
Schulze-Kremer

Molecular Bioinformatics
Algorithms and Applications

Steffen Schulze-Kremer

Molecular
Bioi nformatics
Algorithms and Applications

w
DE

G_

Walter de Gruyter · Berlin · New York 1996

Dr. Steffen Schulze-Kremer
Westfälische Str. 56
D-10711 Berlin
Germany

email:
steffen@chemie.fu-berlin.de or
steffen@mycroft.rz-berlin.mpg.de

WWW:
http ://www.chemie.fu-berlin.de/user/steffen or
http://mycroft.rz-berlin.mpg.de/~steffen

With 124 figures and 36 tables.
Cover illustration: Wire-frame-model of DNA. Courtesy of Steffen Schulze-Kremer.

Library of Congress Cataloging-in-Publication Data

Schulze-Kremer, Steffen.
Molecular bioinformatics: algorithms and applications / Steffen Schulze-Kremer.
Includes index.
ISBN 3-11-014113-2 (alk. paper)
1. Molecular biology - Computer simulation. I. Title.

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Schulze-Kremer, Stef fen:
Molecular bioinformatics: algorithms and applications /
Steffen Schulze-Kremer. - Berlin; New York; de Gruyter, 1995

ISBN 3-11-014113-2

® Printed on acid-free paper which falls within the guidelines
of the ANSI to ensure permanence and durability.

© Copyright 1995 by Walter de Gruyter & Co., D-10785 Berlin
All rights reserved, includung those of translation into foreign languages. No part of this book
may be reproduced or transmitted in any form or by any means, electronic of mechanical, in-
cluding photocopy, recording, or any information storage and retrieval system, without per-
mission in writing from the publisher. - Printed in Germany.
Converted by: Knipp Medien und Kommunikation, Dortmund. - Printing: Gerike GmbH,
Berlin. Binding: Dieter Mikolai, Berlin. - Cover Design: Hansbernd Lindemann, Berlin.

OH506.D346 1995
574.8'8'0113-dc20

95-40471
CIP

To my friends,
especially Otto B., Jochen, Kathrin and Grit.

Preface

Molecular bioinformatics is a newly emerging interdisciplinary research area.
It comprises the development and application of computational algorithms for the
purpose of analysis, interpretation and prediction of data and for the design of ex-
periments in biosciences. Background from computer science includes but is not
limited to classical von Neumann computing, statistics and probability calculus, ar-
tificial intelligence, expert systems, machine learning, artificial neural nets, genetic
algorithms, evolutionary computation, simulated annealing, genetic programming
and artificial life. On the application side, focus is primarily on molecular biolo-
gy, especially DNA sequence analysis and protein structure prediction. These two
issues are also central to this book. Other application areas covered here are: inter-
pretation of spectroscopic data and discovery of structure-function relationships
in DNA and proteins. Figure 1 depicts the interdependence of computer science,
molecular biology and molecular bioinformatics.

The justification for introducing a new label for a range of rather diverse research
activities is motivated by the following four observations.

1) Exponential growth of data requires new ways of information processing.

A vast amount of genetic material has been sequenced to date. Many laborato-
ries continue to output sequences of new genes world wide. There is an exponen-
tial growth1 of known DNA sequences and protein structures. In March 1995,
about 42.000 known protein sequences were present in the SwissProt2 database
and roughly 2900 three-dimensional structures of proteins, enzymes and viruses
in the Brookhaven Protein Database3. The international Human Genome Organ-
isation (HUGO) is currently attempting to sequence a complete human genome4 .
By March 1995, 3748 genes were mapped5 in a total of approximately 25 million
base pairs, which is still only about 0.8% of the total size in nucleotides of one entire
human genome. Such quantities of data cannot be looked at and analysed without

1 L. Philipson (EMBL), The Human Genome and Bioinformatics, Proceedings of the Symposium
Bioinformatics in the 90's, ASFRA Edam, Maastricht, 20. November, 1991.

2 R. D. Appel, Α. Bairoch, D. F. Hochstrasser, A new generation of information retrieval tools for bi-
ologists: the example of the ExPASy WWW server, Trends Biochem. Sei., vol 19, pp. 258-260,
1994. Internet World Wide Web Access at http://expasy.hcuge.ch or http://129.195.254.61.
See Chapter 8.1 or ask your local computer specialist for details on WWW.

3 PDB Newsletter, Brookhaven National Laboratories, no 68, April 1994, Internet World
Wide Web Server at http://www.pdb.bnl.gov.

4 T. Caskey, President of the Human Genome Organisation, HHMI Baylor College
of Medicine I, Baylor Place, Houston, 77030 Texas, World Wide Web Server at
http://www.bcm.tmc.edu.

5 HUGO Report Card March 1995, Internet World Wide Web Server of the Genome Data
Bank at http://gdbwww.gdb.org.

VIII Preface

Neural Nets
Genetic Algorithms
Evolution Strategies

Genetic Programming
Artificial Life

Biological Paradigms

Applications
Discovery of Structure / Function Relationship

Automated Reasoning on Protein Topology
Design of Metabolic Pathways

Protein Structure Prediction
Identification of Genes

Computer
Science

Molecular
Bioinformatics

Molecular
Biology

Figure 1: Scope of Molecular Bioinformatics.
Relation of molecular bioinformatics to computer science and biology. Com-
puter science looks at problems in molecular biology and offers computation-
al algorithms. Molecular biology looks at computer science and suggests new
paradigms for information processing. These new approaches can be used to de-
velop new applications which in turn may reveal new features in biology.

the help of computers. Specialised software obviously becomes an essential prereq-
uisite for data storage and retrieval. This is a new challenge for traditionally empir-
ically oriented bioscientists. It requires expertise in algorithmic theory and expe-
rience in programming computers together with a profound understanding of the
underlying biological principles. Instead of being considered an appendix to either
bioscience or computer science, such concentrated, interdisciplinary effort wants
and deserves recognition on its own.

2) Better algorithms are needed to fully explore current biochemical
databases.

In order to understand the purpose of a genetic sequence, it is in most cases not
sufficient to perform a statistical analysis on the distribution of oligonucleotides.
This is because patterns in DNA or protein tolerate slight alterations in some po-
sitions without losing their biochemical function. Furthermore, even for a simple,
straightforward statistical analysis, e.g. on the frequency distribution of amino acid
residue triplets to predict secondary structure, there is not (yet) enough data in our

Preface IX

databases6. More sophisticated methods are needed to explore the treasure of exist-
ing databases. Data mining becomes a key issue. A number of biocomputing related
national and international research programs confirm this notion7. Computer sci-
entists and mathematicians have been developing a variety of algorithms for quite
some time, many of which bioscientists are not yet aware of. The establishment of
molecular bioinformatics as a recognised, self-reliant discipline will be beneficial in
promoting the dialogue between the two disciplines and to attract researchers from
both areas.

3) Computer science learns from nature.

Molecular bioinformatics is not a one-way street. Biology has some interesting
ideas to offer computer scientists, as can be seen in the case of artificial neural nets8,
genetic algorithms9, evolution strategies10, genetic programming11, artificial life12

and (from physics) simulated annealing13. To gather inspirations, to learn more
from nature and to fully exploit existing approaches, a closer interaction between
both disciplines is required. The professional endeavour to continue along these
lines is covered neither by computer science nor biology. To fill this gap, molecular
bioinformatics as a self-standing discipline can become the common platform for
exchange and research in the aforementioned areas.

4) Creating a real-world application oriented forum.

Computer scientists sometimes are able to solve a particular type of problem ef-
ficiently and would like to apply their algorithms in a real-world situation to eval-
uate their performance and to gain new insights. If a computer scientist has not
yet decided which area to turn to, he or she can profit from molecular bioinfor-
matics. Here, they will find people they can communicate with in their technical
language and who can introduce them to some of the most challenging and poten-
tially rewarding problems science nowadays has to offer. One forum for such inter-
action has become the Internet course on Biocomputing at the Globewide Network

6 M. J. Rooman, S. J. Wodak, Identification of predictive motives limited by protein structure data
base size, Nature, no 335, pp. 45-49, 1988.

7 Commission of the European Communities: Biomolecular Engineering (BEP 1982-1984),
Biotechnology Action Program (BAP 1985-1989), Biotechnology Research for Innovation,
Development and Growth in Europe (BRIDGE 1990-1993), Biotechnology (BIOTECH2
1994-1998). German Minister for Research and Technology: Molecular Bioinformatics
(1993-1996).

8 M. Minsky, S. Papert, Perceptrons - Expanded Edition, MIT Press, Cambridge MA,
1988.

9 J. H. Holland, Adaptation in natural and artificial systems, University of Michigan Press,
Ann Arbor, 1975.

10 1. Rechenberg, Evolutionsstrategie, Frommann-Holzboog, Stuttgart, 1973, 1994.
11 J. Koza, Genetic Programming (I, II), M I T Press, Cambridge MA, 1993, 1994.
12 C. G. Langton C. Taylor, J. D. Farmer, S. Rasmussen (Eds.), Artificial Life II, Addison-

Wesley, 1992.
13 S. Kirkpatrick, C. D. Gelatt, Jr., Μ. P. Vecchi, Optimisation by Simulated Annealing, Science,

vol 220, no 4598, pp. 671-680, 1983.

X Preface

Academy, Virtual School of Natural Sciences14 that enables students and instruc-
tors from all over the world to participate in a university course.

This book attempts to provide an overview on advanced computer applications
derived from and used in biosciences and in doing so to help define and promote
the newly emerging focus on molecular bioinformatics. It is intented to serve as a
guidebook for both biologists who are about to turn to computers and for comput-
er scientists who are looking for challenging application areas. The reader will find
a variety of modern methodological approaches applied to a number of quite divers
topics. This collection gives a contemporary overview of what, in principle, can be
achieved by computers in bioscience nowadays and what is yet difficult to grasp. In
many places detailed information on the availability of software is included, prefer-
ably through Internet addresses of freely accessible World Wide Web Servers or by
email. In the appendix, a list of Internet entry points to biocomputing facilities pro-
vides orientation to the novice in molecular bioinformatics and assists the specialist
in staying abreast of the latest scientific developments.

The book is also intended to inspire further research. Researchers already famil-
iar with molecular bioinformatics may still gather new ideas from the material pre-
sented as sometimes related methodologies are applied to unrelated problems and
related problems are treated by completely different algorithms. The comparison
in such cases may provide valuable insights.

In order to best serve an interdisciplinary audience, each chapter starts with an
introduction into the mathematical basis of the algorithm used. Then, results of one
or more original research papers applying that approach to different biochemical
problems are presented and discussed. Finally, limitations and open questions are
established and suggestions are offered along which lines to continue research. As
in a manual, the material presented in this book should be sufficient to enable the
reader to rebuild an application or to modify or extend it. Whether or not he or she
intends to do so, the presentation of each topic should in any case be adequately
detailed to allow the reader to decide if the proposed approach looks promising to
be utilised for his or her own project.

Naturally, this book has its limits. Not all relevant work can be presented here.
Notably, molecular mechanics, molecular dynamics and classic molecular mod-
elling are important topics in molecular bioinformatics. However, these disci-
plines have matured and grown to such an extent that describing them thorough-
ly would make up a whole book by itself. In fact, such books have already been
written15 '16. The development of biological systems to act as data storage and com-

14 The author is one of the authors of the GNA-VSNS Biocomputing course. For more infor-
mation, first send an email to the author at steffen@chemie.fu-berlin.de, steffen@mycroft.rz-
berlin.mpg.de or contact vsns-bcd-faculty@bioinformatics.weizmann.ac.il.

15 C. L. Brooks III, M. Karplus, Β. M. Pettitt, Proteins: A theoretical perspective of dy-
namics, structures and thermodynamics, Wiley, 1988.

16 A. M. Lesk, Protein Architecture - A practical approach, IRL Press, Oxford, 1991.

Preface X I

puting devices17'18'19 is also not covered in this book. This more empirically orient-
ed work contrasts the computational aspect of molecular bioinformatics as empha-
sised here.

A choice was made to include some early projects in molecular bioinformatics
as these comprise the roots of this discipline. A number of important conclusions
can be drawn from these works which are still valid and which will need to be con-
sidered in future applications. The larger part of this book, however, is devoted to
fairly recent work. To aid the reader continue his or her way through molecular
bioinformatics, the first chapter also contains references to a number of approach-
es that had to be omitted.

I hope this book will bring inspiration and information to its readers.

17 Β. H. Robinson, N. C. Seeman, The design of a biochip: a self-assembling molecular-scale memory
device, Protein Engineering, vol 1, no 4, pp. 295-300, 1987.

18 B.C. Crandall, J. Lewis (Eds.), Nanotechnology: Research and Perspectives, ISBN 0-
262-03195-7, 1992.

19 Proceedings of the International Conference on Molecular Electronics and Bio-
computing, September 1994, Goa, India, Tata Institute of Fundamental Research, Ratna
S. Phadke, email ratna@tifrvax.tifr.res.in.

Table of Contents

Preface VII

1. Introduction 1

1.1. Methodologies 3
1.2. Application Areas 8

2. Artificial Intelligence & Expert Systems 13

2.1. Methodology 13
2.1.1. Symbolic Computation 14
2.1.2. Knowledge Representation 18
2.1.3. Knowledge Processing 29
2.2. Applications 34
2.2.1. Computer Aided Reasoning in Molecular Biology 34
2.2.2. Knowledge based Representation of Materials and Methods 40
2.2.3. Knowledge based Exploration in Molecular Pathology 44
2.2.4. Planning Cloning Experiments with Molgen 46
2.2.5. Expert Systems for Protein Purification 62
2.2.6. Knowledge based Prediction of Gene Structure 87
2.2.7. Artificial Intelligence for Interpretation of N M R Spectra 94
2.2.7.1. Nuclear Magnetic Resonance 94
2.2.7.2. Protean 104
2.2.7.3. Protein N M R Assistant 108

3. Predicate Logic, Prolog & Protein Structure I l l

3.1. Methodology I l l
3.1.1. Syntax I l l
3.1.2. Connectives 112
3.1.3. Quantification and Inference 113
3.1.4. Unification 114
3.1.5. Resolution 116
3.1.6. Reasoning by Analogy 117
3.2. Applications 122
3.2.1. Example: Molecular Regulation of λ-Virus in Prolog 122
3.2.2. Knowledge based Encoding of Protein Topology in Prolog 126
3.2.3. Protein Topology Prediction through Constraint Satisfaction 133
3.2.4. Inductive Logic Programming in Molecular Bioinformatics 142
3.2.4.1. Trimethoprim Analogues 147

XIV Table of Contents

3.2.4.2. Drug Design of Thermolysin Inhibitors 149
3.2.4.3. α-Helix Prediction 150

4. Machine Learning of Concepts in Molecular Biology 152

4.1. Methodology 152
4.1.1. Learning Hierarchical Classifications: Cobweb/3 152
4.1.2. Learning Partitional Classifications: AutoClass III 159
4.2. Applications 162
4.2.1. Inductive Analysis of Protein Super-Secondary Structure 162
4.2.1.1. Properties of Secondary Structures 164
4.2.1.2. PRL Database 168
4.2.1.3. a-Helix/a-Helix Pairs 175
4.2.1.4. Helix/ß-Strand Pairs 187
4.2.2. Symbolic Induction on Protein and DNA Sequences 197
4.2.2.1. Decision Trees over Regular Patterns 200
4.2.2.2. Searching Signal Peptide Patterns in Predicate Logic Hypothesis

Space 205

5. Evolutionary Computation 211

5.1. Methodology 212
5.1.1. Genetic Algorithms 212
5.1.2. Evolution Strategy 219
5.1.3. Genetic Programming 220
5.1.4. Simulated Annealing 230
5.2. Applications 236
5.2.1. 2-D Protein Model for Conformation Search 236
5.2.2. Protein Folding Simulation by Force Field Optimisation 246
5.2.2.1. Representation Formalism 247
5.2.2.2. Fitness Function 249
5.2.2.3. Conformational Energy 250
5.2.2.4. Genetic Operators 251
5.2.2.5. Ab initio Prediction Results 252
5.2.2.6. Side Chain Placement 256
5.2.3. Multi-Criteria Optimisation of Protein Conformations 256
5.2.3.1. Vector Fitness Function 258
5.2.3.2. Specialised Genetic Operators 260
5.2.3.3. Results 262
5.2.4. Protein - Substrate Docking 267
5.2.4.1. Distance Constraint Docking 268
5.2.4.2. Energy driven Docking 270

6. Artificial Neural Networks 272

6.1. Methodology 272
6.1.1. Perceptron and Backpropagation Network 273
6.1.2. Kohonen Network 276

Table of Contents XV

6.2. Applications 279
6.2.1. Exon-Intron Boundary Recognition 280
6.2.2. Secondary Structure Prediction 284
6.2.3. φ / ψ Torsion Angle Prediction 286
6.2.4. Super-Secondary Structure Detection 288

7. Summary, Conclusion & Prospects 291

8. Appendix 293

8.1. Internet Entry Points for Biocomputing 293
8.1.1. Information, Literature, References 293
8.1.2. Institutions Dealing with Molecular Bioinformatics 294
8.1.3. Databases 294
8.1.4. Search Tools for World Wide Web and F T P Sites 295
8.1.5. Software Resources 296

Index 297

1. Introduction

Although molecular bioinformatics has only recently become a self-reliant, recog-
nised discipline1'2'3, first work in the spirit of molecular bioinformatics dates back
to the late 50's4 ,5 '6 '7 '8 '9 . Since then the idea spread that computer scientists and bi-
ologists can profit from one another. Growing interest in interdisciplinary research
connecting computer science and molecular biology came primarily from an expo-
nential growth of known biological sequence10 and structure11 data, from the need
for more sophisticated methods of data analysis and interpretation in biosciences,
and from the discovery of nature as a source of models for efficient computation.

Computer scientists have discovered this trend and included workshops on
molecular bioinformatics into most of their important international conferences.
The proceedings and workshop notes of the Hawaii International Conference on
System Sciences (HICSS)12, the American Association for Artificial Intelligence
(AAAI)13, the conference on Parallel Problem Solving from Nature (PPSN)14, the
European Conference on Machine Learning (ECML)15 , the International Con-

1 Commission of the European Communities: Biotechnology Action Program (BAP 1985-
1989), Biotechnology Research for Innovation, Development and Growth in Europe
(BRIDGE 1990-1993), BIOTECH2 (1994-1998). German Minister for Research and Tech-
nology: Molecular Bioinformatics (1993-1996).

2 L. Hunter (Ed.), Artificial Intelligence and Molecular Biology, M I T Press, Cambridge
MA, 1993.

3 S. Schulze-Kremer (Ed.), Advances in Molecular Bioinformatics, IOS Press, 1994.
4 F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the

brain, Psychological Review, vol 65, pp. 386-408, 1958.
5 M. Minsky, S. Papert, Perceptrons, M I T Press, Cambridge MA, 1969.
6 I. Rechenberg, Evolutionsstrategie, Frommann-Holzboog, Stuttgart, 1973, 1994.
7 J. H. Holland, Adaptation in natural and artificial systems, University of Michigan Press,

Ann Arbor, 1975.
8 M. Stefik, Planning with Constraints, Artificial Intelligence, no 16, pp. 111-169, 1981.
9 B. G. Buchanan, Ε. H. Shortliffe, Rule-based Expert Systems: The MYCIN Experi-

ments of the Stanford Heuristic Programming Project, Addison-Wesely, 1984.
10 A. Bairoch, B. Boeckmann, The Swiss-prot protein sequence data bank, Nucl. Acids Res., vol

20, pp. 2019-2022, 1992. Internet World Wide Web Access at http://expasy.hcuge.ch.
11 P D B Newsletter, Brookhaven National Laboratories, no 68, April 1994. Internet World

Wide Web Server at http://www.pdb.bnl.gov.
12 Proceedings of the 26th and 27th Hawaii International Conference on System Sci-

ences, IEEE Computer Society Press, Los Alamitos CA, 1993, 1994.
13 Proceedings of the 9th Conference on Artificial Intelligence, AAAI Press, Menlo Park

CA, 1991.
14 Proceedings of the 2nd Conference on Parallel Problem Solving from Nature,

(R. Männer, Β. Manderick Eds.), North Holland, 1992.
15 Proceedings of the European Conference on Machine Learning, (P. B. Brazdil Ed.),

Springer, 1993.

2 1. Introduction

ference on Genetic Algorithms (ICGA)16, the International Joint Conference on
Artificial Intelligence (IJCAI)17, and especially the International Conference on
Intelligent Systems for Molecular Biology (ISMB)18 are all valuable recourses of
information. A freely accessible database of international researchers working in
molecular bioinformatics is available19.

Molecular bioinformatics comprises three fundamental domains: the develop-
ment of algorithms and computer programs for applications in biosciences; the
abstraction of biological principles for new ways of information processing; and
the design and use of biochemical systems for data storage and as computing
devices20'21. This book concentrates on the first two issues. The design of an artifi-
cial molecular computer is expected to become a feasible and profitable endeavour
in the next decade but will not be treated here. Molecular mechanics, molecular
dynamics22 and classic molecular modelling23 are also underrepresented here. This
is because these topics have already been around for some time and an exhaustive
treatment of their issues would fill several books on their own. Nevertheless, they
contribute significantly to molecular bioinformatics.

Although computer science and biology can be treated separately, and, in fact,
were so most of the time, there are four levels of interaction between these two dis-
ciplines.

1) Computer programs can help analyse biological data.
2) Computer models and simulation can help explain biological behaviour.
3) Atomic interactions can be used to build a molecular data processor.
4) Biology can serve as a source of models for computational algorithms.

Note the analogy between 1 and 3 and between 2 and 4. Topics 1 and 3 both use
one discipline to process / enact the fundamental principle of the other. Topics 2
and 4 use one discipline to model / simulate the other's emergent behaviour. There
is also a possibly recursive interaction. Contributions from biology can be used to
create computer programs (or computers) that in turn can be used to operate on
biological data. This happens, for example, in the application of genetic algorithms
to the problem of protein folding. In this case, the original biological structure, a
gene, and the biological algorithm, evolution, have been abstracted to give a gener-
al computational model. The artificial "genes" ofthat model may then be mapped

16 Proceedings of the 4th International Conference on Genetic Algorithms,
(R. K. Belew, L. B. Booker Eds.), Morgan Kaufmann, Los Altos CA, 1991.

17 Proceedings of the Artificial Intelligence and Genome Workshop 26 at the IJCAI-93,
(J.-G. Ganascia Ed.), Institut Blaise Pascal, Laforia, Universite Paris VI, CNRS, 1993.

18 Proceedings of the 1st and 2nd International Conference on Intelligent Systems for
Molecular Biology, (Eds. I: L. Hunter, D. Searls, J. Shavlik, II: R. Altman, D. Brutlag,
P. Karp, R. Lathrop, D. Searls), AAAI Press, Menlo Park CA, 1993, 1994.

19 L. Hunter, A I M B da tabase , anonymous ftp at lhc.nlm.nih.gov (130.14.1.128), directory
/pub/aimb-db, 1993. Internet World Wide Web Server at http://www.nlm.nih.gov.

20 Β. H. Robinson, N. C. Seeman, The design of a biochip: a self-assembling molecular-scale memory
device, Protein Engineering, vol 1, no 4, pp. 295-300, 1987.

21 B. C. Crandall, J. Lewis (Eds.), Nanotechnology: Research and Perspectives, ISBN 0-
262-03195-7, 1992.

22 C. L. Brooks III, M. Karplus, Β. M. Pettitt, Proteins: A theoretical perspective of dy-
namics, structures and thermodynamics, Wiley, 1988.

23 A. M. Lesk, Protein Architecture - A Practical Approach, IRL Press, Oxford, 1991.

1. Introduction 3

onto a linear transformation (i.e. proteins) of the very objects from which they orig-
inally had been derived. - A schematic diagram on the interplay of computer sci-
ence, molecular biology and molecular bioinformatics is shown in Figure 1 (in the
PREFACE) .

The prior example illustrates the possibility of raising confusion by the use of
technical terms from different contexts. A gene in biology has one meaning, but
a different one in the context of a genetic algorithm. The same goes for neural net-
works or evolution strategies. In this book, definitions from both biology and com-
puter science will be provided and care is taken not to confuse them.

This book contains a collection of methodological approaches applied to a variety
of information processing tasks in molecular biology. Emphasis is put on methods
that explore algorithmic features found in nature. Preferred applications are protein
structure analysis and interpretation of genomic sequences.

The main text of this book is divided into the following five chapters. Each chap-
ter covers a group of algorithmically related methodologies of data processing,
e.g. artificial neural networks or genetic algorithms. First in each chapter, gener-
al features of the computational methodologies used are described. Then a num-
ber of sections follow each containing an application of that method to a differ-
ent biological problem. Each section starts with an introduction to the biochemi-
cal background of the problem and on any application-dependent modifications of
the method. Then, specific details of the implementation for that application are
described. Original results from one or more research groups are presented to il-
lustrate and evaluate the performance of that approach.

This book can be used as a guidebook for novices in computer science and molec-
ular biology to explore the scope of molecular bioinformatics. For specialists, it can
serve as a manual to rebuild the methods and applications presented here or to ex-
tend and adopt them to fit one's own subject of interest. In this case, it is valuable
to compare the results of different methodologies on the same problem, e.g. on
prediction of protein secondary structure.

The final part of this book is for reference. The reader will find a list of Internet
entry points that can be used by anybody with a computer connected to the Internet
to navigate in the World Wide Web and retrieve information on people, institutions,
research projects and software in molecular bioinformatics.

1 . 1 . M e t h o d o l o g i e s
Table 1 gives an overview of the algorithmic techniques used for molecular bioin-
formatics. The main methodologies are briefly described in the following para-
graphs.

Artificial intelligence, symbolic computation and expert systems. The
shift from numeric to symbolic computation and the focus on information pro-
cessing procedures analogous to human mental processes distinguishes artificial
intelligence programming from classic, procedural programming. Although arti-
ficial intelligence programs are also finally translated into a series of sequential in-
structions for one or more central procession units of a computer, they often al-

1.1. Methodologies

Methodology Technique Paradigm

Artificial Intelligence human

Artificial Life
Artificial Neural Nets
Classifier Systems
Evolutionary Computation

Practical Experimental Work

Genetic Programming
Logic

Machine Learning

Mathematics

Expert Systems
Inference
Imagery /Vision
Knowledge Representation
Linguistics
Pattern Matching
Planning
Qualitative Theory
Heuristic Search

Simulated Annealing

Evolution Strategies
Genetic Algorithms

Circular Dichroism
Molecular Biology
Nuclear Magnetic Resonance
X-ray Crystallography

Predicate Calculus
Prolog

Conceptual Clustering
Decision Trees
Inference

Dynamic Programming
Graph Theory
Information Theory
Probability Calculus
Statistics (Monte Carlo)

evolution
neurons
economy
nature
evolution
genetics
none

genetics
none

human

none

physics

Table 1: Methodologies and Algorithms used in Molecular Bioinformatics.
This is an overview on some techniques used in molecular bioinformatics.
"Paradigm" tells if the technique has a model in nature. Mathematics and logic
are thought of as a priori concepts.

low a complex task to be represented in a more natural, efficient manner. Seman-
tic use of symbols other than numerical and character variables provide the means

1. Introduction 5

for coding highly structured applications. Lisp24 and Prolog25 are special symbol
manipulating programming languages which are often used for coding artificial in-
telligence programs. They allow easy implementation of self-modifying and recur-
sive programs. In Lisp, data and program can alter each other during run time,
which permits flexible flow control26. Artificial intelligence research has produced
various sophisticated applications, three of which shall be briefly mentioned here.
AM27 discovered concepts in elementary mathematics and set theory on the basis
of knowledge on mathematical aesthetics. AM combines the features of frame repre-
sentation, production systems and best-first search. Eliza28 simulates a psychiatrist
talking to a patient. Several patients actually believed there was a human respond-
ing. Macsyma29 was the first program to actually carry out symbolic differentia-
tion and integration of algebraic expressions. Since then, it has been extended to
become a versatile and flexible mathematical package not only on Lisp machines.

Artificial life. This rather new research area focuses on the realisation of life-
like behaviour in man-made systems consisting of populations of semi-autonomous
entities whose local interactions with one another are governed by a set of simple
rules30. Key concepts in artificial life research are local definition of components,
parallelism, self-organisation, adaptability, development, evolution, and emergent
behaviour. Apart from being a philosophically fascinating area, artificial life in the
future could help provide simulation models for interacting biological systems (e.g.
cells, organisms) and support the design of software robots31.

Artificial neural networks. The intention to abstract the behaviour of bio-
logical neural networks from their natural environment and to implement their
function on a computer produced a large variety of so-called artificial neural
networks4'32. These programs can often discriminate or cluster data better than
statistics or probability calculus. Artificial neural networks are non-deterministic in
the sense that their response depends on the order in which the training examples
are presented to the net. The goal of simulating the behaviour of actual biological
neurons and neural networks is not part of the mainstream in artificial neural net-
work research. It turned out that an accurate, detailed simulation of the behaviour
of only one biological neuron requires much more computational effort than is ben-

24 P. H. Winston, Β. K. P. Horn, LISP, Addison-Wesely, 1984.
25 W. F. Clocksin, C. S. Mellish, Programming in Prolog, Springer, 1984.
26 E. Charniak, D. McDermott, Introduction to Artificial Intelligence, Addison-Wesley,

1985.
27 D. B. Lenat, AM: Discovery in mathematics as heuristic search, in Knowledge-Based Systems

in Artificial Intelligence (R. Davis, D. B. Lenat Eds.), pp. 1-225, McGraw-Hill, New York,
1982.

28 J. Weizenbaum, ELIZA - A computer program for the study of natural language communication
between man and. machine, Communications of the ACM, vol 9, no 1, 1965.

29 C. Engleman, W. Martin, J. Moses, M. R. Genesereth, Macsyma Reference Manual, Tech-
nical Report, Massachusetts Institute of Technology, Cambridge MA and Symbolics Inc.,
1977.

30 C. Langton (Ed.), Artificial Life, Addison-Wesley, p. xxii, 1989. Internet World Wide Web
Server at http://alife.santafe.edu.

31 Softbods are autonomous agents that interact with real-world software environments such as
operating systems or databases. Get more information from the Internet World Wide Web
server at http://www.cs.washington.edu/research/projects/softbots/www/softbots.html.

32 J. A. Freeman, D. M. Skapura, Neural Networks, Addison-Wesley, 1991.

6 1.1. Methodologies

eficial for training artificial neural networks to perform data analysis tasks. Using
more biologically detailed models has not yet significantly improved prediction per-
formance of artificial neural networks.

Genetic algorithms and evolutionary computation. The idea to let a com-
puter develop a solution for a problem like nature produces fit individuals by evolu-
tion led to the invention of evolution strategies6 and genetic algorithms7. These ap-
proaches use "genetic" operators to manipulate numeric or string representations
of potential solutions ("individuals"). A fitness function ranks all "individuals" of
one "generation", the best of which are allowed to "survive" and to "reproduce".
This is repeated for a fixed number of cycles or until a particular fitness criterion
is fulfilled. Genetic algorithms operate on the "genotype" of a potential solution,
evolution strategies on its "phenotype". Both methods have been shown to be su-
perior to e.g. Monte Carlo search in extremely difficult search spaces. They are also
non-deterministic because genetic operators are performed probabilistically.

Knowledge representation formalisms. Knowledge representation is a cen-
tral issue in artificial intelligence research. As with humans33, language also deter-
mines the limits of a computer's operation. The objective is therefore to find a rep-
resentation formalism that can capture all essential details of an application, one
that is compatible with the algorithm used and which can be coded efficiently. It
should also allow intuitive use and easy maintenance of a knowledge base34. Promi-
nent knowledge representation formalisms are objects26, frames35, scripts36, pro-
duction rules9, predicates37, decision trees38, semantic nets39, λ-calcuius and func-
tions40, and classic, procedural subroutines. Currently, object-oriented program-
ming style is becoming very popular, as can be seen in the wide-spread use of the
object-oriented programming language C++ with its consequent use of classes41.

33 L. Wittgenstein, Tractatus Logico-Philosophicus, Suhrkamp Edition, 1982.
34 The notion of a database traditionally means keeping data, possibly sorted, in one place. A

knowledge base emphasises the data to be stored in a higher structured format, e.g. as rules
or objects. Knowledge bases tend to be used interactively, as e.g. in expert systems. Also, a
knowledge base is automatically updated and sometimes even generated automatically. There
may be a mechanism to guarantee truth maintenance. In this book, the concepts of database
and knowledge base are used almost interchangeably, as the difference between them is more
one of emphasising their use and context rather than their contents. Almost any database can
be used as a knowledge base, if properly accessed by sophisticated algorithms. In this book,
the concept of a data bank is used to refer to (commercially) available collections of "raw"
data, as e.g. a sequence data bank or a protein structure data bank.

35 M. Minsky, A Framework for Representing Knowledge, in The Psychology of Computer Vi-
sion, (P. H. Winston Ed.), MacGraw-Hill, New York, 1975.

36 R. C. Schänk, R. P. Abelson, Scripts, Plans, Goals and Understanding, Erlbaum Hills-
dale, New Jersey, 1977.

37 W. F. Clocksin, C. S. Mellish, Programming in Prolog, Springer, 1984.
38 J. R. Quinlan, Discovering Rules by Induction from Large Collections of Examples, in Introducto-

ry Readings in Expert Systems, (D. Michie Ed.), pp. 33-46, Gordon and Breach, London,
1979.

39 R. Quillian, Semantic Memory, in Semantic Information Processing, (M. Minsky Ed.),
MIT Press, Cambridge MA, 1968.

40 J. McCarthy, Recursive Functions of Symbolic Expressions and their Computation by Machine,
Communications of the ACM, vol 3, no 4, pp. 185-196, 1960.

41 M. A. Ellis, B. Stroustrup, The Annotated C++ Reference Manual, Addison-Wesley,
1990.

1. Introduction 7

Machine learning. The field of machine learning studies computational meth-
ods for acquiring new knowledge, new skills, and new ways to organise existing
knowledge42. This includes the modelling of human learning mechanisms. For ex-
ample, Checkers43 is a program that actually learned to play checkers better than
expert human players. It did so by repetitive training, selecting relevant features
from the board and weighting them properly. There are a number of ways to learn:
rote learning, learning from instruction, learning by analogy, learning by deduc-
tion, learning by induction, learning by abduction, supervised learning and unsu-
pervised learning. Computers can already be programmed to exhibit these types
of learning on restricted domains. Machine learning algorithms can sometimes
find hidden regularities and patterns in a biological database, which are invisible
to purely statistical methods.

Logic and predicate calculus. The application of basic logic operators (not
and A, or V, follows —equivalent ξ , there exists 3, for all V) on simple predicates
defines first order logic. Using first order logic as the basic principle for a computer
programming language led to the origin of Prolog37. In contrast to procedural pro-
gramming languages like Basic or Fortran, in Prolog emphasis is on how to describe
a problem, not the solution. A built-in deductive inference machine then performs in-
verse resolution to derive valid solutions. The power of first order logic and Prolog
comes from the ability to easily express non-numerical constraints, as is fundamen-
tal e.g. for the description of protein structure topologies.

Simulated annealing. The process of crystallisation at gradually decreasing
temperatures can be abstracted to give a general optimisation procedure. Simulat-
ed annealing44 performs a search in a multi-modal search space by exploring the
valleys (if a global minimum is desired) in a random manner. As the (simulated)
temperature decreases, less (fictitious, simulated) energy is becoming available to
overcome the hills between neighbouring valleys. Typically, at the end of the run
the probe arrives at a rather deep valley, which indicates a good solution. Howev-
er, the algorithm does not guarantee that the global optimum be found. Simulated
annealing is therefore preferably used on analytically intractable problems where
one has no choice but to explore a large search space. The ab initio prediction of
energetically favourable protein conformations is one such problem.

Statistics and probability calculus. Classic statistics and probability calcu-
lus provide well founded methods to analyse numerical databases. These meth-
ods still serve as the standard against which other approaches are measured. Any
new methodology has to prove its merit by producing at least comparable results
to statistics and probability calculus or by presenting qualitatively new statements
that could not be derived by either of them.

42 Encyclopedia of Artificial Intelligence, (S. C. Shapiro Ed.), Wiley-Interscience, pp. 464,
1987.

43 A. L. Samuel, Some Studies in Machine Learning using the Game of Checkers, in Computers
and Thought, (E. A. Feigenbaum, J. Feldman Eds.), pp. 71-105, McGraw-Hill, New Yorck,
1963.

44 S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, Optimization by Simulated Annealing, Science,
vol 220, no 4598, pp. 671-680, 1983.

8 1.2. Application Areas

Classifier systems. One type of message passing, rule-based production sys-
tems in which many rules can be active simultaneously is called classifier system45.
In such systems each rule can be interpreted as a tentative hypothesis on some fac-
tors relevant to the task to be solved, competing against other plausible hypotheses
that are carried along and evaluated in parallel. Classifier systems got their name
from the fact that they classify incoming messages from the environment into gen-
eral sets. The condition parts of the production rules are matched against incom-
ing messages from the environment and the action parts effect changes in the en-
vironment. Rules are assigned a strength value on the basis of their observed use-
fulness to the system. New rules are generated by genetic operators as in genetic
algorithms. Classifier systems have been shown to learn strategies for successful,
optimised behaviour in an adapting environment (e.g. poker play46).

Genetic programming. Derived from genetic algorithms is the concept of ge-
netic programming47. Here, not a single solution to a particular problem is pro-
cessed in an evolutionary manner but whole computer programs instead. Here
again, Lisp is the programming language of choice. Similar to artificial neural net-
works, a fitness function measures how well the generated program reproduces
known input / output values. When the training is finished, the program may be
inspected, simplified and tried on a new set of input values with prior unknown
results. One particular advantage of this approach is the ability to discover a sym-
bolic expression of a mathematical function, not only a numerical approximation.
By defining a proper set of primitives as basic building blocks (e.g. SIN, COS, EXP,
LN for mathematical problems, or other, utterly application-specific user-defined
operators) one can predetermine the appearance of the final solution.

1.2. Application Areas

The main application areas covered in this book are proteins and genes, but there
are also a few other tasks not directly linked to either of them. Table 2 gives an
overview of application areas in molecular bioinformatics. There is certainly more
work that would fit under the label of molecular bioinformatics. However, this book
is intended to give a representative selection, not a complete account of all work
done. Owing to space limitations, a number of applications cannot be described
here in detail. Some of them are mentioned and referenced below or in the respec-
tive chapters. The following paragraphs briefly describe the key issues in the main
application areas.

Biotechnology. Major objectives in biotechnology are the industrial exploita-
tion of micro-organisms, the use of biomolecules in technical applications and the

45 J. H. Holland, Escaping Brittleness, The possibilities of general-purpose learning algorithms applied
to parallel rule-based systems, in Machine Learning II, (R. S. Michalsky, J. G. Carbonell,
Τ. M. Mitchell Eds.), Morgan Kaufmann, Los Altos CA, pp. 593-623, 1986.

46 S. Smith, A Learning System based on Genetic Algorithms, Ph.D. Dissertation, Department
of Computer Science, University of Pittsburg, PA, 1980.

47 J. Koza, Genetic Programming (I, II), MIT Press, 1993, 1994.

1. Introduction 9

invention of tools to automate laboratory work. Biochips2 0 '2 1 '4 8 are mixtures of
biological macromolecules that spontaneously assemble into an ordered, three-
dimensional arrangement. Self-assembly of these complexes can be guided by
stretches of complementary RNA. Such an association of macromolecules may
then be used as a memory device. In that context, excitation of chemical groups by
light or electrical stimulation can make molecules temporarily change their confor-
mation or composition. Later, a different stimulation can be used to read the stored
information or to clear it. Advantages of biochips are their ability to self-assemble
and the use of inexpensive, organic components which can be produced by gene
technology and micro-organisms.

Biosensors49 consist of immobilised enzymes catalysing a reaction which con-
sumes the compound to be measured while producing ions. A small, semiperme-
able tube containing the enzyme and an electrode is introduced into the probe.
T h e reaction of enzyme and compound produces a concentration change of per-
meable ions. This results in a electrical signal that can be measured and amplified.
T h e amplitude of that signal is correlated to the concentration of the compound.
Biosensors are useful for monitoring concentration changes of critical metabolites
in medicine. They are available for a wide range of reactions and are highly specific.

Databases . T h e recent increase in genetic sequence and protein structure data,
and also information about micro-organisms, enzymes and chemical reactions re-
quired the design and development of specialised databases. Some established con-
cepts for database design are: object-oriented, relational, predicate-based, or com-
binations of these. Object-oriented means that the basic items stored in the database
can be accessed as abstract, semantic objects (in contrast to simple variables or
strings). They can be related to each other within a class hierarchy (e.g. the class of
Escherichia coli is a subset of the class of bacteria). Individual objects (e.g. a single
Escherichia coli bacterium under the microscope) can inherit all characteristic class
properties and methods f rom its class object. These properties are stored only once
in the database but can be accessed through all related instances. Object-oriented
databases are useful for storing knowledge about hierarchically structured domains
(e.g. a taxonomy of enzymes or micro-organisms). Predicate-based, databases store
information in the form of facts (e.g. "Residues 7-17 of Crambin form a helix.")
or rules (e.g. "A helix is defined by a certain number of consecutive turns."). This
type of representation is convenient if an inference engine is linked to the database
because then facts and rules can immediately be used for deductive inference. Re-
lational databases can be visualised as a set of cross-indexed tables. They are eas-
ily maintained and allow fast access to a single item when information in the ta-
bles is kept sorted. However, if a complicated request needs to follow the links
through several tables, this can slow down retrieval speed significantly. Also, ex-
pressing complex search constraints in terms of a relational database query lan-
guage can sometimes become difficult or even impossible.

48 Proceedings of the International Conference on Molecular Electronics and Bio-
computing, September 1994, Goa, India, Tata Institute of Fundamental Research, Ratna
S. Phadke, email ratna@tifrvax.tifr.res.in.

49 F. Scheller, R. Schmid, Biosensors: Fundamentals, Technologies and Applications, in GBF
Monograph 17, Verlag Chemie, Weinheim, 1992.

10 1.2. Application Areas

Biotechnological Applications
Biochips
Biosensors
Gel Reading Automata
Database
Object-Oriented Representation
Predicate Representation
Relational Paradigm
Processed / Selected Data
Medical Diagnosis Systems
DNAI RNA
Prediction of Gene Structure (Exon, Intron, Splice Site, Promoter, Enhancer)
Hydration and Environment
Genome Mapping
Secondary Structure Prediction
Sequence Analysis (Alignment, Search for Patterns)
Proteins
Classification according to Structure, Sequence or Function
De novo Design
Discovery of Structure / Function Relationships
Docking and Enzyme Substrate Binding
Evolutionary Relationships
Folding Process and Motion
Force Fields and Energetics
Homology-based 3D Modelling
Inverse Folding Problem
Localising, Targeting and Signal Sequences of Membrane Proteins
Packing, Accessibility and Hydrophobicity
Prediction of Structure / Function Motifs by Multi-Criteria Comparison
Reconstruction of Backbone from Ca-Atoms
Reconstruction of Tertiary Structures from Backbone
Secondary Structure Prediction
Sequence Analysis (Alignment, Pattern Search)
Side Chains and Rotamers
Simulation of Metabolism
Solvent Interactions
Super-Secondary Structure and Hierarchy of Protein Structures
Tertiary Structure Prediction and Refinement
Toxicology
Spectrum Interpretation
Mass Spectra
Nuclear Magnetic Resonance Spectra
Planning of Experiments
Cloning
Protein Purification

Table 2: Selection of Applications in Molecular Bioinformatics.
This is a (certainly non-exhaustive) list of applications relevant in molecular bioin-
formatics.

1. In t roduc t ion 11

DNA and RNA. Genomic information is stored in RNA and DNA. Although
the basic nature of the genetic code was solved some 40 years ago50 '51, details of the
organisation of chromosomes and genes are still not completely understood. Genes
are known to have certain functional regions, e.g. exons, introns, splice sites, pro-
moter sites and enhancer regions. Exons are DNA sequence segments that supply
the information for protein formation. In eucaryotes, exons are often interrupted
by non-coding portions which are called introns (from "intervening sequences").
Introns have to be excised to get a proper RNA copy of a gene. The boundaries of
exons and introns are called splice sites. Reliable prediction of splice sites is desir-
able since this allows determination of the uninterrupted gene and the amino acid
sequence of the corresponding protein (i.e. its primary structure). Promoter sites are
regions in DNA that determine the start of transcription for a gene. Enhancer el-
ements control the extent and speed of transcription. Important features of DNA
are its secondary structure and interactions with a solvent. The mechanisms of the
mentioned genetic elements can be described on a molecular level but these models
are not yet accurate enough to allow confident prediction of gene structure in large
quantities of unannotated sequences. Sequence alignment of DNA sequences is im-
portant for identifying homologous sequences and for searching related patterns.
An immediate medical application is the development of antisense drugs that can
specifically inhibit expression of malfunctioning genes. One problem with aligning
sequences is the occurrence of insertions and deletions52 which makes it difficult to
determine the corresponding positions in either sequence; another problem is the
exponential increase in complexity when comparing multiple sequences. Genome
mapping is the localisation of DNA fragments, restriction sites and genes on a chro-
mosome. This usually involves deriving a set of linear arrangements that satisfy a
number of neighbourhood constraints. In practice, this is difficult because the in-
formation available is often incomplete, noisy and / or redundant. Complete explo-
ration of all possible arrangements requires traversing a search space that increases
exponentially with fragment number.

Proteins. The chromosomes of eucaryotes carry information on how to synthe-
sise tens of thousands of different proteins. Proteins are multi-functional macro-
molecules, each a string made of 20 different amino acid residue types which are
assembled by the ribosome and which spontaneously fold up into complicated con-
formations. They are used for a wide range of purposes: enzymatic catalysis of
chemical reactions, transport and storage of chemical compounds, motion, me-
chanical support, immune protection, generation and transmission of nerve im-
pulses, growth control and differentiation. The key to the function of a protein is
its three-dimensional structure. The spatial arrangement of the atoms in the active
site of an enzyme is made so that a substrate of roughly complementary geometry
can bind to it and be subsequently modified in a chemical reaction. As was shown

50 J. D. Watson, F. H. C. Crick, Genetic implications of the structure of deoxyribonucleic acid, Na -
ture, vol 171, pp. 964-967, 1953.

51 F. H. C. Crick, L. Barnett, S. Brenner, R. J. Watts-Tobin, General nature of the genetic code for
proteins, Nature, vol 192, pp. 1227-1232, 1961.

52 Insertions and deletions are subsumed under the term "indels", as it is often impossible to
decide whether an insertion in one sequence or a deletion in the other occurred.

12 1.2. Application Areas

in the Nobel-prize winning experiments by C. Anfinsen53, the three-dimensional
structure of a protein can be completely determined by its amino acid sequence.
Although additional, non-spontaneous mechanisms of folding have been observed
since then54, the general view still holds that sequence implies structure.

The analysis of protein architecture includes comparison on the level of prima-
ry structure (i.e. the order of amino acids along the polypeptide chain), secondary
structure (i.e. short stretches of amino acid residues in particularly regular confor-
mation), and tertiary structure (i.e. the exact conformation of a whole protein). The
so-called protein folding problem is to establish detailed rules defining the relation-
ship between primary and tertiary structure. These rules could help predict con-
formations for the many known protein sequences of unknown structure and also
for some newly invented ones. Biochemists could then reason about the function
of those proteins on the basis of their predicted conformations. A general solution
to this problem is not yet known but for a number of special cases algorithms for
predicting secondary and tertiary structure have been developed. The reliable and
accurate prediction of secondary structure is of interest as it allows the assembly of a
whole protein in terms of almost rigid building blocks. This reduces the number of
potential conformations by several orders of magnitude. Unfortunately, secondary
structure prediction is rather difficult due to the effect of long range interactions. This
means that identical short sequences of amino acids can adopt different secondary
structures in different contexts, i.e. secondary structures are not purely locally de-
fined by their sequence.

Other applications in molecular bioinformatics are the interpretation of NMR
and mass spectra, and the planning of cloning and protein purification experi-
ments.

53 C. B. Anfinsen, C. B. Haber, M. Sela, F. H. White, The kinetics of the formation of native ri-
bonuclease during oxidation of the reduced polypeptide chain, Proc . Natl . Acad . Sei . U S A , vol
47, no 9, pp. 1309-1314, 1961.

54 P. J. Kang, J. Ostermann, J. Shilling, W. Neupart, E. A. Craig, N. Pfanner, Requirement for
hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins, Nature, vol
348, pp. 137-143, 1990.

2. Artificial Intelligence & Expert
Systems

This chapter concerns the application of expert systems and other techniques from
artificial intelligence to various problems in bioscience. The methodologies de-
scribed here clarify fundamental issues in symbolic information processing and il-
lustrate their use. Section 2.1 elaborates on some key principles and algorithms in
artificial intelligence programming. Section 2.2 then presents a number of appli-
cations using these techniques.

2.1. Methodology

One important feature of artificial intelligence programming and expert systems
is symbolic computation as opposed to numerical programming and string processing.
Symbolic computation is a prerequisite for implementing and manipulating knowl-
edge bases. Typical representatives of symbolic programming languages are Lisp
and Prolog. Here, we will take a brief look at programming techniques used with
Lisp while programming in Prolog will be dealt with in a later chapter.

Lisp1 is the second oldest programming language and emerged at about the same
time as Fortran. During the 1970's and 80's, Lisp was run on dedicated hardware
which were then rather expensive computers like the Symbolics™ Lisp machine.
Today, fast Lisp interpreters are available for most common platforms at a reason-
able price. However, there are two problems with Lisp. First, although there is a
specification of Common Lisp2, porting between different Lisp dialects tends to re-
main difficult3. Second, Lisp was designed to facilitate symbolic computation and
not primarily numerical processing. Applications that require many floating point
operations can be rather slow in Lisp. This problem can largely be overcome by
interfacing Lisp to other languages, e.g. C or Assembler. Unlike C, Assembler or
Pascal, Lisp allows rapid prototyping of rather complex systems through symbolic
computation.

Lisp is traditionally an interpreted language which means that the user types in
a command, e.g. an atom to be evaluated or a function to be called, and the result

1 J. McCarthy, Recursive Functions of Symbolic Expressions and their Computation by Ma-
chine, Communications of the ACM, vol 3, no 4, pp. 185-196, 1960.

2 G. L. Steele Jr., Common LISP - The Language, Digital Press, 1984.
3 S. Schulze-Kremer, Common Lisp - ein geeigneter Lisp Standard?, Praxis der Informa-

tionsverarbeitung und Kommunikation, vol 11, pp. 181-184, Carl Hanser Verlag,
München, 1988.

14 2.1. Methodology

appears on the screen without an explicit call of a compiler. This interactive way
of programming encourages the developer to first build small components which
are then used as building blocks to create more complex functions. Of course, all
current Lisp systems also have compilers which are used to translate the whole sys-
tem into a faster running application once it is debugged and tested. The use of
an interpreted language may be helpful in keeping track of the incremental growth
when developing an experimental system. Lisp is an abbreviation of list processing,
or, misconstrued by those failing to appreciate its flavour, "lot's of insidious, silly
parentheses".

2.1.1. Symbolic Computation

The basic data type in Lisp is a symbol, called an atom. The basic computational
unit is a function. Symbols are e.g. 123.45, PROTEIN, DNA or RNA. The power of
symbolic computation is based on the ease of processing semantic concepts of an
underlying model instead of mere variables. Access and reference to symbols can
reflect their properties, internal structure or their behaviour in response to external
stimuli. Ideally, calling or evaluating a symbol displays the result of its interaction
with other concepts. Properties and features of a concept can be stored in so-called
property lists, associative lists or in functions. Atoms are kept in lists and a number
of primitive functions are provided to process those lists. They can, for example,
retrieve the first element (CAR) or the rest of a list (CDR) or they can define a new
function (DEFUN). The user does not have to care about integer, double or char-
acter data types as in other programming languages. If the first atom in a list is a
function name, the remaining atoms or lists that follow are treated as arguments.
Atoms and lists are summarised in the term symbolic expression. A Lisp interpreter
is the top-level Lisp function which receives input from the keyboard and then tries
to evaluate a symbolic expression. If that is an alphanumeric atom, its global value
is returned. If it is a numerical atom (i.e. an ordinary number), the number itself is
returned. If it is a list, the function denoted by the first atom is called with all follow-
ing symbolic expressions as its arguments. The arguments are themselves evaluated
before being passed over to the calling function. Example 1 illustrates some basic
Lisp functions.

The most intriguing fact about Lisp (and also Prolog) is that data and program are
indistinguishable. Lists hold atoms and other lists for storage of data. At the same
time, any list can be interpreted as the definition of a function or as a function call.
From this follows that in Lisp new programs can be automatically generated and im-
mediately executed during run time. Those programs may then, in turn, generate
other programs or modify their parent programs, and so on. This capability allows
the implementation of flexible, self-modifying programs that evolve and potential-
ly learn or improve during run time. This capability of Lisp was recently used in
the context of genetic programming4. An example for the run-time construction
of a (simple arithmetic) program and its execution is given in Example 2 where a
function call to add 4 numbers is created during run-time and evaluated.

4 J. Koza, Genetic Programming (I, II), MIT Press, Cambridge MA, 1993, 1994.

2. Artificial Intelligence & Expert Systems 15

Input Result

(+ 1 2 3) 6
(* (+ (- (/ 55 11) 10) 9) 8) 32
(CAR '(PROTEIN DNA)) PROTEIN
(CDR '(PROTEIN DNA RNA)) (DNA RNA)
(CADADR '(PROTEIN (DNA RNA))) RNA
(CONS 'PROTEIN '(DNA RNA)) (PROTEIN DNA RNA)
(LIST 'PROTEIN 'DNA 'RNA) (PROTEIN DNA RNA)

Example 1: Basic Lisp Functions.
Input to the Lisp interpreter on the left side produces output on the right. The
first line is a function call to add three numbers. The second line is a more
complicated arithmetic expression. PROTEIN, DNA and RNA are alphanumer-
ic symbols. The function CAR returns the first element of a list, the function
CDR returns the rest. CAR and CDR can be nested up to four levels in one
word, where the sequence of A's and D's read from the end of the word identi-
fies the order of CAR and CDR evaluation. CONS pushes a symbolic expres-
sion into a list at the first position. LIST creates a list of an arbitrary number
of arguments. Most Lisp interpreters make no distinction between upper and
lower case letters except when they are enclosed in double quotes.

RNA

MESSENGER

Figure 1: Lisp Pointer Structure.
This figure explains the pointer structure underlying the code of Example 2. RNA
points to MESSENGER (both global symbols). A CONS cell has two pointers, one
to the first element of a list, another to the beginning of the rest of the list. MES-
SENGER, PROTEIN and DNA point to a CONS cell, that points to the "+" sign
and yet another CONS cell. Three more CONS cells define the rest of the list (+
1 2 3).

In Example 2, the first line binds the list (+ 1 2 3) to the symbol PROTEIN. This
is the standard way of defining a global variable. The second line binds the value of
PROTEIN (that's why there is no quotation mark before PROTEIN) to the symbol
DNA. The CAR (first element) of the value of DNA is the symbol "+". Now, the sym-
bol RNA gets as its new value the symbol MESSENGER, which is duly echoed by the
Lisp interpreter. Then, the value of RNA, which at this time is the symbol MESSEN-
GER, is given the value of DNA. By evaluating MESSENGER in the next line we see
the Lisp interpreter confirm that operation. The function EVAL does one extra eval-
uation. First, all arguments are evaluated before being passed to EVAL, then EVAL
evaluates them once more. (EVAL 'RNA) returns MESSENGER, as this is the value of

16 2.1. Methodology

I n p u t R e s u l t

(SET 'PROTEIN ' (+ 1 2 3)) (+ 1 2 3)
(SET 'DNA PROTEIN) (+ 1 2 3)
(CAR DNA) +
(SET 'RNA 'MESSENGER) MESSENGER
(SET RNA DNA) (+ 1 2 3)
MESSENGER (+ 1 2 3)

(EVAL 'RNA) MESSENGER
RNA MESSENGER

(EVAL RNA) (+ 1 2 3)
(EVAL 'MESSENGER) (+ 1 2 3)
(EVAL MESSENGER) 6
(EVAL

(CONS (CAR PROTEIN)
(LIST (CADR PROTEIN)

(* 4 9)
(CADDDR PROTEIN)
(CADDR PROTEIN)))) 42

Example 2: Simple Automatic Program Generation in Lisp.
Input to the Lisp interpreter on the left side produces output on the right. See
main text for explanation.

RNA. The quotation mark in front of RNA neutralises the first evaluation of EVAL.
This is the same as if we gave the symbol RNA to the Lisp interpreter. EVALuating
RNA without a quotation mark produces the list (+ 1 2 3) . EVALuating MESSEN-
GER quoted gives the same list, but for MESSENGER unquoted the list itself is eval-
uated once more thereby adding 1 +2+3. Finally, instead of directly typing in a short
list for adding four numbers, we use EVAL to assemble the function call (+ 1 36 3
2) via CONS, LIST, the CAR/CDR f u n c t i o n s a n d the va lue o f PROTEIN. Af ter c o n -
struction of that mini-program it is evaluated by EVAL and the result resturned by
the Lisp interpreter. Similarly, more complex programs can be written if nested
function calls with different functions are assembled (see also Example 5).

Recursive programming is easily done within Lisp. Many search algorithms
can be formulated in a recursive manner. The general approach to define a recur-
sive function is as follows. First, specify the terminating clause. This is where recur-
sions end and a default value is returned. Then, the case with only one element left
in the argument list is handled. That element is processed and its result returned.
Finally, the recursive clause appears. If a composite structure is seen, it is decom-
posed into the head and the rest of that structure. Each part is then passed to the
original function. The results of those recursive calls are then joined taking care to
maintain their order as in the original call. The definition of a recursive function
FLATTEN is given in Example 3. FLATTEN extracts all atoms from within an arbi-
trarily nested list. More on recursion in Lisp is charmingly presented elsewhere5.

The function FLATTEN has one argument, locally named arg. Uppercase words
denote predefined Lisp functions. COND is a conditional function which resembles

5 D. P. Friedman, M. Felleisen, The Little LISPer, M I T Press, 1987.

