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Chapter 1 
Introduction 

From the beginning, the theory of function spaces was more or less connected 
very closely with the investigation of partial differential equations. Here "function 
space" means a normed or quasi-normed space of functions or distributions defined 
on subsets of R". The spaces Cm, m — 0, 1, 2 , . . . , of continuous and differentiable 
functions, the Holder spaces Cs, 0 < s Φ integer, and the spaces Lp, 1 < ρ < oo, 
of p-integrable functions were useful tools for the study of differential equations. In 
the papers by S. L. Sobolev published between 1935 and 1938, new spaces were in-
troduced which are nowadays called the classical Sobolev spaces W™, 1 < ρ < oo, 
m — 0,1, 2, The calculus of distributions and embedding theorems were used 
successfully for the further development of the theory of linear partial differential 
equations and boundary value problems. These "classical" spaces were generalized 
above all in the fifties and sixties: the Zygmund spaces %s with s = 1, 2, 3 , . . . , the 
Slobodeckij spaces 0 < s φ integer, the Bessel-potential spaces H*, s e R, 
and the classical Besov spaces As

p s > 0, I < ρ < oo, 1 < q < oo. For instance, 
the Slobodeckij spaces Wp are necessary for exact description of traces of Sobolev 
spaces. 
The theory of linear partial differential equations was extended by real and (clas-
sical) complex interpolation to the Besov and Bessel-potential spaces. We refer to 
H. Triebel [Tr 2]. Since the end of the sixties, many mathematicians considered 
all these spaces from the point of view of some general principles (interpolation 
theory, new methods of Fourier analysis, maximal function techniques). With the 
help of these powerful tools it was possible to study the above mentioned function 
spaces from a unified point of consideration: All these spaces are included in the 
two scales of function spaces of Besov type B* s e R, 0 < ρ < oo, 0 < q < oo 
and of Triebel-Lizorkin type F*q, s £ R, 0 < ρ < oo, 0 < q < oo. Generalizations 
of the classical theory of regular elliptic boundary value problems to these spaces 
may be found in H. Triebel [Tr 2] and J. Franke and T. Runst [FR 3]. Up to now, 
the theory of linear partial differential equations is one of the main applications of 
these two scales. On the other hand, in recent years it was shown that some parts 
of the theory of nonlinear partial differential equations are connected very closely 
with other mathematical aspects. For example, J. M. Bony [Bon 2] and Y. Meyer 
[Me] used successfully methods of Fourier analysis and the theory of so-called 
paradifferential operators to prove regularity results of solutions of nonlinear par-
tial differential operators. 
One of the main purposes of this book is to describe the solvability of semilinear 
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elliptic boundary value problems in Besov-Triebel-Lizorkin spaces. More pre-
cisely, we study existence and multiplicity results of solutions of nonlinear partial 
differential equations of the type Lu = Ν u, where L is a second order linear dif-
ferential operator and Ν denotes special nonlinear Nemytskij operators generated 
by smooth functions. The study of such equations has become a very active field 
of research since the seventies. The paper by H. Triebel [Tr 7] in 1984 was the 
first one which considered the solvability of special classes of semilinear elliptic 
boundary problems within these two scales of function spaces. It was shown that 
one can derive existence results by application of special methods of the Fourier 
analysis, multiplication properties and mapping properties of nonlinear operators. 
As mentioned there, it is useful to deal with special problems not only in classi-
cal spaces but in more general function spaces. In this connection we refer also 
to H. Amann [Am 3]. One of the aims of this book is the description of some 
essential tools to study nonlinear elliptic value problems in the general theory of 
the two scales of Besov-Triebel-Lizorkin spaces. Of course, it is not the purpose 
of the book to give a treatment of the theory of nonlinear boundary value prob-
lems in function spaces in the widest sense. Here we are interested to demonstrate 
how one uses methods of Fourier analysis and the theory of function spaces to 
investigate nonlinear problems. We remark that the equations considered here are 
only prototypes for wider classes of semilinear elliptic boundary value problems. 
However, as we hope, the results of Chapters 4 and 5 will be helpful also for other 
fields in nonlinear analysis. 
The book has six chapters. Every chapter has an introduction which explains what 
one will find there and ends with final remarks. The aim of Chapter 2 is twofold. 
For convenience, we list some known results concerning function spaces which are 
needed in the following parts of the book. Here we omit proofs if there are conve-
nient references. We refer the reader to the monographs [Tr 2, Tr 6, Tr 9], J. Peetre 
[Pe 3] and M. Frazier, B. Jawerth and G. Weiss [FJW]. In Chapter 3, we study reg-
ular elliptic boundary value problems in spaces of Besov-Triebel-Lizorkin type. 
Here we follow essentially the recent paper by J. Franke and T. Runst [FR 3]. 
We show that the results given there are the most general if one deals with usual 
unweighted function spaces. In this sense, Chapter 3 can be considered as the con-
tinuation of the theory presented in H. Triebel [Tr 2, Tr 6]. It is the purpose of 
Chapter 4 to study the m-linear map 

m 

i=\ 

induced by 

(fu...,fm) • A · • • • • fm 

(pointwise multiplication), where A*. q. denotes spaces of Besov-Triebel-Lizorkin 
type. The results about pointwise multiplication are of interest both in the theory 
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of partial differential equations (variable coefficients) and for the study of non-
linear superposition operators. In contrast to the next chapters we prove sufficient 
and necessary conditions on the parameters s, S{,p, pi,q, qt, i = I,... ,m, exclud-
ing some limit cases. Chapter 5 deals with mapping properties of the Nemytskij 
operator Tq : 

( f \ , · · · , fm) > G(f\, . . . , fm), 

generated by a given function G: Rm —» IR". It turns out that the mapping proper-
ties of those nonlinear operators depend strongly on the chosen domain of defini-
tion, in our case this means on the range of s, ρ and q. Here we are able to prove 
sharp results only for special classes of Nemytskij operators and special conditions 
on the parameters. On the other hand, there are a lot of open problems and this 
theory stands more or less at the beginning. Nevertheless, the purpose of Chapter 5 
is to describe essential phenomena which show the difference between linear and 
nonlinear problems. This chapter summarizes a survey of recent results with re-
spect to Besov-Triebel-Lizorkin spaces obtained partly by the Jena research group 
on function spaces. For this we use a uniform representation applying methods 
of Fourier analysis, especially the results of Chapter 4. Let us refer also to the 
monograph of J. Appell and P. P. Zabrejko [AZ], where such problems in classical 
Hölder-Zygmund and Sobolev spaces are investigated. In the last chapter, we con-
sider existence and multiplicity results of solutions of semilinear elliptic boundary 
value problems. For this we apply the results of the preceding chapters and classical 
nonlinear methods extended to our case. We refer to the monographs K. Deimling 
[De], S. Fucik [Fu 7] and E. Zeidler [Ze 1, Ze 2]. Note that the spaces considered 
here are, in general, only quasi-normed. One of the aims is to show how one can 
use function spaces under consideration to investigate semilinear elliptic boundary 
value problems. Furthermore, we describe some difficulties which occur when we 
consider nonlinear problems in quasi-Banach spaces and how one can carry over 
some classical Banach space techniques. Of course, we are not able to give here a 
complete and detailed introduction to this part of nonlinear analysis. Therefore, the 
reader is expected to have a working knowledge of linear and nonlinear analysis 
as presented in classical textbooks. A familarity with the basic results of function 
spaces and methods in nonlinear analysis would be helpful. 
A final remark concerning the range of parameters. In this text we tried, as much 
as possible, to cover spaces with min(/>, q) < 1 (the case of quasi-Banach spaces). 
Of course, part of motivation comes from the Fourier analytic tools we used and 
which allow us to deal with those spaces. A more natural motivation arises from 
nonlinear mappings itself. It is evident that 

f e L p ^ fm e U , r
 m 

i.e. simple nonlinear maps lead naturally to a consideration of spaces with ρ < 1. 
It turns out that the description of those mappings / —> f m can be made more 
complete and more satisfactory if ρ < 1 is allowed. A third motivation comes from 
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the theory of function spaces itself. For example, so-called nonlinear approximation 
problems require necessarily Besov spaces with ρ < 1, see for example P. Oswald 
[Os 1] and R. de Vore, B. Jawerth and V. Popov [dVJP], Since there is some 
connection to the approximation power of numerical algorithms for the solution of 
linear partial differential this is not very far from the topic of the book. 
It is a great pleasure to thank all colleagues and friends for various hints and 
helpful discussions about the contents of the book. In particular, we are grateful 
to G. Bourdaud and J. Johnsen for critical reading of parts of the manuscript and 
for several hints for improvements of a first version, especially with respect to 
Chapters 4 and 5. Further, we thank our teacher H. Triebel for motivation to write 
this book and for his constant support during our work. Next, we express our 
gratitude to M. Malarski for his permanent assistance concerning the use of I4TgX 
and for producing various figures. Finally, we thank also the managing editor of 
this series, J. Appell. He supported our project from the very beginning and was 
responsible for smooth operation with the publishing house. 
For better readability quotations of the literature are concentrated in "Notes and 
comments" at the end of each chapter, except for Chapter 2. There we give direct 
hints where the assertions are taken from. 
Now a brief instruction on how to read the book. The text is devided in sections 
and the sections are then arranged into subsections. The book is organized by the 
decimal system, (n.k.l/m) refers to formula (m) in Subsection n.k.l. In a similar 
way theorems, propositions, etc. are quoted, whereas, for instance, Theorem n.k.l 
means the only theorem in Subsection n.k.l. All unimportant positive numbers 
will be denoted by c (with additional indices if there are several c's in the same 
formula). 



Chapter 2 
Function spaces of Besov-Triebel-Lizorkin type 

As pointed out before, that will be not a book about function spaces. Our aim is to 
describe some possibilities how to apply spaces of Besov-Triebel-Lizorkin type in 
nonlinear partial differential equations. Therefore it will be convenient to include 
one chapter about properties of F s and B* which are of relevance in our context. 
Because of the generality we take a great care to illustrate the considerations by 
instructive examples. The general references about Besov-Triebel-Lizorkin spaces 
are the monographs H. Triebel [Tr 6, Tr 9], J. Peetre [Pe 3], S. M. Nikol'skij [Nik], 
and M. Frazier, B. Jawerth and G. Weiss [FJW] including the fundamental paper by 
M. Frazier and B. Jawerth [FJ]. Only in those cases, where a convenient reference 
was not available, we shall give proofs. 

2.1 Definitions and fundamental properties 

2.1.1 Definitions 

In general, all functions, distributions, etc. are defined on the Euclidean η-space 
M" . If there is no danger of confusion we will not indicate this. By Ν we denote 
the set of all natural numbers, by No the same set including 0. Z" means the set 
of all lattice-points in E" having integer components. Let A be a (real or complex) 
linear vector space. || a |A|| is said to be a quasi-norm if || a |A|| satisfies the usual 
conditions of a norm with exception of the triangle inequality, which is replaced 
by 

|| ax+a2 |A|| < c (|| a\ |A|| + ||a2 |A||) 

(here c does not depend on a\, a-ι e A). A quasi-normed space is said to be a 
quasi-Banach space if it is complete (i.e. any fundamental sequence in A with 
respect to || • |A|| converges). 
By 

|| α 111 ~ ||α ||2, α Ε Μ 

we indicate the existence of two constants c\ > 0 and c2 > 0 such that 
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c\ \\a Hi < ||α ||2 < c2 || a II ι 

holds for all elements of Μ. 
Let (R") be the Schwartz space of all complex-valued rapidly decreasing in-
finitely differentiable functions on R". The topology is generated by the semi-norms 

PN (φ) = sup(l + |x|)" ^ \Οαφ{χ)\, Ν = 0, 1, 2 , . . . , 
*6R" |α|<ΛΤ 

where φ e if (R"). Here 

9 l a | 

° a = dx"1 dx^ and = + « ' ^ o , i = I,..., η . 

Let i f ' (W) denote the set of all tempered distributions, i.e. the topological dual of 
£f (R"), equipped with the strong topology (if not otherwise stated). If φ e if (R"), 
then 

&φ(ξ) = (2jt)~2 J β~ίχξφ(χ) dx, ξ € R" , φ e (R") , 
R" 

(χξ means the scalar product in R") denotes the Fourier transform SF φ of φ. The 
inverse transform of φ is given by 

&~ιφ(ξ) = (2π)-ϊ J βίχξφ(χ) dx, ξ e R" , φ € if(Rn). 
R" 

One extends SF and from if(Rn) to in the usual way. Furthermore, let 
<3/>' be the (η — 1 )-dimensional Fourier transform with respect to λ:' = . . . , xn-i), 
and let be the one-dimensional Fourier transform with respect to xn. The cor-
responding inverse transformations are (SF')-1 and <3f

i~]. 
Let Ω be an open subset of R". The symbol |Ω| will be used for the η-dimensional 
Lebesgue measure of Ω. Further, let £>(Ω) be the collection of all complex-
valued, compactly supported and infinitely differentiable functions / in R" with 
supp / C Ω. The topological dual is denoted by D'(Cl). Sometimes we also use 
Ο0°°(Ω) in place of D(il) . By C0°°(il, R"1) we mean all vector-valued functions 
f = (fu...,fm) such that ft g C0°°(n)t i = 1 , . . . , m. 
Finally, we shall make use of the following notations. Let 0 < ρ < oo and 0 < 
q < oo. Then we put 

Wfk \Lp(tq)\\ =( f ( j t \ f k ( x ) \ q ) dx 

1 /P 
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and 

/ i/p\ l/q 

\\fk\ip(Lq)\\ = Σ ί /\fk0c)\pdx 

(usual modification if max(p, q) = oo). If not otherwise stated the integration 
extends over all of R". Sometimes we shall take the same abbreviations in case, 
where replaced by "Σ)*1-οο"· That will be clear from the context. 
To introduce the spaces F ^ a n d Bsp qwt make use of the Fourier decomposition 
method. That will have two advantages. At first, from the very beginning it shows 
the great similarity of these two scales of distribution spaces, offering to us the 
possibility to treat these spaces and B* from a common point of view, and 
secondly, it will be applied in most of the proofs presented here. But, of course, 
the disadvantage of the following definition consists in its minor transparency and 
technical complexity. As we hope the contents of this chapter will be helpful to 
overcome this. 
In general all functions, distributions etc. are defined on K". So we omit E" in nota-
tions. To introduce Besov-Triebel-Lizorkin spaces we need some special systems 
of functions contained in i f . 

Definition 1. Let Φ be the collection of all systems φ = c if such that 

(i) there exist positive constants A, B,C and 

{ supp φ0 C {jc| \x\<A), 
supp (pj C {x\ Β 2·/_1 <\x\<C 2· / + 1} if j = 1, 2, 3 , . . . (1) 

(ii) for every multi-index a there exists a positive number ca and 

sup sup 2m |Da<p;(jc)| < c, (2) 
x j=0,1,... 

(iii) 
oo 

for every χ e ffi". (3) 
j= ο 

An example 

Let ψ e if be a function with 

1*1 < 1 
Μ > 1 · 

(4) 
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We put 
</9oU) = -ψ (X) ) 
<Pi(x) = V ( f ) - V W > (5) 
<Pj(x) = <px(2-j+1x), ; = 2 , 3 , . . . , J 

This system belongs to Φ. Moreover, it holds 

Μ 
Σφ](χ) = ·ψ(2-Μχ), Μ = 0 , 1 , . . . , (6) 
7=0 

supp φ,· C w 2·/_ι < w < 3 · 2·7-1}, j = 1, 2 , . . . , (7) 

and if 

^2j~l<\x\<2j we have <pk(x) = dkJ , k = 0 , 1 , . . . , (8) 

j-Kronecker symbol). Having these smooth resolutions of unity we are able to 
introduce the Triebel-Lizorkin and Besov spaces. 

Definition 2. Let s e R and 0 < q < oo. Let φ = € φ 

(i) If 0 < ρ < oo, then 

Fp,q = {/ € £f' : 11/ I f = I I f ] { - ) \ L p ( t q ) \ \ < oo} . (9) 

(ii) If 0 < ρ < oo, then 

B^ ={f eV: 11/ \Bpq Γ = f]{-)\iq(Lp) || < oo} . (10) 

Remark 1. Technical explanation. Since is smooth • 9 * / ( ξ ) makes sense 
as a distribution in Because of the compactness of the support of ψ] the 
famous Paley-Wiener-Schwartz theorem tells us that ^ [ < £ / ( £ ( £ ) ] ( · ) is an 
entire analytic function. So the quasi-norms in (9) and (10) make sense. 

Remark 2. Interpretation. The aim of the Triebel-Lizorkin spaces Fpqand the 
Besov spaces B*qis to measure smoothness. A rough interpretation gives that 
smoothness of / is measured via decay properties of Fourier transform S ' f . Recall, 

(-i)W&(Daf)£) = ξα9/(ξ). (11) 

Hence, if 

l ( ^ / ) ( £ ) l < ( l + l£ i r ( | a | + m ) , (12) 

we get 
\\Daf\L2\\ = \\®(Daf)(.)\L2\\ = Ua®f&\L2\\ < oo. (13) 
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So, decay in the Fourier image means smoothness of the function itself and as 
it is seen from (13) also vice versa. In some sense the above definitions are a 
diversification of these simple arguments. 

Remark 3. The quasi-norms in (9) and (10) are local in the following sense. 
Suppose 

inf { |jc — y\ : χ G supp f , y e supp g } > 0 

then / + g € F*q if and only if / e Fp\q and g e Fp q and / + g € Bs
p q if and 

only if / e Bs
pq and g e Bs

p q, cf. [Tr 8, 1.8.4], 

Proposition 1. ([Tr 6, 2.3.3]) Fpqand Bpqare quasi-Banach spaces (Banach 
spaces if min(p, q) > I). They are independent of the chosen system φ e Φ 
(equivalent quasi-norms). 

Remark 4. We shall not distinguish between equivalent quasi-norms. So we shall 
write || · IF°q || and || • \Bs

p q || instead of || · \Fp\q \\φ and || · \Bs
p q Γ , respectively. 

The spaces q 

In the definition of the F-scale the case ρ — οο is missed. Unfortunately, to take 
simply the above definition makes no sense (the spaces F^q, q < οο, would de-
pend on the chosen φ e Φ then). Therefore we shall use the following modification. 
First, let 

Qkx = {x: 2~kii < Xi < 2~k (ii + \), ϊ = 1 η }, k e Ζ, I e ΊΓ . (14) 

Definition 3. Let s e i and 0 < q < oo. Let φ = {ψ]}%0 € Φ. We put 

F i ^ i / e S T : | | / | F ^ | | = (15) 

sup sup I 2''" / ( j r 2 k s q \ ^ - { ^ k ^ f ] { x ) \ q ) ) < oo 
j=0,1,... eeZ" \ JQj.t yk=j J J 

1/9 

Proposition 2. ([FJ, Chapter 5]) (i) The spaces F^ q are quasi-Banach spaces 
independent of φ Ε Φ (equivalent norms). 
(ii) Let φ — € Φ and let 1 < q < oo. Then 

oo 
= {/ e V •• 3lfj}?= 0 Withf I V j ^ f ß (convergence in V ) (16) 

y=o 
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/ „ ν 
and || l E ^ W W I ' l |LJI <ry~)· Ü7) 

An equivalent norm on F^^ is given by the infimum over all admissible represen-
tations (16) of f in (17). 

Remark 5. The spaces F ^ q will not play an essential role in our context. But they 
occur in some situations very naturally. At first, by considering the dual spaces of 
F* , cf. Remark 2.1.5/2; secondly, they include the local bmo spaces, cf. 2.1.2; 
finally, they form important subspaces of the sets 

M(F;g) = {f e&": f • g € for all £ € Fpq }, 

cf. 4.7.2. 

Remark 6. Beside the trivial equality Bs
p 

exactly, it holds 

(i) ps ι 
Pi .91 

— FS2 
P2><?2 implies 

(ii) Pi.ii = Β52 
Pl, 12 implies 

(iii) Pi = BS1 
P2.?2 implies 

(cf. [Tr 6, 2.3.9]). 

= Fpp we have always diversity. More 

S\ = S2, ρ 1 = P2 and q\ = q2, 
s\ = p\ - pi and qx - q2, 
5i = s2 and pi = p2 = q\ = q2, 

Remark 7. Other spaces. At the first glance one could think that the scales F s and 
Bp qaie rich enough to cover all interesting tempered distributions. But this is not 
the case. If / is continuous and unbounded such that 

I / f(XJ+y)dy I —» oo for some sequence |χ,·| —> oo, 

then 
/ ^ ( F ^ U F I ^ ) , S € R , 0 < Ρ < OO, 0 < q < oo . 

For instance, polynomials, which are not constant are not contained in these 
classes. To include those tempered distributions one has to investigate weighted 
counterparts of F*q and Bs

p q , respectively. We omit details and refer to [Tr 6, 
ST, Ya 2, Mar 3, Mar 6], There is also a well-developed theory for anisotropic 
spaces, spaces of mixed dominated smoothness and its periodic counterparts, cf. 
[ST, Ya 2, Mar 3]. Function spaces related to more general differential operators 
than the Laplacian are investigated in H.-G. Leopold [Leo 1, Leo 2]. Let us refer 
also to the russian literature, where spaces of so-called generalized smoothness 
are extensively investigated, cf. e.g. [BIN, Gol 2, Gol 3, KL], In any case, the 
starting point is a similar definition of these variants of F* , Bs

p qas given above. 
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For that reason there is some hope that some of the assertions presented here in 
the unweighted isotropic cases only, have appropriate general counterparts. 

Remark 8. The general references for function spaces as above are J. Bergh and 
J. Löfström [BL], M. Frazier and B. Jawerth [FJ], M. Frazier, B. Jawerth and 
G. Weiss [FJW], J. Peetre [Pe 3], H.-J. Schmeisser and H. Triebel [ST], D.E. Ed-
munds and H. Triebel [ET 5] and H. Triebel [Tr 6, Tr 9]. For historical remarks 
we refer to H. Triebel [Tr 9]. 

Convention 1. Only additional restrictions of p, q and s will be given. That means 
if there are no restrictions for p, q or s given then the assertion holds for all 
admissible values in Definition 2. In particular, if not otherwise stated always 
ρ < oo in case of the F-scale is assumed. 

Convention 2. If not otherwise stated then the quasi-norms || · |F* || and || · | B p q || 
are always generated by using the system {qojjj € Φ constructed in (5). 

2.1.2 Classical function spaces and their appearance in the scales 
F* and 

PA PA 

The aim of this subsection is twofold. On the one side we wish to show that many 
different types of, in some sense, "classical" function spaces can be identified with 
special cases of the above introduced scales Fpq and Bpq, on the other side we 
hope to increase the transparency what type of spaces Fp q and Bs

p q are. 
First we introduce the Lebesgue spaces Lp to be the set of all Lebesgue-measurable 
complex-valued functions on R" such that 

(the measure is always Lebesgue measure) are finite. Corresponding to that Lp°° 
means the set of functions satisfying 

for all compact sets B. 
By C we denote the set of all complex-valued and uniformly conitinuous functions 
on M" equipped with the sup-norm. Further, if m — 1 , 2 , . . . , we define 

(1) 

(2) 

Cm = {f e C : Daf e C for all |a | < m} (3) 
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endowed with the norm 

l l / | C m | | = Σ | |Dö / |Looll . (4) 
\a\<m 

In (3) and (4) Da means classical derivatives. After introduction of these basic 
spaces we come to the "constructive" spaces (cf. [Tr 6, 2.2.2]). 
(i) Holder spaces Cs. If s is a real number, then we put 

s = [5] + {5} with [s] integer and 0 < {s} < 1. (5) 

If s > 0 is not an integer, then 

C' = { / € Cl" : (6) 

(ii) Zygmund spaces If s is a real number, then we put 

λ = [5]- + {$}+ with |>] integer and 0 < {s}+ < 1. (7) 

Furthermore, if / (x) is an arbitrary function and h € Mn we put 

K f ( x ) = ^ ( ^ j ( - l ) i f ( x + (m-e)h), m = 1,2, ... . (8) 

If s > 0, then 

^ = | / e C [ ? r : (9) 

11/1^11 = 1 1 / | C [ i ] l + Σ sup I h |_li>+||A^Da/ I C II < 00 j . 
|a|=[s]~ ' 

(iii) Sobolev spaces W™ . Let 1 < ρ < oo and m=l,2, . . . , then 

Wp
m = if eLp: ||/|HJ"|I = £ l l ö a / I M < ° ° } · (10) 

^ \a\<m > 

(iv) Slobodeckij spaces W* . If 1 < ρ < oo, 0 < i / integer, then 

w; = { f e w ™ : \\f\w;\\ = \\f\wpM\\ 
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(v) Besov (or Lipschitz) spaces Λ* ^. If s > 0, 1 < ρ < oo and 1 < q < oo, 
then 

K , q = { / € w p ' r ·• II f Iap,9 II = II / II 

+ Σ ( / | Λ Γ 1 ί , + Ί | Δ ^ / Ι ^ | | ^ ) " < ο ο } . (12) 
\a\=[s] 

If s > 0 , I < ρ < o o , then 

A;,OO = { / e : 11/ |AJi00|| = | | / 

+ Σ sup I h 1| Aj ;D a / \ L P \ \ < o o | . (13) 

(vi) Bessel-potential spaces (or Sobolev spaces of fractional order) H * . Let 
s be a real number and 1 < ρ < o o . Then 

h; = { / ε V : 11/ \H£ II = + \ξ | 2 ) ^ / |LP || < o o j . (14) 

(vii) Local Hardy spaces h p . Let 0 < ρ < oo. For ψ as in (2.1.1/ 4) we put 

hp = l f € I F ' : \ \ f \ h X = \\ sup \ 9 ~ ι Μ ί ξ ) 9 ί ( ξ ) ] ( ' ) \ \LP\\ < · I o<i<i J 
(15) 

(viii) Space of "local" bounded mean oscillation b m o . If / is a locally 
Lebesgue-integrable function and if β is a cube, then 

fQ = 7 ^ [ f ( x ) d x (16) 
\U\ JQ 

is the mean value of / with respect to Q. We put 

bmo = j / € L ^ : || / I bmo || 
(17) 

= SUP Τ7ΓΤ f l / W - f o \ d x + SUP 77ΓΤ / I/CO I d x < · |0|<1 \U\ J \Q\>\ \U\ J J 

Remark 1. (Technical explanations). D a f in (6) and (9) are classical derivatives. 
In all other cases it has to be interpreted in the sense of distributions. Further, 
suPlöi<i (17) means that the supremum has to be taken over cubes Q with 
volume | g | < 1. 
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Proposition. ([Tr 6, 2.3.5]) We have the identities (equivalent quasi-norms) 

(i) Cs DS °oo,oo if 0 < s φ integer, 

(ii) Ψ DS ΟΟ,ΟΟ if s > 0, 
(iii) LP 

- F ° _ tP.2 if 1 < ρ < oo, 
(iv) Wpm τρνη 

~ FP, 2 if 1 < ρ < oo, m — 1 ,2 , . . . , 
(v) = FP,P = (Bp,p) if 1 < ρ < oo, 0 < s φ integer, 
(vi) = BP.q 

if 1 < ρ < oo, 1 < q < 00 and 
(vii) HP = FP.2 if 1 < ρ < 00, 

(viii) hp - F ° _ tp,2 if 0 < ρ < oo, 
(ix) bmo = ( ^ 2 ) ' means the topological dual). 

Remark 2. Not included in the scales Fpsqand B*iqare Lu L^, C, Cm, W{", W™ . 
For further informations see H. Triebel [Tr 6, 2.2.2] and [Tr 9, Chapter 1]. 

2.1.3 Basic properties 

By A\ c A2 we mean the set-theoretical embedding. Aj denotes continuous 
embedding, i.e. there exists a constant c such that 

\\a\A2\\ <c \\a\Ad for all a e A\ . (1) 

Finally, A\ A2 is reserved for compact embedding. 

Proposition 1. ([Tr 6, 2.3.3]) (i) We have 

y ^ ^ r . (2) 

Furthermore, if is dense in F* if q < 00. 
(ii) We have 

y ^ B ^ ^ r . (3) 

Furthermore, if is dense in Bp qif max(/>, q) < 00. 
(iii) In case ρ — 00 we have 

Π cm c • (4) 
meN 

Furthermore, PLeN Cm is dense in B^q if q < 00. 

Since if is not dense in F ^ ^ , Bsp oo and B^ q the following definition is reasonable. 

Definition 1. (i) fpq denotes the closure of if in F ^ endowed with the same quasi-
norm as Fpq. 



2.1 Definitions and fundamental properties 15 

(ii) bsp q denotes the closure of if in ß ^ endowed with the same quasi-norm as 

The Fatou property 

Definition 2. Let A be a quasi-Banach space with if η A ^ We say A has 
the Fatou property if there exists a constant c such that from 

fa-^f if k oo (weak convergence in &") 

and 
liminf || fa \A\\<D 
<—>•00 

it follows / e A and ||/ |Λ|| < cD with c independent of / and {fa}fLo C A. 

Proposition 2. ([Fr 3]) Fpqand B* qhave the Fatou property. 

Remark 1. (a) There are simple examples to show that L\, C, Cm, b^^ bsp)00 and 
fpt0Q do not satisfy the Fatou property. 
(i) L\: Take ψ from (2.1.1/4), then 

2knxp(2k ·) δ if k 00 (ό-Dirac distribution). 

(ii) C: Let φ be a continuous function with φ(χ) = 1 for xn > 1 and φ{χ) = 0 
for xn < 0, where χ = (x\,... ,xn). Consider fa(-) = cp(k •) then fa —̂  χ, where 
χ denotes the characteristic function of the half-space. The same argument works 
in case Cm. 
(iü) bp fp(i00, b ^ : Consider 

fa(x) =ψ(2-'χ)^-1[ψ(2-'ξ)^/(ξ)](χ). 

We have fa f , k 00. Further it holds fa e fpsq (b^q) if / e Fp\q (B*<q). 
Also the quasi-norms of fa are uniformly bounded (cf. 2.1.5 and 4.7.1), but as 
pointed out after Proposition 1 / does not belong to bsp q (fp<q) in general, 
(b) Loo has the Fatou property, cf. [Fr 3]. 

Dilation in Fs and Bs 
p,g p,g 

We shall study the operation /(·) —»· f{X·), λ > 0. Also for later use we 
introduce the following abbreviations: 

Op = η • max(0, 1) 
Ρ 

(5) 
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and 

Op a — η • max(0, - — 1, - — 1). (6) 
Ρ q 

As we shall see in the next section s > σρ will guarantee 

( F / , U B'Pt9) C Lf o c . (7) 

Proposition 3. ([Tr 11], [ET 5, 2.3.1]) (i) Let s > σρ. Then there exists a 
constant c such that 

II f a · ) I Fp\q || < c λ-i m a x ( U ) ' 11/ I Fp]q || (8) 

holds for all f e Fp q . Here c is independent from λ > 0 and f . 
(ii) Let s > ap. Then there exists a constant such that 

|| f a · ) I Bs
p<q II < c λ-p max(l ,λ)' \\f\B°Ptq || (9) 

holds for all f € Bpq. Here c is independent from λ > 0 and f . 

Remark 2. Both, (8) and (9) become false if 0 < ρ < 1 and s < n(j — 1) (cf. 
H. Triebel [Tr 11]). Sometimes limiting cases are of interest. Suppose 1 < ρ < oo 
and 1 < q < oo. Then 

\\fa-)\B°pJ < c A - " ( l + l o g A ) ? | | / | 5 ρ %| | (10) 

if λ > 1, and 

\\ f a-)\Bp,q\\ <CX~"PO· + | logA|)1 _ i 1 1 / | | (11) 

if 0 < λ < 1, cf. G. Bourdaud [Bou 3, Bou 10]. 

The lemma of Ehrling and the triangle inequality 

Proposition 4. Let .s'o < s < s\. 
(i) For any ε > 0 there exists a constant cE such that 

11/ IF/,, II < c 11/ \F^q\\ + c £ 11/ |F„%|| (12) 

holds for all f € Fp]q. 
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(ii) For any ε > 0 there exists a constant Ct such that 

11/ IBlq II < ε || / \Bs
p\q\\ + ce | | / \B*q\\ (13) 

holds for all f e Bs
p\q. 

Proof. It holds 

Μ 

1 1 / I I < c 
^ ^ j = 0 ' 

+ || ( Σ 2jsq\®-l[<Pj®f](-)\q)'' \Lp 
j=M + 1 ' 

<c{lM^\\f \Fp«\\ + 2<M+,>^'>||/ IF^Il) 

for any M e N. The proof of (13) is the same. • 

For each quasi-Banach space A there exists a number ρ, 0 < ρ < 1, and an 
equivalent quasi-norm such that 

\\a0+ay\A\\P <\\α0\Α\\Ρ+\\αι\Α\\Ρ (14) 

holds for all a0, a\ € A, cf. G. Köthe [Koe, 18.10]. 

Proposition 5. Let d = min(l ,p, q). 
(i) It holds 

OO OO 

Ι Ι Σ Λ - Ι ^ Ι Ι ^ Σ Ι Ι Λ - Ι ^ Ι Ι " <15> 
j= 0 j=0 

for all f j € Fp q , j = 0, 
(ii) It holds 

OO OO 

« Σ / ^ Σ η Λ ι*;.· if ( 1 6 ) 

j= 0 j= 0 

for all f j € Bp q , j = 0,.... 

Proof. Both, (15) and (16), follow directly from the corresponding properties of 
Lp and iq. • 
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Invariance under diffeomorphic maps 

Let 
γ = η(χ), i.e. yj = η](χ) if j = ί,...,η, (17) 

be an infinitely differentiable one-to-one mapping from R" onto R" . We call it a 
k -diffeomorphism if the components have classical derivatives up to the order k 
with Datjj 6 C, 0 < I et I < k and if | det η±(χ)\ < c > 0 for some c € R and all 
χ e Rn. Here η* stands for the Jacobian matrix. We call η a diffeomorphism if it 
is a diffeomorphism for any k. 

Proposition 6. ([Tr 9, 4.3.1]) Let η be a diffeomorphism. The linear mapping 

/ ( * ) — > / 0 7 ( * ) ) (18) 

yields an one-to-one mapping from F* qonto itself and from B* qonto itself, respec-
tively. 

2.1.4 Lifting property and related quasi-norms 

Let 

la fix) = Sf - 'Kl + l l l 2 ) ^ / ( £ ) ] ( * ) , / G s r , σ e R. (1) 

Proposition 1. ([Tr 6, 2.3.8]) (i) Ia maps Fp qisomorphically onto F* °. 
(ii) I a maps Bs

pqisomorphically onto Bs
p~q°. 

As usual, id denotes the identity operator and 

« d2 

denotes the Laplacian. We have 

(—Δ + id)m / = ^ " ' ( 1 + 1112)m$f , m = 1 , 2 , . . . . 

This shows that Proposition 1 describes the action of fractional powers of the 
operator (—Δ + id) on the function spaces under consideration here. The behaviour 
of 

d"f 
J d x . . . dx%" 

will be described in the next proposition. 
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Proposition 2. Suppose φ — e ^ an<^ m = 1» 2 , . . . . 
(i) Then 

F = { / 6 V" • Σ II ° a f Ι^ ,ΓΙΙ < ' 
^ | a | < m J 

Γ " Bm f Ί 
= { / € r : 11/ IF—II + Σ I I ä ^ I C T < -

y=i "'V 

and 

dmf 
II 

7 = 1 

Γ n dm1 
F l q = | / e y ' : I I ^ V ^ / K O M + E II ä ^ 

in the sense of equivalent quasi-norms. 
(ii) Then 

= / H ^ w / k o i m + E Μ 
^ y=i J 

(2) 

(3) 

Λ IF/-» II < o o ^ (4) 

(5) K * = { / € » " : Σ II Ζ)«/ | ä ; -» | | < 00 j 
^ \a\<m ' 

( n om f ·\ 
B'Ptq = { / € ST : ||/ \Bs

p-m\\ + Σ W-^r \Bp7W < . (6) 

and. 

Brnf 
m \Bs

p~m\\ < o o \ (7) 
1/Λ J=1 

in the sense of equivalent quasi-norms. 

Proof. A proof of (2), (3), (5), and (6) may be found in [Tr 6, 2.3.8], Formu-
las (4) and (7) are not directly covered by this reference. However, an obvious 
modification of the proof given there yields these assertions, too. • 

2.1.5 Dual spaces 

From Proposition 2.1.3/1 we know that (Fpq)', {Bpq)' can be interpreted as sub-
spaces of θ", provided that max(p, q) < oo. More precisely, g £ belongs to 
the dual of F* (Bpq), max(p, q) < oo if and only if there exists a constant c 
such that 

I g(<p) \ \\ φ Wp,q II (1) 

and 

I g{<p) \ <c\\ φ \Bs
pq || ( 2 ) 



20 2 Function spaces of Besov-Triebel-Lizorkin type 

for all φ e respectively. If 1 < r < oo, then r' is determined in the usual way 
by J + ^ = 1. If 0 < r < l w e put r' = oo. 

Proposition. ([Tr 6, 2.11], [Mar 2], [FJ]) 

(i) Let 1 < ρ < oo and 0 < q < oo. Then 

(B;<q y = B^ . (3) 

(ii) Let 1 < ρ < oo and 1 < g < oo. 77ien 

(F„% )' = Fp7*q, . (4) 

(iii) Let 0 < ρ < 1 and 0 < q < oo. 77ien 

a * ; , ) ' = ( 5 ) 

(iv) Lei 0 < ρ < 1 am/ 0 < q < oo. 77ierc 

(v) LetO <q < 1. Γ/ien 

= . (6) 

( ^ u ) ' = · (Ό 

Remark 1. Also limiting cases are of interest. Let 1 < ρ < oo and 0 < q < oo. 
Then 

= ßp'.V (8) 

holds, cf. [Tr 6, 2.11]. If 0 < ρ < 1 we have 

c^',00 )'=βζΤρ~λ> w 

cf. also [Tr 6, 2.11]. 

Remark 2. The counterpart in case of Triebel-Lizorkin spaces reads as follows. 
Let 1 < ρ < oo and 1 < q < oo. Then 

σ , ν = do ) 

including 

(fi,qy = F^ (id 
and hence 

(,h\)' = bmo, (12) 
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cf. J. Marschall [Mar 2]. If 0 < ρ < 1 then the counterpart of (9) reads as 

Cfp,oo) = Β οο,οο" , ( 1 3 ) 

cf. J. Marschall [Mar 7], 

2.1.6 Supplements: Fourier multipliers and maximal inequalities 

Both, Fourier multipliers and maximal inequalities represent basic tools in the 
theory of function spaces, even if one applies the Fourier analytic approach (and 
we will do that very often). Therefore, but also for better reference we recall some 
basic facts, cf. H. Triebel [Tr 6, Tr 9]. 

The Hardy-Littlewood maximal function 

If / e Lfoc, then 

M f ( x ) = sup-i- [ \f(y)\dy, (1) 
\o\ J Β 

where the supremum is taken over all balls Β centered at x. We have 

(.Μ f ) ( x ) > I / (JC) I for almost every Λ G K" (2) 

(with respect to the Lebesgue measure). 

Proposition 1. ([St 2, 2.1/2.2]) Let 1 < ρ < oo and 1 < q < oo. There exists a 
constant c such that 

\\M fk\Lp{iq)\\ <c\\fk\Lp{iq)\\ (3) 

holds for all sequences {/* of complex-valued locally Lebesgue-integrable 
functions. 

Remark 1. In addition one knows 

II Μ fk |Lp(£oo)ll <c\\fk |Lp(€oo)||, (4) 

\\Mf\Lp\\<c\\f\Lp\\, (5) 

where 1 < ρ < oo. These are obvious consequences of (1) and (3). Note, that (3) 
with ρ = 1 and/or q = 1 becomes false, cf. Ε. M. Stein [St 2, 2.5/A1]. 
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The Peetre-Fefferman-Stein maximal function 

For φ = {φ,-lylo <Ξ Φ , ö > 0 and / e we put 

\®-l[<Pj®f](x-y)\ 
'J J — ! . |0J· ,a J yeRn 1 + \Vy\a 

Op*'"/)« = sup ' Γ , , JC€R n , 7 = 0 , 1 , . . . . (6) 

By grad / we denote the gradient of /. 

Proposition 2. ([Tr 6, 2.3.6]) Let ψ € Φ. Let 0 < r < oo. 
(i) There exist two constants c\, C2 such that 

Igiadff^tffoff/K·*-?) ! ^ /λ* ι QE-l Γ «ffiii/Mrxi/ Λ 
yeR" 1 + lj|a 

(7) 
holds for all f € S" and all χ e R". 

ι there exist 

2js(p*j'af \Lp(tq)\\ <c\\f \Fpq || (8) 

(ii) Let a > —7—r. Then there exists a constant c such that min [p,q) 

holds for all f e F*. 
1er 

2js<p*j'af\lq(Lp)\\<c\\f\B^\\ (9) 

(iii) Let a > j. Then there exists a constant c such that 

holds for all f € B* . 

Remark 2. From the definition of the maximal function cp*'af{x) it follows that 
also the reverse inequalities to (8) and (9) are true. Hence, F* (Bpq ) is the set of 
all tempered distributions such that \\2js(pyaf\Lp(lq)\\ < 00 (\\VSφ*>αf \lq{Lp)\\ < 
00), cf. [Tr 9, 2.3.2], 

Fourier multipliers for Lp and Lp(tq) 

Proposition 3. ([Tr 6, 1.5, 2.4.9]) Let φ e Φ and let {fj}°°=0 C 9". Suppose 

supp ®fj C {ξ : HI < D 2 0 , j = 0, 1 , . . . , (10) 

for some D > 1. 
(i) Let κ > op<q, cf. (2.1.3/6). Then there exists a constant c such that 

II ®-l[<Pj ®fjK-)\Lp(£q)\\ <CDK \\fj \Lp(tq)\\ (11) 

holds for all sequences { f j 0. Here c is independent of D and {/y}^0-
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(ii) There exists a constant c such that 

II y - 1 to y / , · ] ( · ) M l < c f l - m " ( 0 ' H ) II/y Μ (12) 

holds for all sequences //ere c i's independent of D, j, and f j . 

If one drops condition (10), one has to restrict the investigations to values of ρ > 1. 

Proposition 4. ([Ya 1]) (i) Let 1 < ρ < oo and 1 < q < oo. Then there exists 
a constant c such that 

II f j ( m · ) M M I I ^ c \ \ f j M M II (13) 

holds for all φ Ε ίΡ and all systems ^ 
(ii) Le/ 1 < ρ < oo. Then 

\\®-1[φ(ξ)& f(m-)\Lp\\ < cW^-'tplUW 11/ |L,|| (14) 

holds for all φ e ^ and all f e £/". 

Fourier multipliers for F* and Bs
p q 

We say φ satisfies the Michlin-Hörmander condition if 

\Οβφ(ξ)\<εβ(1 + \ξ\)-Μ (15) 

holds for all multi-indices β and all ξ e M" and some Cß < oo. We say that φ 
satisfies the Michlin-Hörmander condition for Ν € Ν if (15) holds for all \β \ < Ν. 

Proposition 5. ([Tr 6, 2.3.7]) Let φ satisfy the Michlin-Hörmander condition 
for sufficiently large Ν = Ν (ρ, q). 
(i) Then φ is a Fourier multiplier in Fpq. That means, there exists a constant c<p 
such that 

l l ^ - ' t ^ / K · ) ! / ^ II <c9Wf \F£q II (16) 

holds for all f € Fpq. 
(ii) Then φ is a Fourier multiplier in Bpqand 

II ®-l[<p®f](·) IBs
p<q II < c<p \\f\B'Piq II (17) 

holds for all f e Bs . 

More complicated are the following assertions, needed in Chapter 3. Let η >2. 
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Proposition 6. ([FR 3]) Let φ g D(W~l) and A > 0. 
(i) There exists a positive constant q such that 

|| (&')-ι[φ(ξ')&' f](·) \Fp,q II < CA \\f\Fp,q II (18) 

holds for all f with 

supp 9f C | | e R" : \ξ'\ = |£·|2)ί < a | . 

(ii) There exists a positive constant ca such that 

II 9-ι[φ(ξ')9η(·) ιB'Ptq || < CA 11/ IΒ'ρΛ || (19) 

holds for all f with 

supp &f c {ξ gR" : \ξ'\ < A} . 

(iii) If I < ρ < oo and 1 < q < oo, then φ(ξ') is a Fourier multiplier in Fpcj. 
(iv) If I < ρ < oo and 0 < q < oo, ί/ι^η $>(£') w a Fourier multiplier in Bpq. 

Proof Step 1. We prove (i). The proof of (ii) will be almost the same. Let 
χ = (χ',*«) g R" and recall that 8F, r3e'~x mean the Fourier transform and its 
inverse with respect to R" - 1 and applied to x! instead of For notational reasons 
we state the following identity. 

3'<-l[(pk fmz) = c [ cp)(w)fk{z - («/, 0))dw' 

with fk — cF~l [<p/t cF f ] . Because of 

supp fk(z — (w\ 0)) = supp / eiz"x"(pk(w',xn)(& f)(w',xn)dxn 
J R 

C {w € R"_1 : \w'\ < A) 

(here zn is playing the role of a parameter) we may apply the maximal inequality 
in H. Triebel [Tr 6, 1.6.3]. This yields 

II / <p)(w')Mz - (w',0))dwf |Lp(Ew-1, 
JR""1 

<CA\\fk(.z',Zn)\Lp(RLa-\z'Htq)\\ 

with ca independent of / g and zn • Integrating with respect to zn and using the 
above identity we end up with 

II (9')-ι[φ (ξ')9'Μ·) I | | < CA 11/ I | | 
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for all / € i f . The general result follows by a limit procedure. If q < oo this 
consists simply in a density argument. If q — oo we make use of 

liminf \ \9- χ [1>(2-*ξ)9/ (ξ) ] ( · ) |F,% || ~ | | / \F^q || 

cf. H. Triebel [Tr 9, 2.4.2], Here φ is the function defined in 2.1.1 /(4). 
Note if 

supp i r i < A } 

then 

supp (£)](·) : \ξ'\ < A}. 

Step 2. We prove (iii). Using the Minkowski inequality we obtain 

|| f _ (r-1 q>)<y')f{x'-y',xn)dy' | | | 

< c / φψ)\ ΙΙ /( · - (y',0))\Fs || dy' <c\\f \F* || 

whenever F* (R" ) is a Banach space, cf. Proposition 2.1.1/1. 
Step 3. We prove (iv). The assertion follows by real interpolation, cf. 2.5.1, taking 
into account Step 2. • 

Proposition 7. ([FR 3]) Let a — (a', 0) be some multi-index. Let A > 0 be 
given. Then there exists some c > 0 such that 

\\D(a'fi)f\F^\\<c\\f\F;tq\\ (20) 

and 
\\D(a''0)f\B°>q\\<c\\f\B^\\ (21) 

holds for all f satisfying 

supp 9?/ C {ξ : \ξ\<Α}. (22) 

Here c is not depending on A and f . 

Proof. Both, (20) and (21) are immediate consequences of the preceding propo-
sition with φ(ξ') = (ξ')α ψ{Α~χξ'). • 

Some counterexamples 

First we show that there is no extension of the assertions (iii) and (iv) of the above 
proposition to values ρ < 1. 
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Lemma 1. ([FR 3]) Let ω e D(R) with supp e i c i j . f ) a«*/ /ef φ e Z>(Rn_1) 
with 

φ(ξ') = 1 if I £ I < 1 ^ φ ( £ ' ) = 0 i / | | | > 2 . 

It holds 
II SF"1 [φ(2-* |/)ω(2"* |£,|)](·) 15;,, II - c\ 2k{s+n~V (23) 

and 

l l ^ ' - V r ) w 1 ( (p(2-^>(2- f e |^ | ) ) )](-) |ß; , , || ~ C2 (24) 

where c\,ci > 0 are not depending on k e N. 

Proof. Step 1. We prove (23). Investigating the support of φ(2~>ίξ') ω(2~*|§|) 
we find 

<$-ι[φ{2-κξ')ω{2-κ\ξη\)}{·) |Bs
p>q || 

= II [ φ ι ( 2 - » + Λ § ) ς 3 ( 2 - * ^ > ( 2 - * | | Ι Ι | ) ] O M * ) 
<7 

•j=-1 

= ί 2(λ+·/-)ί9 2knq 2~k^q ΙΙ^-1 ξ)φ{ξ')ω(\ξη\)](·) \Lt 

ι 

This proves (23). 

Sie/? 2. Proof of (24). Similar as in proof of Proposition 6 we get 

9?"1 { ( ^ ( V - 1 C - 1 I» ) } (z) 

where we used φ;·(£) · φ(2~Ι(ξ') = φ]{ξ), k = 1,2, Taking into account the 

various conditions on the supports of φ, φ\, ω we obtain 

φ^ξ)φ(ξ')ω(2-'\ξη\) = δΜ <pkQ) φ(ξ') ω(2"* ||„|) 

making k large enough. Hence, we have derived 

= c || ®-λ[φ(ξ') ω(|£,|)](·) \LP(R")\\ 

for k sufficiently large. The proof is complete. • 
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Remark 2. As a direct consequence of the lemma we have that Proposition 6(iv) 
can not be true if ρ < 1. Real interpolation (cf. Proposition 2.5.1) yields Proposition 
6(iii) can not be extended to ρ < 1. 

Finally, we deal with 0 < q < 1 in Proposition 6(iii). That is more interesting as 
the preceding case but also more delicate. For the sake of simplicity we suppose 
η —2. 

Lemma 2. ([FR 3]) Let φ, ρ Ε £f(R) be two functions such that 

supp ρ C : 

and 

Define 

K i < i } . (25) 

I l l < i , (26) 

< H · 
(27) supp φ C : 

^ f 1 φ(ξ) > 1 if \ξ\<2. (28) 

2* 2* 

fkix 1,*2)= Σ Q(2kxi-j)Q(x2)eiX^= Σ /*.;(*!.*2), (29) 
j=k+ι ;=*+i 

Ay = 3 · 2y_1 + I. Then there exist two positive constants A, B, such that 

II/* |/^(Ε2)||<Α<<χ) (30) 

and 

II fk](-) l^vV®2)!! > (31) 

for all s u f f i c i e n t l y large k. 

Proof Step 1. We prove (30). The Fourier transform of reads as 

2* 
9fk<M!,&)= Σ 9 5 ^ 2 ( 3 2 ) 

j=k + \ 

Employing (25), (27), (29) and making use of Proposition 3 we obtain 

/ 2, χ .,· 
\\ft \F°q(R2)\\ <c|| Σ \9~l[<Pj9fk.jK')\q] I M r 2 ) H 

\j=k+1 J 
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/ χ ι/« 

( Σ Ι - Μ Ί im r 2 ) I I · 

Thanks to ρ € if (E) there exists for any Me Ν some constant cM such that 

Ιρ(01 <cM(l + \t\rM . 

Consequently, 

/ * χ . / , 

Wfk l ^ ( E 2 ) | | < c || ρ |Ζγ,(Μ)|| || £ |ρ(2*ί - j) \q |LP(M)|| (33) 
j= ο 

/ oo / * Χ ' / ' λ 1 " 
< c 2 ? Σ Σ α + ΐ ' - ϋ ) " * ' 

/=-00 \y=o / 

Because of 
\ '/<? 

the estimate (30) follows from (33). 
Step 2. We prove (31). A simple calculation yields 

2* 

j=k +1 

using (32) and (4) provided that k is sufficiently large. This implies 

9-ι[φι9 {9'~\<p£x)9'fk])(z) (34) 

2* 

j=k+1 

Again we make use of (25), (27) and (8), which shows that 

<PiGi^i)<pGi)e-iJ2~i*1 9ρ(ξ2+λ]) = dltJ <pfa) e~* ρ(ξ2 +Xj). (35) 

Both, (34) and (35) lead to 

2k \ 
Σ \2~k ρ(ξ2 + *,•)](•) I* IM®2)!! 

d=k + \ J 
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/ * y / ί 
= | | ρ | ^ ( Ε ) | | II I £ 2 " * * Ι φ ( ζ ι - j2~k)\" J 

Consider only integration over the unit interval and applying (28) we find 

Making k large enough (31) follows. The proof is complete. • 

Remark 3. The importance of the above Lemma 2 is twofold. On the one hand 
it shows that we can not extend Proposition 6(iii) to values q < 1 (note that 
the set of Fourier multipliers of F s does not depend on λ). That is in contrast 
to the case of Besov spaces. There q and s do not influence the set of Fourier 
multipliers. So, and that is the second consequence, Lemma 2 gives us a hint that 
an additional ^-dependence of several assertions with respect to Triebel-Lizorkin 
spaces (in comparison with the Besov spaces) may occur. In some sense F f a , 

r »τ 

q < 1, behaves like spaces F* q, ρ < 1. 

2.2 Embeddings 

Various embedding relations between F ^ a n d ß ^ w i l l play a major role in what 
follows, especially in Chapters 4 and 5. 

2.2.1 Elementary embeddings 

We collect consequences of the monotonicity of the ig-quasi-norms and of the 
convergence of geometric series. 

Proposition. ([Tr 6, 2.3.2]) Let ε > 0 and suppose qo < q\. Then it holds 

fS ^ f (J) 

fs+£ Fs (2) 1 ρ,οο 1 p,q' v·^/ 

(3) 
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and 
ß J + £ B s (4) ρ,οο ί>,<7 " ^ ' 

Remark. In view of ( l ) - (4) one can interprete q as a fein-index. The main role 
is played by s and p. 

2.2.2 Embeddings with constant smoothness 

Theorem. ([SiTr]) (i) We have the equivalence 

Bs ps β* (1) p,u p,q ρ,ν ν ' 

if and only if 

0 < u < min(/7, q) and ma \ {p , q) < ν < oo . (2) 

(ii) It holds 

<M u ^ BftV (3) 

0 < u < 1 and ν = oo . (4) 

if and only if 

(iii) It holds 

if and only if 

Furthermore, we have 

(iv) It holds 

if and only if 

Ku ^ L 1 (5) 

0 < u < 2 . (6) 

U <t F,° . (7) 

< « Ax> ^ (8) 

0 < u < 1 and ν = oo. (9) 

Remark 1. In (8) we can replace the space Loo by C and the equivalence remains 
true. 

Remark 2. By (1) and (2) we know F,0^ ^ B f ^ . The assertion (7) shows that 
(3) can not improved by replacing ß f ' ^ by F,0^. 
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2.2.3 Embeddings with constant differential dimension 

Recall that s — - is called the differential dimension both of F ^ a n d B1 „. It is a ρ P>'7 P> <7 
characteristic number which plays a crucial role in the theory of these spaces, see 
for instance Proposition 2.1.3/3. 

Theorem. ([Jaw 1, SiTr]) (i) Let 0 < po < ρ < p\ and suppose 

η η η 
So =5 = S] . (1) 

Po Ρ Ρ ι 

Then 

Bsη c^. f s BsI (2) 

if and only if 

0<U<P<V<OQ. (3) 

(ii) Let ρ < p\ and suppose 

Then 

(iii) Let 0 < ρ < 1. Then 

if and only if 

η η 
s - - = s\ . (4) 

Ρ P\ 

Fs ^ FSl (5) 1 ρ,οο 1 p\,q ' V/ 

n(i-l) 
Bp J U (6) 

0 < q < 1 . (7) 

Remark 1. Of course, by the monotonicity of the q-spaces one may replace 
Fp,oo by F*r with r arbitrary in (5). 

Remark 2. Consider F ^ . From Proposition 2.2.1 and the above theorem, in 
particular (5), we get F^'qo ^ Fp

s
q if s0 - fo > s - £ and if p0 < p, cf. 

the figure. Similarily in case of the Besov spaces B^uqo (with exception of the line 
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Remark 3. To complete the picture we state the following embeddings containing 

ßS+n/p pS "ρ,οο 1 oo,q' \UJ 

F<x,q· We have 

0 < ρ < oo and 

= 0 < < oo, (9) 

cf. [Mar 2, Mar 7]. 

Remark 4. Suppose (1). Then the embedding Bp°u Bp\<u becomes a conse-
quence of the so-called Nikol'skij inequality, cf. [Tr 6, 1.3.2]: let / e LPl be a 
function such that 

supp C {ξ: \ξ\<Α] 

for some A > 0. Then there exists some constant c, independent of / and A such 
that 

\\f\LP]\\<cA<-^}\\f\LP0\\ (10) 

holds. 

2.2.4 Embeddings in L«,, Lfoc and Lp 

Theorem 1. ([SiTr]) (i) The following three assertions are equivalent: 

(a) F / , Loo, (1) 
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(b) C , (2) 
η η 

(c) either s > — or s = — and 0 < ρ < 1. (3) 
Ρ Ρ 

(ii) The following three assertions are equivalent : 

(a) B; q ^ Loo, (4) 
(b) B ' ^ C , (5) i 

η η 
(c) either s > — or s = — and 0 < q < 1. (6) 

Ρ Ρ 

Fig. 1 

Remark 1. In addition to (4) note that 

Bl,q ^ bmo ^ Z&)00 (7) 

0 < q < 2 and 
W7 Loo (8) 

if m > η . 

In the next theorem we shall interprete L(oc as the set of regular distributions. 

Theorem 2. ([SiTr]) (i) The following two assertions are equivalent: 

(a) F l q C Lf o c , (9) 
(b) either 0 < ρ < 1, s > σρ , 0 < q < oo, (10) 

or \<p<oo, s> 0, 0<^<oo, (11) 
or I < ρ < oo, 5=0, 0 < q < 2. (12) 
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(ii) The following two assertions are equivalent: 

(a) fi^cL**, (13) 
(b) either 0 < ρ < oo, s > σρ, 0 < q < oo, (14) 

or 0 < ρ < 1, 0<q<\, (15) 

1 < ρ < oo, 5 = 0 , 0 < q < min(p, 2) . (16) 

Remark 2. For short, if s > σρ then (Fpq U Bp) C L(oc holds, whereas in case 
s < Op singular distributions are contained in Fpqand Bpq, cf. Fig. 2. 

Remark 3. Let δ be the Dirac distribution. Then 
00 1 oo 

«5 = Σ V'TO^M = (̂ -)"/2Σ 9~1<ΡΛ·) 
0 71 j=0 

with φ = e Φ. Choosing φ to be the system from (2.1.1/5) we get 

j = 1, Directly from (17) it follows 
η η d € Bs

p q if and only if either s < η or s = η and q — oo , 
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which illustrates the restrictions on s appearing in the above theorem if ρ < 1. To 
prove (15) only a small modification of these arguments is needed, cf. [SiTr] for 
details. 

Remark 4. Let 1 < ρ < q < oo and 5 = 0 . The construction of a singular 
distribution g belonging to B® q is less obvious than in the previous case. We 
start this construction with a smooth, non-trivial function / , supported around the 
origin, F F(x)dx — 0 and \f(x)\ < 1. Let A > 1. Define KQ = 0 and KJ = 
Σ«=ι (log(£ + 1)) - σ · Since σ > 1 there exists a limit κ of this sequence {κ,·},·. 
By Rj, j = 1 , 2 , . . . , we denote the cube 

{x = C*1,... ,xn) : κ < x i < Kj, 0 < Xt < 1, € = 2 , . . . , « } . 

1 

1 

I 1 

1 

Ri Ri r3 

3»-
KQ Κ ι K2 K y Κ X\ 

Fig. 3 

Next we subdivide Rj in 

Nj = 2j(n~l) 2 y r 1 ( l o g 0 + l))" 

([ ] integer part) cubes of side-length 2 7 and denote the centre by xj'r. Then the 
announced singular distribution g e Bp q is given by 

oo Nj 

g = Σ Σ + ι»σ f -χί,Γ)) · 
;=1 r= 1 

(18) 

We omit the details and refer to [SiTr]. 

For the readers convenience and better reference we shall formulate some further 
consequences of the above embedding relations and of Subsection 2.1.2. Sometimes 
we shall use the generic notation As in place of F ^ a n d Bs

p q. 
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Corollary 1. ([SiTr]) (i) Let ρ < σο. Then the following two assertions are 
equivalent: 

(a) As
pq c L f o c , (19) 

(b) As
pq ^ Lp, p = max(p, 1). (20) 

(ii) The following two assertions are equivalent: 

(a) ^ c L f o c , (21) 
(b) ^ bmo . (22) 

Corollary 2. ([SiTr]) Let ρ < p\ < oc and suppose p\ > 1. 
(i) We have the equivalence of the following two assertions: 

(a) Fp q ^ LPl, (23) 
1 1 

(b) s > η . (24) 
\P Pi/ 

(ii) We have the equivalence of the following two assertions: 

(a) Blq ^ LPx , (25) 

(b) either s > η ( ) or s — η I J and q <p\ . (26) 
\P P\J \P Pi J 

s l\ 

•y y 

17 

7 7 V 

Έ. 
J_ 
Po 

Fig. 4 

It remains to clarify what happens in case ρ ι < 1. In general, the topologies in 
and Lp are incompatible. To see this consider the sequence 

fk = jgj%Qk . k = 1 , 2 , . . . , 
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where Qk is the cube 

Qk = {x = (*i> · · • ,*«) : I·*,·I < y, i = 1, · · ·, n) k 

and xQk denotes the corresponding characteristic function. For k —» oo we have 
fk d in Θ". On the contrary, || |LP|| = 0 as k ->· oo, and hence 
/* —rO 'mLp. Corollary 2 and Theorem 2.2.3 offer us the possibility to interprete 
Fp ̂ and Bs

pqas subspaces of L\ provided that ρ < 1 and s > ^ —n. Making use of 
these arguments the following result is known. 

Lemma. ([Tr 6, 2.5.3]) Let 0 < ρ < 1 and s > j — n. 
(i) There exists a constant c such that 

1 1 / Μ < C | | / | F , % | | (27) 

holds for all f € Fpq. 
(ii) There exists a constant c such that 

11/Μ <c\\f\Bs
p>q\\ (28) 

holds for all f € Bs
pq. 

z r » = » - » 

7T AO 
i 
Ρ 

Fig. 5 

2.2.5 Embeddings for spaces of bounded functions 

Spaces of type Fpq Π Loo and Bpq Π L^ will play an important role in what 
follows. We shall need some refinement of the embeddings using this additional 
information. Recall L^ ^ Β®,>00, cf. (2.2.2/8). 



38 2 Function spaces of Besov-Triebel-Lizorkin type 

Theorem. ([Ru 3]) Let 0 < Θ < 1 and suppose s > 0. 

(i) There exists a constant c such that 

11/ l ^ l l <c\\f IF / , II® 11/ l^oo l l 1 -® (1) 

holds for all f e n f i ^ . (ii) There exists a constant c such that 

11/ |β|:§11 <c\\f ιBl q II® 11/ Ι ^ , , ο Ι Ι 1 - 0 (2) 

holds for all f e Bs
p>q Π ΰ ^ . 

Proof. Step 1. (Proof of (i)). Recall 

[ I g(x)\P dx= ρ Γ tp~x I {x : | * ( x ) | > f } | A , 
J R" JO 

where \[x : ...} | denotes the Lebesgue measure of the set {JC : . . .} . Writing 

oo s ιj r 

dt 
= { ' = ( Σ ι 2 ' ><} 

(3) 
the idea of the proof consists in to split the sum over k in dependence of t. 
For simplicity we assume | | / |ß<^ooll = 1 general result follows then by a 
homogeneity argument). By assumption we have 

(4) 
\k = 0 J 

TF®·* Ι Ο . Ι Λ P„„ ι σττ — 1 q r i l / v M \ ^ „ ^K&s < c 2 A W ^ s u p s u p | ^ > ^ / ] ( ; c ) | j < c 2 

where c is independent of Κ > 0 and / . We choose Κ to be the largest natural 
number such that 

c 2™* < (5) 

(c is the constant from (4)). Now we split the integral in (3) into two parts, one 
over (0, 2c) and one over (2c, oo), where c is again determined by (4). Suppose 
t > 2c. It follows from < s 

(oo \ l/ r 

J2\2k&s®-][<Pk®f](x)\rj >t 
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< 

< 

1 It 

( Σ 1 2 ^ y - ' ^ w r 
U=/f + l J 

t 
> -2 

j x : sup 2Ai > t - 2 K s { X - & ) \ 
[ λ=Ο,Ι,... 2 J 

(6) 

Using (5) we derive ^ 2a:-s(1 Θ ) > c't1/Θ, where c ' is independent of f , Κ and / . 
That leads to 

Γ J2c 

r — II {x : ...} I dt 

rOO 
<C / i / ~ ' | { x : sup 2ks \&~l[(pk&f](x) \ > ν }| dv 

Jc'iicyiv *=o,i,... 

< C\\f |F/i00f (7) 

It remains to estimate f0 c. Because of ^ — ρ > 0 we have 

/ ί*Η \{x: dt 
Jo 

r2c 

<C tp~l I {x : sup 2ks I & ~ l [ < p k & f ] ( x ) I >t}\dt 
Jo k = 0 , 1 , . . . 

<C\\f\Fp't 
Ii ρ 

0 0 II (Β) 

From (7), (8) and a homogeneity argument the desired estimate (1) follows. 
Step 2. Formula (2) is obtained from 

/ 0 0 / t \qlp\&/q 

11/ = [ Σ 2 k s q [ J I ^ " V ^ / K * ) ι p / & d x j J 

θ/9 

< 1 1 / Ι * 

The proof is complete. 

ί ||Θ II f I R° II1-0 II II J I οο,οο II 

• 

Remark 1. Let 5 > 0 and 0 < Θ < 1. Weaker versions of the above theorem are 

F^ Π bmo ^ , 

Θί 
6 4 ' Bi „ Π bmo ^ B&s 

(9) 

(10) 
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and 

f ; a η Loo ^ F f c , (11) 

(12) 

cf. Remark 2.2.4/1 and Theorem 2.2.2/(iv). 

Remark 2. Of course, only under the additional assumption s < n/p the inequal-
ities (1), (2), (9)-(12) are improvements of Theorem 2.2.3, cf. the figure. 

Remark 3. Recall φ \ α f denotes the Peetre-Fefferman-Stein maximal function, 
cf. (2.1.6/6). The same proof as above yields 

|| 2k&s <p*k<af ILh( l r) \ \ < c || 2ks q^af M 4 c ) l l ® || cp^f ΙΖ^^ο)!!1 '® (13) 

if s > 0, 0 < Θ < 1, and a > 0. The only point, where we used special 
properties of ^ ^ [ φ ^ f \ { x ) was inequality (4), which is obviously fulfiled with 
(~pl'af instead of ^^[φ^ f]{x), whenever a > 0. 

Remark 4. We repeat the arguments used in Remark 3, now with the Hardy-
Littlewood maximal function Μ | ̂ " ' [«p*^/]( ·)!(*) instead of 
Formula (4) has a direct counterpart, cf. Remark 2.1.6/1. Consequently, we have 

||2*®s (m \^-XWk^n\a)X'a \Lk{ir)\\ (14) 

< c||2*' (Μ I9~l[<pk9f r)1/a|Lp(^oo)ll® II 

(M\9-l[<pk9f\a)l,a I^^H1-® 

if 5 > 0, 0 < Θ < 1 and a > 0. 



2.3 Some equivalent characterizations of and Bs
p q 41 

2.3 Some equivalent characterizations of Fl _ and Bs
n _ PtH PtH 

2.3.1 Characterizations by differences and some representatives of 
Fn

s and Bs„„ 
PA P,Q 

Recall that Δ£\ σρ and ap,q have been defined in (2.1.2/8), (2.1.3/5) and (2.1.3/6), 
respectively. 

Theorem. ([Tr 9, 3.5.3]) Let Μ be a natural number. 
(i) Suppose 

op,q < s < Μ . (1) 

Then 

FP,1 = {·/" € ^maxd ,p) '• (2) 

1 

Ι Ι / Μ + Ι Ι ^ / ί - ^ J f (χ) \ d h ^ ^ y \Lp\\ < o o j 
0 |ή|<ί 

in the sense of equivalent quasi-norms. 
(ii) Suppose 

σρ < s < Μ . (3) 

Then 

Bl q = { / e Lmax(1,p) : 11/ |Lp|| + |ΛΓ '* | |Δ ί7 | M ' j ^ ) ' < (4> 

in the sense of equivalent quasi-norms. In (4) the term (f ... dh) may be replaced 
by (/{Λ:|Λ|<ε} • • •) far any ε > 0. 

Remark 1. Sometimes we will find it convenient to replace the ball-means 
(pr f \ h \ < t . . . ) by means over cubes in (2). 

Further, we collect some properties of differences we shall need in Chapter 3. 
Therefore, let A: = I,... ,n and h > 0. Then we put 

bk,hf(x) = : · (5) h 

Proposition. ([FR 3]) Let 0 < h < 1 and k e {1 , . . . , n}. 
(i) There exists a constant c such that 

\\^k,hf\F;-x\\<c\\f\F^\\ (6) 
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and 

IIA*.* / - \f;-2\\ <ch\\f I F„% II (7) 

holds for all f e F* q and all h. 
(ii) There exists a constant c such that 

\\Ak,hf\Bs
p-l\\<c\\f\B^\\ (8) 

and 
df 

IIA*,* / - tH*'"2|| <ch\\f IB' || (9) dXk 

holds for all f € Bs and all h. 

p< <? 11 — 11 •> 1 p,q 

Proof Step 1. We prove (6), the proof of (8) may be derived similarly. Recall 
<p*'a/ has been defined in (2.1.6/6). Observe 

l oo 

j=0 j=t+1 

Let 2_ ( £ + 1 ) < h < Then the mean-value theorem, the maximal inequality 
(2.1.6/7) together with a homogeneity argument imply 

99-x[q>j&f], , .. . (χι ,...,xk+Ah,...,xn) OXk 

_ — a * — ν — < c 2 J * 
yd* \ + \Vy\a ~ 

< c (i +12 j i h r ) sup ^ — r ^ T i ^ — 1 < c 27 i f p Y f m 

provided that t > j and λ e (0, 1) is some number depending on χ, k, h and j. 
If a > n/min(p, q) then we can continue with (2.1.6/8) which leads to 

|| [2*-» &k,h9-l[<Pj9f] }l
j=0 \Lp{iq)\\ <c\\f \F*q ||. (10) 

We estimate the second summand. It holds 

|| [2*-» Ak,h&-l[<pj&f]}%e+l \Lp(lq)\\ (11) 

< c A " J || \Lp(lq)\\ 

< c 2m II 9~l[q>j9f] }%e+l \Lp(£q)\\ <c\\f |Fp% ||. 

Now (10) and (11) prove (6). 
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S t e p 2. Again we are concentrated on (7), the proof of (9) can be done complete 
similarly. As above, if j < i then 

9 - l [ q > j 9 f ] ) ( x ) -
dxi. 

(.χ) (12) 

h_ 

2 
(,JCi, . . . , Xk + Alt, . . . , X n ) 

d x j 
c l 2 ^ r f ( x ) 

This estimate can be complemented as in (10). Based on Step 1 and the lifting 
property, cf. Proposition 2.1.4, we derive 

I oxk J j = i + i 

< c || | 2 ^ - 2 ) \Lp(iq)W 
V J j=t+1 

< c \ \ \ 2 j { s - l ) ® - l [ < P j ® f ] ) \ \Lp{lq)\\ 
{ > j=t+1 

+ H S ^ - ' ^ - ' l c p j & f ] ) 0 0 I L p ( i q ) 
{ > j = i + 1 

< c l - 1 

which completes the proof of (7). 

Representatives of F* q and Bsp q 

To make things more transparent, it is often helpful to consider some model func-
tions. To this end we investigate a series of examples. Most of the calculations are 
based on Theorem 2.3.1. 

Example 1. Functions with a local singularity. We put 

= Ι^Γ ( - log kl)" 0 (13) 

where α2 + δ2 > 0, ό > 0 and ρ is a smooth cut-off function with supp ρ c 
{x : |;cI < $ > 0 sufficiently small. That means, we are interested in a local 
singularity at the origin. 
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L e m m a 1. Let s > σρ and suppose a ^ O . 
(i) Let ό > 0. Then 

η η 
fad £ Bn a if and only if either s < —ha or s = —ha and qd > 1. ™ ρ ρ 

(14) 
(ii) We have 

η η 
fa ο e Bs

n a if and only if either s < —ha or s — —ha and q — οο . 
P'q Ρ Ρ 

(15) 
(iii) Let δ > 0. Then 

η η 
fad € Fs if and only if either s < —ha or s — —ha and δρ > 1. 

P'q Ρ Ρ (16) 
(iv) We have 

fa,ο € F_% if and only if s < - + a. (17) 
Ρ 

Proof. Step 1. Proof of sufficiency in (i) and (ii). To begin with let <5 > 0. Let Μ 
be a natural number large enough. Let Μ \h | < It holds 

3M \h I 

I faA*)\P dx < C I rap rn~l(— log r)~δρ dr 
\x\<2M\h\ 0 

< c|Ar+,,(-log|A|)-^, (18) 

where c is independent of h. 
Using 

|Δ? /„fd(x)| < c |Λ max sup fa,A(y)\ (19) 
|y|=W \x-y\<M\h\ 

ifO i { y . \x-y\<M\h\} 
and 

\Ογ fatd(x) ι < c ( - log \χ\Γό , \y\=M > 1, (20) 

we obtain 

J fa,ö(x)\P dx (21) 
|*|>2A/|A| 

jb 20-+l)Afl*l 

< c £ J \h\M? (jM I h|)<α"">' I l og ( ;M |) r " " 1 J r 

j=l 2jM\h I 
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< C I h Γ + η Σ j»-l«a-M)p\ l Q g { j M ] h | ) Γ θ ρ ^ 

j = 1 

where jo is defined to be the smallest integer such that 

2(λ + 1)Λ/|Α| > ϋ . (22) 

Since \h\ < ε (cf. Theorem 2.3.1(ii)) we may assume 2(JQ + I) Μ \h\ < \ for 
sufficiently small ε > 0. Note that (22) guarantees 

<£.η-1«α-Μ)ρ , l o g ( j M ] h | } | -<5p < c | l o g | Ä | ( 2 3 ) 

j = 1 

for sufficiently large Μ. Again c is independent of h. 
Hence, (21) and (23) leed to 

j I A f fa,ö(x)\P dx < c \h r + n ( - l o g I h I ) " * ' ( 2 4 ) 

\x\>2M\h I 

Consequently, (18) and (24) prove 

ε j | Ä Γ ( ^ * ) ί | | Δ J , / « . ό M , ^ < c J \\ogr\-d" dr < oo (25) 
|Α|<ε 0 

if > 1. This proves sufficiency in (i). By similar arguments one obtains also 
sufficiency in part (ii). 
Step 2. Necessity in part(i) and (ii). Again we deal with <3 > 0. Let s = ^ + a 

and qd = 1. From fa<(5 e we derive the existence of some r > 0 such that 

1 1 
fa<0 € Br,q p r , max (1, /?) < r < 00 , 0 < ^ - n ( ) < 1 , 

ρ r 

using Theorem 2.2.3. The quasi-norm in Br q p ' is bounded from below by 

(J (26) 
|Ä|<e 

Applying the inequality 

I \x\a(- l o g M ) - * 5 — \x + h | a ( - l o g I x + h | Γ ό | > c | h | a ( - l o g | h | ) _ ό , ( 2 7 ) 
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where χ = (* Ι , . . . , JC„), h — (h\,..., hn) € R", x, > 0, ht > 0 , i = 1 , . . . , η and 
\x\ < ^ < ho for some c > 0 and some Μ > 0 we obtain 

J \ h \ ~ ^ + ^ l f a t d \ L r r ^ > / ( - l o g o f f = 00. 
|Λ|<ε ο 

In view of (26) this yields fa i5 £ B* . A modification of the same argument yields 
(ii). 
Step 3. Proof of sufficiency in (iii) and (iv). This can be done by using (i), (ii) 
and embedding theorems only. Suppose op < s — ^ + a and dp > 1. In particular, 
(i) yields 

f + a 

fa,δ € Bplp , Po < p. 

By Theorem 2.2.3 it follows e Bp,q which proves sufficiency in (iii). Suffi-
ciency in (iv) follows using the same procedure. 
Step 4. Necessity in (iii) and (iv). Again we use (i) in connection with embeddings. 
Let σρ < s < ζ + a and dp = 1. Theorem 2.2.3 yields 

Fp.q ^ BPuP , P\ > Ρ • 
. f-+a 

Therefore, (1) tells us, that op = 1 implies / a <5 φ BPuP and consequently / α <$ φ 
— +a 

Fpp
x\p . The proof in case ο = 0 is the same. • 

Remark 2. The restriction s > op is natural, except may be the limit case s = op. 
In case s — σρ = 1 + α, p< l i t follows —a = n and consequently /a,o £ . 


