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Introduction

In 1976,1.M. Isaacs published his "Character Theory of Finite Groups". This
book has often been on my desk since then, doing research or teaching. To
offer now one more book on the same subject needs some justification, cer-
tainly more than only the author's pleasure to write it.

How does this book differ from Isaacs' book? There have been achieved
many interesting results in character theory since 1976, several by Isaacs him-
self. Questions about character degrees had already been taken up by Isaacs
in chapter 12 of his book. Since 1984 many more results in this direction have
been found. As research of my students and myself was for some years concen-
trated in this area, I devote considerable space to degree problems. Also, the
similarity with several results about lengths of conjugacy classes, still not at all
understood, is considered in some detail in §33.

There is another, minor difference compared with Isaacs' book. Occasion-
ally my treatment is just a bit more module-theoretic. But in general I also
prefer here a short and elegant character-theoretic approach to a more elabo-
rate module-theoretic proof. So I make no attempt to prepare the reader for
the study of modular representation theory. I do not try at all to give an
impression of this wide field, only rarely I make some remarks.

Another difference with Isaacs' book is the inclusion of many examples,
where I calculate the character table or at least the character degrees of
groups. Permutation representations will often be very useful in the study of
special groups. I think that it is extremely important for a serious student of
character theory to know many examples. After all, several theorems are of
the type that some statement is true, except for some very special groups.
Certainly, I want the reader to "meet many groups". To enable the reader to
find information about special groups I add a list of examples treated in this
book.

The amount of group theory needed in this book is most of the time rather
moderate. A one-term lecture suffices nearly everywhere. In a first section I fix
notations and collect the facts needed later on, some of them used only rarely.
The reader might contact this section only if needed.

As the present book is intended to be self-contained, there are naturally
sections where I deviate only slightly from other books. Some special areas,
where I cannot improve on Isaacs' treatment, have been touched only slightly.
This concerns for instance some questions about splitting fields and the
Schur index. Projective representations are only treated as far as they are
needed for Clifford theory, the theory of the Schur multiplier is left out.



2 Introduction

Some more remarks are necessary about the relation between this book
and the rather recent book by O. Manz and Th. Wolf. This important book
presents some fundamental recent developments, concerning mainly solvable
groups. Except for occasional references I have avoided the topics treated
there. So the book by O. Manz and T. Wolf may be considered as a kind of
extension of the present book in some directions.

The theory of exceptional characters and coherence is not included. The
reader can find a detailed presentation of this theory and some applications in
the book by M. Collins, listed in the bibliography. I only include just enough
of these techniques to prove in § 45 that generalized quaternion groups (even
of order 8) cannot be Sylow-2-subgroups of simple groups.

For a one-term lecture (and the less experienced reader) I suggest the fol-
lowing program: § 1-6; at least some examples from §7; § 8, § 17. The "classi-
cal" applications in § 15 and parts of § 16 should follow here. Also §42 about
faithful irreducible representations can already be presented here.

Coherent sections for further study could be § 18-25, on Clifford theory and
applications to solvable groups. After this might follow §40,41.

Another line might be Brauer's main theorem and applications in § 34, 35,
37-39, or §43-45.

The list of references makes no attempt to be complete. Classical results,
already in many books, are usually quoted only with the name of the author.
More recent results and extensions of the text are contained in the bibliogra-
phy. Names usually refer to the bibliography, with numbers if an author
appears more than once. (Isaacs without numbers refers to Isaacs' book.)

For contribution of unpublished material, critical remarks and references I
have to thank H. Bender (Kiel), C. Casolo and S. Dolfi (Firenze), St. Gagula,
I.M. Isaacs (Madison), T. Keller (formerly Mainz), B. Külshammer (Jena), U.
Meierfrankenfeld (East Lansing), G. Navarro (Valencia), J. Neubüser (Aachen),
G. Pazderski (Halle) and Judith Pense (Mainz), J.M. Riedl (Madison).

For assistance with the proofs I owe thanks to W. Jehne, G. Pazderski and
T. Keller.

I like to thank the Asco Company for producing this book from a hand-
written manuscript.

Finally I want to thank Dr. M. Karbe of de Gruyter Verlag.



Examples of groups

The examples are ordered by their first appearance in the text.

Quaternion group 08 El.l, E8.2, §45
|G : A\ = 2 and A abelian 2.8, 7.1, 13.9a)
Symmetric group S3 E2.1, 12.4
Group of triangular matrices of type (2, 2) E2.4
Symmetric group Sn 3.15, El 1.4, El 1.10
Abelian groups 2.12, §5
Groups of order 32 6.10, 6.11
Groups of order 16 E6.1
Groups of order 24 E6.2
Dihedral groups 7.3, 36.10
Generalized quaternion groups 7.3, 36.10
Extraspecial groups 7.5, 7.6, 7.7, 7.10, 8.3, E8.1, 9.2,

17.12, 32.9
Generalized extraspecial groups 7.6, E7.2, 9.7b), E27.1, E27.2
Alternating group Λ4 7.9a), 12.4, 29.6
SL(2, 3) 7.9b), 24.12, 46.4, 46.5
Affine group over GF(q) 7.9c), 7.10, 16.8a), 32.9
Group of order 24 · 3 E7.4
Direct products 8.1
Symmetric group S4 11.7a), E17.1a), 29.6
Alternating group A5 11.7b), E17.1b), 12.4, 29.6, 46.3
SL(2, 5) 11.7c),16.8d), 32.1,46.1
GL(3, 2) 11.7d), E17.1c),44.5
Γ(23) 11.7e)
Symmetric group S5 11.11 a)
Alternating group A6 11.lib), 44.5
GL(2, 3) El 1.8, 19.14a), 19.15a), 23.6a)
Symmetric group S6 El 1.7
Reflection group H4 13.9c)
Semidihedral groups E13.1, 36.10
Groups of order p"qb §15
Frobenius groups § 16, 18.7, 18.8, 19.18, §46
Suzuki groups 16.8e), 17.lie)
Groups with cyclic Sylow subgroups 17.10
PSL(2,q) 17.1 Ib)
Unitary groups PSU(3, q2) 17.1 Id)



Examples of groups

Extension of (3, 3) by GL(2, 3)
Γ(ρ')
Extension of (2, 2, 2) by GL(3, 2)
Extension of a nonabelian group of
order 33 by GL(2, 3)
Extension of an extraspecial group of

order p2m+1 by the symplectic group
Sp(2m, p)

Extension of an extraspecial group of
order p2m+1 by a cyclic group

Extension of an extraspecial group by a
metacyclic group

Monomial group of order 29 · 7
Non monomial group of odd rank
Non monomial groups by Dornhoff
Wreath product A I S4
Iterated wreath product Zpl ··· I Zp
p-groups with only three character

degrees
p-groups with small class number
Groups of unitriangular matrices
Sylow-p-subgroups of the symplectic

group Sp(2m, pf)
Bucht group of order 25 · 34 · 5
Noritzsch group
Riedl group
Unitary group S U (2, C)
Orthogonal group SO(3)
Orthogonal group SO (4)
Valentiner group
Groups with only prime degrees
Alternating group A7
Solvable groups with only square

free degrees
Groups with only distinct degrees

larger than 1
Groups with only two class lengths
Groups whose class lengths are

prime powers
Metabelian groups by Casolo and Dolfi
SL(2, 2/)
Metacyclic groups of order pq2

Groups with quaternion
Sylow-2-subgroups

19.14b)
19.14c), E19.6, E19.7, 24.7a), 27.7
E 19.4

22.5a)

22.5b)

22.10, 24.7b), E27.2

22.6, E27.1
24.11
24.16
E24.1, E24.2
25.7a)
25.10, 26.3a)

26.3b), E26.1
26.5
26.9

26.12, E26.2
27.11
27.12
27.13
29.1
29.3, 29.4
29.5
29.8c)
§31
31.14b)

31.15

32.9
33.6

33.9
33.12
35.11, E35.1
38.19

45.1



Notations and results from group theory

In this section we collect notations and theorems about finite groups, which
will be used frequently, often without reference. But several of the facts we
mention here are used only rarely.

Let G always be a finite group.

(1) If U is a subgroup of G, we write U ^ G resp. U < G and denote by | G: U \
the index of U in G. If U is normal in G, we write 17^ G resp. I/o G and
denote by G/U the factor group of G by U. We write JVoo G and call N
subnormal in G, if there exists a series

N = Nl^N2^---^Nk = G

(where k = 1, hence ΛΓ = G, is allowed).
If M is any finite set, by |M| we denote the number of elements in M.
If M c G, we denote by <M> the subgroup of G generated by M.
If g e G, we put ord g = |<g> |. Then ord g is the smallest integer m such that

gm = 1. The smallest integer m such that gm = 1 for all g e G, we call the
exponent of G and denote it by Exp G.

(2) If U, V ^ G, then the set

UV = (uv\ue U,veV}

contains

\U\\V\\uv\ = U r\V\

elements. UV is a subgroup of G, if and only if UV = VU; this is certainly the
case if (7=3 G. If U, V^ G, then

|G: UnV\ ^\G:U\\G:V\.

If in particular \G:U\ and |G : F| are coprime, then

\G:VnV\ = \G:U\\G:V\

and hence G = UV.



6 Notations and results from group theory

(3) For g, h ε G we put gh = h~igh. The conjugacy class gG of g in G is defined
by

If M c G and 0 e G, we put

M9 = {g^

and call M9 a conjugate of M. If Μ ίΞ G, we define normalizer and centralizer
of M in G by

N0(M) = {g\g e G, M« = M}

and

CG(M) = [g\g e G, gm = mg for all m e M}.

Then

and we obtain a partition

We call fc = /j(G) the class number of G.
If U ̂  G, then CG(U)^NG(U) and NG(U)/CG(U) is isomorphic to a sub-

group of the group Aut U of automorphisms of U.

(4) If g, h e G, we define the commutator of g and h by

[0, Λ] = iT'TV/i.

If A, £ ^ G, we put

In particular, we write G' = G(1) = [G, G] and define recursively
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If G(k~l) > G(k) = £ = {!}, we call G solvable and fc = dl G the derived
length of G.

(5) Sylow's theorem.
Suppose that p is a prime, |G| = pam and p\m. Then the set

is non-empty. The members of Sylp G are called the Sylow-p-subgroups of G.
They all are conjugate in G, and if P e Sylp G, then

|SylpG| = |G:JVG(P)| = l (mod p).

If 17 < G and 1 17 1 is a power of p, then there exists P e Sylp G such that U ^ P.
If M ̂  G and P e Sylp M, then G = MNG(P) (Frattini argument).

(6) P. Hall's theorem.
Let G be solvable and |G| = mn with (m, n) = 1. Then G contains subgroups of
order m, and all these are conjugate in G. If U ̂  G and |17| divides m, then
there exists H ^ G such that \H\ = m and U ̂  H.

(7) Zassenhaus-Schur Theorem.
Suppose NoG and (|N|, \G/N\) = 1. Then there exists // ^ G with
|//| = |G/JV|, hence G = JV# and ΛΓ η Η = E.

If N or G/iV is solvable, all such H are conjugate in G. (At least one of the
groups N, G/N has odd order, hence by the theorem of Feit and Thompson is
solvable.)

(8) We define the centre of G by

Z(G) = {z|z e G, zg = gz for all g e G}.

The ascending central series of G is then defined recursively by Z0(G) = E and

Then

ZJG) = U Z,(G)

is a subgroup of G, the hypercentre of G.
The descending central series of G is defined by K^G) = G, K2(G) = G' and
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(9) The following statements are equivalent:
(i) ZC(G) = G for some c.
(ii) KC+1(G) = E for some c.
(iii) All Sylow-subgroups of G are normal in G, and G is their direct product.

Then we call G nilpotent. If Ze_i(G) < ZC(G) = G, then KC(G) > KC+1(G) =
E, and we call c = c(G) the nilpotency class of G. In particular, G is of class 2

(10) The product of all nilpotent normal subgroups of G is a nilpotent normal
subgroup, the Fitting group F(G) of G. We define the Fitting series of G by
F0(G) = £ and

Fi+l(G)/Fi(G) = F(G/Fi(G)).

If G is solvable, then F^^G) < Fn(G) = G for some n. Then we call n = n(G)
the nilpotent length of G.

If G is solvable, then

CG(F(G)) < F(G).

The Frattini subgroup O(G) of G is defined as the intersection of all maxi-
mal subgroups of G. Then 0>(G) < F(G) and even 0>(G) < F(G) if G > E is
solvable.

G is nilpotent if and only if G' ^ <D(G).

(11) Let π be a set of primes. We call G a π-group, if all prime divisors of |G|
are in π.

The product of all normal π-subgroups of G is a normal π-subgroup of G
which we denote by 0„(G). If π = {ρ} or π = [q\q φ ρ}, we write Op(G) resp.
Op,(G) instead of O„(G).

By 0*(G) sometimes we denote the smallest normal subgroup of G such that
G/0*(G) is a π-group.

The ascending p-series of G is defined by P0 = £, Px = Op.(G) and recur-
sively

2i = Op.(G/P2i).

G is called p-solvable if Pk = G for some k. If P2t-i < G = P2k+i» we

k = lp(G) the p-length of G. If even P2 = G, hence G/Op,(G) is a p-group, then
we call G p-nilpotent.
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(12) We call G supersolvable if there exists a series

such that GJ^ G and |Gi+1/Gf| is a prime. If G is supersolvable, then the
following properties hold:
(i) G' is nilpotent.
(ii) If

with primes

Pi > P2 > ' · ' > Pk

and Pi e Sylp. G, then

Λ-..P^G.

(We say that G has a Sylow tower.)

(13) If A is an abelian p-group, then

A = <X!> χ ··· χ <xm>

is the direct product of cyclic groups <x;>. If ord xt = p"', then the pa< are
uniquely determined by A. We call (p"1, ..., p"m) the type of A. If Exp A = p,
we call A elementary abelian.

(14) The largest common divisor of integers m, n we denote by (m, n). If p is a
prime, pa\n and pfl+1 jrc, we write p" T n.

(15) Notations from linear algebra are standard. We use freely factor spaces
and tensor products of vector spaces. The transpose of a matrix A we denote
byA{.



§ 1 Representations and representation modules

Let G always be a finite group and K any commutative field.

1.1 Definition, a) Let V be a X-vector space with dimK V = n < oo. A repre-
sentation D of G on V is a group homomorphism of G into the group GL(V)
of all invertible linear mappings of V onto itself. Then we call V a G-module
over K for D and n = dimK V the degree of D. We write linear mappings
always to the right of the vectors, hence we write vD(g). As the neutral ele-
ment 1 of G is mapped onto the neutral element in GL(V), we obtain

vD(l) = ο for all veV.

b) The kernel of D, defined by

Ker D = Ker V = {g \ g e G, D(g) = £„}

is a normal subgroup of G. The representation theory is sometimes a power-
ful tool to show the existence of normal subgroups of G. (We shall meet
important examples in 15.3, 16.1, 17.9 and 45.1.)

We call D faithful and V a faithful G-module if Ker D = {!}.

To connect representation theory of groups with the more general theory
of algebras, following Emmy Noether, we introduce the group algebra.

1.2 Definition. We introduce the group algebra KG of G over K by

KG = 0 Kg,
geG

where the basis elements g of KG are multiplied according to the multiplica-
tion in G. Then KG is an associative X-algebra with dim^ KG = \G\. The
neutral element of KG is the neutral element of G.

1.3 Definition. By a K-algebra A we always understand an associative
/C-algebra with neutral element 1 and with dim^ A < oo.
a) An /4-module Visa, right /1-module such that dimx V < oo and vl = v for
all veV.
b) Let Vi and V2 be Λ-modules. We define
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= (a | α e Hom^T^, V2), (vla)ix. = (u ta)a for all v± e Fl5 α e /4}.

Obviously Hom,^, F2) is a K-vector space and HomK(K K) a K-algebra.
We call V^ and F2 isomorphic y4-modules if there does exist a bijective α in

Hom^i^i, K2). Isomorphism is an equivalence relation.
c) Let V be an Λ-module. A subset U ̂  0 is called an Λ-submodule if
uae U for all u e U and α e A. (Then [/ is a X-subspace of K) The factor
space

= {v+U\veV}

then becomes an ^-module by the obviously well defined definition

(v + U)a = va+ U for v e V, a e A.

d) If U1,U2, 1/3 are Λ-submodules of K then l^ π C/2 and

are v4-submodules. If Ulr\U2 = 0, we write U1 + U2 = L^ © U2.

We have the isomorphism as y4-modules

([/! + U2)/U2 s £/!/([/! η l/2)

by the mapping α with

(«! + t/2)a = M! + l/! n l/2.

Finally we have the socalled Dedekind identity: If Ut ^ U3, then

(tfi + ^2) π 1/3 = l/j + (C72 n l/a).

The notions in 1.1 and 1.3 do agree:

1.4 Remarks, a) If Κ is a G-module over Κ in the sense of 1.1, then V be-
comes a KG-module in the sense of 1.3 by

ν Σ W = Σ a.VD(g)
geG geG

for veV,aaeK.
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b) Conversely, if K is a /CG-module in the sense of 1.3, then we obtain a
representation D of G over K by

vD(g) = vg for v e V, g e G.

For then

hence D is a homomorphism of G into the linear group GL(V).
c) Let F be a KG-module. Introducing a K-basis of V, we obtain a homo-
morphism

g - D(0) = (α0-(0))

of G into the group of invertible matrices in the full matrix algebra (K)n,
where n = dim^ V. We speak then of a matrix representation. We call two
such matrix representations D1 and D2 equivalent, if the corresponding KG-
modules V{ are isomorphic in the sense of 1.3b). This means the existence of a
non-singular matrix T such that

T-lDMT = D2(g) for all g G G.

An important "internal" application of representation theory in group-
theory appears in the following way.

1.5 Application. Let N be an elementary abelian normal subgroup of G (for
instance a minimal normal subgroup of a solvable group G). Then

N = <*!> χ ··· χ <xn>

and x? = 1 for some prime p. If g e G, we have equations

*? = g-lxt9 = fl *r(9),
J = l

where atj(g) e GF(p). Putting D(g) = (atj(g)) we obtain a matrix representa-
tion D of G over GF(p), for the equation

fc=l
Π x J i j ( 9 l 9 2 ) = 921(9Ί1Χί9ί)92 = 92l Π
j=l fc=

= Π (9~21xk92)aik(9i} = Π
fc=l
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shows

= Σ aik(9i)akj(g2),
k = l

hence

Obviously

Ker D = { g \ x g = gx for all χ e N} = CG(N) ^ N.

Unfortunately, our later standard assumptions "X algebraically closed and
Char K || G |" are not fulfilled in this case. It belongs to the "modular
representation theory" over fields of characteristic different from 0.

We describe several procedures to construct representations:

1.6 Examples.
a) Let K be a KG-module with Ker V = N. Then V is also a KG/JV-module
by

v(gN) = vg.

If conversely K is a KG/JV-module, it becomes a KG-module by

vg = v(gN).

b) If D is a representation of G over K, then λ, defined by

= det D(g)

defines a representation λ of degree 1. If in particular G = G', then G = Ker λ
and so det D(g) = 1 for all g e G.
c) Let D be a representation of G over K and λ e Hom(G, Kx). Then D',
defined by D'(g) = /l(g)Z)(i/) is obviously also a representation of G. (This is
a special case of forming products of representations, as we shall see in § 8.)
d) Let D be a matrix representation of G over K, say

D(g) = (ay(

Let a be a field automorphism of K. Then Da, defined by
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0«(0) = (W)

is also a representation, for we have

η

Σ aik(9i)akj(
« π

e) Suppose D is a representation of G on a KG-module V and K0 is a subfield
of K with (K : K0) < oo. As

dimKo V = (K : X0) dim^ F < oo,

so V is also a K0G-module. Let {vlt ..., i?„} beaJC-basis of Fand {/q, ..., fem}
a K0-basis of K. Then

K = φ Xu, = φ 0
i=l i=l j=\

Suppose the matrix representation of G on the KG-module is given by

π

»id = Σ aik(9)vk,
k=l

where aik(g) Ε Κ. We also have formulas

m

kjX = Σ bjr(x)kr for χ e K,
r=l

where bjr(x) e K0. Then

n n m
/ / \ I X"^ / \ \~* X"1 I / / \Ί I
\rv;l/:jtf — rv: / ^ i t lM/v i , — / / £/ίρ\»ιίΙ ̂ //•*r I'l··\ j i / * j j ĵ t /cv»y/ κ ĵ ĵ jr\ iA\*y / / r ic

The trace of the /C0-linear mapping induced by g on F is therefore

m n m / n \

Σ \~^ ι / y \ v Υ"1 ι l T"1 / \ l) brr(akk(g)) = ) o., ) akk(g) =ĵ rr\ κκ\»// £j rr l ĵ κκ\α/ ι !K
r=l Jt = l r = l \<c = l /

Here traceK:Ko is the usual trace of the field-extension K:K0.
f) Let V be a KG-module and let V* = HomK(F, K) be the X-vector space
dual to V. We write conventionally a(v) for α e F*, t; e F. Then F* becomes a
/CG-module by
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(v.g}(v) = φg~ί).

For we have

Let [ v i , ..., v„] be a K-basis of V and (a1? ..., an} the dual basis of V*, defined
by

Suppose

= Σ aMvr
r=l

and

= Σ
/£ = !

Then we have

Jc = l ' J \r=l /

Hence the matrix representation of G on K* with respect to the basis
{<*!,..., αη} is given by

where bu(g) = a ( g ^ ) . Hence

where ί is the transposition operator. D* is often called the representation
contragredient to D.

(For general algebras, V* would be a left Λ-module. The antiautomorphism
of KG given by g -» gT1 allows in the case of group algebras to consider V*
again as a right module.)
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Exercises

El.l Let Q = <a, by be the quaternion group of order 8, where

a4 =1, a2 = b\ b~lab = a~l.

a) Let K be a field with Char K / 2, which contains elements c, d with

Then a faithful representation D of Q is given by

-(-? 9-*»- -«
b) Suppose that there exists a faithful /C -module F of dimension 2. Then
there exist c,de Κ with c2 + d2 — — 1. (Show at first that there is a basis of V

such that D(a) = f J .)

c) If X is a finite field with Char Κ / 2, there exists a faithful KQ-module of
dimension 2.
d) There does not exist a faithful R -module of dimension 2, but there exists
a faithful IRQ-module of dimension 4.

E1.2 Let F be a KG-module and U a submodule of V.
a) υλ = (α | α e F*, oc(w) = 0 for all u e [/} is a submodule of F*, and we have
the XG-isomorphism F*/^/1 = C/*.
b) F ^ F** as KG-modules.



§ 2 Simple and semisimple modules

2.1 Definition. Let A be a K-algebra.
a) An Λ-module V is called simple (irreducible) if V / 0 and if 0 and V are the
only ,4-submodules of V.

In the case A = KG we call the representation D of G on a simple
XG-module V irreducible. If D is not irreducible we call it reducible.
b) An yl-module V is called semisimple, if

with simple Λ-modules Vj. (Here we allow also k = 0, hence the zero-module
is called semisimple, but not simple!)

2.2 Proposition. Let V be an Α-module. Then the following statements are
equivalent:
a) V is semisitnple.
b) V= X"=1 Vj with simple Α-modules Vj.
c) // U is an A-submodule of V, there exists an A-submodule U' such that
U n U' = Ο, V = U + U', hence V=U@Ue.

Proof, a) => b): As V is semisimple, we have

with simple vKG-modules V}.
b) => c): Let U' be a submodule of V such that i/ n 17' = 0 and dimK U'
maximal. Suppose U + U' < V. As V = £*=1 Vj with simple Vjt there exists;
such that Vj ̂  U + U'. As Vj is simple, we obtain

(17+ C7')n*5 = 0.

Hence U' < U' + Vj and by maximality of U' therefore

Ο Φ U n (V + V,).

Take
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Ο φ u = u' + Vj,

where u e U, u' e U' and Vj e Vj. Then

Vj = u-u'eVjri(U + U') = 0.

This shows

u = u' 6 17 n U' = 0,

a contradiction. Hence F = ί/ + U' = U ® U'.
c => a): We prove this by induction on dimK V. We can assume V φ 0. As
dimjf V < oo, there exists a simple /1-submodule Vi of V. By property c) we
have

with an Λ-module V. We claim that also V has the property stated in c):
Let U be a submodule of F'. Then V = U 0 C/' for some submodule I/' of

V. Then by Dedekind's identity in 1.3d)

V = V'n(U®U') = U®(V'nU').

By induction V = ©;=2 Υι f°r some simple modules Vj, so

q.e.d.

The next theorem is very elementary, but one of the most effective tools.
It allowed I. Schur to give a new foundation of the character theory of
Frobenius, as we shall see in § 3.

2.3 Theorem (Schur's lemma). Let V be an A-module.
a) // V is simple, then HomA(V, V) is a skew field.
b) // V is simple and K algebraically closed, then Hom^(K, V) = K.
c) // V is semisimple and Hom^K, V) is a skew field, then V is simple.

Proof, a) Suppose 0 / α e Hom^K, V). Then 0 < Vet ^ V. If ν ε V and a e A,
then

(ι>α)α = (υα)α e Κα.
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Hence Fa is an A-submodule of V. As V is simple, so Fa = V. As dim* V < oo,
we see that α is invertible, hence there exists a"1 e Hom^F, V). (We could
show as easily that Ker α = 0, hence finite dimension of V is not really needed
in the proof of a).)

Take veV. Then ν = wa for some w e V. For every a e A follows

va = (wa)a = (wa)a,

hence

(ua)a"1 = wa = (va~1)a.

This proves a"1 € Hom^F, V\ so Homx(F, V) is a skew field.
b) If α e HomA(V, V), then α has an eigenvalue c in the algebraically closed
field K. Then

a-clKeHom c(F, V).

As a — clv is not invertible, by a) a = c\v.
c) If V is not simple, then V = Ft ® V2 with Λ-modules Fs ^ o. We define the
projections π,· e Hom^F, K) by

for υ,- e ^-. Then π,· / 0, but πιπ2 = 0. Hence HomA(F, F) is not a skew field,
a contradiction. q.e.d.

(The statement in c) is in general not true without the assumption that F is
semisimple; see exercise E2.4.)

2.4 Lemma. Let K be a field and U a finite subgroup of the multiplicative
group Kx of K. Then U is cyclic.

Proof. Let

U=U, x - x l / M

be the decomposition of U into its Sylow subgroups C/(, where It/J = p,?i. As
the number of zeros of the polynomial xp' — 1 in K is at most pi5 so Ut is cyclic,
say U{ = <Zj>. Then we easily see

t/ = <Zi> x ··· x <zm> = <z 1 . . .zw>,

and i/ is cyclic. q.e.d.
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2.5 Proposition. Let V be a simple, faithful KG-module and D the representa-
tion of G on V.
a) The center Z(G) of G is cyclic.
b) // G is abelian, then G is cyclic.
c) // K is algebraically closed, then

Ώ(ζ} = λ(ζ)\ν /orzeZ(G),

where λ e Hom(Z(G), K*).

d) // G is abelian and K algebraically closed, then dimK V = 1.

Proof, a) For v e V, g e G and z e Z(G) we have

vD(z)D(g) = vD(zg) = vD(gz) = vD(g)D(z).

Hence

£>(z) e HomG(K, K).

By 2.3a) HomG(V, K) is a skew field. Hence

S = {D(z)|zeZ(G)}

is a finite subgroup of the commutative subfield

L = X(D(z)|z e Z(G))

of Homc(K, V}. By 2.4 S is cyclic. As D is faithful, also Z(G) is cyclic.
b) follows from a) as G = Z(G) for abelian G.
c) In this case, we have by 2.3b)

e HomG(F, V} = K\V.

d) follows from c). q.e.d.

2.6 Proposition. Let K be algebraically closed, V a simple KG-module and A
an abelian subgroup of G. Then

Proof. Let G=\^J=lAgj, where m = \G:A\. Let V0 be a simple KA-
submodule of K By 2.5d) dimK V0 = 1, hence V0 = KvQ. Now v0a = i(a)y0 for
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α 6 A, where λ e Hom(,4, K*). We consider the X-subspace

of V. If g e G, then g$ = α·β·}, for some a} e A and some gf. Then

. ε .

Hence W is a KG-module. As V is simple, so V = W and

dimKF = dinix W^m = \G\A\. q.e.d.

2.7 Remark. The inequality in 2.6 is in most cases not very useful. A much
more important fact is the following theorem of N. Ito:

Let K be algebraically closed with Char K = 0, V a simple KG-module and
A an abelian normal subgroup of G. Then dim^F divides \G/A\. (We will
prove this in 19.9.)

2.8 Example. Let A be an abelian subgroup of G with | G : A \ = 2. Then
A <a G. Suppose

where b2 = a0 e Λ. Let X be algebraically closed and V a simple KG-module.
By 2.6 dimKF^ \G\A\ = 2. Suppose dimK V = 2. By 2.5d) there exists
0 ^ ι > ! e F such that

t^a = /(.(α)^ for all ae A,

where /I e Hom(/4, Xx). As Kt^ is not a /CG-submodule, so u2 = v^b φ Kvt.
Hence {vl, v2} is a X-basis of V. As afc"1 e A, we obtain

v2a =

and

v2b = v^b2 = λ ( α 0 ) ν ί .

Hence the matrix representation of G with respect to the basis {vlt v2} is given
by
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(λ(ά) 0 \
= I „ , . . _ , , I f o rae

(i i)·
It is easy to see conversely that D is really a representation of G. If

1) = λ(α) for all aeA, then G' ^ Ker D and by 2.5d) D has to be
reducible.

Assume there is some al e A such that λφα^ ί) ^ λ(αι). Then the only
subspaces invariant under D(ai) are Kv1 and Kv2. As these are permuted by
D(b), so F in this case is simple.

The set of available λ ε Hom(A, K x ) depends on Char Κ and the structure
of A. We come back to this example in 7.1.

2.9 Lemma. Suppose U ^ G and G = \J"j=l l/0; with n = |G : 17 1. Let V be a
KG-module and α 6 HomKlJ(V, V). Then β, defined for v e V by

j=i

//es in Hom^F, F).

Proo/. Suppose g e G and

9j9 = Uj9r e C/ ·̂'

Then

)β = Σ V9 *9j l<*9j = Σ V9riuj ^9j = Σ

= X vg/ctgj.g 1 = (v )g~1.
j=i

(For the last step observe that) ->;" is bijective.) q.e.d.

2.10 Theorem. Let V be a KG-module and U ^ G. Suppose W is a KG-
submodule of V and V= W φ W with some KU-submodule W of V. If
Char K = 0 or Char K \\G : U\, then there exists a KG-submodule W" of V
such that V= W® W".
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Proof. We define the projection e HomKU(V, V) by

(v for u e W

If G = (J;=1 Ugjt we form by 2.9 /? e Hom^F, ) such that

This is possible as Char K||G: 17 1.
(1) For v e W we have yg'j"1 6 W, as W is a KG-submodule, hence

Hence vß = v for v e W.
(2) For every v e V we have

hence also Vß ̂  W.
Put W" = Ker . Then W" is a KG-module. By (1) W n VT = 0. If v e V,

then vß e W and

(v - vß)ß = vß-vß = Q.

From

v = vß + (v — vß)

finally follows V = W ® W". q.e.d.

2.11 Theorem (Maschke, I. Schur). The following statements are equivalent:
a) K^geGg is a direct summand of the KG-module KG (KG being a KG-
module by right multiplication.)
b) Char K \ |G|. (This should always include the case Char K = 0.)
c) Every KG-module is semisimple.

Proof. a)=>b): Suppose

~~ g<$> A
geG
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with some KG-submodule A. As

for every h e G, we obtain

1 - Λ e KG(1 - Λ) = A(i - Λ) £ A.

As dimx /I = |G| — 1, this implies

A = <1 - h\h e G> (as K-space)

and

As

(geG

ΦΑ, we see that

geG

Σ 1 =

In case of Char Κ = ρ > 0 this means ρ ]f\ G|.
b)=>c): Let V be any KG-module and W a KG-submodule of V. Then
7 = ̂  © i '̂ for some K- vector space i '̂. As Char K \ \G : E\, by 2.10 there
exists a KG-submodule W^" of V such that K - W Θ W". By 2.2 V is semi-
simple.
c) => a): As in particular KG is a semisimple XG-module, the XG-submodule
^ Σ» e G 9 is a direct summand of KG. q.e.d.

2.12 Theorem. Suppose Char K ||G|.
a) // D is α matrix representation of G over X, there exists a nonsingular
matrix T such that

0

0

/or all geG, where the D{ are irreducible matrix representations of G.
b) If G is abelian and K algebraically closed, then

T~1D(g)T =

w/jere ^ ε Hom(G, K*).

0

0
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Proof, a) Let V be a KG-module for D. By 2.11

V = VL 0 · · · Θ Vk

with simple KG-module ^. Taking a K-basis of V which is the union of
Κ -bases of the Vt, we obtain the statement.
b) If G is abelian and K algebraically closed, then dimK V{ = 1 by 2.5d).

q.e.d.

We describe now the original approach by Maschke, which only works
over the fields IR or C:

2.13 Theorem (Maschke). Let V be a KG-module forK = RorK = C.
a) There exists on V a positive definite symmetric or hermitean scalar product
[·, ·] such that

[»iff, »20] = i»l ,»2]

for all vteV and all g e G.
b) // {i5l5 . . . , vn} is an orthonormal basis of V with respect to [·, ·], the corre-
sponding matrices D(g) are orthogonal resp. unitary.
c) // W is a KG-submodule of V, then V = W ® W1, where

W± = { v \ [ v , w ] = Q forallweW]

is a KG-module. In particular V is semisimple.

Proof, a) Let (·, ·) by any positive definite scalar product on V. We put

[»i, »2] = Σ (»10» V2Q\ for vj e V.
geG

Then [ · , · ] is a scalar product, and obviously

l>10, »201 = [»l.»2l·

If ν φ Ο, then

[Ό, v] ^ (v, v) > 0,

hence [ · , · ] is positive definite.
b) follows from a).
c) As [·, ·] is positive definite, we have V — W ® WL. If w e W, w' e WL and
0 e G, then
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as wgT1 e W. Hence w'g e WL, so H/1 is a KG-submodule. q.e.d.

Observe that we used the process of averaging over the group G in the
proofs of 2.9 and again in 2.13. The proof of 2.1 3a) would not work over fields
of positive characteristic, for the scalar product [ · , · ] might very well become
singular or even identically zero.

We add an important theorem on semisimplicity, which is true for any field:

2.14 Theorem (A.H. Clifford). Let K be any field, V a simple KG-module and
N ̂  G. Then V, considered as a KN-module, is semisimple.

Proof. Let W be a simple KN-submodule of V of smallest possible dimension.
If 0 e G and h e N, then

Wgh = Wghg-lg = Wg

as ghg~l e N. Hence Wg is a KN-module. As dimK Wg = dimK W, so Wg is
also a simple KN-module. As £geG Wg is a KG-module, so the simplicity of
V implies V = ^geGWg. Hence by 2.2 V is a semisimple KN-module. q.e.d.

2.15 Remark. It is easy to see that in 2.14 we have

for some g}. Hence the simple KN-modules Wg} are all of the same dimension.
Considerably deeper is the following fact: If K is algebraically closed and

Char K = 0, then m divides |G/N|. Hence in particular if (dimK V, |G/N|) = 1,
then V is also a simple KN-module. (We come back to this topic in great
detail in § 19-22.)

Finally we state a fact that shows that theorem 2.11 can become totally
wrong if Char K = p divides |G|:

2.16 Proposition. Suppose Char K = p and |G| = pa.
a) The vector space K with trivial action of G is the only simple KG-module.
b) // V is a semisimple KG-module, then vg = v for every veV,geG.

Proof, a) Take Ο Φ ν e V, where V is a simple KG-module and form

W= Σ GF(p)vg.
geG
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Then W is a GF(p)-vector space, hence | W\ = pb for some b. The orbits of G
on W have lengths which are powers of p. Hence there are at least p orbits of
length 1, so there exists 0 ^ v e W with vg = v for all g e G. Then V = Kv and
dimK V=\.
b) This follows from a). q.e.d.

Exercises

E2.1 Determine the isomorphism types of simple KG-modules for the sym-
metric group G = S3. (The number of such types is 3 if Char Κ φ 2, 3; 2 if
Char Κ = 2 or 3.)

E2.2 a) Let Κ be a vector space of dimension η over the finite field
Κ = GF(q) and let A be an abelian group such that V is a simple, faithful
ΚΑ-module. Show \A\ \ q" — 1, and η is the smallest integer with this property.
Also A is cyclic. (Use that A <= Horn^V, V) and vQ Homx(i^ V) = V for any
Ο Φ v e V.)
b) Take V = GF(qn). Then V is a simple GF(q)y4-module for A = GF(qn)\

E2.3 Suppose Char Κ = ρ and |G| = pa.
a) The only maximal submodule of KG, considered as /CG-module by right
multiplication, is the so-called augmentation module

aeg\a.eK,

b) Κ Σ9Ε G g is the only minimal submodule of KG.

E2.4 Suppose K is a finite field with \K\ = q > 2 and V = Kv1 ® Kv2. Let G
be the group of all linear mappings in GL(V) such that

= 021(0^1 + a

where a l l ( g ) a 2 2 ( g ) Φ 0. Show that Κ is reducible, but HomK(K, V) = K.
(Hence by 2.3c) V is not semisimple.)



§ 3 Orthogonality relations

In this section we prove some of the most fundamental theorems in represen-
tation theory.

3.1 Notations. Suppose glt g2 e G. We call g^ and g2 conjugate in G if there
exists some y e G such that

Conjugacy is obviously an equivalence relation. We form the conjugacy
classes

Then

n(G)

G = U
ί=1

is a partition of G, hence

MG)

h(G) is called the class number of G. We put

CG(gt) = {y\y e G, ygt =

If

G = U CciffOy« (disjoint),
j=i

then we easily see that

K, = {flff«U = i , . . . ,M.
Therefore
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Hence

= Σ ν
(Usually we make the choice g^ — 1, hence h{ = 1.)

3.2 Definition, a) A function / from G into a field K is called a class function
on G, if /(of*) = /(<?) for all g, heG. Hence / is constant on the conjugacy
classes Klt ..., Kh(G) of G. The set C(G, K) of all class functions on G is
obviously a K-vector space of dimension h(G).
b) Let K be a KG-module and D the representation of G on V. We call the
function χ, defined by

χ(0) = trace D(g\

the character of V and of D.

3.3 Proposition. Let V be a KG-module with character χ.
a) X.(dH) = Χ(β) far all g,heG. Hence χ is a class function on G.
b) Isomorphic KG-modules have the same character.
c) //

v=vl®---@vm

with KG-modules Vit then

m

x = Σ χ<»
k = l

where χ; is the character of V-t.

Proof, a) Let D be the representation of G on V. Then

X(gh) = trace D(h~lgh) = trace D(h}~1 D(g]D(h} = trace 0(0) = χ(0)

by a well-known property of the trace.
b) Let Fj and V2 be isomorphic KG-modules and D,· the corresponding repre-
sentations. Then there exists a T e Ηοιη,^^, 72) such that

D1(g)T=TD2(g).
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Hence

trace DY(g) = trace TD2(g)T~l = trace D2(g).

c) is obvious. q.e.d.

3.4 Theorem (I. Schur). Suppose that Dt and D2 with

are irreducible matrix representations of G over K.
a) // Dl and D2 are not equivalent, then

Σ « (flf)Mflf1) = o
geG

for all i, j, k, L
b) Suppose that K is algebraically closed and Char K j |G|. Then Char K does
not divide the degree nt of D1 and

Σ Mf lWf l r 1 ) - ^« ·geG n1

Proof. We put degree D} = n,. Let X = (xrs) be an arbitrary matrix of type
(n1} n2) over K. We form

fleG

Then for all /j e G we obtain

geG

= Σ Di(hg)XD2((hg)-l)D2(h)
geG

= T(X)D2(h).

If K; are XG-modules for Dti this means T(X) e Homci^, F2).
a) Suppose D ι and D2

 are not equivalent, hence 7t ^ F2. As ^ is simple,
so HomciKj, K2) = 0, hence T(X) = 0 for every choice of X. We specialize
χ™ = <5rA*· Then the Ο'» 0-entry of T(X) is

o= Σ ZM^rAite-1)- Σ fltf^Mflf1).
» e G r . s g e G
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b) If K is algebraically closed, then by 2.3b)

If we form T(X) with Dl = D2, this implies

TOY) = i(A")£Bl for some t(X) e K.

Then

t(X)nl = trace T(X) - trace £ D^XD^)'1 = |G| trace X.
geG

Again we specialize Xjk = (xrs) with xrs = orjosk. Then trace Xjk = <5,-k and

Taking; = k, we see that Char K\ nl as Char K\\G\. Hence we obtain

,?oDl'

This implies

V , Ϊ , -M * JGI AL aij(9)aki(9 ) = 0jk°u—· q-e.d.
geG "1

3.5 Theorem (Frobenius). a) Let V( (i = 1, 2) be simple KG-modules with char-
acters /,·. // V1 ^ V2, then

Σ %\(9)%2(9~l) = 0·
geG

b) Suppose K is algebraically closed and Char K||G|. // V is a simple KG-
module with character χ, then

Σ x(g)x(g-1) = \G\ * ο.
geG

c) Suppose K is algebraically closed with Char K ||G|. // V± and V2 are simple
non-isomorphic KG-modules, they have different characters. (Hence the simple
modules are distinguished by their characters.)
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Proof, a) Let Dt be a matrix representation for V{ and

By 3.4a) we obtain

"1)= Σ Σ%(β)Μβ"1) = Σ Σ1,7 i,j geG

b) Similarly by 3.4b) we have

1) = Σ Σ fliiteHUT1) = Σ *</—
eG i i «

if η = dimK Κ
c) follows immediately by comparing a) and b). q.e.d.

3.6 Lemma. Suppose Char Κ = 0 and let χ be the character of some KG-
module.
a) // ord g = m, then x(g) is the sum of some m-th roots of unity, hence lies in
the cyclotomic field Qm = Q(e), where ε is a primitive m-th root of unity.
b) %(g ) = Y.(g}· (Observe that the complex conjugate is defined on Qm, but not
necessarily on K.) In particular

1 > o.

Proof, a) Let D be a representation belonging to χ. As

D(gr = D(gm) = 0(1) = E,

the eigenvalues of D(g) are m-th roots of unity. As χ(0) = trace D(g) is the sum
of the eigenvalues of D(g), so x(g) e Qm.
b) If D(g) has the eigenvalues ε^ ..., εη, then D(g~1) = D(g)'1 has the
eigenvalues ε^1, . . . , e"1. Therefore

Hence

Σ Χ(9)Χ(9~1) = Σ \*(9)\2 > 0. q-e.d.
geG geG
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3.7 Theorem. Suppose K is algebraically closed and Char K ||G|.
We consider KG as a right KG-module. Suppose

with simple, non-isomorphic KG-modules Vj. If p is the character of KG and χ7·
of Vj, then n^ = Xj(l) and

«aw - *'-g

The modules Vt (i = 1, . . . , s) are all the simple KG-modules, up to isomor-
phism. (p is called the regular character of G.) If Char Κ = 0, then n-3 = dimx Vj
and

Proof. As the basis G of KG is permuted without fixed points by right multi-
plication with any 1 Φ g e G, we obtain

f|G| i f 0 = l

Let χ be the character of any simple /CG-module. By 3.5 we obtain

1 s 1= Γ^] Σ Ρ(^)Χ(^~1)= Σ "j-ττη Σ lj

10

By 3.4b), Char X does not divide the degree of a KG-module for χ, hence
φ 0 and χ = χ,· for some;'. Therefore

v= Σ

If Char Κ = 0, then
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and

\G\ = Σ η} q.e.d.

3.8 Lemma. In the algebra KG we form the class sums

*ι = Σ 9 (i=l...,h(G)).
geKt

a) {&!,..., kh(G}] is a K-basis of

Z(KG) = {x\x e KG, xy = yx /or a« j; e KG}.

b) There exist nonnegative integers ci;-, such that

c) Suppose Kl = {1} anrf

X^Xr^U

T/ien

fo

Proo/. a) x = Σβεοα
99 e Z(G) is true if and only if χ = h~lxh for all h e G.

This means that ag is constant on the conjugacy classes Kit hence

χ = Σ β/^ί·
i=l

As the sets K( are pairwise disjoint, the fc, are obviously linearly independent
over K.
b) As Z(KG) is an algebra, we have relations

A(G)

^i^j = 2j Cy/N·

Here
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Cyi = l{(0, g')\9 e Kh g' e Kj, gg' = 0, e Kt}\.

So ci is a nonnegative integer.
c) If 7 7^ i', then 1 does not appear in k fa. If; = Γ, for every g e K< we have
g"1 e Kj. Hence 1 appears in fc,/cr with the multiplicity /ι,- = I/C^. q.e.d.

3.9 Theorem. Suppose K is algebraically closed and Char K \\G\. Let χ be the
character of a simple KG-module.
a) = ' « - · wAere tte Cw are as in 3-8b)-
b) ' ' is an eigenvalue of the integral matrix (cyj)jt/. (Statement b) will play

in important role in 6.5.)

Proof, a) Let D be a representation belonging to χ. We extend D linearly to a
homomorphism of the group algebra KG. As D(/c,) commutes with all D(g)
(g e G), by Schur's lemma 2.3b) we obtain

D(ki) = cujE for some ω( e K.

lin — degree D and #,· e X,·, we have

ω, χ(1) = trace ω,Ε = trace X 0(0) = A|X(0j).

AsCharX|nby3.4b), so

_
' "

Now we obtain from 3.8b)

D(kt)D(kj) =

which implies the assertion.
b) We put

C^icy,) and f =

The equation in a) shows
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ω,Τ = Qf.

As ω: = 1 φ 0, so f ̂  0 and ω, is an eigenvalue of C,·. q.e.d.

3.10 Theorem (Frobenius). Let Κ be algebraically closed and CharK||G|.
Let χι,..., xs be the characters of the simple KG-modules. Then

Σ Xk(9)Xk(h~l) = }.~ , .. .,. „σ
O if h φ
\CM\ ifheg*.

Proof. By 3.9a) we have

h(G)

Summation over k = 1,..., s implies by 3.7

s h(G) s
Mj Σ Xk(di)Xk(9j) = Σ ci hi Σ Xk(9i)Xk(V = CyAIGI = cyi|G|.

By 3.8c)

iO i

Hence we finally obtain

(Observe |K,| = Ι ΧΓΊ-) q.e.d.

3.11 Definition. Let C(G, C) be the set of all C-valued class functions on G.
We define a positive definite, hermitean scalar product (·, -)G on C(G, C) by

3.12 Theorem (Frobenius). Now suppose Κ = C.
a) l/p ίο isomorphism there exist exactly h = h(G) simple CG-modules
Vit...,Vk.
b) T/ie characters χ, (i = 1, . . . , /z(G)) o/ the V{ form an orthonormal basis of
C(G, C), which means
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Also

c) Now let K be any subfield of C. Let W, (i = 1, ..., s) be all the simple
KG-modules and φ( the character of W(. If W is a KG-module with character ψ,
then

where the multiplicity mt is uniquely determined by if/, namely as

Hence the character ψ determines the isomorphism type of W, and the multi-
plicities m{ in (*) are uniquely determined. (This last statement is a very special
case of the "Jordan- Η older theorem" for modules; see Huppert /, p. 64.)

As non-isomorphic modules have different characters, now it is legal to call a
character irreducible if it is the character of some simple CG-module.
d) A character χ is irreducible if and only if (χ, χ)0 — 1.
e) Elements gl , g2 of G are conjugate in G if and only if

Xi(9i) = Xi(0z) far i = 1, · · . , h(G).

(The irreducible characters separate the conjugacy classes of G.)

Proof, a) Let χ1? . . . , χ5 be the characters of the simple CG-modules. By 3.6b)
and 3.5 we have

1 _ 1
(&> &)o = TTTT Σ Xt(e)Xj(9) = TfT, Σ

Hence χ ΐ 5 . . . , xs are linearly independent over C, which proves

s < dimc C(G, C) = h(G).

Now suppose s < h = h(G). We consider the matrix
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A =
Χι(9ι) · - ·

··· Xs(dh)

where git...,ghare representatives of the conjugacy classes of G. Then

rank A < s < h.

Therefore the h rows of A are linearly dependent, say

^(0,·) = ° ( ' '=!» · · · ,«)j=i

for some c;- ε C, not all Cj equal to zero. By 3.10 we obtain

s / h \ ft s0 = Σ 1 Σ cjXi(9j))xi(9kl) = Σ cj Σ xa
i = l \j=l / j=l i = l

Λ= λ εΛ-ΐ7 = β*j=i ";

Hence c-5 = 0 for; = 1,..., ht a contradiction. This proves s = h(G).
b) As dim C(G, C) = /z(G), the irreducible characters of G form an ortho-
normal basis of C(G, C). Also by 3.7

h(G)

c) As W is a semisimple KG-module, so

for some multiplicities m,. Then

= Σ

and by 3.5

(Ά, Ά,·)σ = Σ mX'/0'
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Observe that

1 V 2

d) If

H
χ=Σ

then

(L X)G = Σ m;
A

Hence χ is irreducible if and only if (χ, χ)0 = 1.
e) If 0J and g2 are not conjugate in G, there exists /e C(G, C) such that

for some c,· e C. Hence there exists χ,· such that χ,·^) ^ χ,·(^2)· q.e.d.

From now on we shall most of the time restrict ourselves to the "classical"
case of representation theory over C. Hence we define:

3.13 Definition, a) Let Irr G be the set of irreducible characters of G over C.
Hence

I r rG = {*!,...

where h — h(G) is the class number of G. We introduce the degree set of G by

this is considered as a set, not containing information how often a particular
degree appears. We also introduce the degree pattern of G as

(in arbitrary order).
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b) If χ is a character of G and D is a representation of G with character χ, we
write Ker χ = Ker D. (As χ determines D up to equivalence, so Ker χ is well-
defined.) We call D and χ faithful if Ker D = E.
c) Let g!,..., gh be representatives of the conjugacy classes of G. Then we call
(Xi(9j))i,i=i htne character table of G.

3.14 Proposition (L. Solomon [1]). Suppose

Irr G = {x l5 . . . ,*„}

and let g1,...,ghbe representatives of the conjugacy classes of G. Then

=1

is a nonnegative integer. (By a different argument, also Σ?=ι &(#,·) is cm integer,
but it need not be nonnegative. If G = Ai\ l is the Mathieu group of degree 1 1
and g an element of order 11 in JVfu, then £^(0) = — 2; see Isaacs, p. 291.)

Proof. We consider CG as a G-module, but not as in 3.7 by right multiplica-
tion, but rather by conjugation. Hence we define

= g-lhg

for h E CG, g E G. This defines obviously a representation D of G on CG. Let

h

«A = Σ mi&
i=l

with nonnegative integers m{ be its character. Then

Hence

mi = (Ά, χ,)ο = j^j Σβ ICcte-1)!*^) = jij Σ WeWMgj)

= Σ Xi(ft) > 0. q.e.d.

3.15 Example. Let G = Sn be the symmetric group and σ(^) = sgn g. Then by
3.14



Orthogonality relations 41

0
J=l

where
h+ is the number of classes of even permutations in Sn,
h_ is the number of classes of odd permutations in Sn.

We can do better and claim (φ, o]G ^ 1 if η > 2 and φ as in 3.14.
Observe (φ, a)G = dimc W, where

W — {w|w e CG, g~1wg = <r(g)w for all g e S„}.

Certainly, W decomposes into summands in the C-linear span of a conjugacy
class Ki = gf (i = 1, . . . , h(G)). Suppose G = (JjC^g^ with ytl = 1 and

'.-!<*
with if = σ(0)ί;. Then

Σ

Hence all coefficients ck = (T(yik)ci are determined by c^
(1) Suppose at first that CG(gi) ^ A„. Hence there exists h e CG(gi] such that
sgn / i = — l . Then

therefore i,· = 0.
(2) Now suppose that CG(g·^ ^ An. Then ti = Y j j a ( y i j ) - g ^ J is obviously
independent of the choice of the coset representatives ytj of CG(gi). As
[yijh\j = 1, . . . , /i,·} is also a set of coset representatives of CG(gi\ therefore

fi = Σ '(tyW* = "
Hence (φ, σ)0 is equal to the number of conjugacy classes gf such that
Cc(0i) ^ ^π· We easily see that these are the gt with a cycle decomposition of
type (zj, ..., zr), where 1 ̂  Z j < ··· < zr and all zr odd. As for every η ^ 3
either (1 2 ... n) or (1) (2 ... n) describes such a class, we obtain (φ, σ}0 ^ 1.

Incidentally, we have proved the following combinatorial result: We
consider partitions
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n = H! + · · · + nk, where «,· > 0.

Let pj(n) be the number of partitions where
(1) the number of even «,· is even for; = 1,
(2) the number of even n, is odd for; = 2,
(3) all n,· are odd and distinct for; = 3.
Then

Pi(n) - P2(n) = P3(4

We mention two further constructions of characters and representations:

3.16 Proposition. Suppose χ e Irr G. Suppose further that x(g) e L for all
g e G, where L by 3.6a) is a subfield of some cyclotomic field.
a) Let α be an automorphism of L and define χ* as in 1.6d) by x*(g) = χ(α)Λ.
Then χ" e Irr G.
b) Let the automorphism <xm of the field Q|C| = 0(ε) of \G\-th roots of unity be
defined by ε*~ = ε"1, where (m, |G|) = 1. Then x'm(g) = x(gm).

Proof, a) A slight problem arises from the fact that there may not exist a
matrix representation D of G with character χ and entries of the D(g) in L (see
exercise El.l). But we shall see in 4.8 that there always exists a field L' =3 L,
such that L is normal over Q and there exists a matrix representation D of G
such that D(g) = (a^g)), all ay(0) e L' with trace D(g) = x(g). As well-known,
we can extend α to an automorphism α of L' over Q. If we define D* as in 1.6d)
by D*(g) = (a^g)*), then Da is a representation with character χ*. Finally from

we see by 3.12d) that χα e Irr G.
b) Let Eki >(i = 1, . . . , n) be the eigenvalues of D(g), where ε is a primitive |G|-th
root of unity. The eigenvalues of D(gm) = D(g)m are emki (i = 1, . . . , n). There-
fore

x(gm) = Σ £ m k i = Σ f i k < = xWm· q-e-d-
1=1 \i=l /

Sometimes the following proposition allows to control that D is a represen-
tation of G.

3.17 Proposition. Let the group G be presented by generators glt ..., gd and
defining relations
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Suppose Al, ..., Ad are matrices in a linear group GL(V) and

η(Αι, . . . , Ad) = £ /or ; = 1, . . . , m.

TYien ί/iere ex/sis α homomorphism D of G into GL(V) such that
(i =! , . . . ,<*).

Proo/. Let F = </t , . . . , /d> be a free group with free generators /). Then there
exists a homomorphism I)' of F into GL(V) such that £>'(/·) = At. Obviously

As F/ = G (this is the meaning of defining relations!), we obtain a homomor-
phism of G into GL(K) by

0(0i) = J>'(/i). q-e.d.

For several applications it is important that normal subgroups of a group
G can be recognized by the character table of G.

3.18 Lemma. Let χ be a character of an CG-module.
a) \x(g)\ ^ χ(1) for all g e G.
b) Ker χ = {0|0 eG,;c(g) = *(!)}.
c) Z(G/Ker χ) = {g Ker χ\\χ(9)\ = χ(1)}.

Proof. Let D be a representation for χ. Then χ(0) is the sum of the eigenvalues

say. As |ε,·| = 1, so

\X(9)\ *Z Σ \*j\ =
j=l

Equality occurs only if all the complex numbers ε, are equal. As the represen-
tation D, reduced to <g>, is semisimple, we obtain D(g) = είΕη. This shows
g Ker χ e Z(G/Ker χ). And g e Ker χ happens exactly if £j = 1, hence if

3.19 Theorem, a) The character table of G determines the lattice of normal
subgroups of G, including the indices.
b) The character table of G determines solvability and nilpotency of G.
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Proof, a) Suppose N^ G. As the characters separate conjugacy classes by
3.12e), we obtain

Λ Γ = Π Ker*= Π
XelrrG/N N<Ke

and by 3.18 Ker χ is determined by the character values. Then \G/N\ is
determined by

\G/N\=

b) To control solvability of G by the character table, we have to find a
chief-series

where N,·^ G and |Ν,·+1/Ν,·| is a power of a prime. Also by 3.18c) we can
determine Z(G), then Z(G/Z(G)) and so on. This determines nilpotency of G,
even its nilpotency class. q.e.d.

3.20 Remarks, a) It is a natural question how much information about the
structure of G is determined by the character table of G.

S. Mattarei [1], [2] recently gave examples of groups G and Η with the
same character table, where G" = Ε φ Η". Hence the derived length of G is
not determined by the character table.
b) It can be proved that the composition factors of G can be determined also
in the insolvable case from the character table of G (Sandling, Lyons). This is
mainly due to the following fact, which is a consequence of the classification
of simple groups:

Suppose A and B are simple non-abelian groups such that

\A χ — χ A\ = \B χ ··· χ B\.

Then m = n. The only pairs with A ^ B are

(A, B) = (A9t PSL(3, 4))

= (PSp(2n, q\ PUO(2n + 1, q)) where 2 J q and n ̂  3.

It is possible to distinguish these cases by inspecting the conjugacy classes of
some 2-elements (see Kimmerle et al.).
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3.21 Remark. In §4 we shall present an approach to the orthogonality rela-
tions, using the ring structure of KG. The approach in §3 has still some
advantages. It provides the relations in 3.4. The averaging process over G,
which was the basis of the proofs in 2.13 and 3.4, can also be used for compact
topological groups. For there exists a process of integration over G (the
Haar integral), such that for "reasonable" functions f on G the integrals of
f(g) and f(gh) over g e G are equal. This approach provides for instance
an elementary access to the representation theory of the orthogonal group
S0(3, R) and the unitary group Sl/(2, C), which is used in some problems of
quantum mechanics.



§ 4 The group algebra

In this section we describe a different approach to the basic theorems of
representation theory, in particular to the orthogonality relations 3.5 and
3.10. It does not give Schur's equations in 3.4, but in some respects it is
superior, in particular working over any field whose characteristic does not
divide |G|. The connection between representation theory of groups and of
algebras was observed by E. Noether.

4.1 Definition, a) An algebra A is called semisimple if A itself is a semisimple
right /4-module.
b) If A is a X-algebra, we define the algebra Aop as the set A, equipped with
its structure as K-vector space, but with a new multiplication o, defined by
a o b = ba.

4.2 Lemma. Let A be K-algebra. Then Aop ^ HomA(At A).

Proof. Suppose α e UomA(A, A). As

aa. = (1α)α = (1α)α,

so α is determined by Ια Φ a(a). And conversely for every b e A, then aa = ba
defines an a e HomA(A, A). The mapping of α onto la is obviously K-linear.
For α, β e HomA(A, A) we obtain

α(α/ϊ) = 1(00) = (ΐΛ)β = (Ια(Λ))β = (1/ϊ)β(α) = a(fta(t).

This proves

a(affl = a(0)a(a) = a(a) ο α(β\

hence HomA(A, A) ̂  Aop. q.e.d.

4.3 Theorem (Wedderburn). Let Abe a semisimple algebra and as A-module

where the ^- are non-isomorphic simple Α-modules and
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n-V- — V· © ··· © V .Ι ί 1 *~* n. ">— ' I

By Sc/iur's lemma 2.3

F Φ

is α 5/cew yie/d.
a) Hom^HjFj, η,-F,·) = (^)π., where (Fj)„. is ff te algebra of all matrices of type
(n,·, n;) ouer ί/ie s/cew field Ff.
b)

Tfte summands (F"p)n. are 2-sided ideals in A, annihilating each other.
c) If W is a simple Α-module, so W is isomorphic to some V{,
d) If A = (F)n with a skew field F, then A is a simple algebra. The set

is (up to isomorphism) the only simple Α-module. Further A = W1 © · · · 0 Wnt
where

^ ^ F as Α-module. Finally F is uniquely determined by
F, V) s Fop.

Proof, a) Let K be a simple ^-module. We consider nV as the set

Suppose α, β e Hom^(nK, nV). Then (0, . . . , 0, vit 0, . . . , 0)a = (y.-a,·!, . . . ,
where obviously ay 6 Homx(K, V] = F. Then a -» (ay) is X-linear and

(0, . . . , 0, vit 0, . . . ,
j=l

/ π

= [Vi Σ a y / % i » · · · » ^ Σ αίΛ·
V >=ι j=i

Hence α/? corresponds to the matrix (α^)(βί}). This proves
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b) Obviously Homx(·, ·) is additive with respect to both arguments and
, Vj) = 0 if Vi £ Vj. Hence by 4.2 and a)

A°*> = HomA(A, A) s 0 HomA(ntVt, nt V,) s ® (^)η,

So

λX .°P

Finally observe that (F;)°f s (F°p)n. by the mapping y with

(ay)y = (ay)' (transposition);

for if ο denotes the multiplication in (F?p)n., then

where

Ty = Σ aki ° At = Σ

therefore

c) Let M^ be a simple ^4-module. Then Hom^i/l, W)^W (as K-vector spaces)
by α -> Ια for α e HomA(A, W). Hence

Q^W^ Hom^yl, W) ̂  0 Homx(n,.^, W).

Therefore Ηοηι^(^·, iy) ^ 0 for some i, which proves W £ ν^.
d) We use for A = (F)n the usual F-basis

Hence any α e Λ is written uniquely as

.
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Suppose t φ 0 is a 2-sided ideal in A and

0 * α = Σ eijfij e i'.j

with fkl φ 0. For any s, t then

£5*^ = eskekieltfkl = esJM e i.

Hence all est are in t, which shows t = A. So A is a simple algebra.
If

0^( / l 5 . . . , / n )6F and /,*<),

then

(/i. · · · » /») Σ e /(~lc; = (ci . · · · · Ο·j

Hence

so Κ is a simple Λ-module. By c) then V is the only simple Α-module. The
rows of (F)n obviously are Λ-modules isomorphic to V.

Suppose α e Hom^V, V). We put

i>, = (0,..., 0,1,0,... ,0).

Then

u ta = (OiC^ct = (Oia)eu = (0, . . . , 0, a,·, 0, . . . , 0),t

for some af e F. If i Φ j, then

(u,-ey)a = Vja. = (0, . . . , 0, a,, 0, . . . , 0) = (u,-a)ei; = (0, . . . , 0, a,-, 0, . . . , 0)ey

= (0,.. . ,0,e j ,0,. . . ,0).j
This proves a,· == a^. If we put af = a(a), then

(Μ)« = (»,·α)ίί = (0, . . · , 0, fl(a)d, . . . , 0),

so ua = ij(a)i? for all v e V.
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The mapping α ->· α(α) is AMinear and bijective. Finally for α, β Ε HomA(V, V)
we obtain

α(αβ)υ = v(z ) = (vet) β = (α(φ)β = α(β)α(φ.

This shows Horn,! (V, V] ^ Fop. q.e.d.

4.4 Remark. If K is algebraically closed, then F( = K by 2.3b). If K is finite,
then also Ft is finite, hence Ft is commutative by a famous theorem of Wedder-
burn. In the case where K = U, by a theorem of Frobenius only the cases
Ft = R, C or the quaternions H are possible. But for other fields K, for
instance K = Q, there may be many possibilities for Ρ{.

4.5 Theorem. Let Κ be algebraically closed and Char Κ not dividing \G\.
a) Then

where h = h(G) is the class number of G, and KG has h(G) irreducible modules
Vi. (This implies 3.12.)
b) // Xi is the character of V^ then

IIG| if9=l

0 i ^ L
(This is 3.7.)
c) The neutral element of (K)n. is

ΣgeG

As e{ φ 0, so Char Κ does not divide χ^
d) We have

in particular for g = 1

Σ JEi(
xeG

(T/iis is 3.5).



The group algebra 51

e) // gi,..., gh are representatives of the conjugacy classes of G, then

Σ k(9Me7l) = WM-k = l

(This is 3.10.)

Proof, a) By 2.11 KG is a semisimple algebra, hence by 4.3

KG ^ m (/

Using 3.8a), we obtain

h(G) = dim* Z(XG) = Σ dim* Z((K^) = k.

b) By 4.3d), (K)„. as KG-module is the direct sum of n,· simple KG-modules,
the rows of (K)„.. If g E G, then the character of g on KG is therefore

h h

Ρ(θ) = Σ niXi(d) =

If g ^ l, then the basis G of KG is by right multiplication with g permuted
without fixed points, hence

fid if» = 1

c) Let DI be the irreducible representation corresponding to (K)„.. Put

ei= Σ ai(d)g-
geG

As eth for h e G lies in the 2-sided ideal (K)„., we obtain

ijD+h) = Dj^DjW = Dj(eih) = Σ "i(9)Dj(9h)·
geG

Hence forming traces we obtain

ijXj(h)= Σ ai(g)Xj(9ty.
geG
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By b) this implies

i(i) = Σ tai(*)x/U) = Σ *ι(0) Σ

Hence

d) By c) we obtain

This proves

Hence

δ.Μ 1

e) Let

We define matrices of type (ft(G), /i(G)) by

^4 = (a»X where aik = xk(gt)

and

= (Z^y), where bkj = -± χ^α/1).

Then d) says
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1 h h

Σ xAdh^g'1) = 77^7 Σ hkXj(gkl)Xi(9k) = Σ *Ά·
geG |Cj|t=i k=l

This shows Β A = E. Hence also AB — E, which implies

* h h
5y = Σ aiAj = Σ Xk(di)r^Xk(9jll

k=l k = l

hence

h _

Σ Xfctei)**^1) = 5ϋΐΓ = ay|Cc(0,)|. q.e.d.
t=l "i

From now on we assume again usually that Char Κ = 0 and Κ is alge-
braically closed.

4.6 Theorem. /Is in 3.8 we introduce the class sums

kt= Σ g ( i=l , . . . , / j (G)) ,

which constitute a K-basis of Z(KG). Then if

h(G)

i^j = £j Cijl
1=1

we have

(These cijk are nonnegative integers by 3.8, if Char K — 0.)

Proof. Let D be an irreducible representation of G with character χ. By
Schur's lemma

where as in the proof of 3.9a)
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if K, = of. As ω is a homomorphism of Z(KG) into K, we obtain

This implies by 4.5e)

M h(G)

i l l K j l Σ ztoiM^ = Σ' ο ,ΐκ ,ΐ Σ

q.e.d.

We add a remarkable consequence.

4.7 Proposition, a) Suppose g, h e G. Then g is conjugate to a commutator
ΙΛ y] /<?r 5owe y e G if and only if

b) ^ is α commutator if and only if

c) Suppose (|G|, m) = I . If g e G and if g is a commutator, so is g

Proof, a) g conjugate to

[h9y] = h-iy-lhy

for some y e G means that kg is involved in kh-i · kht hence by 4.6

Kv v v . ν ι mi2 i^i vb) Σ c/.-',/..9nFi2 = Σ -Τ77Γ Σ I*(OI = IGI ΣΛβΟ |Λ-Λ| xe l rrG XUJ AeG x e l r r G



The group algebra 55

is positive exactly if some ch-i h g > 0, hence if g is conjugate to some \_h, y],
which means that g is a commutator.
c) By 3.16 there exists a field automorphism am such that

Hence as

is fixed by all field automorphisms, so lies in Q, we obtain

y x(g~m) _ y tie-1) d
· " ' ·

4.8 Remark, a) Let Κ be the field of all algebraic numbers. Then by 4.5

KG ^ ©(£)„,
i = l

The representation D{ is given by the projection onto (K)nj, hence

with ajl?(0) e X. Then

\i = 1, ·.., Λ;Λ /c = 1, .... nt, ff ε G)

is an algebraic number field with (/C0 : Q) < oo, in which all the matrix repre-
sentations D, can be realized. Enlarging K0 if necessary, we can assume that
K0 : Q is a normal extension.
b) The idempotent e{, corresponding to (K}„., is by 4.5c) given as

«= w
hence can be written over the field

This shows that a matrix representation for the character #,-(1^ can be
written over Q(Xi). In general, a matrix representation with character χ,· cannot
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be obtained over Q(&) (see El.l). There exists a uniquely determined smallest
integer s(xf), such that a matrix representation for 5(χί)χί can be realized over
Q(&). This s(Xi) is called the Schur index of χ;. It is closely related to the
skew fields Ft appearing in theorem 4.3. We come back to this question in § 38.

4.9 Remarks. The situation is dramatically changed if Κ is an algebraically
closed field with Char Κ = ρ, where ρ divides |G|.
(1) If J = J(KG) is the maximal nilpotent ideal of KG, then

KG/J(KG) =

The number s of simple KG-modules is equal to the number of conjugacy
classes gG such that p\\g°\. Unfortunately, precise information about J(KG)
is not known in the general case. If p" T |G|, then

(The upper inequality is only proved if G is p-solvable.) The groups G, where
the lower or upper bound is reached, are well known and very special. But in
general (*) is a very weak information.
(2) As right XG-module we have a decomposition

KG =

with indecomposable "projective" modules Pf. Then P{ has only one maximal
submodule Ρ;π7(Χ6) and one simple submodule S(Pj), moreover
n,· = dimK S(P·) and

S(Pt) s Ρ,/Ρ, η J(KG).

If pa Τ | G |, then p" \ dimK Ρ{.
(3) The number of isomorphism types of indecomposable XG-modules is
finite if and only if the Sylow-p-subgroups of G are cyclic. Hence the modules
that can be studied are mainly the simple modules and the indecomposable
projective modules Pt in (2).
(4) The decomposition

KG = @
i=\



The group algebra 57

of KG into two-sided, indecomposable ideals B{ (called p-blocks) plays a
central role. But the number t of blocks cannot easily be connected with the
structure of G.

For an introduction to modular representation theory we refer the reader
to Blackburn-Huppert II, p. 1-237 or (shorter) Representation Theory in
Arbitrary Characteristic, (Trento 1990/91). The most comprehensive treat-
ment is still the book by W. Feit.


