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Preface

The semigroup operation defined on a discrete semigroup (5, ·) has a natural extension,
also denoted by ·, to the Stone-Cech compactification β S of S. Under the extended
operation, β S is a compact right topological semigroup with 5 contained in its topolog-
ical center. That is, for each p € S, the function pp : β S —>· β S is continuous and
for each s e S, the function λ5 : S —> S is continuous, where pp(q) = q · p and
Xs(q) = s -q.

In Part I of this book, assuming only the mathematical background standardly pro-
vided in the first year of graduate school, we develop the basic background information
about compact right topological semigroups, the Stone-Cech compactification of a dis-
crete space, and the extension of the semigroup operation on 5 to β S. In Part II, we
study in depth the algebra of the semigroup ( S,·) and in Part III present some of the
powerful applications of the algebra of β S to the part of combinatorics known as Ramsey
Theory. We conclude in Part IV with connections with Topological Dynamics, Ergodic
Theory, and the general theory of semigroup compactifications.

The study of the semigroup ( S, ·) has interested several mathematicians since it
was first defined in the late 1950's. As a glance at the bibliography will show, a large
number of research papers have been devoted to its properties.

There are several reasons for an interest in the algebra of S.
It is intrinsically interesting as being a natural extension of S which plays a special

role among semigroup compactifications of 5. It is the largest possible compactification
of this kind: If Γ is a compact right topological semigroup, φ is a continuous homo-
morphism from 5 to T, <p[S] is dense in T, and λ^) is continuous for each s e S, then
Γ is a quotient of S.

We believe that N is interesting and challenging for its own sake, as well as for its
applications. Although it is a natural extension of the most familiar of all semigroups, it
has an algebraic structure of extraordinary complexity, which is constantly surprising.
For example, /JN contains many copies of the free group on 2C generators [152]. Alge-
braic questions about N which sound deceptively simple have remained unsolved for
many years. It is, for instance, not known whether N contains any elements of finite
order, other than idempotents. And the corresponding question about the existence of
nontrivial finite groups was only very recently answered by E. Zelenuk. (His negative
answer is presented in Chapter 7.)

The semigroup β S is also interesting because of its applications to combinatorial
number theory and to topological dynamics.
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Algebraic properties of β S have been a useful tool in Ramsey theory. Results in
Ramsey Theory have a twin beauty. On the one hand they are representatives of pure
mathematics at its purest: simple statements easy for almost anyone to understand
(though not necessarily to prove). On the other hand, the area has been widely applied
from its beginning. In fact a perusal of the titles of several of the original papers reveals
that many of the classical results were obtained with applications in mind. (Hubert's
Theorem - Algebra; Schur's Theorem - Number Theory; Ramsey's Theorem - Logic;
the Hales-Jewett Theorem - Game Theory).

The most striking example of an application of the algebraic structure of β S to
Ramsey Theory is perhaps provided by the Finite Sums Theorem. This theorem says
that whenever N is partitioned into finitely many classes (or in the terminology common
within Ramsey Theory, is finitely colored), there is a sequence (xn) ^_} with FS ( (x n ) ^_ 1)
contained in one class (or monochrome). (HereFSiCx,,}^) = {Σηε/τ xn : F is a finite
nonempty subset of N}.) This theorem had been an open problem for some decades,
even though several mathematicians (including Hubert) had worked on it. Although
it was initially proved without using βΝ, the first proof given was one of enormous
complexity.

In 1975 F. Galvin and S. Glazer provided a brilliantly simple proof of the Finite
Sums Theorem using the algebraic structure of βΝ. Since this time numerous strong
combinatorial results have been obtained using the algebraic structure of S, where 5 is
an arbitrary discrete semigroup. In the process, more detailed knowledge of the algebra
of β S has been obtained.

Other famous combinatorial theorems, such as van der Waerden's Theorem or Rado's
Theorem, have elegant proofs based on the algebraic properties of /3N. These proofs
have in common with the Finite Sums Theorem the fact that they were initially estab-
lished by combinatorial methods. A simple extension of the Finite Sums Theorem was
first established using the algebra of j8N. This extension says that whenever N is finitely
colored there exist sequences (xn)^Li and (yn)^Li such that FS((A:„}^=1)UFP((y„}^1)
is monochrome, where FP((yn)%L\) — {^neF yn '· F is a finite nonempty subset of
N}. This combined additive and multiplicative result was first proved in 1975 using the
algebraic structure of N and it was not until 1993 that an elementary proof was found.

Other fundamental results have been established for which it seems unlikely that
elementary proofs will be found. Among such results is a density version of the Finite
Sums Theorem, which says roughly that the sequence {-O^l] whose finite sums are
monochrome can be chosen inductively in such a way that at each stage of the induction
the set of choices for the next term has positive upper density. Another such result is the
Central Set Theorem, which is a common generalization of many of the basic results
of Ramsey Theory. Significant progress continues to be made in the combinatorial
applications.

The semigroup β S also has applications in topological dynamics. A semigroup S of
continuous functions acting on a compact Hausdorff space X has a closure in XX (the
space of functions mapping X to itself with the product topology), which is a compact
right topological semigroup. This semigroup, called the enveloping semigroup, was
first studied by R. Ellis [86]. It is always a quotient of the Stone-Cech compactification
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ßS, as is every semigroup compactification of S, and is, in some important cases, equal
to ßS. In this framework, the algebraic properties of S have implications for the
dynamical behavior of the system.

The interaction with topological dynamics works both ways. Several notions which
originated in topological dynamics, such as syndetic and piecewise syndetic sets, are
important in describing the algebraic structure of ßS. For example, a point p of S is
in the closure of the smallest ideal of S if and only if for every neighborhood U of p,
U S is piecewise syndetic.

This last statement can be made more concise when one notes the particular con-
struction of S that we use. That is, ßS is the set of all ultrafilters on S, the principal
ultrafilters being identified with the points of S. Under this construction, any point p
of ßS is precisely {U S : U is a neighborhood of p}. Thus p is in the closure of the
smallest ideal of ßS if and only if every member of p is piecewise syndetic.

In this book, we develop the algebraic theory of ßS and present several of its com-
binatorial applications. We assume only that the reader has had graduate courses in
algebra, analysis, and general topology as well as a familiarity with the basic facts
about ordinal and cardinal numbers. In particular we develop the basic structure of
compact right topological semigroups and provide an elementary construction of the
Stone-Cech compactification of a discrete space.

With only three exceptions, this book is self contained for those with that minimal
background. The three cases where we appeal to non elementary results not proved
here are Theorem 6.36 (due to M. Rudin and S. Shelah) which asserts the existence of a
collection of 2C elements of ßN no two of which are comparable in the Rudin-Keisler
order, Theorem 12.37 (due to S. Shelah) which states that the existence of P-points in
ßN\N cannot be established in ZFC, and Theorem 20.13 (due to H. Furstenberg) which
is an ergodic theoretic result that we use to derive Szemeredi's Theorem.

All of our applications involve Hausdorff spaces, so we will be assuming throughout,
except in Chapter 7, that all hypothesized topological spaces are Hausdorff.

The first five chapters are meant to provide the basic preliminary material. The
concepts and theorems given in the first three of these chapters are also available in
other books. The remaining chapters of the book contain results which, for the most
part, can only be found in research papers at present, as well as several previously
unpublished results.

Notes on the historical development are given at the end of each chapter.
Let us make a few remarks about organization. Chapters are numbered consecu-

tively throughout the book, regardless of which of the four parts of the book contains
them. Lemmas, theorems, corollaries, examples, questions, comments, and remarks are
numbered consecutively in one group within chapters (so that Lemma 2.4 will be found
after Theorem 2.3, for example). There is no logical distinction between a theorem and
a remark. The difference is that proofs are never included for remarks. Exercises come
at the end of sections and are numbered consecutively within sections.

The authors would like to thank Andreas Blass, Karl Hofmann, Paul Milnes, and
Igor Protasov for much helpful correspondence and discussions. Special thanks go
to John Pym for a careful and critical reading of an early version of the manuscript.
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The authors also wish to single out Igor Protasov for special thanks, as he has con-
tributed several new theorems to the book. They would like to thank Arthur Grainger,
Amir Maleki, Dan Tang, Elaine Terry, and Wen Jin Woan for participating in a semi-
nar where much of the material in this book was presented, and David Gunderson for
presenting lectures based on the early material in the book. Acknowledgement is also
due to our collaborators whose efforts are featured in this book. These collaborators in-
clude John Baker, Vitaly Bergelson, John Berglund, Andreas Blass, Dennis Davenport,
Walter Deuber, Ahmed El-Mabhouh, Hillel Furstenberg, Salvador Garcia-Ferreira,
Yitzhak Katznelson, Jimmie Lawson, Amha Lisan, Imre Leader, Hanno Lefmann,
Amir Maleki, Jan van Mill, Paul Milnes, John Pym, Petr Simon, Benjamin Weiss,
and Wen-jin Woan.

The authors would like to acknowledge support of a conference on the subject of
this book in March of 1997 by DFG Sonderforschungsbereich 344, Diskrete Strukturen
in der Mathematik, Universität Bielefeld, and they would like to thank Walter Deuber
for organizing this conference. Both authors would like to thank the EPSRC (UK) for
support of a visit and the first author acknowledges support received from the National
Science Foundation (USA) under grant DMS 9424421 during the preparation of this
book.

Finally, the authors would like to thank their spouses, Audrey and Ed, for their
patience throughout the writing of this book as well as hospitality extended to each of
us during visits with the other.

April 1998 Neil Hindman
Dona Strauss
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Notation

We write N for the set {1, 2, 3, . . .} of positive integers and ω = {0, 1, 2, . . .} for the
nonnegative integers. Also ω is the first infinite ordinal, and thus the first infinite
cardinal. Each ordinal is the set of all smaller ordinals.

R+ = {x e R : χ > 0}.

Given a function / and a set A contained in the domain of /, we write /[A] =
{/(χ) : χ e A} and given any set Β we write /"' [B] = {x € Domain(/) : f ( x ) e B}.

Given a set A, J»/(A) = [F : 0 φ F c A and F is finite}.

Definitions of additional unfamiliar notation can be located by way of the index.



Chapter 1

Semigroups and Their Ideals

We assume that the reader has had an introductory modern algebra course. This as-
sumption is not explicitly used in this chapter beyond the fact that we expect a certain
amount of mathematical maturity.

1.1 Semigroups

Definition 1.1. A semigroup is a pair (5, *) where 5 is a nonempty set and * is a binary
associative operation on 5.

Formally a binary operation on S is a function * : S x S —*· S and the operation is
associative if and only if *(*(*, y), z) = *(x, *(y, z)) for all x, y, and z in S. However,
we customarily write χ * y instead of *(x, y) so the associativity requirement becomes
the more familiar (x * y) * ζ = x * (y * z). The statement that * : S x 5 —> 5, i.e.,
that χ * y € S whenever A:, y e 5 is commonly referred to by saying that "5 is closed
under *".

Example 1.2. Each of the following is a semigroup.

(a) (N, +).
(b) (N, ·).
(c) OR, +).
(d) OR, ·)·
(e) (R\{0}, ·)·
(f) (K+, +)·
(g) OR+, ·).
(h) (N, v), where χ ν y = max{x, y}.
(i) (Ν, Λ), where χ Λ y = min{;t, y}. .
(j) (R, Λ).
(k) (5, *), w/zere 5 w any nonempty set and χ * y = y for allx,y e S.
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(1) (S, *), where S is any nonempty set and χ * y = χ for all x, y € S.
(m) (5, *), where S is any nonempty set and a e 5 and χ * y — a for all x, y e S.
(n) (XX, o), where XX = {f : f : X -> X} and o represents the composition of

functions.

The semigroups of Example 1.2 (k) and (1) are called respectively right zero and left
zero semigroups.

An important class of semigroups are the free semigroups. These require a more
detailed explanation.

Definition 1.3. Let Λ be a nonempty set. The free semigroup on the alphabet A is
the set S = {/ : / is a function and range(/) c A and there is some n e N such
that domain(/) = {0, 1 , . . . , η — 1}}. Given / and g in S, the operation (called
concatenation) is defined as follows. Assume domain(/) = {0, 1 , . . . , η — 1} and
domain(g) = {0, 1 , . . . , m — 1}. Then domain(/^g) = {0, 1 , . . . , m + n — 1} and
given f € {0, 1, ...,m + n - 1},

ί / (O i f i < n
J g \g(i-n) ifi>n.

The free semigroup with identity on the alphabet A is S U {0} where S is the free
semigroup on the alphabet A. Given / e S U {0} one defines /~0 = 0~/ = /

One usually refers to the elements of a free semigroup as words and writes them by
listing the values of the function in order. The length of a word is n where the domain
of the word is {0, 1 , . . . , η - 1} (and the length of 0 is 0). Thus if Λ = {2,4} and
/ = {(0, 4), (1, 2), (2, 2)} (so that the length of / is 3 and /(O) = 4, /(I) = 2, and
/(2) = 2), then one represents / as 422. Furthermore given the "words" 422 and
24424, one has 422~24424 = 42224424.

We leave to the reader the routine verification of the fact that concatenation is asso-
ciative, so that the free semigroup is a semigroup.

Definition 1.4. Let (S, *) and (T, ·) be semigroups.
(a) A homomorphism from S to Τ is a function ψ : S —>· Τ such that φ(χ * y) =

φ(χ) · φ(γ) for all x, y e S.
(b) An isomorphism from S to Γ is a homomorphism from 5 to Γ which is both

one-to-one and onto T.
(c) The semigroups S and T are isomorphic if and only if there exists an isomorphism

from S to T. If S and T are isomorphic we write S % T.
(d) An anti-homomorphism from S to T is a function φ : S —> T such that φ (χ * y) =

<p(y) · φ(χ) for all x, y e 5.
(e) An anti-isomorphism from S to T is an anti-homomorphism from S to T which

is both one-to-one and onto T.
(f) The semigroups S and T are anti-isomorphic if and only if there exists an anti-

isomorphism from S to T.
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Clearly, the composition of two homomorphism, if it exists, is also a homomorphism.
The reader who is familiar with the concept of a category will recognize that there is
a category of semigroups, in which the objects are semigroups and the morphisms are
homomorphisms.

The free semigroup S on the alphabet A has the following property. Suppose that T
is an arbitrary semigroup and that g : A —> T is any mapping. Then there is a unique
homomorphism h : S -> T with the property that h (a) = g (a) for every a e A. (The
proof of this assertion is Exercise 1.1.1.)

Definition 1.5. Let (5, *) be a semigroup and let a e S.
(a) The element α is a left identity for S if and only if a * χ = χ for every χ e S.
(b) The element α is a right identity for S if and only if χ * a = χ for every χ e S.
(c) The element a is a two sided identity (or simply an identity) for 5 if and only if

a is both a left identity and a right identity.

Note that in a "free semigroup with identity" the element 0 is a two sided identity
(so the terminology is appropriate).

Note also that in a left zero semigroup, every element is a right identity and in a
right zero semigroup, every element is a left identity. On the other hand we have the
following simple fact.

Remark 1.6. Let (S, *) be a semigroup. If e is a left identity for S and f is a right
identity for S, then e = f . In particular, a semigroup can have at most one two sided
identity.

Given a collection of semigroups ((Si, *,)},e/, the Cartesian product X / e/5, is
naturally a semigroup with the coordinatewise operations.

Definition 1.7. (a) Let ((Si, *,·));<=/ be an indexed family of semigroups and let S =
X ,-e/ Si. With the operation * defined by (x * y),· = ΛΓ, *,· y,·, the semigroup (S, *) is
called the direct product of the semigroups (5,· ,*,·).

(b) Let {(5,·, */)>,·e/ be an indexed family of semigroups where each 5, has a two
sided identity ej. Then the direct sum of the semigroups (S,, *,·) is φ,·€/ 5, — {χ €
X ,6/ St : { « € / : Xi Φ ei} is finite}.

We leave to the reader the easy verification that the direct product operation is
associative as well as the verification that if x, y € φ;ε/ 5,·, then χ * y e φ((Ξ/ S/.

Definition 1.8. Let (S, *) be a semigroup and let a, b, c e S.
(a) The element c is a left α-inverse for b if and only if c * b = a.
(b) The element c is a right α-inverse for b if and only if b * c = a.
(c) The element c is an α-inverse for b if and only if c is both a left α-inverse for b

and a right α-inverse for b.

The terms left α-inverse, right α-inverse, and α-inverse are usually replaced by left
inverse, right inverse, and inverse respectively. We introduce the more precise notions
because one may have many left or right identities.
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Definition 1.9. A group is a pair (S, *) such that

(a) (S, *) is a semigroup, and
(b) there is an element e e S such that

(i) e is a left identity for S and
(ii) for each χ & S there exists y e 5 such that y is a left e-inverse for x.

Theorem 1.10. Let (S, *) be a semigroup. The following statements are equivalent.

(a) (5, *) is a group.
(b) There is a two sided identity e for S with the property that for each χ £ S there

is some y e S such that y is a (two sided) e-inversefor x.
(c) There is a left identity for S and given any left identity e for S and any x e S

there is some y £ S such that y is a left e-inversefor x.
(d) There is a right identity efor S such that for each x € 5 there is some y e 5 such

that y is a right e-inversefor x.
(e) There is a right identity for S and given any right identity efor S and any x & S

there is some y € S such that y is a right e-inversefor x.

Proof, (a) implies (b). Pick e as guaranteed by Definition 1.9. We show first that any
element has an e-inverse, so let x € 5 be given and let y be a left e-inverse for x. Let ζ
be a left e-inverse for y. Then x * y = e * (x * y) = (z * y) * (x * y) = ζ * (y * (x * y)) =
ζ * ((y * x) * y) = ζ * (e * y) = ζ * y = e, so y is also a right e-inverse for x as required.

Now we show that e is a right identity for 5, so let x e S be given. Pick an ̂ -inverse
y for x. Then x*e = x*(y*x) = (x*y)*x = e*x=x.

(b) implies (c). Pick e as guaranteed by (b). Given any left identity / for 5 we have
by Remark 1.6 that e = f so every element of S has a left /-identity.

That (c) implies (a) is trivial.
The implications (d) implies (b), (b) implies (e), and (e) implies (d) follow now by

left-right switches, the details of which form Exercise 1.1.2. D

In a right zero semigroup 5 (Example 1.2 (k) ) every element is a left identity and
given any left identity e and any χ e S, e is a right e-inverse for χ. This is essentially
the only example of this phenomenon. That is, we shall see in Theorem 1.40 that any
semigroup with a left identity e such that every element has a right ^-inverse is the
Cartesian product of a group with a right zero semigroup. In particular we see that if a
semigroup has a unique left identity e and every element has a right e-inverse, then the
semigroup is a group.

In the semigroup (N, v), l is the unique identity and the only element with an
inverse.

When dealing with arbitrary semigroups it is customary to denote the operation
by · . Furthermore, given a semigroup (S, ·) one customarily writes xy in lieu of jc · y.
We shall now adopt these conventions. Accordingly, from this point on, when we write
"Let S be a semigroup" we mean "Let (5, ·) be a semigroup" and when we write "jcy"
we mean "jc · y".
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Definition 1.11. Let 5 be a semigroup.
(a) S is commutative if and only if xy = yx for all x, y e 5.
(b) The center of 5 is (x € 5 : for all y € S, xy = yx}.
(c) Given x e S, λχ : S ->· S is defined by λχ(γ) = xy.
(d) Given x e 5, px : S ->· 5 is defined by p*(y) = y*.
(e) L(S) = { λ χ : χ < = S}.
(f) R(S) = {ρ, : je e 5}.

Remark 1.12. Lei S be a semigroup. Then (L(5), o) and (/?(£), o) are semigroups.

Since our semigroups are not necessarily commutative we need to specify what we
mean by Π"=1 *,·. There are 2 reasonable interpretations (and n\ — 2 unreasonable
ones). We choose it to mean the product in increasing order of indices because that is
the order that naturally arises in our applications of right topological semigroups. More
formally we have the following.

Definition 1.13. Let 5 be a semigroup. We define Π"=1 *, for [x\,X2, .. .,xn] <Ξ S
inductively on η € Ν.

(a) Π/=1*,· =χ\.
(b) Given n e N, n?!/ *,· = (Π^, */) · *„+,.

Definition 1.14. Let 5 be a semigroup.
(a) An element x e S is right cancelable if and only if whenever y, ζ € 5 and

yx = zx, one has y = z.
(b) An element* e S is /e/fcance/a&/e if and only if whenever y, z € Sand;ty = xz,

one has y = z.
(c) 5 is right cancellative if and only if every x e S is right cancelable.
(d) 5 is left cancellative if and only if every x e 5 is left cancelable.
(e) 5 is cancellative if and only if 5 is both left cancellative and right cancellative.

Theorem 1.15. Let S be a semigroup.
(a) The function λ : S — >· L(S) is a homomorphism onto L(S).
(b) The function ρ : S — > R(S) is an anti -homomorphism onto R(S).
(c) If S is right cancellative, then S and L(S) are isomorphic.
(d) If S is left cancellative, then S and R(S) are anti-isomorphic.

Proof, (a) Given x, y, and z in S one has (λ^ ο λ^)(ζ) = Xx(yz) = *(yz) = (*y)z =
λ^Ζ) Ζθλχ oX y = X x y .

(c) This is part of Exercise 1 . 1 .4. D

Right cancellation is a far stronger requirement than is needed to have S % L (S).
See Exercise 1 . 1 .4.

Exercise 1.1.1. Let 5 be the free semigroup on the alphabet A and let Γ be an arbitrary
semigroup. Assume that g : A ->· T is any mapping. Prove that there is a unique
homomorphism h : S —> T with the property that h(a) = g(a) for every a e A.
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Exercise 1.1.2. Prove that statements (b), (d), and (e) of Theorem 1.10 are equivalent.

Exercise 1.1.3. Prove that, in the semigroup (XX, o), the left cancelable elements are
the injective functions and the right cancelable elements are the surjective functions.

Exercise 1.1.4. (a) Prove Theorem 1.15 (c).
(b) Give an example of a semigroup S which is not right cancellative such that

5 « L(S).

Exercise 1.1.5. Let S be a right cancellative semigroup and let α e 5. Prove that if
there is some b e S such that ab = b, then a is a right identity for S.

Exercise 1.1.6. Prove that "if 5 does not have an identity, one may be adjoined" (and in
fact one may be adjoined even if S already has an identity). That is, Let S be a semigroup
and let e be an element not in S. Define an operation * on 5 U {e} by χ * y = xy if
x, y e S and χ *e = e*x = x. Prove that (5 U {e}, *) is a semigroup with identity e.
(Note that if 5 has an identity /, it is no longer the identity of S U {e}.)

Exercise 1.1.7. Suppose that S is a cancellative semigroup which does not have an
identity. Prove that an identity can be adjoined to S so that the extended semigroup is
also cancellative.

Exercise 1.1.8. Let S be a commutative cancellative semigroup. We define a relation
= on S x 5 by stating that (a, b) = (c, d) if and only if ad = be. Prove that this
is an equivalence relation. Let (a, b) denote the equivalence class which contains the
element (a, b) € 5 x 5, and let G denote the set of all these equivalence classes. We
define a binary relation · on G by stating that (a, b) · (c, d) = (ac, bd). Prove that this
is well defined, that (G, ·) is a group and that it contains an isomorphic copy of 5. (The
group G is called the group of quotients of 5. If 5 = (N, +), G = (Z, +); if S = (N, ·),
G = (Q+, ·), where Q+ = {* e Q : x > 0}.)

1.2 Idempotents and Subgroups

Our next subject is "idempotents". They will be very important to us throughout this
book.

Definition 1.16. Let S be a semigroup.
(a) An element AC e 5 is an idempotent if and only if xx = x.
(b) E(S) = {x e S : x is an idempotent}.
(c) Γ is a subsemigroup of 5 if and only if T c S and Γ is a semigroup under the

restriction of the operation of S.
(d) Γ is a subgroup of 5 if and only if Γ c 5 and Γ is a group under the restriction

of the operation of 5.
(e) Let e e E(S). Then H(e) = (J{G : G is a subgroup of S and e e G}.
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Lemma 1.17. Let G be a group with identity e. Then E(G) = {e}.

Proof. Assume / e £(G). Then ff = f = fe. Multiplying on the left by the inverse
of /, one gets / = e. D

As a consequence of Lemma 1.17 the statement "e e G" in the definition of H(e)
is synonymous with "e is the identity of G". Note that it is quite possible for H(e) to
equal {e}, but H(e) is never empty.

Theorem 1.18. Let S be a semigroup and let e e E(S). Then H(e) is the largest
subgroup of S with e as identity.

Proof. It suffices to show that H(e) is a group since e is trivially an identity for H(e) and
H (e) contains every group with e as identity. For this it in turn suffices to show that H (e)
is closed. So let x, y e H(e) and pick subgroups G\ and G^ of 5 with e € G\ n GZ
and χ e GI and y e G-L. Let G = {Π"=1*, : n e N and [x\,X2, · · ·,xn} <Ξ
GI U GI}. Then xy e G and e e G so it suffices to show that G is a group. For
this the only requirement that is not immediate is the existence of inverses. So let
Π"=, Xj e G. Fori e {1, 2 , . . . , π}, picky,· such that *η+ι_,ν, = e. ThenI~I"=1 y,· e G
and (n?=1jc/).(n?=1 >/) = <?. D

The groups //(e) are referred to as maximal groups. Indeed, given any group G c S,
G has an identity e and G c //(e).

Lemma 1.19. Let S be a semigroup, let e € E(S), and let χ € S. Then the following
statements are equivalent.

(a) x € H(e).
(b) xe = x and there is some y e S such that ye = y and xy = yx = e.
(c) ex = x and there is some y e S such that ey = y and xy = yx = e.

Proof. We show the equivalence of (a) and (b); the equivalence of (a) and (c) then
follows by a left-right switch. The fact that (a) implies (b) is immediate.

(b) implies (a). Let G = {x e S : xe = x and there is some y e S such that
ye = y and xy = yx = e}. It suffices to show that G is a group with identity e.
To establish closure, let x,z € G. Then xze = xz. Pick y and w in 5 such that
ye = y, we = u>, xy = yx = e, and zw = wz = e. Then wye = wy and
xzwy = xey = xy = e = wz — wez = wyxz.

Trivially, e is a right identity for G so it suffices to show that each element of G has
a right e-inverse in G. Let x e G and pick y e S such that ye = y and yx — xy = e.
Note that indeed y does satisfy the requirements to be in G. D

Example 1.20. Let X be any set. Then the idempotents in (XX, o) are the functions
f € XX with the property that f ( x ) = x for every x e f[X].

We next define the concept of a free group on a given set of generators. The un-
derlying idea is simple, but the rigorous definition may seem a little troublesome. The
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basic idea is that we want to construct all expressions of the form a*1 a^ ... ae^ , where
each a, e A and each exponent e, € Z, and to combine them in die way that we are
forced to by the group axioms.

Definition 1.21. Let S be the free semigroup with identity on the alphabet A x { 1 , — 1 }
and let

G = [g € 5 : there do not exist t, t + 1 6 domain(g), a e A and i & {!,—!}
for which g(t) = (a, /) and g(t + 1) = (a, -i)}.

Given /, g e G\{0} with

domain(/) = {0, 1, . . . , η — 1} and domain(g) = {0, 1, . . . , m — 1},

define / · g = f^g unless there exist a e A and i e {!,—!} with f(n — 1) = (a, i)
and g(0) = (β,-ί).

In the latter case, pick the largest k e N such that for all i e {1, 2, . . . , k], there
exist b e A and 7 € {1, -1} such that f ( n - t) = (b, ;) and g(t - 1) = (b, -j). If
k = m = n, then / · g = 0. Otherwise, domain(/ -g) = {Ο, 1, . . . , η + m — 2k — 1}
and for t e {l, 2, . . . , n + m - 2k - l } ,

Then (G, ·) is the free group generated by A.

It is not hard to prove that, with the operation defined above, G is a group.
We customarily write a in lieu of (a, 1) and a~ ' in lieu of (a, — 1). Then in keeping

with the notation to be introduced in the next section (Section 1.3) we shall write the
word ab~lb~lb~la~la~lbb, for example, as ab~3a~2b2. As an illustration, we have
(ab-3a~2b2) · (b~2a3b-*) = ab^ab'4.

We observe that the free group G generated by A has a universal property given by
the following lemma.

Lemma 1.22. Let A be a set, let G be the free group generated by A, let H be an
arbitrary group, and let φ : A —> Η be any mapping. There is a unique homomorphism
φ : G —> H for which 0(g) = <j)(g) for every g € A.

Proof. This is Exercise 1.2.1. D

We shall need the following result later.

Theorem 1.23. Let A be a set, let G be the free group generated by A, and let g e G\{0}.
There exist a finite group F and a homomorphism φ : G — > F such that </>(#) is not the
identity of F.
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Proof. Let n be the length of g, let X = {0, 1, . . . , n), and let F = {/ e XX : f
is one-to-one and onto X}. (Since X is finite, the "onto" requirement is redundant.)
Then (F, o) is a group whose identity is ι, the identity function from X to X. Given
a e A, let D(a) = [i e {0, 1, . . . , η - 1} : g(i) = a~}] and let E (a) = [i e
{1, 2, . . . , n] : g(i - 1) = a}. Note that since g e G, D(a) Π Ε (α) = 0. Define
φ (α) : D(e) U E (a) -> X by

+ 1 i f /

and note that, because g e G, φ (a) is one-to-one. Extend φ (a) in any way to a member
of F. Let φ : G ->· F be the homomorphism extending 0 which was guaranteed by
Lemma 1.22.

Suppose that g = αο'°α\11 . . . a„-\'"-1 , where ar e A and ir € {— 1, 1} for each r €
{0, 1, 2, . . . , n - 1}. We shall show that, for each k e {1, 2, . . . , n}, 0W_i '*-')(*) =
fc-1.

To see this, first suppose that ι'^-ΐ = 1. Then k € £(α^_ι) and so </>(α^_ι)(/:) =
k-\.

Now suppose that ι'*_ι = —1. Then Λ — 1 e Z)(a/t-i) and so 0(α*-ι)(£ — 1) = k.

It is now easy to see that 0(g)(n) = φ(αο'°)φ(αι'[) . . .φ(αη-\ι"-{)(η) = 0 and
hence that 0(g) is not the identity map. D

Exercise 1.2.1. Prove Lemma 1.22.

1.3 Powers of a Single Element

Suppose that χ is a given element in a semigroup 5. For each n e N, we define an
element x" in 5. We do this inductively, by stating that xl = χ and that xn+l = xxn

if x" has already been defined. It is then straightforward to prove by induction that
xmxn = xm+" for every m, n e N. Thus {x" : n e N} is a commutative subsemigroup
of 5. We shall say that x has finite order if this subsemigroup is finite; otherwise we
shall say that x has infinite order.

If 5 has an identity e, we shall define x° for every x e 5 by stating that x° = e. If
x has an inverse in 5, we shall denote this inverse by .χ"1, and we shall define x~" for
every n € N by stating that x~n = (x~l)". If x does have an inverse, it is easy to prove
that xmxn = xm+n for every m, n e Z. Thus {*" : n e Z} forms a subgroup of S.

If additive notation is being used, xn might be denoted by nx instead. The index
law mentioned above would then be written as: mx + nx = (m + n)x.

Theorem 1.24. Suppose that S is a semigroup and that x e 5 has infinite order. Then
the subsemigroup T = {x" : n & N } o f S is isomorphic to (N, +).
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Proof. The mapping n H- xn from (Ν, +) onto Γ is a surjective homomorphism, and so
it will be sufficient to show that it is one-to-one. Suppose then that xm = xn for some
τη, η e Ν satisfying m < n. Then x"~m is an identity for xm, and the same statement
holds for x4("-m\ where q denotes any positive integer. Suppose that s is any integer
satisfying s > m. We can write s — m = q(n— m) + r where q and m are non-negative
integers and r < (n - m). So χ* = xs~mxm = xi(»-m)+rxm = xrxm R foUows that

[xs : s > m} is finite and hence that T is finite, contradicting our assumption that χ has
infinite order. D

Theorem 1.25. Any finite semigroup S contains an idempotent.

Proof. This statement is obviously true if 5 contains only one element. We shall prove
it by induction on the number of elements in S. We make the inductive assumption
that the theorem is true for all semigroups with fewer elements than 5. Choose any
χ e S. There are positive integers m and n satisfying xm = x" and m < n. Then
xn-mxm _ χηι Consider the subsemigroup {y e S : xn~my = v} of S. If this is
the whole of S it contains x"~m and so x"~m is idempotent. If it is smaller than S, it
contains an idempotent, by our inductive assumption. D

Exercise 1.3.1. Prove that any finite cancellative semigroup is a group.

1.4 Ideals

The terminology "ideal" is borrowed from ring theory. Given subsets A and B of a
semigroup 5, by A we of course mean [ab : a e A and b e B}.

Definition 1.26. Let S be a semigroup.
(a) L is a left ideal of S if and only if 0 φ L c S and SL c L.
(b) R is a right ideal of 5 if and only if 0 ̂  R c S and RS c R.
(c) / is an ideal of 5 if and only if / is both a left ideal and a right ideal of S.

An ideal I of S satisfying / φ S is called a. proper ideal of S.
Sometimes for emphasis an ideal is called a "two sided ideal". We often deal with

semigroups in which the operation is denoted by +. In this case the terminology may
seem awkward for someone who is accustomed to working with rings. That is, a left
ideal L satisfies 5 + L c L and a right ideal R satisfies R + S c R.

Of special importance for us is the notion of minimal left and right ideals. By this
we mean simply left or right ideals which are minimal with respect to set inclusion.

Definition 1.27. Let 5 be a semigroup.
(a) L is a minimal left ideal of 5 if and only if L is a left ideal of 5 and whenever /

is a left ideal of S and J c L one has J = L.
(b) R is a minimal right ideal of 5 if and only if R is a right ideal of S and whenever

J is a right ideal of 5" and J c. R one has J = R.
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(c) S is left simple if and only if 5 is a minimal left ideal of S.
(d) S is right simple if and only if 5 is a minimal right ideal of 5.
(e) S is simple if and only if the only ideal of S is S.

We do not define a minimal ideal. As a consequence of Lemma 1.29 below, we shall
see that there is at most one minimal two sided ideal of a semigroup. Consequently
we use the term "smallest" to refer to an ideal which does not properly contain another
ideal.

Observe that S is left simple if and only if it has no proper left ideals. Similarly, 5
is right simple if and only if it has no proper right ideals. Whenever one has a theorem
about left ideals, there is a corresponding theorem about right ideals. We shall not
usually state both results.

Clearly any semigroup which is either right simple or left simple must be simple.
The following simple example (pun intended) shows that the converse fails.

Example 1.28. Let S = {a, b, c, d} where a, b, c, and d are any distinct objects and
let S have the following multiplication table. Then S is simple but is neither left simple
nor right simple.

•
a
b
c
d

a
a
a
c
c

b
b
b
d
d

c
a
a
c
c

d
b
b
d
d

One can laboriously verify that the table does define an associative operation. But
128 computations (of (xy)z and x(yz)) are required, somewhat fewer if one is clever. It
is usually much easier to establish associativity by representing the new semigroup as a
subsemigroup of one with which we are already familiar. In this case, we can represent
S as a semigroup of 3 χ 3 matrices, by putting:

1 1 0 \ / 1 1 1 \ / 0 0 0 \ / O O O
fl=|00o|,fc=[00o],c=(l 1 0 I , < i= I 1 1 1

O O O / \ 0 0 0 / \ 0 0 0 / \ 0 0 0

To verify the assertions of the example, note that {a, b} and {c, d} are right ideals of
S and [a, c} and {b, d} are left ideals of S.

Lemma 1.29. Let S be a semigroup.
(a) Let L\ and LI be left ideals ofS. Then L\ (Ί L 2 is a left ideal of S if and only if

LI r\L2 7^0.
(b) Let L be a left ideal of S and let R be a right ideal ofS. Then L Π R / 0.

Proof. Statement (a) is immediate. To see (b), let χ e L and y e R. Then yx e L
because χ £ L and yx G R because ye / ? . D
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Lemma 1.30. Let S be a semigroup.
(a) Let χ € S. Then χ S is a right ideal, Sx is a left ideal and SxS is an ideal.
(b) Let e e E(S). Then e is a left identity for eS, a right identity for Se, and an

identity for eSe.

Proof. Statement (a) is immediate. For (b), let e e £'(5). To see that e is a left identity
for eS, let χ e eS and pick t e S such that χ = et. Then ex = eet = et = x. Likewise
e is a right identity for Se. D

Theorem 131. Let S be a semigroup.
(a) IfS is left simple and e e E(S), then e is a right identity for S.
(b) If L is a left ideal of S and s e L, then Ss C L.
(c) Let 0 φ L c S. Then L is a minimal left ideal ofS if and only if for each s £ L,

Ss = L.

Proof, (a) By Lemma 1.30 (a), Se is a left ideal of 5, so Se = S so Lemma 1.30 (b)
applies.

(b) This follows immediately from the definition of left ideal.
(c) Necessity. By Lemma 1.30 (a) Ss is a left ideal and by (b) Ss c L so, since L

is minimal, 5* = L.
Sufficiency. Since L = Ss for some s e L, L is a left ideal. Let J be a left ideal of

5 with J c L and pick s e J. Then by (b), Ss c / so J c L = Ss c J. D

We shall observe at the conclusion of the following definition that the objects defined
there exist.

Definition 1.32. Let 5 be a semigroup.
(a) The smallest ideal of 5 which contains a given element χ e 5 is called the

principal ideal generated by x.
(b) The smallest left ideal of S which contains x is called the principal left ideal of

S generated by x.
(c) The smallest right ideal of S which contains x is called the principal right ideal

generated by x.

Theorem 1.33. Let S be a semigroup and let x & S.
(a) The principal ideal generated by x is SxS U xS U Sx U {x}.
(b) If S has an identity, then the principal ideal generated by x is SxS.
(c) The principal left ideal generated by x is Sx U {x} and the principal right ideal

generated by x is xS U {x}.

Proof. This is Exercise 1.4.1. D

Exercise 1.4.1. Prove Theorem 1.33.

Exercise 1.4.2. Describe the ideals in each of the following semigroups. Also describe
the minimal left ideals and the minimal right ideals in the cases in which these exist.
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(i) (N, +).
(ii) (P(X), U), where X is any set.

(iii) (^P(X), Π), where X is any set.
(iv) ([0, 1], ·)» where · denotes multiplication.
(v) The set of real-valued functions defined on a given set, with pointwise multipli-

cation as the semigroup operation.
(vi) A left zero semigroup,

(vii) A right zero semigroup.

Exercise 1.4.3. Let X be any set. Describe the minimal left and right ideals in XX.

Exercise 1.4.4. Let 5 be a commutative semigroup with an identity e. Prove that S has
a proper ideal if and only if there is some s e 5 which has no e-inverse. In this case,
prove that [s e 5 : s has no e-inverse} is the unique maximal proper ideal of S.

1.5 Idempotents and Order

Intimately related to the notions of minimal left and minimal right ideals is the notion
of minimal idempotents.

Definition 1.34. Let S be a semigroup and let e, f € E(S). Then
(a) e<L/ if and only if e = ef,
(b) e<R f if and only if e = fe, and
(c) e < f if and only if e = ef = fe.

In the semigroup of Example 1.28, one sees that c<z,a, O<LC, b<^d, d<^b, a<Rb,
b<Ra, c<Rd, and d<RC, while the relation < is simply equality on this semigroup.

Remark 1.35. Let S be a semigroup. Then <L, <R, and < are transitive and reflexive
relations on E(S). In addition, < is antisymmetric.

When we say that a point e is minimal with respect to a (not necessarily antisym-
metric) relation ·< on a set B, we mean that if f & B and f ·< e, then e ·< f (so if ·<
is antisymmetric, the conclusion becomes e = f).

Theorem 1.36. Let S be a semigroup and let e e E(S). The following statements are
equivalent.

(a) The element e is minimal with respect to <.
(b) The element e is minimal with respect to <R.
(c) The element e is minimal with respect to </,.
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Proof, (b) implies (a). Assume that e is minimal with respect to <R and let / < e.
Then / = ef so f<Re so e<Rf. Then e = fe = f.

We show that (a) implies (b). (Then the equivalence of (a) and (c) follows by a
left-right switch.) Assume that e is minimal with respect to < and let f<Re. Let
g = fe. Then gg = f e f e = ffe = fe = g so g e E(S). Also, g = fe = efe so
eg = eefe = efe = g = efee = ge. Thus g < e so g = e by the minimality of e.
That is, e = fe so e< R f as required. D

As a consequence of Theorem 1.36, we are justified in making the following defini-
tion.

Definition 1.37. Let 5 be a semigroup. Then e is a minimal idempotent if and only if
e € E(S) and e is minimal with respect to any (hence all) of the orders <, </?, or </,.

We see that the notions of "minimal idempotent" and "minimal left ideal" and
"minimal right ideal" are intimately related. We remind the reader that there is a
corresponding "right" version of the following theorem.

Theorem 1.38. Let S be a semigroup and let e e E(S).
(a) If e is a member of some minimal left ideal (equivalently if Se is a minimal left

ideal), then e is a minimal idempotent.
(b) If S is simple and e is minimal, then Se is a minimal left ideal.
(c) If every left ideal of S contains an idempotent and e is minimal, then Se is a

minimal left ideal.
(d) If S is simple or every left ideal of S has an idempotent then the following

statements are equivalent.
(i) e is minimal.

(ii) e is a member of some minimal left ideal of S.
(i\\) Se is a minimal left ideal of S.

Proof, (a) Let L be a minimal left ideal with e e L. (The existence of a set L with this
property is equivalent to Se being minimal, by Theorem 1.31 (c).) Then L — Se. Let
/ e E(S) with f < e. Then / = fe so / e L so (by Theorem 1.31(c)) L = Sf so
e 6 Sf so by Lemma 1.30(b), e = ef so e — ef = f .

(b) Let L be a left ideal with L C Se. We show that Se c L (and hence Se = L).
Pick some s e L. Then s e Se so by Lemma 1.30(b), s = se. Also, since S is
simple SsS — S, so pick u and v in S with e — vsu. Let r — eue and t — ev.
Then tsr = evseue — evsue = eee = e and er = eeue = eue = r. Let / = rts.
Then // = rtsrts = r(tsr)ts — rets — reevs — revs = rts = /, so / e E(S).
Also, fe — rise = rts = f and ef — erts — rts = f so / < e so / = e. Thus
Se = Sf = Srts c Ss c L.

(c) Let L be a left ideal with LC.Se. We show that e e L (so that Se c L and
hence Se = L). Pick an idempotent t e L, and let / = ef. Then / e L. Since f e Se,
f = te. Thus / = et = ete. Therefore // = etet = ett = et = f so / e E(S). Also
ef = eete — ete = f and fe — etee — ete = fsof<esof = e and hence e e L.
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(d) This follows from (a), (b), and (c). D

We now obtain several characterizations of a group.

Theorem 1.39. Let S be a semigroup. The following statements are equivalent.

(a) S is cancellative and simple and E(S) ^ 0.
(b) 5 is both left simple and right simple.
(c) For all a and b in S, the equations ax = b and ya — b have solutions x, y in S.
(d) S is a group.

Proof, (a) implies (b). Pick an idempotent e in S. We show first that e is a (two sided)
identity for S. Let χ e S. Then ex = eex so by left cancellation jc = ex. Similarly,
jc = xe. To see that S is left simple, let L be a left ideal of 5. Then L S is an ideal of
S so LS = S, so pick t e L and s € S such that e = ts. Then sts = se = s = es so
cancelling on the right one has st = e. Thus e e L so 5 = SL c L. Consequently 5
is left simple, and similarly S is right simple.

(b) implies (c). Let a, b e S. Then aS = S so there is some χ ς. S such that ax = b.
Similarly, since Sa — S, there is some y e S such that ya = b.

(c) implies (d). Pick a e S and pick e e S such that ea — a. We show that e is a left
identity for S. Let b € S. We show that eb = b. Pick some y € S such that ay = b.
Then eb = eay — ay = b.

Now given any χ e S there is some y € S such that yx = e so every element of S
has a left e-inverse.

(d) implies (a). Trivially S is cancellative and E(S) Φ 0. To see that S is simple, let
/ be an ideal of S and pick χ e /. Let y be the inverse of x. Then xy e I so / = S. D

As promised earlier, we now see that any semigroup with a left identity e such that
every element has a right e-inverse must be (isomorphic to) the Cartesian product of a
group with a right zero semigroup.

Theorem 1.40. Let S be a semigroup and let e be a left identity for S such that for each
x € S there is some y e S with xy = e. Let Y = E(S) and let G = Se. Then Y is a
right zero semigroup and G is a group and S = GY « G χ Υ.

Proof. We show first that:

(*) For all jc € F and for all y € 5, xy — y.

To establish (*), let x e Y and y e S be given. Pick z e S such that xz = e. Then
xe = xxz = xz = e. Therefore xy = x(ey) = (xe)y = ey = y, as required.

From (*) it follows that for all x, y e Y, xy = y, and Υ φ 0 because e G Y, so to
see that K is a right zero semigroup, it suffices to show that it is a semigroup, that is that
Y is closed. But this also follows from (*) since, given x, y £ Y one has xy = y e Y.

Now we establish that G = Se is a group. By Lemma 1.30(b), e is a right identity
for G. Now every element in S has a right ^-inverse in S. So every element of G has
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a right e-inverse in S. By Theorem 1.10 we need only to show that every element of
G has a right e-inverse in G. To this end let χ e G be given and pick y e S such that
xy = e. Then ye € G and xye = ee = e so ye is as required. Since we also have
GG = SeSe C SSSe C.Se = G,it follows that G is a group.

Now define φ : G χ Υ ->· 5 by ^(g, y) = gy. To see that ^ is a homomorphism,
l e t ( g i , y i ) , ( £ 2 , y 2 ) € G x Y. Then

(by(*))
(by(*))

To see that ^ is surjective, let s e 5 be given. Then se & Se = G, and so there
exists χ e Se such that x(se) = (se)x = e. We claim that xs e Y = E(S). Indeed,

xsxs = xsexs (since χ e G, ex — x)
= xes
= xs (since χ € G, xe = χ).

Thus (se, xs) € G x K and <p(se, xs) = sexs = es = s. Since φ is onto 5, we have
established that S = GY.

Finally to see that φ is one-to-one, let (g, y) € G χ Υ and let s = <p(g, y) We show
that g = se and y = xs where χ is the (unique) inverse of se in Se. Now s = gy so

se = gye
= ge (by (*) ye = e)
= g (since g € Se).

Also

xs = xgy
— xgyey (ye € ^ so by (*) yey = y)
= xsey
= ey
= y. π

We know that the existence of a left identity e for a semigroup 5 such that every
element of S has a right e-inverse does not suffice to make S a group. A right zero
semigroup is the standard example. Theorem 1 .40 tells us that is essentially the only
example.

Corollary 1.41. Let S be a semigroup and assume that S has a unique left identity e
and that every element of S has a right e-inverse. Then S is a group.

Proof. This is Exercise 1.5.1. D

Exercise 1.5.1. Prove Corollary 1.41. (Hint: Consider \Y\ in Theorem 1.40.)
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1.6 Minimal Left Ideals

We shall see in this section that many significant consequences follow from the existence
of minimal left (or right) ideals, especially those with idempotents. This is important for
us, because, as we shall see in Corollary 2.6, any compact right topological semigroup
has minimal left ideals with idempotents.

We begin by establishing an easy consequence of Theorem 1.40.

Theorem 1.42. Let S be a semigroup and assume that there is a minimal left ideal L
of S which has an idempotent e. Then L = XG « Χ χ G where X is the (left zero)
semigroup of idempotents ofL, and G = eL = eSe is a group. All maximal groups in
L are isomorphic to G.

Proof. Given χ € L, Lx is a left ideal of S and Lx c L so Lx = L and hence there
is some y € L such that yx = e. By Lemma 1.30(b), e is a right identity for Le = L.
Therefore the right-left switch of Theorem 1.40 applies (with L replacing S). It is a
routine exercise to show that the maximal groups of Χ χ G are the sets of the form
{x} xG. Π

Lemma 1.43. Let S be α semigroup, let L be α left ideal of S, and let Τ be a left ideal
ofL.

(a) For all t e T, Lt is a left ideal of S and Lt C T.
(b) If L is a minimal left ideal of S, then T — L. (So minimal left ideals are left

simple.)
(c) If T is a minimal left ideal of L, then T is a left ideal of S.

Proof, (a) S(Lt) = (SL)t c Lt and Lt c. LT c T.
(b) Pick any t € T. By (a), Lt is a left ideal of S and Lt c T c L so Lt = L so

T = L.
(c) Pick any t e T. By (a), Lt is a left ideal of S, so Lt is a left ideal of L. Since

Lt c T, Lt = T. Therefore, ST = S(Lt) = (SL)t c Lt = Τ. Ώ

As a consequence of Lemma 1.43, if L is a left ideal of 5 and Γ is a left ideal of L
and either L is minimal in S or T is minimal in L, then Γ is a left ideal of S. Of course,
the right-left switch of this statement also holds. That is, if R is a right ideal of 5 and T
is a right ideal of R and either R is minimal in S or T is minimal in R, then Γ is a right
ideal of S. We see now that without some assumptions, T need not be a right ideal of S.

Example 1.44. Let X = {0, 1, 2} and let S = XX. Let R = {/ E X : Range(/) c
0 ~* °

{0, 1}} and let T = {0, a} where 0 is the constant function and a : 1 —>· 0. Then R is
2 -> 1

a right ideal of S and T is a right ideal of R, but T is not a right ideal of S.

Lemma 1.45. Let S be a semigroup, let I be an ideal of S and let L be a minimal left
ideal of S. Then L C /.
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Proof. This is Exercise 1.6.1. D

We now see that all minimal left ideals of a semigroup are intimately connected with
each other.

Theorem 1.46. Let S be a semigroup, let L be a minimal left ideal ofS, and let T c S.
Then T is a minimal left ideal of S if and only if there is some a & S such that T = La.

Proof. Necessity. Pick a € T. Then S La c La and La c ST C T so La is a left
ideal of S contained in T so La = T.

Sufficiency. Since S La C. La, La is a left ideal of 5. Assume that B is a left ideal
of S and B C La. Let A = {s e L : sa e B}. Then A C L and Α φ 0. We claim that
Λ is a left ideal of 5, so let Λ € A and let t € 5. Then sa e B so tsa e B and, since
s e L, ts e L, so ts e A as required. Thus A = L so La C B so La = Β. Π

Corollary 1.47. Let S be a semigroup. If S has a minimal left ideal, then every left
ideal of S contains a minimal left ideal.

Proof. Let L be a minimal left ideal of 5 and let J be a left ideal of S. Pick α Ε J.
Then by Theorem 1.46, La is a minimal left ideal which is contained in J. D

Theorem 1.48. Let S be a semigroup and let e e E(S). Statements (a) through (f) are
equivalent and imply statement (g). If either S is simple or every left ideal of S has an
idempotent, then all statements are equivalent.

(a) Se is a minimal left ideal.
(b) Se is left simple.
(c) eSe is a group.
(d) eSe = H(e).
(e) eS is a minimal right ideal.
(f) eS is right simple.
(g) e is a minimal idempotent.

Proof. By Theorem 1.38(a), we have that (a) implies (g) and by Theorem 1.38(d), if
either 5 is simple or every left ideal of 5 has an idempotent, then (g) implies (a),

(a) => (b) (e) =» (f)
We show that ft JJ. from which ft JJ- follows by left-right

(d) <= (c) (d) «= (c)
duality and the fact that (c) and (d) are two sided statements.

That (a) implies (b) follows from Lemma 1.43(b).
(b) implies (c). Trivially eSe is closed. By Lemma 1.30 e is a two sided identity for

eSe. Also let χ = ese e eSe be given. One has χ e Se so Sx is a left ideal of Se and
consequently Sx = Se, since Se is left simple. Thus e € Sx, so pick y e 5 such that
e = yx. Then eye e eSe and eyex = eyx = ee = e so χ has a left e-inverse in eSe.
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(c) implies (d). Since eSe is a group and e e eSe, one has eSe C H(e). On the
other hand, by Theorem 1.18, e is the identity of H(e) so given χ e H(e), one has that
χ — exe 6 eSe, so #(e) C eSe

(d) implies (a). Let L be a left ideal of S with L c Se and pick t e L. Then t & Se
so et € eSe. Pickx e eSe such that AT (ei) = e. Then*? = (xe)t — x(et) =esoe e L
so Se C SL C L. D

We note that in the semigroup (N, ·)> 1 is the only idempotent, and is consequently
minimal, while Nl is not a minimal left ideal. Thus Theorem 1.48(g) does not in general
imply the other statements of Theorem 1.48.

We recall that in a ring there may be many minimal two sided ideals. This is because
a "minimal ideal" in a ring is an ideal minimal among all ideals not equal to {0}, and
one may have ideals I\ and h with I\ C\ /2 = {0}. By contrast, we see that a semigroup
can have at most one minimal two-sided ideal.

Lemma 1.49. Let S be a semigroup and let K be an ideal of S. If K is minimal in
{J : J is an ideal of S} and I is an ideal of S, then K c /.

Proof. By Lemma l .29(b), T n / ^ 0 s o 'n/ isan ideal contained in K so Κ Π / = Κ.
D

The terminology "minimal ideal" is widely used in the literature. Since, by Lemma
1.49, there can be at most one minimal ideal in a semigroup, we prefer the terminology
"smallest ideal".

Definition 1.50. Let 5 be a semigroup. If S has a smallest ideal, then K (5) is that
smallest ideal.

We see that a simple condition guarantees the existence of K ( S ) .

Theorem 1.51. Let S be a semigroup. If S has a minimal left ideal, then K(S) exists
and K(S) = (J{L : L is a minimal left ideal ofS}.

Proof. Let / = (J{L : L is a minimal left ideal of S}. By Lemma 1.45, if J is any ideal
of S, then / C /, so it suffices to show that / is an ideal of S. We have that / ^ 0 by
assumption, so let χ e 7 and let s e S. Pick a minimal left ideal L of S such that χ e L.
Then sx e L c /. Also, by Theorem 1.46, Ls is a minimal left ideal of S so Ls c /
while xs e Ls. π

Observe, however, that many common semigroups do not have a smallest ideal. This
is true for example of both (N, +) and (N, ·)·

Lemma 1.52. Let S be a semigroup.
(a) Let L be a left ideal of S. Then L is minimal if and only if Lx = L for every

χ e L.
(b) Let I be an ideal ofS. Then I is the smallest ideal if and only iflxl = I for

every χ e I.
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Proof, (a) If L is minimal and χ e L, then Lx is a left ideal of 5 and Lx c L so
LJC = L. Now assume Lx = L for every χ e L and let 7 be a left ideal of S with
7 c L. Pick* e J. Then L = L* c LJ c / C L.

(b) This is Exercise 1.6.2. α

Theorem 1.53. Let S be a semigroup. If L is a minimal left ideal of S and R is a
minimal right ideal ofS, then K(S) = LR.

Proof. Clearly LR is an ideal of 5. We use Lemma 1.52 to show that K(S) = LR. So,
let Λ e LR. Then LRxL is a left ideal of S which is contained in L so LRxL = L and
hence LRxLR = LR. D

Theorem 1.54. Let S be a semigroup and assume that K(S) exists and e e E(S). The
following statements are equivalent and are implied by any of the equivalent statements
(a) through (f) of Theorem 1.48.

(h) e € K(S).
(i) K(S) = SeS.

Proof. By Theorem 1.51, it follows that Theorem 1.48(a) implies (h).
(h) implies (i). Since SeS is an ideal, we have K(S) C SeS. Since e e K(S), we

have SeS ^K(S).
(i) implies (h). We have e = eee € SeS = K(S). D

Two natural questions are raised by Theorems 1.51 and 1.54. First, if K (S) exists,
is it the union of all minimal left ideals or at least is it either the union of all minimal
left ideals or be the union of all minimal right ideals? Second, given that K(S) exists
and e is an idempotent in K(S), must Se be a minimal left ideal, or at least must e
be a minimal idempotent? The following example, known as the bicyclic semigroup,
answers the weaker versions of both of these questions in the negative. Recall that
, "fcT ι ι ff\\ ff\ Ι Ο 1
Qj — IN "̂  i \ j f — ι ̂ *» 1 » ^ » · * · ι ·

Example 1.55. Let S — ω χ ω and define an operation · on S by
i (m,s + n -r) if n > r(m,ri) · (r, s) = { ; ' ..[(m + r — n,s) if n < r.

Then S is a simple semigroup (so K (S) = S), S has no minimal left ideals and no minimal
right ideals, E(S) = {(n, n) : n € ω}, and for each n € a>, (n + l, n + 1) < (n,n).

One may verify directly that the operation in Example 1.55 is associative. It is
probably easier, however, to observe that 5 is isomorphic to a subsemigroup of NN.

Specifically define /, g e NN by /(i) = t + 1 and g(t) = Γ ~ l ^* ^ J . Then
I

given n, r e ω one has gn ο f = | fr_n ,f ~ . Consequently, one has

</mo*H)o(/ 'Og') =
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To see that the semigroup in Example 1.55 is simple, note that given any (m, n),
(k, r) e S, (k, m) · (m, n) · (n, r) = (k, r). To see that S has no minimal left ideals, let
L be a left ideal of 5 and pick (m, n) e L. Then {(k, r) e S : r > n} is a left ideal of
5 which is properly contained in L. Similarly, if R is a right ideal of S and (m, n) € /?
then { ( f c , r ) € 5 : J k > m } i s a right ideal of 5 which is properly contained in R.

It is routine to verify the assertions about the idempotents in Example 1.55.

Exercise 1.6.1. Prove Lemma 1.45.

Exercise 1.6.2. Prove Lemma 1.52(b).

Exercise 1.6.3. Let S = [f e NN : / is one-to-one and N\/[N] is infinite}. Prove
that (S, o) is left simple (so S is a minimal left ideal of 5) and S has no idempotents.

Exercise 1.6.4. Suppose that a minimal left ideal L of a semigroup is commutative.
Prove that L is a group.

Exercise 1.6.5. Let 5 be a semigroup and assume that there is a minimal left ideal
of S. Prove that, if K(S) is commutative, then it is a group.

1.7 Minimal Left Ideals with Idempotents

We present here several results that have as hypothesis "Let 5 be a semigroup and assume
that there is a minimal left ideal of S which has an idempotent". These are important to
us because, as we shall see in Corollary 2.6, this hypothesis holds in any compact right
topological semigroup. (See Exercise 1.6.3 to show that the reference to the existence
of an idempotent cannot be deleted from this hypothesis.)

Theorem 1.56. Let S be a semigroup and assume that there is a minimal left ideal of
S which has an idempotent. Then every minimal left ideal has an idempotent.

Proof. Let L be a minimal left ideal with an idempotent e and let J be a minimal
left ideal. By Theorem 1.46, there is some χ e S such that J — Lx. By Theorem
1.42, eL = eSe is a group, so let y = eye be the inverse of exe in this group. Then
yjc € Lx = J and yxyx = (ye)x(ey)x = y(exe)yx = eyx = yx. D

We shall get left and right conclusions from this one sided hypothesis. We see now
that in fact the right version follows from the left.

Lemma 1.57. Let S be a semigroup and assume that there is a minimal left ideal of
S which has an idempotent. Then there is a minimal right ideal of S which has an
idempotent.
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Proof. Pick a minimal left ideal L of S and an idempotent e € L. By Theorem 1.31(c)
Se is a minimal left ideal of S so by Theorem 1.48 eS is a minimal right ideal of S and
e is an idempotent in eS. π

Theorem 1.58. Let S be a semigroup and assume that there is a minimal left ideal of
S which has an idempotent. Let T c 5.

(a) T is a minimal left ideal of S if and only if there is some e e £"(Af (5)) such that
T = Se.

(b) T is a minimal right ideal of S if and only if there is some e e E(K (5)) such
that Τ = eS.

Proof. Pick a minimal left ideal L of S and an idempotent / e L.
(a) Necessity. Since S/ is a left ideal contained in L, Sf = L. Thus by Theorem

1.48, f S f is a group. Pick any a e T. Then faf € fSf so pick Λ e /5/ such that
jc(/e/) = /. Then

xaxa = (xf)a(fx)a
= (xfaf)xa
= fxa
= xa.

Consequently, xa is an idempotent. Also xa e Τ while T c .K (S) by Theorem 1.51
so xa e E(K(S)). Finally, Sxa is a left ideal contained in T, so Τ = Sxa.

Sufficiency. Since e e Κ (5), pick by Theorem 1.51 a minimal left ideal / of S with
e e 7. Then Si· = 7 by Theorem 1.31(c).

(b) As a consequence of Lemma 1.57 this follows by a left-right switch. D

Theorem 1.59. Let S be a semigroup, assume that there is a minimal left ideal of S
which has an idempotent, and let e e E(S). The following statements are equivalent.

(a) Se is a minimal left ideal.
(b) Se is left simple.
(c) eSe is a group.
(d) eSe = H(e).
(e) eS is a minimal right ideal.
(f) eS is right simple.
(g) e is a minimal idempotent.
(h) e e K(S).
(i) K(S) = SeS.

Proof. By Corollary 1.47 and Theorem 1.56 every left ideal of 5 contains an idempotent
so by Theorem 1.48 statements (a) through (g) are equivalent. By Theorems 1.51 and
1.54 we need only show that (h) implies (a). But this follows from Theorem 1.58. D

Theorem 1.60. Let S be a semigroup, assume that there is a minimal left ideal of S
which has an idempotent, and let e be an idempotent in S. There is a minimal idempotent
f of S such that f < e.
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Proof. Se is a left ideal which thus contains a minimal left ideal L with an idempotent
g by Corollary 1.47 and Theorem 1.56. Now g e Se so ge = g by Lemma 1.30. Let
/ = eg. Then // = egeg = egg = eg = f so / is an idempotent. Also / € L so
L = Sf so by Theorem 1.59 / is a minimal idempotent. Finally ef = eeg = eg = f
and fe = ege = eg = f so / < e. D

Theorem 1.61. Let S be a semigroup and assume that there is a minimal left ideal of
S which has an idempotent. Given any minimal left ideal L of S and any minimal right
ideal R of S, there is an idempotent e e R Π L such that R Π L = R L = eSe and eSe
is a group.

Proof. Let R and L be given. Pick by Theorem 1.58 an idempotent / e K (5) such that
L = Sf. By Theorem 1.48, f S f is a group. Pick a e R and let χ be the inverse of
faf in f S f . Then χ e Sf = L so ax e R D L. By Theorem 1.51 ax € K(S). Also

axax = a(xf)a(fx)
= a(xfaf)x
= afx
= ax.

Let e = ax. Then eSe c Sx c L and eSe c aS c /? so eSe c /? n L. To see
that /? Π L c <?Se, let £ e n L. By Theorem 1.31 L = Se and R = eS so by
Lemma 1.30, b — eb — be. Thus b — eb — ebe e eSe.

Now /?L = eSSe c eSe c L, so /?L = eSe.
As we have observed, e e K(S), so by Theorem 1.59 eSe is a group. D

Lemma 1.62. Let S be a semigroup and assume that there is a minimal left ideal of S
•which has an idempotent. Then all minimal left ideals of S are isomorphic.

Proof. Let L be a minimal left ideal of 5 with an idempotent e. Then L = Se so by
Theorem 1.59 eSe is a group.

We claim first that given any s e AT (5) and any t e S, s(ese) λ — st(este) l,
where the inverses are taken in eSe. Indeed, using the fact that (ese)~le = e(ese)~l —

s(ese)~ s(ese)^ = s(ese)~ ese(ese) = s(ese)~ e = s(ese)~l

and similarly s t (es t e) ~ ' is an idempotent. By Lemma l .57 and Theorem l .5 1 , K (S) =
\^){R : R is a minimal right ideal of S}. Pick a minimal right ideal R οι S such that
s € R. Then s(ese)~l and st(este)~l are both idempotents in R n L, which is a group
by Theorem 1.61. Thus s(ese)~l = st(este)~l as claimed.

Now let L' be any other minimal left ideal of S. By Theorem 1 .59, eS is a minimal
right ideal of 5 so by Theorem 1.61 L' n eS is a group so pick an idempotent d € L'DeS.
Notice that L' = Sd and dS = eS. In particular, by Lemma 1.30(b), de = e, ed = d,
and for any s e L', sd = s.
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Define ψ : Sd -> 5^ by \jr(s} = s(ese)~ldse, where the inverse is in the group
eSe. We claim first that ψ is a homomorphism. To this end, let s, t e Sd. Then

= s(ese)~ldset(ete)~ldte
= s(ese) ldsete(ete) ldte (e(ete)~l = (ete)~l )
= s(ese)~] [dsedte
= s(ese)~ldste (ed = d andsd = s )
= st(este)~ldsfe (s(ese)~l = st(este)~l )

Now define γ : Se -» Sd by y(t) = t(dtd)~letd where the inverse is in dSd,
which is a group by Theorem 1.59. We claim that γ is the inverse of iff (and hence ψ
takes Sd one-to-one onto Se). To this end, let s € L'. Then ds e L' so 5rfi is a left
ideal contained in L' and thus L' = Sds. So pick χ e S such that s = xds. Then

= s(ese)~ldse(ds(ese)~ldsed)~les(ese)~ldsed
= xds(ese) ]dsed(ds(ese) *dsed) lese(ese) ldsed
= xdedsed
= xddsd
= xds
= s.

Similarly, if t e L, then V(x(0) =t. π

We now analyze in some detail the structure of a particular semigroup. Our motive
is that this allows us to analyze the structure of the smallest ideal of any semigroup that
has a minimal left ideal with an idempotent.

Theorem 1.63. Let X be a left zero semigroup, let Υ be a right zero semigroup, and let
Gbeagroup. Let e be the identity of G, fix u e Xandv e Υ and let [, ] : YxX —*· Gbe
a function such that [y,u] = [v, x] = efor ally e Υ and all χ e X. Let S = Χ χ G χ Υ
and define an operation · on S by (x, g, y) · (x', g', y') = (x, g[y, x']g' , y'). Then S
is a simple semigroup (so that K(S) = S = XxGxY) and each of the following
statements holds.

(a) For every (x, y) € X x Y, (x, [y, Jt]~' , y) is an idempotent (where the inverse
is taken in G) and all idempotents are of this form. In particular, the idempotents in
X x G x [v] are of the form (x, e, v) and the idempotents in {«} x G χ Υ are of the
form («, e, y).

(b) For every y e Υ, Χ χ G x {y} is a minimal left ideal of S and all minimal left
ideals of S are of this form.

(c) For every x e X, {x} x G χ Υ is a minimal right ideal of S and all minimal right
ideals of S are of this form.
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(d) For every (x, y) e Χ χ Υ, (χ} χ G χ {y} is a maximal group in S and all maximal
groups in S are of this form.

(e) The minimal left ideal Χ χ G χ {υ} is the direct product ofX, G, and {v} and
the minimal right ideal {u} χ G χ Υ is the direct product of{u], G, and Y.

(f) All maximal groups in S are isomorphic to G.
(g) All minimal left ideals of S are isomorphic to Χ χ G and all minimal right ideals

of S are isomorphic to G χ Υ.

Proof. The associativity of · is immediate. To see that 5 is simple, let (x, g, y),
(xf, g', y') e 5. By Lemma 1.52(b), it suffices to show that (x', g', y') e S(x, g, y)S.
Tosee this, let h = g'g~l[y, x]~lg~l[y, χΓ1· Then (χ1, g', y') = (x1, h, y)-(x, g, y)·
(χ, g, y").

(a) That (x, [ y , x ] ~ l , y) is an idempotent is immediate. Given an idempotent
(x,g, y), one has that g[y,x]g = £sog = [ y , x ] ~ 1 ·

(b) Let y € F. Trivially X x G x {y} is a left ideal of 5. To see that it is minimal,
let (x, g), (x', g') e X x G. It suffices by Lemma 1.52(a) to note that (xr, g', y) =
(xf, g'g~l[y,x]~l, y)-(x, g, y). Given any minimal left ideal L of 5, pick (x,g,y) e L.
Then L Π (Χ χ G x {y}) ^ 0 s o L = X x G x {y}.

Statement (c) is the right-left switch of statement (b).
(d) By the equivalence of (h) and (d) in Theorem 1.59 we have that the maximal

groups in S are precisely the sets of the form f S f where / is an idempotent of K (S) = 5.
That is, by (a), where / = (x, [y, x]~l, y). Since

(x, [y,xrl,y)S(x, [ y , x ] ~ l , y ) = M x G x {y},

we are done.
(e) We show that X x G x { u } i s a direct product, the other statement being similar.

Let (x, g), (x', g') e X x G. Then

(x, g, v) · (xf, g', v) = (x, g [ v , x']g', v)
= (x,geg',v)
= (xxf, gg', vv).

(f) Trivially {u} x G x {v} is isomorphic to G. Now, let (x, y) e X x F. Then
{χ} χ G x {v} and {«} x G x {v} are maximal groups in the minimal left ideal X x G χ {υ},
hence are isomorphic by Theorem 1.42. Also [χ] χ G x {v} and {χ} χ G x {y} are
maximal groups in the minimal right ideal [χ] χ G x F, hence are isomorphic by the
left-right switch of Theorem 1.42.

(g) By Lemma 1.62 all minimal left ideals of 5 are isomorphic and by (e) X x G χ {υ}
is isomorphic to X x G. The other conclusion follows similarly. D

Note that in Theorem 1.63, the set 5 is the cartesian product of X, G, and Y, but is
not the direct product unless [y, x} = e for every (y, x) e Υ χ X.

Observe that as a consequence of Theorem 1.63(g) we have that for any y e Y,
X x G x {y} Ri X x G. However, there is no transparent isomorphism unless [y, x] = e
for all x e X, such as when y = v.
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Theorem 1.63 spells out in detail the structure of Χ x G χ Υ. We see now that this
is in fact the structure of the smallest ideal of any semigroup which has a minimal left
ideal with an idempotent.

Theorem 1.64 (The Structure Theorem). Let S be a semigroup and assume that there
is a minimal left ideal of S which has an idempotent. Let R be a minimal right ideal ofS,
let L be a minimal left ideal of S , letX = E(L), let Υ = E(R), and let G = RL. Define
an operation · onXxGxYby(x,g,y)· (xf, g' , y') = (x, gyx'g', y'). Then XxGxY
satisfies the conclusions of Theorem 1.63 (where [y, x] = yx) and K(S) ^ Χ χ G χ Υ.
In particular:

(a) The minimal right ideals of S partition K(S) and the minimal left ideals of S
partition K(S).

(b) The maximal groups in K(S) partition K(S).
(c) All minimal right ideals of S are isomorphic and all minimal left ideals of S are

isomorphic.
(d) All maximal groups in K(S) are isomorphic.

Proof. After noting that, by Lemma 1 .43 and Theorem 1.51, the minimal left ideals of 5
and of K(S) are identical (and the minimal right ideals of 5 and of K(S) are identical),
the "in particular" conclusions follow immediately from Theorem 1 .63. So it suffices
to show that X x G χ Υ satisfies the hypotheses of Theorem 1.63 with [y, x] = yx and
thaiK(S)^X x G χ Υ.

We know by Lemma 1 .57 that 5 has a minimal right ideal with an idempotent (so R
exists) and hence by Theorem 1.56 R has an idempotent. We know by Theorem 1.61
that R L is a group and we know by Theorem 1.42 that X is a left zero semigroup and
F is a right zero semigroup. Let e be the identity of RL = R Π L and let u = v = e.
Given y e Y one has, since Y is a right zero semigroup, that [y, u] = yu = u = e.
Similarly, given x e X, [u, x] — e. Consequently the hypotheses of Theorem 1.63 are
satisfied.

Define φ : X xGxY — > Sby φ(χ, g, y) = xgy. We claim that φ is an isomorphism
onto K(S). From the definition of the operation in X x G χ Υ we see immediately
that φ is a homomorphism. By Theorem 1.42 we have that L = XG and R — GY. By
Theorem 1.53, K(S) = LR = XGGY = XGY = <p[X x G χ Υ]. Thus it suffices to
produce an inverse for φ.

For each t € A" (5), let y ( t ) be the inverse of ete in eSe = G. Then ty(t) =
ty(t}e e Se = L and

t y ( t ) t y ( t ) = ty(t)etey(t)
= tey(l)
= ty(t),

soiy(i) € X. Similarly, y(t)t e Y.
Define τ : K(S) ->· X x G χ Υ by τ(0 = ( t y ( t ) , ete, y ( t ) t ) . We claim that

τ = φ-χ. So let (x, g, y) € X x G χ Υ. Then

τ(φ(χ, g, y)) = (xgyy(*gy), exgye, y(xgy)xgy).
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Now

xgyy(xgy) = xxgyy(xgy) (χ = χχ)
= xexgyey(xgy) (χ = xe and y(xgy) = ey(xgy))
=· xe
= x.

Similarly y(xgy)xgy = y. Since also exgye = ege = g, we have that τ = φ
required. D

The following theorem enables us to identify the smallest ideal of many semigroups
that arise in topological applications.

Theorem 1.65. Let S be a semigroup and assume that there is a minimal left ideal of
S which has an idempotent. Let T be a subsemigroup of S and assume also that T has
a minimal left ideal with an idempotent. I f K ( S ) ( ~ \ T ^ 0, then K(T) = K(S) Π Τ.

Proof. By Theorem 1.51, K ( T ) exists so, since K(S) Π Γ is an ideal of T, K(T) c
K (S) Π Τ. For the reverse inclusion, let χ e K(S) Π Τ be given. Then Τ χ is a left ideal
of Τ so by Corollary 1.47 and Theorem 1.56 Τ χ contains a minimal left ideal Te of Τ
for some idempotent e £ T. Now χ e K(S) so by Theorem 1.51 pick a minimal left
ideal L of 5 with χ e L. Then L = Sx and e € Tx c Sx so L = Se so χ e Se so by
Lemma 1. 30, χ = xe € Te c K(T). Ώ

We know from the Structure Theorem (Theorem 1.64) that maximal groups in the
smallest ideal are isomorphic. It will be convenient for us later to know an explicit
isomorphism between them.

Theorem 1.66. Let S be a semigroup and assume that there is a minimal left ideal of
S which has an idempotent. Let e, f € E(K(S)). If g is the inverse ofefe in eSe, then
the function φ : eSe — >· f S f defined by φ(χ) ~ fxgf is an isomorphism.

Proof. To see that φ is a homomorphism, let x, y e eSe. Then

<p(x)<p(y) = fxgffygf
= fxgfygf
= fxgefeygf (ge = g, ey = y)

= fxygf

To see that φ is one-to-one, let χ be in the kernel of φ. Then

f x g f = f
efxgfe = efe

efexgefe = efe (ex =x, ge = g)
efexe = efe
efex = efee

χ — e (left cancellation in eSe).
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To see that φ is onto fSf,\ety e f S f and let h and k be the inverses of fgf and
f e f respectively in f S f . Then ekyhe e eSe and

<p(ekyhe) = fekyhegf
= fefkyhgf (fk = k, eg = g)

(fef k = /)
(h = hf)

= fyf (hfgf = /)
= y. α

We conclude the chapter with a theorem characterizing arbitrary elements of K (S).

Theorem 1.67. Let S be a semigroup and assume that there is a minimal left ideal of
S which has an idempotent. Let s e S. The following statements are equivalent.

(a) 5 e K(S).
(b) For all t e 5, s <= Sis.
(c) For all t e 5, s estS.
(d) For all t e S, s € st S Π Sts.

Proof, (a) implies (d). Pick by Theorem 1.51 and Lemma 1.57 a minimal left ideal L
of S and a minimal right ideal R of 5 with s e L Π A. Let t e 5. Then is e L so Sfs
is a left ideal contained in L so Sis = L. Similarly stS = R.

The facts that (d) implies (c) and (d) implies (b) are trivial.
(b) implies (a). Pick t e K(S). Then s € Sis c K(S).
Similarly (c) implies (a). D

Exercise 1.7.1. Let 5 be a semigroup and assume that there is a minimal left ideal of
S which has an idempotent. Prove that if K(S) Φ S and χ e K (S), then χ is neither
left nor right cancelable in 5. (Hint: If χ is a member of the minimal left ideal L, then
L = Sx = Lx.)

Exercise 1.7.2. Identify A"(5) for those semigroups S in Exercises 1.4.2 and 1.4.3 for
which the smallest ideal exists.

Exercise 1.7.3. Let 5 and T be semigroups and let h : S —> T be a surjective homomor-
phism. If 5 has a smallest ideal, show that T does as well and that K ( T ) = h[K(S)].

Notes

Much of the material in this chapter is based on the treatment in [39, Section II. 1]. The
presentation of the Structure Theorem was suggested to us by J. Pym and is based on his
treatment in [202]. The Structure Theorem (Theorem 1.64) is due to A. Suschkewitsch
[231] in the case of finite semigroups and to D. Rees [210] in the general case.



Chapter 2

Right Topological (and Semitopological
and Topological) Semigroups

In this (and subsequent) chapters, we assume that the reader has mastered an introductory
course in general topology. In particular, we expect familiarity with the notions of
continuous functions, nets, and compactness.

2.1 Topological Hierarchy

Definition 2.1. (a) A right topological semigroup is a triple (5, · , T) where (5, ·) is a
semigroup, (S, T) is a topological space, and for all jc e S, px : S — > S is continuous.

(b) A left topological semigroup is a triple (5, · , T) where (S, ·) is a semigroup,
(S, T) is a topological space, and for all χ € 5, λ^ : S — > S is continuous.

(c) A semitopological semigroup is a right topological semigroup which is also a
left topological semigroup.

(d) A topological semigroup is a triple (5, · , T) where (5, ·) is a semigroup, (5, T)
is a topological space, and · : 5 χ 5 -> 5 is continuous.

(e) A topological group is a triple (5, · , 7") such that (5, ·) is a group, (5, 7") is a
topological space, · : 5 χ 5 — »· 5 is continuous, and In : S — »· S is continuous (where

is the inverse of χ in S).

We did not include any separation axioms in the definitions given above. However,
all of our applications involve Hausdorff spaces. So we shall be assuming throughout,
except in Chapter 7, that all hypothesized topological spaces are Hausdorff.

In a right topological semigroup we say that the operation "·" is "right continuous".
We should note that many authors use the term "left topological" for what we call "right
topological" and vice versa. One may reasonably ask why someone would refer to
an operation for which multiplication on the right is continuous as "left continuous".
The people who do so ask why we refer to an operation which is continuous in the left
variable as "right continuous".

We shall customarily not mention either the operation or the topology and say some-
thing like "let 5 be a right topological semigroup".
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Note that trivially each topological group is a topological semigroup, each topolog-
ical semigroup is a semitopological semigroup and each semitopological semigroup is
both a left and right topological semigroup.

Of course any semigroup which is not a group provides an example of a topological
semigroup which is not a topological group simply by providing it with the discrete
topology. It is the content of Exercise 2.1.1 to show that there is a topological semigroup
which is a group but is not a topological group.

It is a celebrated theorem of R. Ellis [84], that if S is a locally compact semitopo-
logical semigroup which is a group then S is a topological group. That is, if 5 is locally
compact and a group, then separate continuity implies joint continuity and continuity
of the inverse. We shall prove this theorem in the last section of this chapter. For
an example of a semitopological semigroup which is a group but is not a topological
semigroup see Exercise 9.2.7.

It is the content of Exercise 2.1.2 that there is a semitopological semigroup which
is not a topological semigroup.

Recall that given any topological space (X, 7~), the product topology on XX is the
topology with subbasis [n~l[U] : χ e X and U e T}, where for / e XX and χ e X,
nx(f) = f ( x ) . Whenever we refer to a "basic" or "subbasic" open set in XX, we mean
sets defined in terms of this subbasis. The product topology is also often referred to
as the topology of pointwise convergence . The reason for this terminology is that a
net </t},e/ converges to / in XX if and only if {/<(·*)}(£/ converges to /(χ) for every
χ &X.

Theorem 2.2. Let (X, 9") be any topological space and let V be the product topology
onxX.

(a) (XX, o, V) is a right topological semigroup.
(b) For each f e XX, λ/ is continuous if and only iff is continuous.

Proof. Let / e XX. Suppose that the net {gt)ie/ converges to g in (XX, V). Then, for
any χ e Χ, {&(/(χ)))ί6/ converges to g(f(x)) in X. Thus (gt ο />ίε / converges to
g o / in (XX, V), and so p/ is continuous. This establishes (a).

Now λf is continuous if and only if (f(gi(x)))i<=i converges to f ( g ( x ) ) for every
net (gi)iei converging to g in (XX, V) and every χ e X. This is obviously the case
if / is continuous. Conversely, suppose that λ/ is continuous. Let (jct)ie/ be a net
converging to jc in X. We define gt = ~x[, the function in XX which is constantly equal
to χ,, and g = χ. Then (gL)t^i converges to g in XX and so (/ o g t) ie/ converges to
fog. This means that (/Ot())te/ converges to f ( x ) . Thus / is continuous, and we
have established (b). D

Corollary 2.3. Let X be a topological space. The following statements are equivalent.

(a) X is a topological semigroup.
(b) XX is a semitopological semigroup.
(c) For all f e XX, f is continuous.
(d) X is discrete.
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Proof. Exercise 2.1.3 D

If X is any nondiscrete space, it follows from Theorem 2.2 and Corollary 2.3 that
XX is a right topological semigroup which is not left topological. Of course, reversing
the order of operation yields a left topological semigroup which is not right topological.

Definition 2.4. Let 5 be a right topological semigroup. The topological center of 5 is
the set Λ(5) = [χ e S : λχ is continuous}.

Thus a right topological semigroup S is a semitopological semigroup if and only if
Λ (5) = S. Note that trivially the algebraic center of a right topological semigroup is
contained in its topological center.

Exercise 2.1.1. Let T be the topology on E with basis £ = {(a, b] : a, b e R and
α < b}. Prove that (M, +, T) is a topological semigroup but not a topological group.

Exercise 2.1.2. Let S — R U {00}, let 5 have the topology of the one point compactifi-
cation of E (with its usual topology), and define an operation * on S by

*y = I x + y i f j t . y e R
oo if χ = oo or y = oo.

(a) Prove that (5, *) is a semitopological semigroup.
(b) Show that * : S x S —> S is not continuous at (oo, oo).

Exercise 2.1.3. Prove Corollary 2.3.

2.2 Compact Right Topological Semigroups

We shall be concerned throughout this book with certain compact right topological
semigroups. Of fundamental importance is the following theorem.

Theorem 2.5. Let S be a compact right topological semigroup. Then E(S) φ 0.

Proof. Let A = {T C 5 : Τ φ 0, Τ is compact, and Τ · T c T}. That is, Λ is the set
of compact subsemigroups of S. We show that Λ has a minimal member using Zorn's
Lemma. Since 5 € Α, Λ Φ 0. Let C be a chain in A. Then C is a collection of closed
subsets of the compact space S with the finite intersection property, so P| G φ 0 and
Π G is trivially compact and a semigroup. Thus P| G e «A, so we may pick a minimal
member A of Λ.

Pick Λ e A. We shall show that χ χ = χ. (It will follow that Α = {Λ;}, but we do
not need this.) We start by showing that Ax = A. Let B = Ax. Then Β ^ 0 and
since B = px[A], B is the continuous image of a compact space, hence compact. Also
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BB = Ax Ax C AAAx c Ax = B. Thus B e Λ. Since 5 = Ax C AA c A and A
is minimal, Β = A.

Let C = {y e A : yx = x}. Since jc € A = Ax, we have C φ 0. Also,
C = Α Π /Ojf '[{*}], so C is closed and hence compact. Given y,z e C one has
yz e AA c A and yzx = yx = χ so yz e C. Thus C e Λ. Since C C A and A is
minimal, we have C = A so χ € C and so xx = χ as required. D

In Section 1.7 there were several results which had as part of their hypotheses "Let S
be a semigroup and assume there is a minimal left ideal of S which has an idempotent."
Because of the following corollary, we are able to incorporate all of these results.

Corollary 2.6. Let S be a compact right topological semigroup. Then every left ideal
of S contains a minimal left ideal. Minimal left ideals are closed, and each minimal left
ideal has an idempotent.

Proof. If L is any left ideal L of S and χ e L, then S x is a compact left ideal contained in
L. (It is compact because Sx = px[S].) Consequently any minimal left ideal is closed
and by Theorem 2.5 any minimal left ideal contains an idempotent. Thus we need only
show that any left ideal of S contains a minimal left ideal. So let L be a left ideal of S
and let A = [T : T is a closed left ideal of S and T C L}. Applying Zorn's Lemma
to A, one gets a left ideal M minimal among all closed left ideals contained in L. But
since every left ideal contains a closed left ideal, M is a minimal left ideal. D

We now deduce some consequences of Corollary 2.6. Note that these consequences
apply in particular to any finite semigroup S, since 5 is a compact topological semigroup
when provided with the discrete topology.

Theorem 2.7. Let S be a compact right topological semigroup.
(a) Every right ideal of S contains a minimal right ideal which has an idempotent.
(b) Let T c S. Then T is a minimal left ideal of S if and only if there is some

e e E(K(S)) such that T = Se.
(c) Let T C. S. Then T is a minimal right ideal of S if and only if there is some

e € E(K(S)) such that T = eS.
(d) Given any minimal left ideal L of S and any minimal right ideal R ofS, there is

an idempotent e e R Γ\ L such that R D L = eSe and eSe is a group.

Proof, (a) Corollary 2.6, Lemma 1.57, Corollary 1.47, and Theorem 1.56.
(b) and (c). Corollary 2.6 and Theorem 1.58.
(d) Corollary 2.6 and Theorem 1.61. D

Theorem 2.8. Let S be a compact right topological semigroup. Then S has a smallest
(two sided) ideal K ( S ) which is the union of all minimal left ideals ofS and also the union
of all minimal right ideals of S. Each of {Se : e e E(K(S))}, {eS : e € E ( K ( S ) ) } , and
{eSe : e e E(K(S))} are partitions ofK(S).

Proof. Corollary 2.6 and Theorems 1.58, 1.61, and 1.64. D
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Theorem 2.9. Let S be a compact right topological semigroup and let e € E(S). The
following statements are equivalent.

(a) Se is a minimal left ideal.
(b) Se is left simple.
(c) eSe is a group.
(d) eSe = H(e).
(e) eS is a minimal right ideal.
(f) eS is right simple.
(g) e is a minimal idempotent.
(h) e € K(S).
(i) K(S) = SeS.

Proof. Corollary 2.6 and Theorem 1.59. D

Theorem 2.10. Let S be a compact right topological semigroup. Let s € S. The
following statements are equivalent.

(a) s € K (S).
(b) For all t e S, s e Sts.
(c) For all t e S, s <=stS.
(d) For all t € S, s e st S Π Sts.

Proof. Corollary 2.6 and Theorem 1.67. D

The last few results have had purely algebraic conclusions. We now obtain a result
with both topological and algebraic conclusions. Suppose that we have two topological
spaces which are also semigroups. We say that they are topologically and algebraically
isomorphic if there is a function from one of them onto the other which is both an
isomorphism and a homeomorphism.

Theorem 2.11. Let S be a compact right topological semigroup.
(a) All maximal subgroups ofK(S) are (algebraically) isomorphic.
(b) Maximal subgroups ofK(S) which lie in the same minimal right ideal are topo-

logically and algebraically isomorphic.
(c) All minimal left ideals of S are homeomorphic. In fact, if L and L' are minimal

left ideals of S and z 6 L', then pz\L is a homeomorphism from L onto L'.

Proof, (a) Corollary 2.6 and Theorem 1.66.
(b) Let R be a minimal right ideal of S and let e, f € E(R). Then eS and fS are

right ideals contained in R and so R = eS = fS. Then by Lemma 1.30, ef = f and
fe = e. Let g be the inverse of efe in the group eSe and define φ : eSe —>· f S f by
φ(χ) = f x g f . Then by Theorem 1.66, φ is an isomorphism from eSe onto f S f . To
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see that φ is continuous, we show that φ is the restriction of pgf toeSe. To this end, let
χ e eSe. Then

φ(χ) = fxgf
= fexgf (x = ex)
= exgf (fe = e)
= xgf (ex = x).

Now let h and k be the inverses in f S f of fgf and /e/ respectively. We showed
in the proof of Theorem 1.66 that if y e f S f , then ̂  ' (y) = ekyhe. Thus

(f>~l(y) = ekyhe
= fefkyhe (fk = k and fe = e)
= fjhe (fefk = /)
= yhe (fy = y).

So φ~^ is the restriction of phe to f S f and hence is continuous.
(c) Let L and Z/ be minimal left ideals of 5 and let z e V '. By Theorem 2.7(b),

pick e e E(K(S)) such that L = Se. Then pz\L is a continuous function from Se to
Sz = L' and pz[Se] = Z/ because Sez is a left ideal of S which is contained in L '. To
see that pz is one-to-one on Se, let g be the inverse of eze in eSe. We show that for
x e 5^, /0g(/oz(jt)) = x, so let * e Se be given.

xzg = xezeg (x = xe and g = eg)
= jce
= x.

Since pz|£ is one-to-one and continuous and L is compact, pz\i is continuous. D

Recall that given any idempotents e, f in a semigroup S, e <R / i f and only if
fe = e.

Theorem 2.12. Let S be a compact right topological semigroup and let e € E(S).
There is a <R -maximal idempotent f in S with e <R f.

Proof. Let A = {x e E(S) : e <R x}. Then Α φ 0 because e e A. Let C be a
<fl-chain in A. Then (ci{r € C : x <R r} : x e C} is a collection of closed subsets
of 5 with the finite intersection property, so H^eC c^(r £ C '· χ <R r] Φ 0- Since S is
Hausdorff, Qrec c^(r ^ C : x <R r} c. [t e S : for all x e C, tx = *). Consequently,
(t e 5 : for all x e C, tx = x } is a compact subsemigroup of 5 and hence by Theorem
2.5 there is an idempotent y such that for all x e C, yx = x. This y is an upper bound
for C, so A has a maximal member. D

Given e, f e E ( K ( S ) ) and an assignment to find an isomorphism from eSe onto
f S f , most of us would try first the function τ : eSe -> f S f defined by r(y) = f y f .
In fact, if eS = /S, this works (Exercise 2.2.1). We see now that this natural function
need not be a homomorphism ifeS^fS and Se Φ Sf


