space (Ω,Λ/, Ρ) — the "steering mechanism" of the
probabilistic evolution — the treatment of any concrete problem of probability
theory requires the choice of an explicit probability space. In the course of further
developments we will repeatedly have to select probability spaces particularly
suited to the problem at hand. An important example, basic for what follows,
will now be discussed.

4. We consider a finite number η of experiments with random outcomes. Let
the probability space (Ω*, j/j, Pi) serve as the mathematical description of the iih

experiment ^, i = 1, 2 , . . . , n. We are interested in a new random experiment ^
which consists of carrying out the experiments ^Ί, . . . , ^n one after another, or
simultaneously but "without mutual influence". (For example, we could have
^i = . . . = ton and each ^ be the throwing of a fair die. Then the experiment I?
consists of η consecutive throws of one die or, what amounts to the same thing, one
throw of η identical dice. We have considered the case η = 3 of this example in 2.)
The random outcomes of the experiment <g can then be represented by points in
the product set ΩΙ χ . . . χ Ωη, that is, by η-tuples ( u > i , . . . , ωη) of u>j € Ω^. If now
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AI € S/i for i = 1, . . . , n, we may be interested in the experiment %? whether the
sequence of events AI, A^, . . . , An occurs. One is then interested in that event in
the experiment ^ which is represented by the subset A\ χ . . . χ An of ΩΙ χ . . . χ Ωη .
As no mutual influence is supposed to prevail among these events, one is inclined to
regard the product PI (A\ ) · . . . · Pn (An ) as the probability of the event ΑΙ χ . . . χ Αη .
Now the products A\ χ . . . χ Αη with Ai running through J^ generate precisely
the product σ-algebra

Λ*ί®·· .®Χι

and according to Theorem 23.9 of MI the product measure PI ® . . . <8> Pn is the
only measure Ρ which satisfies

for arbitrary Ai £ J/i. It is obvious that Ρ is a probability measure and that
consequently

t=l

is a probability space adequate to the description of the experiment %?. For finite
sets Ω; and for J/i :- «^(Ωί) one obviously gets J/i <g> . . . ® J/n = «^(Ωι χ ... χ Ωη).
And in the case of η throws of a die we come back to the probability space which
was introduced a priori in 2 for η — 3.

The intuition behind the idea of an "event" has led to the introduction of
special notations and locutions to supplement the purely set-theoretic ones. If
(Ω,^, Ρ) is a probability space, then

0 and Ω

are also called the impossible event and the sure event. Correspondingly, events Ε
with

P(E)=0 or P(E) = 1

are called, respectively, almost impossible or almost sure (almost certain). Instead
of (P-)almost everywhere, one says (P-} almost surely or with probability one. In
turn, these are abbreviated to (P-)a.s. or with prob. l.

One says that the event E implies or entails the event F in case

ECF.

The events E and F are called disjoint or incompatible when

The events
E\JF, Er\F,
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are described by saying "at least one of the events Ε and F occurs" , "E and F
both occur", "E occurs but F doesn't". If (£'n)neN is a sequence of events, then

\jEn, Π En
neN neN

are referred to as the event that "some En occurs" , respectively, "£"n occurs for
every n".

Finally we set

(1.4) {En for almost all n} := liminf Enn— too

(where "almost all" means "with at most finitely many exceptions", equivalently
"for all sufficiently large") and

(1.5) {En for infinitely many n} := lim sup En
n— too

or in shorter form

(1.5') {En i.o.} := {En for infinitely many n} .

Here i.o. means "infinitely often" . Correspondingly for probabilities we have

P{En for some n} = P(\J En)
neN

P{En for all η} = Ρ( f| £„)
neN

P{En for almost all n} = P(liminf En)

in which the round parentheses in expressions like P({. . .}) are routinely dispensed
with.

These and other self-evident notations will be employed whenever the situation
warrants. They have the advantage of letting us formulate probabilistic assertions
in particularly suggestive ways.

§2. Laplace experiments and conditional probabilities

The preceding discussion will now be illustrated with some examples. These typify
the kinds of questions asked in elementary probability theory and they also come
up in many practical problems. All of them have to do, directly or indirectly,
with Laplace experiments. These are random experiments with only finitely many
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possible outcomes, each equally likely. The associated mathematical model is
a probability space (Ω, J/, P) in which Ω has Ν 6 Ν elements, J/ = ^(Ω) and Ρ is
the unique measure satisfying Ρ({ω}} = Ν~λ for every ω € Ω. This probability
space (which is uniquely determined save for the meaning of the points of Ω) is
called the Laplace probability space of order N. Calculation of the probability
of an event Ε involves combinatorial considerations. The point of departure
is formula (1.1), according to which P(E) is the ratio of the "number of cases
favorable to E" to the "number Ν of possible cases".

1. An urn contains η balls of identical size and texture, of two colors, black and
white, and well-mixed; say, b black and w white balls (b + w = n). A certain
number m < n of balls are randomly withdrawn and we ask about the probability
that exactly k < b of them are black. Two scenarios have to be distinguished:

(a) Drawing without replacement. The m balls are withdrawn one after the
other and left outside the urn. If we index the balls with the natural numbers 1
through n, then Ω consists of all sequences ( α ϊ , . . . ,am) of m distinct numbers
from {1,..., n} and so it contains

N := n(n - 1) · . . . · (n - m + 1)

elements. Under the hypothesis that we are dealing with a Laplace experiment,
that is, (Ω,ιί/, Ρ) is the Laplace probability space of order JV, we obtain the
solution as follows. The event Ε being studied consists of all sequences (a\,..., am)
of the kind described in which black balls are indexed by exactly k of the
numbers ο χ , . . . ,am. We can associate k distinct numbers in (™) ways with the
available indices 1,... , m. k black balls can be drawn one at a time in exactly
b(b — ! ) · . . . · ( & — fc + 1) different ways. The remaining m — k indices can be
associated in w(w — 1) ·... · (w — m + k + 1) further ways with numbers on white
balls. The probability sought is therefore

AW w
m\b(b-l}-...-(b-k + l)w(w - 1) · . . . · (w - m + k + 1) \kj\m-k
k J n(n — 1) · ... · (n — m + 1) f n

m

This formula is actually valid for arbitrary k < m, since for A; > s it delivers the
probability 0.

We can also interpret the problem as follows: The m balls are not drawn
successively from the urn, but are taken in one draw. Then there are obviously
(m) possible and (fe) (m*u.fe) favorable cases. We then arrive at the same probability.

Scenario (a) is also encountered, in a different form, in the following practical
problem. Instead of an urn with balls, suppose we are discussing a day's production
of a mass-produced article. We translate "black" as "defective" and "white"' as
"non-defective". Then we have just computed the probability that in a random
sample of size m from the day's production we find exactly k defectives. Of
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course, this involves the number b of all defectives, which is in general unknown.
Eliminating the unknown b involves the kind of problems studied in mathematical
statistics.

(b) Drawing with replacement. Every ball drawn is immediately returned to
the urn; after another mixing of the contents of the urn, the next ball is drawn
at random. Here we obviously have the situation described under 4 in §1: The
Laplace experiment "draw one ball" is repeated m times without mutual influence.
The single experiment is described by the Laplace probability space (Ωο,Χι,Ρο)
of order n, the combined experiment by the product (Ω,Λ/, Ρ) of m copies of
(Ωο,.#ο,Ρο)· Then (fi,J/, P) is the Laplace probability space of order nm. If
ΑΪ denotes the event that the ith draw is a black ball, then

p:=P0(AJ = - andη
The event -A^...^ e J/ of drawing a black ball on the i|*,. . . ,ij.h draws
(1 < i\ < . . . < ik < m) and a white one on the remaining m — k draws is the
product B\ χ ... χ Bn, where Biv := Aiv (v = 1, . . . , A;) and Bj := CA, for the
remaining indices j. Consequently,

P(Ail..,k)=pk(l-P)m-k

and on account of the additivity of Ρ

is the desired probability.
2. Each of m persons chooses a natural number from the set {1, . . . , n}, at random
and without knowledge of what anyone else does (with the same given n for all
people). After all of them have made their choices, the results are reported. What
is the probability that m different numbers were chosen?

The situation can obviously (always under the hypothesis that this is a Laplace
experiment) also be described as follows: There are n balls in an urn, m balls are
chosen at random with replacement. What is the probability that m different balls
will be drawn? Since there are obviously

n(n — 1) · . . . · (n — m + 1)

favorable cases, the answer is

n(n — 1) · . . . · (n — m + 1)
nm

3. Two cards are chosen successively, without replacement, from a well-shuffled
deck of 52 cards. What is the probability that (a) the second card drawn is an
ace, (b) the second card is an ace if the first draw already turned up an ace?
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To answer (a) we naturally use the Laplace probability space (Ω,Λ/, Ρ) of
order 51 · 52. The number of cases favorable to the described event is 4 · 51. Thus
the probability sought is 1/13. In case (b) we can use the Laplace probability

4 - 3 1space of order 4-51 and compute the probability sought as = —. Although
the same experiment was performed, we are using different probability spaces to
answer the two questions. This seems impractical and leads us to the following
method of solution using the same probability space: Let A e stf be the event
whose probability was sought in (a) and let Β 6 J/ be the event that the first
draw yields an ace. The answer to (b) then goes as follows: P(B] is the number of
possible cases and P(A Π Β) is the number of cases favorable to the desired event;
hence

P(A Π B)
P(B)

is the probability sought.
More generally, we have the following situation: Suppose we are given an

arbitrary probability space (Q,J/, P) and an event B e J/ with P(B) > 0. Then
obviously

is again a probability measure PB on J/. We have PB(B) = 1 even though P(B)
is generally not equal to 1. In the passage from P to PB, B has become an event
of probability 1. Accordingly, for every A e J/ we call Pe(A) the conditional
probability of A given B, or under the hypothesis B, and we write P(A\B) for
PB(A); that is, we define

(2.1) P(A\B) := P(B) ·

Thus in the preceding problem (b) we were dealing with the computation of
a conditional probability.

Equation (2.1) can be generalized immediately. Suppose we are given a (possi-
bly finite) sequence (Bn)nei (where either /={!,..., no} with no G N, or / = N)
of pairwise disjoint events Bn € J/ with P(Bn) > 0 for all n and Ω = \J Bn. Since
A = \J(A Π Bn), it then follows from the σ-additivity of Ρ that

P(A] = Σ P(A ΓΊ Bn)
ng/

and hence with the help of (2.1)

(2.2) P(A) = Ε P(Bn)P(A\Bn) (A e

This is the formula of total probability. For P(A) > 0 we have

P(Bn)P(A\Bn)

ig/
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since P(Bn\A) = P(A Π Bn) (P(A))~l. This is the Bayes formula, named after
TH. BAYES (1702-1761). The usefulness of both formulas is illustrated by the
following example:

4. Suppose we are given Ν + 1 urns C/o, · · ·, UN. In each urn Un there are Ν
identically-shaped balls, well mixed; n of them are black and Ν — η are white
(n = 0 , . . . , N). Suppose we choose an urn at random and draw one ball from it.
What is the probability that we draw a black ball?

Let Bn be the event that the ball was drawn from the nth urn and A the event
that a black ball was chosen. Under the assumption that all urns are equally
probable, we have

P(Bn) = (N + l)-1 and P(A\Bn) = ̂ .

Then by (2.2)

We ask further: Assume that a black ball was drawn. What is the probability that
it was drawn from the nth urn? The answer is given by (2.3):

P(Bn\A) = N(N + 1) '

As expected, this probability increases proportionally with n.
Since we are obviously dealing with a Laplace experiment, the usual combina-

torial considerations would also have led to the same results. But formulas (2.2)
and (2.3) make our work easier. If we now imagine a random mechanism by
which we choose the urn Un with probability an > Ο (αο + . . . + ΛΝ — 1), then
we have a Laplace experiment only if, as before, the an are all equal. Never-
theless, (2.2) and (2.3) lead to answers: We now have P(Bn) = an and again
P(A\Bn} = n/N. Thus if we introduce

Μ := αϊ + 2ct2 + . . . + N<XN ,

we obtain
and

We have a Laplace experiment here only after having chosen an urn. We therefore
speak of a relay- experiment.

The detailed specification of the probability space used is also very instructive.
It is based on the following general considerations: Let Ω be an arbitrary non-
empty set and (Ωί)ί=ι,.··,"ΐ a partition of Ω into pairwise disjoint sets Ω* ^ 0.
Suppose each of those sets is the carrier of a probability space (Ωί,^,Ρί). The
system J/ of all sets A C Ω with Α Π ΩΙ e J/i for every i = 1, . . . , m is a σ-algebra
in Ω consisting of all sets A\ U ... U Am with A^ £ ̂ . (Ω, J/) is called the direct
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sum of the measurable spaces (Ωί,^). Furthermore, if ai , . . . ,am are positive
real numbers which satisfy a\ + . . . + am = 1, then on account of (2.2)

m
Λ ̂  Σ onPi(A η Ωί)

t=l

is the only probability measure Ρ on S/ satisfying P(f2j) = oti and
— Pi(A Π Ω») for every i = 1, . . . , m.

In our example, m = N + 1, every (Ωί; j/j, Pj) is a Laplace probability space
of order Ν with pairwise disjoint sets Ωί, and Ω = υΩι. The probability space
(Ω, J/, P) just constructed is then the mathematical model of the relay-experiment
described earlier.

Exercises

1. A die is tossed η times. What is the probability that exactly at the nth toss a 4 is thrown for
the fcth time (1 < A: < n)?
2. Suppose we are given three urns U\, Uz, Us which contain, well mixed, identically-shaped
balls, each either black, white or red. Assume that

U\ contains 2 black, 3 white, 5 red balls,
t/2 contains 4 black, 2 white, 4 red balls,
i/3 contains 2 black, 5 white, 3 red balls.

(a) What is the probability of drawing from U\ without replacement first a black, then a black,
and then a red ball?
(b) What is the probability PI, (or Pw, or Pr) of drawing, after choosing at random one of the
urns, a black (or white, or red) ball? Why is PI, + Pw + Pr = 1?
(c) What is the probability of drawing, after choosing at random one of the urns, 4 black balls
successively without replacement? What is the probability that these 4 black balls come from
urn f/2?
3. How great is the probability that 10 persons chosen at random have their birthdays in different
months?
4. In an urn there are, well mixed, identically-shaped balls of r different colors; namely, ki > 0
balls of color Ci (i = 1, . . . ,r). Suppose that n balls are taken in one draw (1 <n<ki+... + kr).
What is the probability of obtaining exactly ni balls of color Ci (n* >0, n\ + . . . + nr = n)?
5. In an urn there are b> I black and w > 1 white balls, well mixed. We draw balls successively
without replacement. What is the probability that in d draws at least fc (< b) black balls are
obtained? (Here d € {1, . . . , b + w}.)
6. (Polya's urn model) In an urn there are b > 1 black and w > 1 white balls, well mixed. A ball
is drawn at random. It is replaced and, moreover, t balls of the color drawn are added. The next
ball is drawn at random and the above procedure is repeated. Define N := b + w, and let n be
a natural number. Prove: The probability that in n draws k black and n — k white balls appear
(0 < k < n) equals

ο- N(N + i) . . . . . (JV + [n -

Is the situation described in l(b) a special case of this?
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§3. Random variables:
Distribution, expected value, variance,
Jensen's inequality

In an experiment with random outcomes, we are often interested not only in
the random outcome itself, but also in numbers and more general mathematical
quantities determined by the random outcome of the experiment. Such quantities
are called random quantities or random variables.

We might think, say, of the sum of the spots on three throws of a die or
the distance of a hit from the center of a target in shooting. If (Ω,Λ/, Ρ) is
the probability space constructed in §1 for the mathematical description of those
experiments, then with every elementary event ω G Ω we associate a real number
Λ" (ω); in this case the sum of spots on the die or the distance of a hit from the
bullseye. In both examples it is evident that we are dealing with an J/-measurable
mapping X : Ω — > R. Because of this measurability, the inverse image X~l(B) is
an event for every Borel set B C R. And then P(X~1(B)) is interpreted as the
probability that X takes a value in B.

Motivated by these and similar examples, we define

3.1 Definition. Let (Ω,Λ/, Ρ) be a probability space and (Ω',Λ/') a measurable
space. Then every J/-J/'-measurable mapping X : Ω — >· Ω' is called a random
vanable (with values in Ω') or a (ft',Jtf"}-random variable.

In the cases (Ω'Χ') is (K,^1) or (R, j ) or (Rd,^d), we also speak of real
or numerical or d- dimensional (or Rd- valued) random variables. For every event
A e J/, the indicator function IA is a real random variable. It is called the
indicator variable of A. Instead of elementary functions, in probability theory we
speak of elementary random variables. These are thus those of the form

x= fxu
i=l

with η 6 N, events Ai 6 $£ and coefficients a* € R+. If coefficients «i 6 R are
allowed, then we speak of simple random variables.

A mapping X : Ω — > Rd is — e.g., according to Remark 2 in §22 of MI —
a d- dimensional random variable if and only if each of its components is a real
random variable. Random variables are customarily denoted by capital Latin
letters, frequently Α", Υ, Ζ. In what follows, when we deal with events or random
variables, we will always mean events or random variables from or on the same
probability space (Ω,Λ/, Ρ).

We return to the general case of an ^',j/')-random variable X. In analogy
with the customary notation of integration theory (cf. MI, §9) and with a view to
the intuitive interpretation given in the introduction, we set (for A' € J/')

(3.1)
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and, after dispensing with some parentheses,

(3.2) P{X G A'} := P(X~l ( A ' ) ) .

We call {Χ Ε A'} the event "X lies in A'" and P{X e A'} the probability of
this event.

The mapping A'»-» P{X e A1} is nothing other than the image measure X(P)
of P under X (cf. MI, §7). Since P{X € Ω'} = Ρ(Ω) = 1, it is a probability
measure on &?'.

3.2 Definition. Let X be a (Q',J/')-random variable on a probability space
(O,J/, P). Then the image measure X(P) is called the distribution (or the
probability law) of X (with respect to the probability measure P). We use both
the symbols dist(X) and Ρ χ for it; that is, we set

(3.3) dist(X) := Ρχ := X(P).

Should it be necessary to stress the role of P, we also write

(3.3') P-dist(J>0:=Px.

Thus the equality

(3.4) PX(A'} = P{X e A'} (A' 6 j*")

holds as a matter of definition.

The probabilities P{X e A'} can consequently be computed by means of the
distribution Ρχ. For this one does not need to know explicitly — and this is
of special importance for the applications — the generally rather complicated
probability space (Ω,Λ/, Ρ) steering the random phenomena. Accordingly those
concepts and properties of random variables which can be formulated in terms
of their distributions play the most prominent role in probability theory. Such
concepts and properties are occasionally called probability-theoretic concepts or
properties.

The expected value of a real or numerical random variable X, to be defined now,
is such a concept. Intuitively, to every elementary event ω Ε Ω corresponds the
chance-determined value X(uj) of X. It's in the nature of experiments with random
outcomes that the question of the "mean" or "expected" value of X should come
up. Since Ρ(Ω) — 1, the integral / X dP, whenever it exists, is a good candidate
for this job.

3.3 Definition. Let X be a numerical random variable on a probability space
(Ω, Χ P). If either X > 0 or X is P-integrable, we call

(3.5) E(X) := EP(X) := / X dP

the expected value of X.
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The properties of the expected value are, thus, those of the integral. In
particular, the condition

E(\X\) < +00
is equivalent to the integrability of the numerical random variable X (cf. MI,
Theorem 12.2), and for integrable X

(3.6) \E(X)\<E(\X\).

Definition (3.5) still makes sense if X is only quasi-integrable, that is, if only
one of E(X+) and E(X~] is finite (cf. the Remark in §12 of MI). To indicate this
state of affairs succinctly we say the expected value E(X) exists. However, this
extended version of Definition 3.3 will be needed only very seldom in the sequel.

We restrict ourselves in the further discussion to a real random variable X.
The distribution Ρχ is a probability measure on &tl. A general transformation
theorem for image measures (cf. MI, §19) gives

(3.7) E ( f o X } = fdPx,

also written as

(3.7') EP(f ο X) = EP

for every Borel measurable real function / on R which is either non-negative or
Ρχ-integrable.

Thus if either X > 0 or X is integrable, and we take for / the function χ ι— > χ
on R, we get

(3.8) E(X} = JxPx(dx),

thereby recognizing that E(X) is a probability-theoretic concept, that is, that it
really depends only on the distribution. Likewise for the integrability of X: it is
equivalent to the Ρχ -integrability of the function χ ι— >· χ on R.

We shall now reformulate the foregoing in a way that will prove particularly
useful later.

3.4 Theorem. Every real random variable X satisfies

(3.9) Σ Ρ{|*1 > n} < E(\X\) < 1 + Σ P{\X\ > n} ;
n=l n=l

so the integrability of X is equivalent to the convergence of the series

n=l
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If X takes only values in N, then

(3.10) E(X) = Σ P{X>n}.

Proof. The integrability claim follows at once from (3.9) because integrability just
means S(|X|) < +00.

In proving (3.9) we can assume that X > 0. The events

An ·= {n < X < n+ 1} (n = 0,1, . . .)

are pairwise disjoint and cover Ω. Consequently,

00 Γ

(3.11) E(X) = Σ XdP.
n=OJ

From the definition of An the inequalities

nP(An] < I XdP<(n + l}P(An} (n = 0,1,. . .)

are immediate and from them, on account of Σ-ΡC^n) = Ρ(Ω) = 1, follows

oo oo oo
(3.12) Σ nP(An) < E(X) < Σ (« + l)P(An) = 1 + Σ ηΡ(Αη].

n=l n=0 n=l

If we set Bn := {X > n} for n = 0,1,..., then Bn+l C Bn,

A — R \ RΛη — °n \ °n+\ ι

and for every N G N

Σ nP(An} = Σ nP(Bn) - Σ ηΡ(Βη+ι]
n-l n=l n=l

= Σ nP(Bn) - Σ (n - l)P(Bn) - NP(BN+1),
n=l n=l

so that

(3.13) Σ nP(An) + NP(BN+l) = Σ P(B„).
n=l n=l

Since
< I XdP,

BN+i
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and its right-hand member converges to 0, thanks to Bn j 0, whenever X is
integrable, passage to the limit on N in (3.13) yields

(3-13') £
n=l n=l

for integrable X; and (3.9) for such X then follows from (3.12). In case
oo

E(X] = +00, (3.12) informs us that the series X) nP(An] diverges. A fortiori
n=l

00

then from (3.13) the series £ P(Bn] will diverge. This confirms (3.13') and the
n=l

validity of (3.9) in this case. If X takes only values from N, then An = {X = n}
and (3.11) reads

oo
E(X)= £nP(An).

n=l

Equality (3.10) is therefore affirmed in (3.13'). D

At this point let us agree upon a useful (that will be borne out later) alternative
way of writing integrals of the form / X dP.

A
Namely, if X is a real (or numerical) random variable which is non-negative or

integrable, we will set

(3.14) E(X\A):= I XdP (Α (Ξ S/)
A

If A has a form like {a < X < β}, {Χ j^Y}, etc. we will further shorten this by
dispensing with the curly brackets:

E(X\ a < X < β), Ε(Χ\ X^Y), etc.

These conventions will reduce unnecessary notational headaches.

Besides the expected value of a real random variable X, the expected values
E(XP) for exponents ρ € N and E(\X\P) for real ρ > 1 play an important role; of
course, for the first of these, integrability of Xp has to be hypothesized. E(XP)
is called the central pth moment and E(\X\P) the absolute pth moment. The
transformation theorem for image measures invoked at (3.7) shows that here, just
as in the case ρ = 1, we have to do with a probability-theoretic concept. For
random variables X e J?P(.P) and real numbers a there are also the pth moment
(resp., absolute moment) centered at a defined by

E((X - a)p), resp., E(\X - a\p].

The case ρ = 2 is of special importance.
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3.5 Definition. For every integrable real random variable X the expression

(3.15) V(X) := E([X - E(X)}2)

is called the variance of X. The expression

(3.16) σ(Χ] := +^/V(X) Ε [Ο, +οο]

is called the standard deviation (or the dispersion) of X. Often the notation o~2(X)
or Var(X) is preferred to V(X).

3.6 Theorem. Let X be a real random variable on a probability space (Ω,Λ/, Ρ).
For integrable X we always have

(3.17) V(X) = E(X2) - E(X}2 = fx*Px(dx] - (j xPx(dx}\ ,

(3.17') E(X)2 <

If follows that X is square-integrable if and only if X is integrable and V(X) is
finite.

Proof. Suppose X is integrable. Then a := E(X) is a real number and this
constant function lies in all -Si!p(P) spaces because Ρ is a finite measure. Hence
either both X and X — α belong to ^2(P) or neither does. If both do, the first
equality in (3.17) is a consequence of (3.15) and linearity of the integral. If neither
does, both sides of that equation are +00. In either case, (3.17') follows from the
non-negativity of V(X) and the finiteness of E(X). The second equality in (3.17)
comes from (3.7).

From (3.17) it is clear that X is square-integrable if X is integrable and
V(X] < +00. On the other hand, if X is square-integrable, then \X\ < 1 V \X\2

D

Remark. 1. From (3.17) it follows that X and X — E(X] have the same variance;
we have, namely

E(X - E(X}} = E(X] - E(E(X)) = E(X) - E(X) = 0 .

Real random variables Υ with E(Y) = 0 are called centered. In this terminology
the passage from X to X — E(X) produces a centered random variable having the
same variance as X, a process called centering on the expected value.

Via the variance, the well-known Chebyshev Inequality ((20.1) in MI) can be
put in the form most often used in this subject:

(3.18) P{\X - E(X}\ >a}<
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in which α is a positive real number, X an integrable real random variable. If it
has finite variance, that is, if in addition V(X) < +00, then from (3.18) follows
the assertion that the probability P{\X — E(X}\ > a} of a random variable's
deviating by at least a from its expected value tends to 0 as α tends to oo.

We return to the inequalities (3.6) and (3.17') for expected values. These turn
out to be special cases of a general inequality, named after its discoverer the Danish
mathematician J. JENSEN (1859-1925), which we plan to present next.

First we need to review some properties of convex functions (cf. VARBERG and
ROBERTS [1973]). Let / C R be an arbitrary non-void interval. A real function q
defined on / is called convex if it satisfies

(3.19) q(ax + (1 - a)y) < aq(x) + (1 - a)q(y]

for all x, y e / and all a e [0, 1]. When the function — q is convex, then q is called
concave. Of course, we need only demand (3.19) for χ < y and 0 < α < 1.

In basic analysis courses one mostly learns only that for differentiable func-
tions q on / the convexity of q is equivalent to the derivative q' being an increasing
function. The following considerations, which are of an analogous flavor, have
to proceed without the differentiability assumptions if we want them to apply to
functions like χ ι— > |x|, which are not differentiable (at χ = 0) although (as seen
by an easy application of the triangle inequality) convex on R. More generally,
for every ρ > 1 the function χ ι— > \x\p is convex on R. For ρ > 0 this function is
differentiable at 0 (and certainly elsewhere on R) and its derivative is the function
χ ι— > sign(x)p|x|p~1, which is increasing. Here sign(x) is +1, -1 or 0 according as
χ > Ο, χ < 0 or χ = 0.

It is immediate from (3.19) that the upper envelope q\ V. . . Vgn of finitely many
functions q\ , . . . , qn which are each convex on / is itself convex on I. Candidates
for the qi are, for example, the affine functions χ Η-»· QJ + iX (<**>& € R). These
are, evidently, precisely the functions which are both convex and concave on I.

The geometric significance of (3.19) is the following: For x,y e / with χ < y
and t G [χ, y] every point (i, q(t)} of the graph of q lies underneath the line segment
joining the points (x,q(x)) and (y,q(y)}· Consequently, the inequality

(3.19') q(t) < q(x] + S(x, y)(t - x) (t € (x, y}},

for arbitrary x, y G / with x < y, is equivalent to (3.19). The notation here means
the difference quotient

(3.20) s(l,!/): x -y

defined for every distinct pair x, y G /. It measures the slope of the aforementioned
line segment. Evidently, S(x,y) — S(y,x).
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A slight reformulation of (3.19) leads to an equivalent description of convex
functions.

3.7 Lemma. A real function q on I is convex if and only if for any three points
χ < t < y in I the inequalities

(3.21) S(xtt)<S(x,y)<S(t,y)

are satisfied.

Proof. A natural parameterization of the segment T joining (x, q(x)) and (t/, q(y)}
is

ξ » (ξ, β 00 + s(x, ν)(ξ - χ}} (ξ € [χ, y}).
Therefore, if q is convex, the geometric observation made earlier tells us that

whence S(x,t) < S(x,y). Upon noting the equality

q(x) + S(x, y}(£ - z) = q(y) + S(x, y)(£ - y}

for ξ 6 [x,y], we obtain the second inequality claimed in an analogous way. For
the converse direction of the lemma, write t e]z, y[ in the form t = ax + (1 — a)y
with 0 < a < 1. D

The consequence which is most important for us is:

3.8 Theorem. A convex function q defined on an interval I has both left-hand and
right-hand derivatives at each interior point of I and is consequently continuous
on the interior I of I. Letting q'+(x) denote the right-hand derivative ofq at χ Ε I,
yields an increasing function q'+ on I, which moreover satisfies

(3.22) q(y) > q(x) + q'+(x)(y - χ) (ze/ , j / e7 ) .

Inequality (3.22) expresses the fact that the right-hand tangent to the graph
of q at the point (x, q(x}} runs beneath the graph of q.

Proof. Let χ G 7. For every ί ι , ί ζ € / with χ < t\ < fa (notice that there are
such points in 7) (3.21) furnishes the inequality S(x,ti) < S(x,t2), so ί H-> S(x,i)
is an increasing function on ]x, +oo[ Π /. There are also points x\ < χ in 7 and
another application of (3.21) shows that the number S(xi,x) is a lower bound for
this function of t. The monotonicity then insures the existence of the (real- valued)
right-hand derivative

q',(x):= lim Six, t] .+ ^ ' t-»x,t>z v '
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Prom this of course follows the right-hand continuity of q at every χ e J.
Analogous reasoning — or application of the preceding result to the convex
function χ ι—»· q(—x) — confirms the left-hand differentiability of q on I and

ο

therewith the continuity of q on /.
ο

Given x, y 6 I with χ < y, choose t, u e 7 with χ < t < y < u and apply (3.21)
twice, to get

S(x,t) < Sfay) < S(y,u).
Let t l x, u l y and these yield q'+(x) < q'+(y), that is, the fact that q'+ is an

ο

increasing function. To prove (3.22), let χ £ I, y ε I. Consider first the case
χ < y and choose ί e ]x, y[. Then the inequality (3.22) follows from a passage
to the limit t j χ in the left-hand inequality of (3.21). An analogous application
of (3.21), this time with y < χ < t, confirms (3.22) in case y < x. When χ = y
(3.22) is trivially an equality. D

It should be noted that q'+ at the left-hand endpoint of / may possibly exist
only in the improper sense of being — oo, and q'_ at the right-hand endpoint as +00.
An example of both phenomena, which is moreover discontinuous at each endpoint
is the indicator function of the doubleton {0,1} on the interval / := [0,1].

We are now in a position to acquire the generalization of inequalities (3.6)
and (3.17') alluded to earlier. These inequalities result from the choices 7 = R,
q(x] := \x\, and q(x] := x2 in the theorem.

3.9 Theorem (Jensen's Inequality). Let X be an integrable random variable on
a probability space (n,J/,P) taking values in an open interval I C R. Then the
expected value E(X] lies in I. For every convex function q on I the composite
q ο Χ is a random variable. If it is integrable, then

(3.23) q(E(X))<E(qoX).

Proof. That E(X) lies in / is essentially a consequence of the well-known fact
that E(Y] = 0 for a random variable Y > 0 implies Y = 0 P-a.s. (cf. MI,
13.2): If Χ(ω] < β e R for all ω e Ω, then E(X) < β. This entails E(X) < β
since, otherwise, Ε(β — X] = 0 would imply β — X = 0 P-a.s. which contradicts
Ω = {X < β}. Similarly, a < Χ(ω) for all ω € Ω and some α € R implies
a < E(X}.

According to 3.8 q is continuous on / = /. Hence for U open C R, q~1(U) is
open and consequently (q ο X)-*(U) = X~l(q-l(U)} e J/. That is, q ο Χ is sf-
measurable, in other words, a random variable. The proof of Jensen's inequality
itself rests on (3.22):

(3.22') q(y) > q(x) + q'+(x}(y - x) (x, y € J).

Since equality holds when y = x, we get

(3.24) q(y) - sup [q(x] + q'+(x}(y - x}] for all y e /.
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Taking y in (3.22') to be Χ(ω) gives

and from this, in case q ο Χ is integrable

E(q ο X) > q(x) + J+(x)(E(X) - χ) ,

holding for all χ € /. Since E(X) € /, this inequality and the choice y = E(X)
in (3.24) yield

E(q ο X) > Sup(q(x) + q'+(x)(E(X) - x)} = q(E(X}} ,
x€l

which is Jensen's inequality. D

As an immediate application we get the inequality

(3.25) \E(X)\P < E(\X\P) ( p > l )

for every pth-power integrable real random variable X; we have only to note that
for such X, \X\<1V \X\P < 1 + \X\P e

Remarks. 2. If we take an open interval / in R and the associated probability
space (/, / Π &l,P) with the probability measure P :— αεχ + (l — a)ey, χ, y 6 /,
α 6 [0,1], and apply Jensen's inequality to the random variable X defined by
χ ι— > χ, we recover the inequality (3.19) which defines convexity. (Here εχ is the
Dirac measure at x.) Thus the convexity hypothesis in 3.9 is necessary as well as
sufficient.

3. The proof of Jensen's inequality rests, in the final analysis, on the observation
that a family of affine functions (aj)jGj on R exists satisfying

(3.26) q(y) - supaj(y) for all y E I.
j£J

In our case this was the family (ax)xe/ given by

αχ(ξ}:=ς(χ) + ϊ+(χ}(ξ-χ) (ξ € R).

But there is always in fact a sequence (dj)j^ which realizes (3.26). To see this,
set /o := /nQ. Then IQ is countable and in place of (3.24) we have the (stronger)
assertion

(3.27) q(y) = sup [q(x) + q'+(x)(y - x)}
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for every y e /. To prove this, select a sequence (xn) in I0 which converges
to y. According to 3.8 q'+ is an increasing function, consequently locally bounded;
moreover, q is continuous on the open interval /. It therefore follows that

lim [q(xn] + q+M(y - Xn)] = g(y) ·
n — >oo

Equality (3.27) foUows from this and (3.22').
These remarks will be of service later in the proof of a Jensen inequality for

conditional expectations (in Theorem 15.3).

Exercises

1. A (Rd,^(d)-random variable X on a probability space (Ω, J/, P) assumes only countable many
values, ω(, i 6 7 (a countable set). Show that

Px = Σ P{X =»&„>.·iei

2. Consider the Laplace probability space (Ω,Λ',Ρ) from the (b) scenario in 1. of §2; there
Ω = ΩΟ x . . . Χ ΩΟ is the product of m copies of an η-element set ΩΟ (comprised, e.g., of colored
balls). Let ΩΟ be divided into two disjoint pieces Ω£ and Ω^ (e.g., the black balls and the white
balls). For each ω — (ω^, . . . ,wm) let X(u>) denote the number of indices i G {!,..., m} for
which Wi 6 ΩΟ- Determine the distribution of the random variable X.
3. Let g : R — » R-j- be an even, Borel measurable function which is increasing on R.+. and strictly
positive on R \ {0}. Let X be a real random variable. Prove the following generalization of the
Chebyshev- Markov inequality (cf. MI, (20.1)):

P{\X\ > «} < ^)^(X)) (a > 0).

4. Let X be a random variable on (Ω,^,Ρ) with values in N. Prove the equality

E(X} = Σ Ρ{Χ > n}
n€N

(a) from scratch in an elementary way, and (b) by means of MI (23.10).
5. In the situation of Theorem 3.8, show that for any x,y G 7 with χ < y the inequalities

hold.
6. Use Jensen's inequality to deduce the following property of convex functions q on open
intervals 7 of R: For any finite number of points x\,.,.,xn 6 7 and λι,. . . ,λη 6 R+ with
AI + . . . + A„ = 1

Does this hold if 7 is an arbitrary interval? What can be said if n — oo is allowed?
7. Prove that Theorem 3.9 is valid for arbitrary intervals 7 C R, by analyzing the behavior
of q at each endpoint of 7. In fact, first show that q is lower semicontinuous on 7, that is,
{x e 7 : q(x) > a} is relatively open in 7 for every α 6 R.
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§4. Special distributions and their properties

For a given measurable space (Ω',Λ/') all probability measures P' on J/' appear
as distributions of (Ω7, J/')-random variables when we allow arbitrary probability
spaces (Ω, J/, P). We need only choose Ω = Ω', s/ = S/', P = P' and the identity
mapping of Ω onto itself for X in order to obtain Ρχ = P'. This is why probability
measures on a σ-algebra are often called (probability) distributions.

Below we shall discuss several important types of distributions for (Rd,&d)-
random variables, i.e., probability measures on &d (d e N).

1. For every χ € Rd let εχ denote the probability measure on 3Sd which is
"point-mass 1 at x" . Every random variable X having such a Dirac measure
as distribution is said to be singularly distributed or degenerate. [In view of
the introductory remarks of this section, "singular distribution" might mean
"probability measure which is singular with respect to Lebesgue measure". The
reader is alerted to this unfortunate terminological subtlety] X is singularly
distributed just exactly when it is almost surely constant.

It follows directly from the definition of variance, as well as from Chebyshev's
inequality, that for an integrable real random variable X the condition V(X) — 0
is equivalent to the equality X = E(X) holding almost everywhere. This in turn
is equivalent to the statement

dist(X) = £E(X) ,

in other words, that X is singularly distributed.

2. Let (xn)neN be a sequence in Rd, (an)n€N a sequence of non-negative real
numbers with Σ an = 1· Then

neN

μ ·= Σ αη£χη

is a probability measure on &d. Every such distribution is called discrete and
a random variable with such a distribution is said to be discretely distributed. In
particular, every singular distribution εχ is discrete.

Every discrete distribution on £%d is Xd- singular, because it's supported on
a countable subset C C Rd and for such sets Xd(C) = 0 (cf. Definition 17.12
in MI).

In contrast to the Ad-singular distributions on 38d are the Xd-continuous ones.

3. Every Ad-continuous probability measure μ on &td is said to be Lebesgue-
continuous. By the Radon- Nikodym theorem the Lebesgue-continuous probability
measures are just the measures μ = f\d having Borel measurable densities / > 0
with J f d\d = 1. This /, which is Ad-almost everywhere uniquely determined
by μ (cf. Theorem 17.11 in MI), is then called the probability density of μ.
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For the real line (d — 1) we shall now discuss some special discrete and
Lebesgue-continuous distributions.

4. Let p be a real number in [0, 1] and q := 1 - p. According to the binomial
theorem

fc=0

and therefore for every n G N

(4-1) (n;p
k=0

defines a discrete distribution on 3&1. Two notations are prevalent. The β and
the Β should suggest binomial or Bernoulli distribution, with the parameters η
and p. Note that

(4.2) £(n; 0) = ε0 and B(n; 1) = εη (η € Ν).

For every /^-distributed real random variable X, (3.7) and a few easy calculations
yield

(4.3) E(X) = £ k kqn~k = np(p + q)"'1 = np ;
fc=l

E(X>) = * 2 p V - f e = np Σ
fc=l VA/ fc=l

(4.4) = np[(n - l)p + 1] = np(np +

and thus via (3.17)

(4.5) V(X) = npq.

In particular, V(X) = 0 if and only if either ρ = 0 or q = 1, that is, if and only
if we are in the situation (4.2).

In §2 part l(b) (ra draws with replacement) we have already encountered the
distribution B(m;p). Let, namely, (Ω,Λ/, Ρ) be the probability space considered
there, the product of m copies of the Laplace probability space (Ωο,.#ό,Ρο)·
The elements of ΩΟ represent the b black and η — b white balls in the urn.
To every element (u)i,...,um) € Ω, that is, to every series of m successive
draws with replacement, we assign the number Χ(ωι, . . . , u;m) of black balls
among {o;i, . . . ,cjm}. Then X is a real random variable on (Ω,Λ/, Ρ) with the
values 0, 1, . . . ,m. According to the analysis carried out in §2, l(b) it has the
distribution B(m;b/n).

We will soon encounter further applications of the binomial distribution.

For practical applications of the binomial distribution a serious obstacle is the
difficulty of calculating binomial coefficients, since buried in them is the rapidly
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"exploding" factorial n\. Useful for coping with this difficulty is Stirling's formula,
which says that for each n G N there is a number θ(η) 6 ]0,1[ such that

(4.6) η! =

(Cf. STROMBERG [1981], p. 253.) Since

lim el2n = I ,
n— nx

from (4.6) follows the asymptotical form

(4.6') η\~

of Stirling's formula. It is easy to derive the less precise form of Stirling's formula
asserting that there is a positive constant a such that

(4.6") n\ =

holds for some θ(η) ε ]0, 1[ and every η € N (cf. Exercise 2 below). A surprisingly
simple probabilistic derivation of (4.6'), which also determines the constant
Q = \/2vr, will be offered in §27 in connection with the Central Limit Theorem.
(On the question of determining α compare also Exercise 3 below.)

5. If X is a (n;p)-distributed random variable on a probability space (Ω, j/, P),
then X' := IX — n defines another random variable on (Ω, J/, P). According to the
rules for transforming image measures, dist(A"') is the image of dist(.X') = B(n\p)
under the mapping χ t-> 2x — n. Consequently, X' has the distribution

(4-7) Β.(η;ρ):= Σ . )ρ*9η-*£-η+2* -
fc=0 \ /

Since only the values 0 ,1 , . . . , n can be taken on with positive probability by X,
the corresponding fact prevails for X' with respect to —n, — n + 2 , . . . , n — 2, n.

Bs(n\p] is called the symmetrical binomial distribution. It will soon serve us
well. Notice that for n = 1

6. The equality
OO f\

OL \ ^ ^"^

fc=0 fc!

shows that for every a > 0

00 Q*

(4-8) πα := Σ β~α^
fc=0 fc!
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defines a discrete probability measure on ,̂ *1, which for α = 0 coincides with eo·
When α > 0, we call ττα the Poisson distribution with parameter a. Again
from (3.7) it follows that for every πα-distributed random variable X

(4.9) E(X)=f:e-a~k = a]
fc=o κ·

(4.10) E(X2) = g e-a^T*2 = Σ e~a71T^(k - 1 + 1) = α2 + α;
fc=o kl fc=i («~ 1)!

(4.11) V(X) = a.

The remaining examples deal with Lebesgue-continuous distributions.

7. From the well-known (cf. (16.10') in MI) identity

via a simple substitution it follows that for every a e Μ and every real σ > 0 the
equation

(4.12) ga^(x] := ̂ πσ2)-^-^

defines a probability density on R and therefore

(4-13) Ν(α,σ2):=να,σί := g^X1

defines a probability measure on &l. It is called the normal or Gauss distribution
on R with parameters a and σ2. Here too, as with the binomial distribution,
two names and two notations are prevalent. N(0, 1) is called the standard normal
distribution.

The graph of the function pa><72 is the familiar bell-shaped curve [so named by
C.F. GAUSS (1777-1855)]. A simple analysis of the function ga^ reveals that
it attains its maximum value of (2πσ2)-1/2 at the point χ = a and only there,
and that its only inflection points are χ — a ± σ. The parameter σ2 is therefore
a measure of the breadth of the bell-shaped curve. Both parameters also have
immediate probability-theoretic significance. Namely, any N(a, a2)-distributed
real random variable X satisfies

(4.14) E(X) = xga^ (x) dx = a;

(4.15) E(X2) = ίχ29α,σ*(χ) dx = σ2 + a2 ;

(4.16) V(X)=a2.



§4. Special distributions and their properties 27

The derivation of (4.14) and (4.15) — from them (4.16) is immediate — is reduced
via the linear transformation

χ H-> T(x) :— σχ + α

to the case of the standard normal distribution N(0, 1). For

(4.17) T(uo,i) = i/a,ffa

and in particular (cf. MI, (24.10))

(4.17') ν^σι = εα * i/0i(T2 .

But first we have to note that every N(0, l)-distributed (whence every Ν(α,σ2)-
distributed) real random variable X is pth -power integrable for every ρ > 1. For
this we use the inequalities

£ j t f e < e * , *>0 , fc = 0,l ,2, . . .

which follow from a glance at the power series development of the exponential
function. They imply that for every ρ > 0

\x\p e'x'/2 < 2kkl \x\p-2k (x ± 0).

Since χ Η-> \χ\Λ is A1-integrable over R \ [—1,1] for each a < —1, the λ1-
integrability over Μ of the function χ ι— > \x\p g0>i(x) f°r each ρ > 0 follows upon
choosing k € N sufficiently large.

In particular, for ΛΓ(0, l)-distributed random variables X the expected values

(4.18) Mn := E(Xn] = ί xng0<l(x)dx

exist for every integer η > 0. They are easy to compute. First of all

(4.19)

since the integrands involved then are odd functions. This covers (4.14), which
is thus confirmed. For even η > 2 the integral Mn can be expressed in terms
of Mn_2- Since all the integrands that intervene are continuous functions, all
integrals also exist as absolutely convergent Riemann integrals. Hence we can
employ integration by parts to get
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<7o,i being obviously an anti-derivative of the function χ t— > — xgoti(x). What
results is the recursion formula

M2fc = (2k - l)M2fc_2 ( f c e N ) .

Since MO = 1, it follows that

(4.20) M2fc = 1 - 3 · . . . - (2k - 1) (k = 0, 1,2, . . .)

and in particular, (4.15) is confirmed.
For an N(a, a2)-distributed random variable X the sequence (Mn} can be used

to express

(4.21) E(Xn) = ) kan-kMk (n € N).
fc=o \«7

We have only to use the transformation T(x) = σχ + ct again and note that

E(Xn) = fxnva^(dx) = /xnT(i/0,i)(dz) = / (σχ + a)nv0jl(dx) .

A probability estimate that is useful for many purposes is the following:

4.1 Lemma. If X is a N(0, σ2) -distributed random variable, then for all η > 0

(4.22) (27r)-V2_^^e-W2*2 < ρ{χ >η}< (^γ^σ-^Ι^ .
σΔ + η* η

Proof. It suffices to treat the case σ = 1. The general case follows upon replacing
this ./V(0, l)-distributed random variable X with σΧ, which amounts to replacing
η with η/ 'σ. First, we have

oo

P{X >η} = Ρχ([τ7,+οο[) = n>,i(fo,+ooD = W1* f e~^2 dx .
n

The right-most inequality in (4.22) then follows from

oo oo oo

!e-^dx< i^e-^2dx = - f
J J η η J η
η η η

—#ο,ι being an anti-derivative of the last integrand. Via partial integration we get

00

f
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from which

oo oo

le-^/2= f(i + x-^e-**/idx< ί(1 + η-*)β-**/*άχ,
η η

that is,

fe-JΙ + ψ
η

The left-most inequality in (4.22) follows from this and our first chain of equalities.
D

8. The function
Ο ι , η 9\-lχ i-> —(a + x )
7Γ

is also a probability density, denoted ca, on R, for every α > 0, since

+ 00

/ (1 + a:2)"1 dx = lim [arctan(a;)]i^ = π .
J n-»oo

— oo

The probability measure

(4.23) 7α := Ca 1

is called the (standard) Cauchy distribution with parameter a > 0. It is easy
to calculate directly that an expected value does not exist for any real random
variable X which is 7Q-distributed. It suffices to note that for any i e R+

and consequently

+ 00

f
J i
0

that is, X is not even quasi-integrable.

We close with an important class of Lebesgue-continuous probability measures
on the σ-algebra «£i?2 of Borel subsets of R2 .
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9. For real numbers ρ e ] — !,+![ and σ > 0 consider the continuous function
/ : R2 -* ]0, +oo[ defined by

Μ _ η2\1/2 Γ
(4.25) f(x,y) :=( « exp -

Evidently,

(4.25') /(«,„) = exp - i f axp -

from which follows (cf. 7 above)

/ /(*.»>* -
and therewith also J/dA2 = 1. Consequently,

(4.27) μρ>σ := /λ2

defines a probability measure. It is called the 2- dimensional standard normal
distribution with parameters ρ e ]— 1, +1[ and σ > 0.

We will study two- and multi-dimensional normal distributions in §30. (Cf., in
particular, Example 2 of §30.)

Exercises

1. Show that a real random variable X is singularly distributed if and only if the probability
P{X < a} equals 0 or 1 for every real a.
2. The sequence of positive numbers

satisfies

For 0 < χ < 1 the power series of the logarithm yields

oo T2n+l
< 2χ

3 η=ο

/ I 4--r-\ oo T2n+l
2x < log ( i±f ) = 2 Σ - - <& \\-xJ „=02η+1

χ2 / 1 1 \
= 2χ + — ( --- ,

3 V l - z 1+χ7

and consequently for all η € Ν (and χ := (2η + l)"1)

-χ2 χ2η+1
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Deduce that

0 < log (-*!-] < -L (1 - -L·) ( f c , » € N )
\an+kj 12 \n n + kj

and go on to prove the existence of a positive number α to which the an decrease, and finally
deduce (4.6")- (Cf. VAN DER WAERDEN [1936].)
3. With the help of Wallis' formula

π °° 4η2 , 24m(m!)4

T7 Π -7-1—r = Jim2 η=ι 4η2 - l m-°° ((2m)!)2(2m + 1)

(cf. STROMBERG [1981], p. 250) show that the constant α from Exercise 2 is \/2π.

4. For an 7V(0,a2)-distributed random variable X derive from (4.22) the estimates

3 σ 2 2
P{X >rt} < (2/π)1/2ε~1— and (2π)~1'2 — β~'η'2σ < P{X > η} ,η3 2η

valid for all η > 0 and all η > σ > Ο, respectively. Show further that P{X > 77} is asymptotically
equal to (2π)~ι/2ση~ιε~η /2σ as η —> +oo.
Hint: For all χ € K, xe1"1 < 1.
5. Let 6, m, n be integers such that 1 < 6 < n and m < n. Prove that:

fc=0

is a probability measure on SS^· . It is called the hypergeometric distribution with parameters
n, b and m.
(b) r;nibim is the distribution of a random variable on the probability space treated in §2,
section l(a) (drawing without replacement). Compare this result with the probability-theoretical
interpretation of the binomial distribution B(n;p) given in 4. of this section.

6. Let the real random variable X have the hypergeometric distribution ηη^,τη of Exercise 5.
Then

E(X) = mp and V(X) =
n — 1

where p := — and q := 1 — p.
n

7. For every finite subset {pi, . . . , p d } of R+ with pi + . . . +Pd = 1 and for every n 6 N the sum

n' " n

extended over all integers ηι , . , . ,η ,ί > 0 satisfying ni + . . . + nj. = n, defines a discrete
distribution on 3$^ — called a multinomial distribution.
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§5. Convergence of random variables and distributions

From integration theory we know three different modes of convergence for se-
quences of measurable real functions. These also play an important role in prob-
ability theory. Let us recall — in the context of probability theory — these three
convergence notions. To that end, (Ω,Λ/, Ρ) will be a probability space, (Xn)neN
a sequence of real random variables, X a further real random variable, all defined
on (Ω,Χ Ρ).

Almost sure convergence: For the almost sure convergence of (Xn) to X each
of the conditions

(5.1) lim P{ sup \Xm - X\ > ε} = 0 (for all ε > 0)
n~*°° m>n

and

(5.2) P(limsup{|Xn - X\ > ε}) = 0 (for all ε > 0)
n—too

is necessary and sufficient (cf. MI, Lemma 20.6). The first of these can be re-
worded as

(5.1') lim P{\Xn -Χ\>ε for some m > n} = 0 (for all ε > 0)
n—>oo

as well as

(5.1") Mm P{\Xm ~ X\ < ε for all m > n} = 1 (for all ε > 0).
n—»σο

The notation for P(limsup.E?n) introduced at the end of §1 permits (5.2) to be
re-phrased in the suggestive forms

(5.2) P{\Xn -X\>e for infinitely many n} = 0 (for all ε > 0)
(5.2') P{\Xn -Χ\>ε i.o.} = 0 (for all ε > 0)
(5.2") P{\Xn -X\<e for almost all n} = 1 (for all ε > 0).

In (11-2) we will become acquainted with a useful sufficient condition for almost
sure convergence.

- convergence: The sequence (Xn) is said to converge to X in pth mean (or
to be £?p -convergent to X) when

(5.3) lim E(\Xn-X\p)=Q.
n — >oo

Here 1 < p < +00. Because of the inequality (3.25), Jz^-convergence for such a p
always entails J?1 -convergence, that is, convergence in mean.
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Stochastic convergence: The sequence (Xn) is said to converge stochastically
to X or to converge to X in probability, which we write P- lim Xn = X, if

n—>oo

(5.4) lim P{\Xn - X\ > ε} = 0 (for all ε > 0);
η—>oo

equivalently, if

(5.4') lim Ρ{\Χη-Χ\>ε}=0 (for all ε > 0).
η—>oo

Stochastic convergence of (Xn) to X follows from almost sure convergence,
as well as from Jz^-convergence. (On this point compare Theorem 20.4 and
Theorem 20.5 of MI.) Comparison of (5.1) and (5.4') constitutes a direct proof
of the first of these implications. The second follows from the Chebyshev-Markov
inequality (cf. MI, (20.1)), which can be written in the form

(5.5) P{\Xn -X\>e}< e-PE(\Xn - X\p).

Because of the significance of the distribution of a random variable for its
probabilistic occurrence, the question suggests itself whether these three kinds of
convergence of (Xn} to X imply any kind of convergence of the distributions Ρχη
to the distribution Ρχ. Of course, we have to clarify what is meant by convergence
of distributions. This new concept comes up in the next theorem. Let us denote
by Cf,(Rd) the vector space of all bounded, continuous, real-valued functions on Rd;
the case d = I of the number line will be our initial concern.

5.1 Theorem. Suppose the sequence (Xn}n&N of real random variables on the
probability space (Q,J/,P) converges stochastically to a real random variable X
on Ω. Then the corresponding sequence of distributions (Ρχη)ηεΝ converges weakly
to the distribution Ρχ; that is,

(5.6) lim f fdPXn= f f d P xn—°°7 J

or equivalently (see (3.7))

(5.6') lim E(f ο χη) = E(f ο Χ)
η—*oo

for every f € Cb(R).
If X is almost surely constant, so that Ρ χ is a Dirac measure, then the converse

implication holds.

Proof. First we will consider only / e C&(K) which are uniformly continuous on R.
Thus to each ε > 0 corresponds a δ > 0 such that

x',x"eR & χ'-χ"\<δ => \f(x'}-f(x"}\<t.
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For the events An := {\Xn — X\ > 6} (n e N) we then have the inequalities

= \E(foXn-foX)\<E(\foXn-foX\)·.- fdPx
•J

= E(\foXn-foX\-An)+E(\foXn-foX\^An)

< 2 K/11 P(An) + εΡ(ΪΑ) < 21|/|| P(An} + ε,

in which
U / H :=eup{|/(x)|:xe»}

denotes the supremum norm of /, and the trivial estimates

\foXn-foX\<\foXn

as well as the notation (3.14) have come into play. Prom this chain of inequalities
follows (5.6), because by definition of stochastic convergence (P(An)) is a null
sequence.

Now let us deal with arbitrary / G <7&(Μ). The intervals In := [— n, n] increase
to R, so Ρχ(Ιη] t 1. For ε > 0 an ηε e N can be chosen so that

Let ue be the function in Cfc(K) which equals 1 on Jne, vanishes off IHe+i and
is affine on [n£,ne + 1] and on [— ne — 1,— ηε\. If we set /' := u £ f , then both
functions ue and /' are uniformly continuous on IHe and vanish identically in
C/r^ , hence they are uniformly continuous on IR. From the first part of our proof
we therefore know that

(5.7) lim [f'dPXn= f f'dPx
n-OoJ J

and

(5.8) lim / ue dPXn = I ue dPxn^ooj J

hence also, since Ρχη and Ρ χ are each probability measures,

(5.8') lim /(l - ue) dPXn = 1(1 - ue} dPx .n-^ooj J

The rest of the proof now follows from a trivial consequence of the triangle
inequality:
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via these considerations: The inequality 0 < 1 — ue < 1κ\/ηί implies that
Λ

(l-ue)dPx<Px(R\Int)<e,

so that on account of (5.8')

j(l-ue}dPXn<e

for almost all n, say for all η > Νε. From this follows on the one hand

/(/ - /'| dPx = i I/) (1 - ue) dPx < 11/11 ε,
J J

and on the other

/ If - f ' l dPXn < «/H y(1 - u*) dPXn < l l / l l ε

for all η > Νε. Considering (5.7), it therefore indeed follows that the right-
hand side of (5.9) is smaller than 2 ||/|| ε + ε for all sufficiently large n, and this
proves (5.6).

For the proof of the converse, let X = η G R almost surely; thus Ρχ = εη.
Given ε > 0, choose for the interval / := ]η — ε, η + ε[ a function (say, piecewise
affine) / 6 C6(R) which satisfies /(η) = 1 and / < I/. Then

/ dPXn < PXn (I) = P{Xn e /} < l (n G N).

By hypothesis J f dPXn tends to /(η) = 1. As n —> oo it therefore follows from
the preceding inequality that

(5.10) lim P{Xn G /} = 1.
n—»oo

If we take account of the fact that [Xn e /} = {\Xn ~ η\ < ε} and consequently

P{\Xn -Χ\>ε} = P{\Xn -η\>ε} = 1- P{Xn e /} ,

then (5.10) just says that

lim P{\Xn-X\>e} = Q,
n—»oo

holding for every ε > 0; that is, (Xn) converges stochastically to X. D

The convergence concept expressed by (5.6) will now be codified into a def-
inition. This is to be found under more general hypotheses as Definition 30.7
in MI.
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5.2 Definition. A sequence (μη)η€Ν of probability measures on £§d converges
weakly to a probability measure μ on 3§ά if

lim / }άμη = I } άμ
n-+°°J J

for all functions / 6 Cb(Rd). We write then

(5.11) lim μη = μ.
+ OO

If Χ,Χι,Χζ,..· are random variables on a probability space (Ω,Λ/,Ρ) with
values in Rd and the sequence (Ρχη )neN of their distributions converges weakly
to the distribution Ρχ of X, or even more generally to a probability measure ν
on £$d, then the sequence (Xn) is said to converge in distribution to X, or to v.
[That ΛΓ need not be unique is illustrated in the third example below.]

Remark. 1. Conditions (5.4) and (5.4') make sense for Revalued random variables
Xn and X, if | | is interpreted as the euclidean norm in Rd. They define the
concept of stochastic convergence for Revalued random variables. Theorem 5.1,
with / 6 Cb(Rd), is valid for them too. The first paragraph of its proof needs no
change. In the second, the sets 7n are defined as the balls {x G Rd : \x\ < n},
rather than intervals. Finally, the auxiliary function ue introduced there is to
be replaced by the radial function constructed from it via χ >-> iie(|;r|). Since
(Xn) converges to X almost surely (resp., in Jz^P-norm) if and only if the scalar
sequence (\Xn — X\] converges to 0 almost surely (resp., in -S^-norm), it again
follows from Theorems 20.4 and 20.5 of MI that these modes of convergence for
Revalued random variables imply stochastic convergence for them. These multi-
dimensional generalizations will not be needed until the proof of Theorem 43.5.

Examples. 1. Let (xn) be a sequence of real numbers. It converges to a real
number XQ if and only if the associated sequence (εΧη) of Dirac measures converges
weakly to exo: From Iima7n = XQ follows of course lim/(:rn) = 0 for every
/ 6 Cb(R), that is, the weak convergence of (eln) to εχο. For the converse,
consider for ε > 0 the function f£ € C&(R) defined by

fe(x] := max (0,1 - ε"1 \χ - x0|) ·

Since {/e > 0} — ]XQ — ε, XQ + ε[ and lim/£(rrn) = fe(xo) — 1, it must be that
^n £ ]ZQ — ε, XQ + ε[ for almost all n.
2. For.every sequence (ση) of positive real numbers converging to 0,

lim N(0, σ*} = ε0 .η—>oo

Upon making the obvious extension of the concept of weak convergence to
families (μ() of probability measures on 3§l indexed by a real parameter t, we
even have

(5.12) lim ΛΓ(0, σ2) = ε0.
σ—»Ο, σ>0
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In fact, using the substitution χ = ay (σ > 0), we get for each / e

+ 00 +00

f fdv^ = -L= f
J ν2ττ<τ2 J

dx = -L· ίν 2π J
dy.

The integrand is majorized by the integrable function y »-> ||/|| e y /2, independent
of σ. Therefore, from the Dominated Convergence Theorem, follows

3. Consider the probability space (Ω, J/, P) with Ω := [0,1], J/ := [0,1] Π & and
Ρ := λ / O j i , and on it the constant sequence of random variables Xn := l[i/2,i]
together with X :— 1[ο,ι/2[· Evidently Ρχη = Ρχ = ^(SQ + ει), so the sequence
(Xn) converges in distribution to X as well as to X\. Since \Xn — X\ — \X\ — X
= l[0,i], Χ(ω] - Χι(ω] holds for no ω e Ω and P{\Xn-X\ > 1} = 1 for
every η € Ν, showing that generally stochastic convergence does not follow from
convergence in distribution and that the latter does not almost surely determine
its limit.

This shows that the supplemental hypothesis "X almost surely constant"
imposed in the converse part of Theorem 5.1 cannot simply be dispensed with.
(This phenomenon is further illustrated by Example 2 in §7.)

The diagram below (valid for Revalued functions too) illustrates once more
the relationships between the four modes of convergence discussed in this section.

_Sfp-convergence

almost sure convergence Jzf1 -convergence
(= convergence in mean)

stochastic convergence

weak convergence of distributions
(= convergence in distribution)
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In it the broken arrow is to remind us that from a stochastically convergent
sequence a subsequence can always be extracted which converges almost surely
(cf. MI, Theorem 20.7).

Remarks. 2. Every probability measure on R can be fully described by its distri-
bution function (cf. MI, Theorem 6.6). In MI Theorem 30.13 and Exercise 7, §30
it is shown in terms of what convergence behavior of the distribution functions
weak convergence can be described. In this connection see also Exercise 3 below.

3. The main part of Theorem 5.1 is more that a mere example illustrating the
concept of weak convergence. It really goes to the probabilistic heart of the concept
as the following converse shows: Suppose given a sequence (μη) of probability
measures on i^?1 which converges weakly to a probability measure μ on &l. Then
there always exists a probability space (Ω, J/, P) and real random variables ΛΓ, Xn
(η Ε Ν) on it such that μ = Ρχ, μη = Ρχη (for all π) and the sequence (Xn)
converges stochastically to X. It is even possible to arrange that Ω = [0,1],
Stf = Ω Π 3SV and Ρ — λ^. This is the content of a theorem of Skorokhod and
Dudley. For a proof see p. 10 of SKOROKHOD [1965], where the result is treated in
the generality of random variables taking values in a Polish space. A remarkable
"global" version of this theorem is proven in FERNIQUE [1988].

Exercises

1. Proceeding from (5.2"), formulate and prove a Cauchy criterion for almost sure convergence
of real random variables.
2. The sequence (Xn) of real random variables on the probability space (Ω,,ί/, Ρ) satisfies:

P{|X„| > ε} < ε for almost all η,

and for every ε > 0. Is this equivalent to its converging weakly to X :— 0?
3. Let Fa denote the distribution function of the normal distribution N(0, σ2) for σ > 0 and FQ
the distribution function of EQ. Show that

lim Ρσ(χ) = F0(x}
σ—»Ο, σ>0

for all x ^ 0 but not for χ = 0. (On this point compare Remark 2.)
4. For the family (πα)α>ο of Poisson distributions on Κ show that

lim πα — εο
a—»0, α>0

in the sense of weak convergence. Is there a probability measure μ on aSl such that πα —> μ
as α —+ +oo?
5. By analyzing the proof of Theorem 5.1 show that a sequence (μη) of probability measures
on &l converges weakly to a probability measure μ on 3Sl if and only if lim / / άμη = f f άμ
for all bounded uniformly continuous real-valued functions / on R, (Readers familiar with MI
will already have encountered this phenomenon in Exercise 10, §30 there.)


