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Preface
What is 1 + 1 + 1?
John H. Conway, 1973

Individually, each of Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy have
received much, rightly deserved, praise. Each made lasting contributions to many ar-
eas of mathematics. This volume is dedicated to their work in combinatorial game
theory. It is due to their efforts that combinatorial game theory exists as a subject.

Brief History of howWinning Ways came to be

Bouton first analyzed nim [67], little realizing how central nim was to be. In the next
two decades, other researchers contributed the analysis of a few other, specific games.
The chess champion Emanuel Lasker came close to a complete theory of impartial
games. It was in the 1930s that Grundy [68] and Sprague [72] gave a complete analy-
sis, now known as the Sprague–Grundy theory. Despite being an elegant theory and
easy to apply, the subject languished because there was no clear direction in which
to develop the theory. In the late 1940s, Richard K. Guy rediscovered the theory and
defined the octal games. In 1956, Guy and C. A. B. Smith published The G-values of var-
ious games [42]. This gave the world an infinite number of impartial games and led to
many interesting, easy to state, and yet still unsolved conjectures.

The analysis of partizan games looked out of reach. The Fields’ medalist JohnMil-
nor [70] in 1953 published Sums of positional games. This only covered games inwhich
players gained when they played and was not easy to apply. In 1960, John Conway
met Michael Guy, Richard’s son. Through this friendship, Johnmet Richard and asked
about partizan games. This turned out to be a recurring theme in their work in the
next two decades. Also in 1960, Elwyn Berlekamp got roped into playing 3 × 3 dots-
&-boxes game against a computer. He lost, but knowing about the Sprague–Grundy
theory, he analyzed the game. (Recently, Elwyn claimed that he had never lost a game
since.) Elwyn met Richard at the 1967 Chapel Hill conference and suggested that they
write a book. Richard agreed, got John and Elwyn together in 1969, and work began.
The analysis of each nonimpartial game was well thought out but ad hoc. John, with
his training in set theory, started to see a structure emerging when games were de-
composed into components. He gave the names of 1 and 1/2 to two abstract games and
was delighted (giggled like a baby was the phrase he used) when he discovered that,
as games, 1/2 + 1/2 = 1. He wrote On Numbers and Games [28] in a week. This caused
some friction among the three, but, eventually, work restarted onWinningWays [3, 4].

R. Austin, S. Devitt, D. Duffus, and myself, as graduate students at Calgary,
scoured the early page-proofs. We suggested numerous jokes and puns. Fortunately,
the authors rejected all of them.

https://doi.org/10.1515/9783110755411-201
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One other person deserves to be mentioned, Louise Guy, Richard’s wife. A gra-
cious lady made every visitor to their house feel welcome. Some people have asked
why the combinatorial gameplayers, Left andRight, are female andmale, respectively.
The original reasons have been forgotten, but afterWinningWays appeared, it became
a mark of respect to remember them as Louise and Richard.

Why Elwyn, John, and Richard are important

Many books are written, enjoy a little success, and then are forgotten by all but a
few. On Numbers and Games but especially Winning Ways [3, 4] are still popular to-
day. This popularity is due to the personalities and their approach to mathematics.
All were great ambassadors for mathematics, writing explanatory articles and giving
many public lectures. More than that, they understood that mathematics needs a hu-
man touch. These days, it is easy to get a computer to play a gamewell, but howdo you
get a person to play well? This was one of their aims.Winning Ways is 800+ pages of
puns, humor, easy-to-remember sayings, and verses. These provide great and memo-
rable insights into the games and their structures, and the book is still a rich source of
material for researchers. Mathscinet reports thatWinningWays is cited by over 300 ar-
ticles, Google Scholar reports over 3000 citations. Yet, any reader will be hard pressed
to find a single mathematical proof in the book. Elwyn, John, and Richard wrote it to
entertain, draw in a reader, and give them an intuitive feeling for the games.

After the publication ofWinning Ways, even though all were well known for their
research outside of combinatorial game theory, they remained active in the subject.
Eachwas interested inmany parts of the subject, but, very loosely, theirmain interests
were:
– Elwyn Berlekamp considered the problem of how to define and quantify the no-

tion of the “urgency” of a move. He made great strides with his concept of an
enriched environment [11, 24, 25]. He was also fascinated by go [7, 8, 9, 10, 12, 11]
and dots-&-boxes [13, 18, 23].

– John Conway remained interested in pushing the theory of surreal numbers, par-
ticularly infinite games [30, 37, 41], games from groups and codes [32, 39], and
misère games [35].

– Richard K. Guy retained an interest in subtraction and octal games, writing a book
for inquisitive youngsters [52]. He continued to present the theory as it was [54, 57,
58, 59, 61] and also summarized the important problems [56, 60, 62, 64].

Standing on their shoulders

Most of the papers in this volume can be traced directly back to Winning Ways and
On Numbers and Games, or to the continuing interests of the three. Several though,
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illustrate how far the subject has developed. A general approach of impartial misère
games was only started by Plambeck [71]. A. Siegel (a student of Berlekamp), a major
figure developing this theory, pushes this further in Chapter 20. The theory of parti-
zan misère games was only started in 2007 [69]. Whilst playing in the context of all
misère games, Chapter 10 analyzes a specific game. Chapter 16 contains important re-
sults for analyzing misère dead-ending games. In Winning Ways, dots-&-boxes and
top-entails do not fit into the theory, each in a separate way. They are only partially
analyzed and that via ad hoc methods. Chapter 17 finds a normal play extension that
covers both types of games. (The authors think this would have intrigued them but are
not sure if they would have fully approved.)

Chapters 1, 5–9, 12, 15, 18, and 19 either directly extend the theory or consider a
related game to ones given inWinningWays. As is evidenced by Richard K. Guy’s early
contributions, it is also important to have new sources of games. These are presented
in Chapters 2, 3, 11, 13, and 14.

Serendipity gave Chapter 4. This paper is the foundation of Chapters 1 and 5. It
gives a simple, effect-for-humans, test for when games are numbers. The authors are
sure that Elwyn, John, and Richard would have started it with a rhyming couplet that
everyone would then remember.

Elwyn, John, andRichard gave freely of their time.Manypeoplewill remember the
coffee-time and evenings at the MSRI and BIRS Workshops. Each would be at a large
table fully occupied by anyone who wished to be there, discussing and sometimes
solving problems. Students were especially welcome. All combinatorial games work-
shops now follow this inclusive model. A large number of papers originate at these
workshops, have several coauthors, and include students. They shared their time out-
side of conferences and workshops. Many students will remember those offhand mo-
ments, with one or more of them, that often stretched to hours. I was a second-year
undergraduate student when on meeting John, he immediately asked me what was
1 + 1 + 1? Even after I answered “3”, he still took the time to explain the intricacies of
3-player games. (The question is still unanswered.)

Their wit, wisdom, and willingness to play provided people with pleasure. They
will be sorely missed, but their legacy lives on.

Richard J. Nowakowski
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Anthony Bonato, Melissa A. Huggan, and Richard J. Nowakowski
The game of flipping coins

Abstract:We consider flipping coins, a partizan version of the impartial game turn-
ing turtles, played on lines of coins. We show that the values of this game are num-
bers, and these are found by first applying a reduction, then decomposing the position
into an iterated ordinal sum. This is unusual since moves in the middle of the line do
not eliminate the rest of the line. Moreover, if G is decomposed into lines H and K,
then G = (H : KR). This is in contrast to hackenbush strings, where G = (H : K).

1 Introduction
In Winning Ways, Volume 3 [3], Berlekamp, Conway, and Guy introduced turning
turtles and considered many variants. Each game involves a finite row of turtles,
either on feet or backs, and a move is to turn one turtle over onto its back, with the
option of flipping a number of other turtles, to the left, each to the opposite of its cur-
rent state (feet or back). The number depends on the rules of the specific game. The
authors moved to playing with coins as playing with turtles is cruel.

These games can be solved using the Sprague–Grundy theory for impartial games
[2], but the structure and strategies of some variants are interesting. The strategy for
moebius (flip up to five coins) played with 18 coins, involvesMöbius transformations;
for mogul (flip up to seven coins) on 24 coins, it involves the miracle octad generator
developed by R. Curtis in his work on the Mathieu group M24 and the Leech lattice
[6, 7]; ternups [3] (flip three equally spaced coins) requires ternary expansions; and
turning corners [3], a two-dimensional version where the corners of a rectangle are
flipped, needs nim-multiplication.

We consider a simple partizan version of turning turtles, also played with
coins. We give a complete solution and show that it involves ordinal sums. This is
somewhat surprising since moves in the middle of the line do not eliminate moves at
the end. Compare this with hackenbush strings [2] and domino shave [5].
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Wewill denote heads by 0 and tails by 1. Our partizan version will be played with
a line of coins, represented by a 0–1 sequence d1d2 . . . dn, where di ∈ {0, 1}. With this
position,we associate the binary number∑ni=1 di2

i−1. Leftmoves by choosing somepair
of coins di, dj, i < j, where di = dj = 1, and flips them over so that both coins are 0s.
Right also chooses a pair dk, dℓ, k < ℓ, with dk = 0 and dℓ = 1, and flips them over. If j
is the greatest index such that dj = 1, then dk, k > j, will be deleted. For example,

1011 = {0001,001, 1 | 1101, 111}.

The game eventually ends since the associated binary number decreases with every
move. We call this game flipping coins.

Another way to model flipping coins is to consider tokens on a strip of loca-
tions. Left can remove a pair of tokens, and Right is able to move a token to an open
space to its left. We use the coin flipping model for this game to be consistent with the
literature.

The game is biased to Left. If there are a nonzero even number of 1s in a position,
then Left always has a move; that is, she will win. Left also wins any nontrivial posi-
tion startingwith 1. However, there are positions that Rightwins. The two-partmethod
to find the outcomes and values of the remaining positions can be applied to all po-
sitions. First, apply a modification to the position (unless it is all 1s), which reduces
the number of consecutive 1s to at most three. After this reduction, build an iterated
ordinal sum, by successively deleting everything after the third last 1, this deleted po-
sition determines the value of the next term in the ordinal sum. As a consequence,
the original position is a Right win if the position remaining at the end is of the form
0 . . .01, and the value is given by the ordinal sum.

The necessary background for numbers is in Section 2. Section 3 contains results
about outcomes and also includes our main results. First, we show that the values are
numbers in Theorem3.2.Next, an algorithm tofind the value of a position is presented,
and Theorem 3.3 states that the value given by the algorithm is correct.

The actual analysis is in Section 4. It starts by identifying the best moves for both
players in Theorem 4.2. This leads directly to the core result Lemma 4.5, which shows
that the value of a position is an ordinal sum. The ordinal sum decomposition of G
is found as follows. Let GL be the position after the Left move that removes the right-
most 1s. LetH be the string G \GL; that is, the substring eliminated by Left’s move. Let
HR be the result of Right’s best move in H. Now we have that G = GL : HR. In contrast,
the ordinal sums for hackenbush strings and domino shave [5] involve the value of
H not HR.

The proof of Theorem 3.3 is given in Section 4.1. The final section includes a brief
discussion of open problems.

Finally, we pose a question for the reader, which we answer at the end of Sec-
tion 4.1: Who wins 0101011111 + 1101100111 + 0110110110111 and how?
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2 Numbers

All the values in this paper are numbers, and this section contains all the necessary
background to make the paper self-contained. For further details, consult [1, 8]. Posi-
tions are written in terms of their options; that is, G = {Gℒ | Gℛ}.

Definition 2.1 ([1, 2, 8]). Let G be a number whose options are numbers, and let GL,
GR be the Left and Right options of the canonical form of G.
1. If there is an integer k, GL < k < GR, or if either GL or GR does not exist, then G is

the integer, say n, closest to zero that satisfies GL < n < GR.
2. If both GL and GR exist and the previous case does not apply, then G = p

2q , where
q is the least positive integer such that there is an odd integer p satisfying GL <
p
2q < G

R.

The properties of numbers required for this paper are contained in the next three
theorems.

Theorem 2.2 ([1, 2, 8]). Let G be a number whose options are numbers, and let GL and
GR be the Left and Right options of the canonical form of G. If G′ and G′′ are any Left
and Right options, respectively, then

G′ ⩽ GL < G < GR ⩽ G′′.

Theorem 2.2 shows that if we know that the string of inequalities holds, then we
need to only consider the unique best move for both players in a number.

We include the following examples to further illustrate these ideas:
(a) 0 = { | } = {−9 | } = {− 12 |

7
4 };

(b) −2 = { | −1} = {− 52 | −
31
16 };

(c) 1 = {0 | } = {0 | 100};
(d) 1

2 = {0 | 1} = {
3
8 |

17
32 }.

For games G and H, to show that G ⩾ H, we need to show that G − H ⩾ 0, meaning
that we need to show that G − H is a Left win moving second. For more information,
see Sections 5.1, 5.8, and 6.3 of [1].

Let G and H be games. The ordinal sum of G, the base, and H, the exponent, is

G : H = {Gℒ,G : Hℒ | Gℛ,G : Hℛ}.

Intuitively, playing in G eliminates H, but playing in H does not affect G. For ease of
reading, if an ordinal sum is a term in an expression, then we enclose it in brackets.

Note that x : 0 = x = 0 : x since neither player has a move in 0. We demonstrate
how to calculate the values of other positions with the following examples:
(a) 1 : 1 = {1 | } = 2;
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(b) 1 : −1 = {0 | 1} = 1
2 ;

(c) 1 : 12 = {0, (1 : 0) | (1 : 1)} = {0, 1 | {1 | }} = {1 | 2} =
3
2 ;

(d) 1
2 : 1 = {0, (

1
2 : 0) | 1} = {0,

1
2 | 1} = {

1
2 | 1} =

3
4 ;

(e) (1 : −1) : 12 = (
1
2 :

1
2 ) = {0, (

1
2 : 0) | 1, (

1
2 : 1)} = {0,

1
2 | 1,

3
4 } = {

1
2 |

3
4 } =

5
8 .

Note that in all cases, when base and exponent are numbers, the players prefer to play
in the exponent. In the remainder of this paper, all the exponents will be positive.

Oneof themost important results about ordinal sumswasfirst reported inWinning
Ways.

Theorem 2.3 (Colon Principle [2]). If K ⩾ K′, then G : K ⩾ G : K′.

The Colon Principle helps prove inequalities that will be useful in this paper.

Theorem 2.4. Let G and H be numbers all of whose options are also numbers, and let
H ⩾ 0.
1. If H = 0, then G : H = G. If H > 0, then (G : H) > G.
2. GL < (G : HL) < (G : H) < (G : HR) < GR.

Proof. For item (1), the result follows immediately by Theorem 2.3.
For item (2), if H ⩾ 0 and all the options of G and H are numbers, then GL < G =

(G : 0) ⩽ (G : HL) < (G : H) < (G : HR). The second, third, and fourth inequalities hold
since H is a number and thus 0 ⩽ HL < H < HR and by applying the Colon Principle.
To complete the proof, we need to show that (G : HR) < GR. To do so, we check that
GR − (G : HR) > 0; in words, we check that Left can always win. Left moving first can
move in the second summand to GR − GR = 0 and win. Right moving first has several
options:
1. Moving to GR − GL > 0, since G and its options are numbers. Hence Left wins.
2. Moving to GR − (G : HRL) > 0 by induction.
3. Moving to GRR − G : HR, but Left can respond to GRR − GR > 0 since G and its

options are numbers.

In all cases, Left wins moving second. The result follows.

To prove that all the positions are numbers, we use results from [4]. A set of po-
sitions from a ruleset is called a hereditarily closed set of positions of a ruleset if it is
closed under taking options. This game satisfies ruleset properties introduced in [4].
In particular, the properties are called the F1 property and the F2 property, which both
highlight the notion of First-move-disadvantage in numbers and are defined formally
as follows.

Definition 2.5 ([4]). Let S be a hereditarily closed ruleset. Given a position G ∈ S, the
pair (GL,GR) ∈ Gℒ×Gℛ satisfies theF1 property if there isGRL ∈ GRℒ such thatGRL ⩾ GL

or there is GLR ∈ GLℛ such that GLR ⩽ GR.
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Definition 2.6 ([4]). Let S be a hereditarily closed ruleset. Given a position G ∈ S, the
pair (GL,GR) ∈ Gℒ ×Gℛ satisfies the F2 property if there are GLR ∈ GLℛ and GRL ∈ GRℒ

such that GRL ⩾ GLR.

As proven in [4], if given any position G ∈ S, all pairs (GL,GR) ∈ Gℒ × Gℛ satisfy
one of these properties, then the values of all positions are numbers. Furthermore,
satisfying the F2 property implies satisfying the F1 property, and it was shown that all
positions G ∈ S are numbers if and only if for any G ∈ S, all pairs (GL,GR) ∈ Gℒ × Gℛ

satisfy the F1 property. Combining these results gives the following theorem.

Theorem 2.7 ([4]). Let S be a hereditarily closed ruleset. All positions G ∈ S are numbers
if and only if for any position G ∈ S, all pairs (GL,GR) ∈ Gℒ × Gℛ satisfy either the F1 or
the F2 property.

3 Main results

Before considering the values and associated strategies, we consider the outcomes,
that is, we partially answer the question “Who wins the game?” The full answer re-
quires an analogous analysis to finding the values.

Theorem 3.1. Let G = d1d2 . . . dn. If d1d2 . . . dn contains an even number of 1s, or if d1 = 1
and there are least two 1s, then Left wins G.

Proof. A Right move does not decrease the number of 1s in the position. Thus, if in G,
Left has a move, then she still has a move after any Right move in G. Consequently,
regardless of d1, if there are an even number of 1s inG, then it will be Left who reduces
the game to all 0s. Similarly, if d1 = 1 and there are an odd number of 1s, then Left will
eventually reduce G to a position with a single 1, that is, to d1 = 1 and di = 0 for i > 1.
In this case, Right has no move and loses.

The remaining case, d1 = 0 and an odd number of 1s, is more involved. The analy-
sis of this case is the subject of the remainder of the paper.Wefirst prove the following:

Theorem 3.2. All flipping coins positions are numbers.

Proof. LetG be a flippingcoinsposition. If only oneplayer has amove, then the game
is an integer. Otherwise, let L be the Left move to change (di, dj) from (1, 1) to (0,0). Let
R be the Right move to change (dk , dℓ) from (0, 1) to (1,0). No other digits are changed.
If all four indices are distinct, then both L and R can be played in either order. In this
case, GLR = GRL. Thus the F2 property holds. If there are only three distinct indices,
then two of the bits are ones. If Left moves first, then di = dj = dk = 0. If Right moves
first, then there are still two ones remaining after his move. After Left moves, we have
di = dj = dk = 0, and hence GL = GRL. The F1 property holds.



6 | A. Bonato et al.

There are no more cases since there must be at least three distinct indices. Since
every position satisfies either the F1 or the F2 property, by Theorem 2.7 it follows that
every position is a number.

Given a position G, the following algorithm returns a value.

Algorithm Let G be a flipping coins position. Let G0 = G.

1. Set i = 0.
2. Reductions: Let α and β be binary strings, and either can be empty.

(a) If G0 = α013+jβ, j ⩾ 1, then set G0 = α101jβ.
(b) If G0 = α013β with β containing an even number of 1s, then set G0 = α10β.
(c) Repeat until neither case applies; then go to Step 3.

3. If Gi is 0r1, r ⩾ 0, or 1a0pi10qi1, a ⩾ 0, and pi + qi ⩾ 0, then go to Step 5.
Otherwise, Gi = α01a0pi10qi1, pi + qi ⩾ 1, a > 0, and some α. Set

Qi = 0
pi10qi1,

Gi+1 = α01
a.

Go to Step 4.
4. Set i = i + 1. Go to Step 3.
5. IfGi = 0r1, then set vi = −r. IfGi = 1a0pi10qi1, then set vi = ⌊

a
2 ⌋+

1
22pi+qi . Go to Step 6.

6. For j from i − 1 down to 0, set vj = vj+1 :
1

22pj+qj−1 .
7. Return the number v0.

The algorithm implicitly returns two different results:
1. For Step 3, the substrings Q0,Q1, . . . ,Qi−1,Gi partition the reduced version of G;
2. The value v0.

First, we illustrate the algorithm with the following example. Consider the position
G = 10011110110110111011110011. We highlight at each step which reduction is being
applied to the underlined digits; 2(a) is denoted by †, whereas 2(b) is denoted by ‡.
The algorithm gives that

10011110110110111011110011 = 10011110110110111011110011(†)
= 100111101101101111010011(†)
= 1001111011011101010011(‡)
= 10011110111001010011(‡)
= 100111110001010011(†)
= 1010110001010011.
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Step 3 partitions the last expression into 101(011)(000101)(0011) so that the ordinal
sum is given by

v0 = ((
1
2
:
1
2
) :

1
64
) :

1
8

=
10257
16348
.

Now let H = 01001110110111011101. The reductions give that

01001110110111011101 = 01001110110111011101
= 010011101110011101
= 0100111100011101
= 01010100011101.

The last expression partitions into 01(0101)(00011)(101) so that

v0 = ((−1 :
1
4
) :

1
32
) : 1

= −
893
1024
.

The next theorem is the main result of the paper.

Theorem 3.3 (Value theorem). Let G be a flipping coins position. If v0 is the value
obtained by the algorithm applied to G, then G = v0.

In the next section, we derive several results that will be used to prove Theo-
rem 3.3. The proof of Theorem 3.3 will appear in Section 4.1.

4 Best moves and reductions
The proofs in this section use induction on the options. An alternate but equivalent
approach is to regard the techniques as induction on the associated binary number of
the positions. The proofs require detailed examination of the positions, and we will
use notation suitable to the case being considered. Often, a typical position will be
written as a combination of generic strings and the substring under consideration.
For example, 111011000110101 might be parsed as (11101)(100011)(0101) and written
as α100011β or more compactly as α10312β.

We require several results before being able to prove Theorem 3.3. We begin by
proving a simplifying reduction, followed by the best moves for each player, and then
the remaining reductions used in the algorithm.
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As an immediate consequence of Theorems 3.2 and 2.2, we have the following:

Corollary 4.1. Let α, β, and γ be arbitrary binary strings. We then have that α1β0γ >
α0β1γ. Moreover, for an integer r ⩾ 0, we have that β10r1 > β.

Proof. Recall that by Theorem3.2 all flipping coins positions are numbers. Thus The-
orem 2.2 applies.

A Right option of α0β1γ is α1β0γ, and so we have that α1β0γ > α0β1γ. Similarly, a
Left option of β10r1 is β, and so we have that β10r1 > β.

Next,weprove the bestmoves for eachplayer. Rightwants to play the zero furthest
to the right and the 1 adjacent to it. Left wants to play the two ones furthest to the right.

Theorem 4.2. Let G be a flipping coins position, where in G, r and n, r ̸= n, are the
greatest indices such that dr = dn = 1. Let s be the greatest index such that ds = 0. Left’s
best move is to play (dr , dn), and Right’s best move is to play (ds, ds+1).

Proof. We prove this theorem by induction on the options. Note that we use the equiv-
alent binary representation of the game position. If there are three or fewer bits, then,
by exhaustive analysis, the theorem is true.

Let G be d1d2 . . . dn. We begin by proving Left’s best moves. Let r and n be the two
largest indices, where dr = dn = 1, and thus dk = 0 for r < k < n. Let i and j, i < j, be two
indiceswithdi = dj = 1.Weuse the notationG(di, dj, dr , dn) to highlight the salient bits.
The claimed best Left move is from G(1, 1, 1, 1) to G(1, 1,0,0). This must be compared to
any other Left move, represented by moving from G(1, 1, 1, 1) to G(0,0, 1, 1). That is, we
need to show that G(1, 1,0,0) − G(0,0, 1, 1) ⩾ 0.

For the moves to be different, at least three of i, j, r, n are distinct. We first assume
that the four indices are distinct. In this case, we have that i < j < r < n. By applying
Corollary 4.1 twice we have that

G(1, 1,0,0) > G(1,0,0, 1) > G(0,0, 1, 1).

We may assume then, without loss of generality, that j = r or j = n. If j = n, then
i < r, since there are two distinct moves. Now consider G(di, dr , dn) = G(1, 1, 1). By
Corollary 4.1 we have that if j = r, then G(1,0,0) > G(0,0, 1), and if j = n, then
G(1,0,0) > G(0, 1,0).

We now prove Right’s best move. There are more cases to consider. Let s be the
largest index such that ds = 0 and therefore ds+1 = 1. Let i, j, i < j be indices with
di = 0 and dj = 1. The claimed best move is ds, ds+1, and this must be compared to the
arbitrary Right move di, dj. For the moves to be different, there must be at least three
distinct indices.

The original position is either

G(di, dj, ds, ds+1) = G(0, 1,0, 1), i < s,
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or

G(ds, ds+1, dj) = G(0, 1, 1), i = s, j > s + 1.

We need to show eitherD = G(1,0,0, 1)−G(0, 1, 1,0) ⩾ 0 orD = G(1, 1,0)−G(1,0, 1) ⩾ 0,
respectively. Suppose Right plays in the first summand of D. Note that, by induction,
the best moves of Left and Right are known.
1. First, suppose j < s. By induction Right’s best move in the first summand of D is

to D′ = G(1,0, 1,0) − G(0, 1, 1,0). Since i < j, it follows that G(1,0, 1,0) is a Right
option of G(0, 1, 1,0), and thus D′ is positive by Corollary 4.1.

2. If j = s + 1, then there are only three distinct indices. The original game is
G(di, ds, ds+1) = G(0,0, 1) and D = G(1,0,0) − G(0, 1,0). Since G(1,0,0) is a Right
option of G(0, 1,0), it follows that D is positive by Corollary 4.1.

3. Suppose j > s + 1.
If i < s, then the original game is of the form

G = αdiβdsds+11
adj1

b = α0β011a11b, a ⩾ 0, b ⩾ 0,

and

D = α1β011a01b − α0β101a11b.

Two applications of Corollary 4.1 (applied to the highlighted terms) give

α1β011a01b ⩾ α0β111a01b ⩾ α0β101a11b.

If i = s, then

G = αdsds+11
adj1

b = α011a11b, a ⩾ 0, b ⩾ 0,

and

D = α111a01b − α101a11b.

One application of Corollary 4.1 (relevant terms again highlighted) gives

α111a01b ⩾ α101a11b.

Thus D ⩾ 0.

Next, we consider Rightmoving in the second summand ofD=G(1,0,0, 1)−G(0, 1, 1,0).
Note that by the choices of the subscripts, dℓ = 1 if n ⩾ ℓ ⩾ s + 1.
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1. If n > s + 2, then Right’s best move in the second summand is to change dn−1, dn
from (1, 1) to (0,0). Left copies this move in the first summand, and the resulting
difference game is nonnegative by induction.

2. Suppose n = s + 2.
i. If j < s + 1, then G(di, dj, ds, ds+1, ds+2) = G(0, 1,0, 1, 1) and D = G(1,0,0, 1, 1) −

G(0, 1, 1,0, 1). Right’s best move is to G(1,0,0, 1, 1) − G(0, 1,0,0,0). Left moves
toG(1,0,0,0,0)−G(0, 1,0,0,0). This is positive by Corollary 4.1, and Left wins.
For the next two subcases, exactly two 1s will occupy two of the four indexed
positions. Since Right is moving in the second summand, he is changing two
1s to two 0s. Thus Left’s best response for each case is to move in the first
summand, bringing the game to G(0,0,0,0) − G(0,0,0,0) = 0, and she wins.
For these cases, we only list the original position. The strategy for both cases
is as just described.

ii. If j = s + 1, then G(di, ds, ds+1, ds+2) = G(0,0, 1, 1) and D = G(1,0,0, 1) −
G(0, 1,0, 1).

iii. If j = s + 2, then G(di, ds, ds+1, ds+2) = G(0,0, 1, 1) and D = G(1,0, 1,0) −
G(0, 1,0, 1).

3. Now suppose n = s + 1.
i. If j < s + 1, then let ℓ < s + 1 be the largest index such that dℓ = 1.

If j < ℓ, then we have G(di, dj, dℓ, ds, ds+1)=G(0, 1, 1,0, 1) and D=G(1,0, 1,0, 1)−
G(0, 1, 1, 1,0). Right’s best move is to G(1,0, 1,0, 1) − G(0, 1,0,0,0). Left moves
toG(1,0,0,0,0)−G(0, 1,0,0,0), which is positive sinceG(1,0,0,0,0) is a Right
option of G(0, 1,0,0,0).
If j = ℓ, then G(di, dj, ds, ds+1) = G(0, 1,0, 1) and D = G(1,0,0, 1) − G(0, 1, 1,0).
Right’s best move is to G(1,0,0, 1) − G(0,0,0,0). Left moves to G(0,0,0,0) −
G(0,0,0,0) = 0, and Left wins.

ii. If j = s + 1, then G(di, ds, ds+1) = G(0,0, 1) and D = G(1,0,0) − G(0, 1,0). This is
positive by Corollary 4.1.

In all cases, Left wins Dmoving second, proving the result.

Suppose in a position that the bits of the best Right move are different from those
of the best Leftmove. The next lemma essentially says that the positions before and af-
ter onemove by each player are equal. It is phrased in away that is useful for reducing
the length of the position. Recall that a nontrivial position looks likeG = α01a0p10q1β,
where a, p, and q are nonnegative integers, and α and β are arbitrary binary strings.
For the algorithm, it suffices to prove the result for β being empty. However, it is useful,
certainly for a human, to reduce the length of the position as much as possible.

Lemma 4.3. Let α be an arbitrary binary string. If a ⩾ 0, then we have that α01111a =
α101a.
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Proof. Let H = α01111a − α101a. We need to show that H = 0. To simplify the proof,
in some cases the second player will play suboptimal moves. We have several cases to
consider.
1. If a ⩾ 2, then playing the same move in the other summand is a good response.

After two such moves, we have either

α01111a−2 − α101a−2 = 0 by induction

or

α10111a − α1101a−1 = α1101a−1 − α1101a−1 = 0 by induction.

2. If a = 1, then H = α01111 − α101. The cases are:
i. Left plays in the first summand to α011 − α101; then Right moves to α101 −

α101 = 0.
ii. Right plays in the second summand to α01111−α; then Left moves to α011−α.

Since (α011)L = α, we have α011 > α.
iii. Right plays in the first summand to α10111−α101; then Left responds to α101−

α101 = 0.
iv. Left plays in the second summand to α01111−α11; thenRightmoves to α10111−

α11 = α11 − α11 = 0 by induction.
3. If a = 0, then H = α0111 − α1. There are several cases to consider.

i. If Left or Right plays in the first summand, then the response is in the first
summand giving α1 − α1 = 0.

ii. If Left plays in the second summand, then since there is a Left move, we have
α = β01b, b ⩾ 0. If b > 0, then we have that β01b0111 − β01b1, and Left
moves to β01b013 − β101b. Here Right responds to β101b−1013 − β101b, which
by induction is equal to β101b−11 − β101b = 0. If b = 0, then we have that
β01b0111−β01b1 = β00111−β01, andwewant to show that Right canwinmov-
ing second. Left plays to β00111 − β10, and Right can respond to β01110 − β1,
which, by induction, is equal to β1 − β1 = 0.

iii. Right plays in the second summand. Then for a Right move to exist, α = β10a,
a ⩾ 0. Thus H = β10a0111 − β10a1, and Right moves to β10a0111 − β. Left
responds by moving to β00a011 − β. We then have that (β00a011)L = β, and
thus β00a011 > β. Hence we find that β00a011 − β > 0.

In all cases the second player wins H thereby proving the result.

There are reductions that can be applied to the middle of the position, but extra
conditions are needed.
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Lemma 4.4. Let α and β be arbitrary binary strings where either (a) β starts with a 1, or
(b) β starts with 0 and has an even number of 1s. We then have that

α0111β = α10β.

Proof. Let H = α0111β − α10β. We need to show that H = 0. We have several cases to
consider.
1. If β is empty or β = 1a, then H = 0 by Lemma 4.3. Therefore we may assume that β

has at least one 1 and one 0.
2. If β = 1γ1 (βmust end in a 1), then in both summands the best moves are pairs of

bits in β and −β. If each player copies the opponent’smove in the other summand,
then this leads to

α0111β − α10β → α0111β′ − α10β′,

and the latter expression is equal to 0 by induction.
3. If β ̸= 1γ1, then β = 0γ1, and γ1 has at least two 1s. The best moves are in β and −β

and are the best responses to each other. We then derive that

α0111β − α10β → α0111β′ − α10β′ = 0 by induction.

In all cases, H = 0, and this concludes the proof.

In Lemma 4.4 the conditions are necessary. An example is

3/8 = 011101 ̸= 1001 = 1/4.

Here β starts with a 0 and has an odd number of 1s.
These reduction lemmas are important in evaluating a position. The reduced po-

sitions will end in 011 or 01. By considering the exact end of the string, specifically, if
there are at least two 0s (in one special case, three 0s), then we can find an ordinal
sum decomposition. The decomposition is determined by where the third rightmost 1
is situated.

The next result is the start of the ordinal sum decomposition of a position. The
exponent is the value of the Right option of the substring being removed.

Lemma 4.5. Let α be an arbitrary binary string. If a ⩾ 1 and p and q are nonnegative
integers such that p + q ⩾ 1, then

α01a0p10q1 = α01a : 1
22p+q−1
.

Proof. We prove that

α01a0p10q1 − (α01a : 1
22p+q−1
) = 0.
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Note that in Theorem 2.4 we have that playing in the base of α01a : 1
22p+q−1 is worse than

playing in the exponent. We have two cases to consider.
1. Left plays first in the first summand, and Right responds in the second summand,

or Right plays first in the second summand, and Left responds in the first sum-
mand. In either case, Right has a move in the exponent (moves to 0) since 2p+q−
1 ⩾ 0. In either order the final position is given by

α01a − (α01a : 0) = α01a − α01a = 0.

2. Right plays first in the first summand, and Left responds in the second summand,
or Left plays first in the second summand, and Right responds in the first sum-
mand. In either case, we consider

α01a0p10q1 − (α01a : 1
22p+q−1
).

We have two subcases.
i. Assume that 2p + q − 1 ̸= 0. After the two moves, we have the position

α01a0r10s1 − (α01a : 1
22p+q−2
),

where 2r + s = 2p + q − 1. By induction we have that

α01a0r10s1 = α01a : 1
22r+s−1

= α01a : 1
22p+q−2
.

Thus α01a0r10s1 − (α01a : 1
22p+q−2 ) = 0.

ii. Assume that 2p + q − 1 = 0, that is, q = 1 and p = 0. The original position is

α01a101 − (α01a : 1).

After the twomoves, we have the position α01a11− α101a−1 (note that Left has
no move in the exponent). By Lemma 4.3, α01a11 = α101a−1. Hence we have
that α01a11 − α101a−1 = 0, and the result follows.

The values of the positions not covered by Lemma 4.5 are given next.

Lemma 4.6. Let a, p, and q be nonnegative integers. We then have that

0p1 = −p, and 1a0p10q1 = ⌊a
2
⌋ +

1
22p+q
.
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Proof. Let G = 0p1. Left has no moves, and Right has p. Note that in 1a, Left has ⌊ a2 ⌋
moves, and Right has none.

Now let G = 1a0p10q1. We proceed by induction on p + q. In all cases, Left’s move
is to 1a, that is, to ⌊ a2 ⌋. If p = 0 and q = 0, then G = 1

a11, which has the value ⌊ a2 ⌋+
1
20 =

⌊ a2 ⌋+1. Assume that p+q = k, k > 0. If q > 0, thenG = {⌊ a2 ⌋ | 1
a0p10q−11}. By induction

we have that

G = {⌊a
2
⌋
 ⌊

a
2
⌋ +

1
22p+q−1
} = ⌊

a
2
⌋ +

1
22p+q
.

If q = 0, then G = {⌊ a2 ⌋ | 1
a0p−11011}. By induction we have that

G = {⌊a
2
⌋
 ⌊

a
2
⌋ +

1
22(p−1)+1

} = ⌊
a
2
⌋ +

1
22p
,

and the result follows.

4.1 Proof of the value theorem

We now have all tools to prove Theorem 3.3.

Proof of Theorem 3.3. Let G be a flipping coins position. Step 2 reduces the binary
string. The reductions in Step 2(a) are those of Lemma 4.3 and Lemma 4.4(a). The re-
ductions in Step 2(b) are those of Lemma 4.4(b). In all cases, these lemmas show that
each new reduced position is equal to G.

In Step 3, we claim Gi ̸= β13 for any β. This is true for i = 0 by Lemma 4.3. If i > 0,
then at each iteration of Step 3, the last two 1s are removed fromGi−1. Now the original
reduced positionwould beG0 = β13γ, where γ has an even number of 1s. Lemma4.4(b)
would apply eliminating the three consecutive 1s. Now either Gi is one of 0r1, r ⩾ 0, or
1a0pi10qi1, a ⩾ 0, pi + qi ⩾ 0, or Gi = α01a0pi10qi1, pi + qi ⩾ 1, a > 0. In the latter case
the index is incremented, and the algorithm goes back to Step 3.

Step 5 applies when Step 3 no longer applies, i. e., Gi is one of 0r1, r ⩾ 0, or
1a0pi10qi1, a ⩾ 0, pi + qi ⩾ 0. Now vi is the value of Gi as given in Lemma 4.6.

Lemma 4.5 shows that for each j < i, Gj = Gj+1 :
1

22pj+qj , the evaluation in Step 6.
Thus the value of G is v0, and the theorem follows.

The question “Whowins 0101011111+ 1101100111+0110110110111 and how?” from
Section 1 can now be answered.

First, we have that

0101011111 = 01011011 = (01011 : 1
2
) = ((01 : 1

2
) :

1
2
)

= ((−1 : 1
2
) :

1
2
) = −

11
16
,
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1101100111 = 1101101 = (1101 : 1) = ( 1
2
: 1) = 3

4
,

0110110110111 = 0110110111 = 0110111 = 0111 = 0.

Thus we have that

0101011111 + 1101100111 + 0110110110111 = − 11
16
+
3
4
+ 0 = 1

16
.

Left’s only winning move is to

01010111 + 1101100111 + 0110110110111 = − 3
4
+
3
4
+ 0 = 0.

Her best move in the second summand gives a sum of − 1116 +
5
8 + 0 = −

1
16 , and in the

third, it gives − 1116 +
3
4 −

1
8 = −

1
16 . Left loses both times.

5 Future directions
Natural variants of flipping coins involve increasing the number of coins that can
be flipped from two to three or more. A brief computer search suggests that the only
version where the values are numbers is the game in which Left flips a subsequence
of all 1s and Right flips a subsequence of 0s ended by a 1. We conjecture that a simi-
lar ordinal sum structure will arise in these variants. Other variants have values that
include switches, tinies, minies, and other three-stop games. However, some variants,
when the reduced canonical values are considered, only seem to consist of numbers
and switches. A more thorough investigation should shed light on their structures.
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Kyle Burke, Matthew Ferland, Michael Fisher, Valentin Gledel, and
Craig Tennenhouse
The game of blocking pebbles

Abstract: Graph pebbling is a well-studied single-player game on graphs. We intro-
duce the game of blocking pebbles, which adapts Graph Pebbling into a two-player
strategy game to examine itwithin the context of combinatorial game theory. Positions
with game values matching all integers, all nimbers, and many infinitesimals and
switches are found. This game joins the ranks of other combinatorial games ongraphs,
games with discoveredmoves, and partisan games with impartial movement options.
The computational complexity of the general case is shown to be PSPACE-hard.

1 Introduction

Graph pebbling is an area of current interest in graph theory. In an undirected graph
G, a root vertex r is designated. Heaps of pebbles are placed on the vertices of G, with
a legal move consisting of choosing a vertex vwith at least two pebbles, removing two
pebbles, and placing a single pebble on a neighbor of v. The goal is to pebble or place a
pebble on the vertex r. The pebbling number of G, denoted π(G), is the fewest number
of pebbles necessary so that any initial distribution ofπ(G)pebbles among the vertices
of G, and any vertex of G chosen as the root has a sequence of moves resulting in the
root being pebbled.

Introduced by Chung [5] in 1989, a number of results on pebbling of different fami-
lies of graphs have been found. Of note are pebbling numbers of paths, cycles [13], and
continuing work on a conjecture of Graham’s on the Cartesian products of graphs [5].
Time complexity is also known, both for determination of π(G) and for the minimum
number of moves in a successful pebbling solution, for general graphs. See [9] for a
survey of results in graph pebbling.

The results and language here are in reference to combinatorial game theory
(CGT). The nim sum, also called the digital sum, of nonnegative integers is the result of
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Figure 2.1: A BRG-hackenbush position with blue, red, and green represented by thin, thick black,
and grey lines, respectively.

their sum in binary without carry. This is denoted x1⊕x2 if there are only two numbers,
and in the case of more, we use the notation∑⊕xi. For more notation and background
on the computation of CGT game values, we refer the reader to [3, 1].

In Section 2, we introduce a two-player combinatorial ruleset based on graph peb-
bling, with subsequent sections addressing results on both impartial and partisan po-
sitions. This game involves strategic play that results in blocking the moves of one’s
opponent. Amazons is another well-known game, which also involves a notion of
blocking. However, in Amazons the blocking is always permanent (burnt square) or
temporary (queen occupies square). Due to the standard pebbling toll in Blocking
Pebbles, each pebble only has mobility for a finite time.

There are several pebbling games that appear in the literature [10, 14, 11]. The one
which ismost similar to the game introducedherewas originatedbyLagarias andSaks
in 1989 to solve a problem of Erdős. These games do not include the nontoll moves
across an edge in the “wrong direction.” This type of move is unique to Blocking
Pebbles (as far as we are aware). There are also other pebbling games older than that
introduced by Lagarias and Saks [10]. These games bear no resemblance to Blocking
Pebbles and are used to study graph algorithm complexity.

2 Ruleset and play

A game of blocking pebbles consists of a directed acyclic graph G and a 3-tuple
(b, r, g) at each vertex of G, representing the numbers of blue, red, and green pebbles.
Left may move blue and green pebbles, whereas Right may move red and green. This
follows one convention of BRG-hackenbush (see Fig. 2.1)wherein playersmay remove
an edge of their own color or the neutral color green. In BRG-hackenbush all dyadic
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(2,0,0)

(0,1,1) (0,0,0) (0,1,1)

(0,0,0)

(0,1,1) (1,0,0) (0,1,1)

(2,0,0)

(0,1,1) (0,0,1) (0,1,0)

A

B C D

Figure 2.2: A position in blocking pebbles and two of Left’s options.

rationals and nimbers are achievable game values. In addition, when allowing for in-
finite positions, all real numbers and ordinals are achievable values, but switches are
not. By contrast, in blocking pebbles players may move any number of pebbles at a
single vertex within certain constraints on the graph and pebble distribution. In this
way, blocking pebbles is similar to graph nim [8, 4].

Ruleset 1. Given a tuple of the form (b, r, g) at each vertex of a directed acyclic graph
G, Left can make one of the following two moves from the vertex v.
1. Move a positive number of blue and/or green pebbles from v to an in-neighbor

of v.
2. Remove two blue and/or green pebbles from v and place one on an out-neighbor

of v and discard the other.

No blue pebbles can bemoved to a vertexwith a nonzero number of red pebbles. Right
has the obvious symmetric moves.

Play proceeds following thenormal play convention,where the last player tomake
a legal move wins.

Note that if Left removes one blue and one green pebble from v, then she may
add the green to v’s out-neighbor. However, it is always preferable to instead add the
blue as this results in a position with more blue pebbles and increases the number of
vertices blocked by Left.

As anexample, consider theposition inFigure 2.2. At the top is aposition inblock-
ing pebbles. Note that Left cannot move any blue pebbles from vertex A to B since B
already contains a red pebble. However, Left can move a single blue pebble from A to
C at a cost of one blue pebble. She can also move the one green pebble from D to C.
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An interesting property of this ruleset is the existence of discoveredmoves, similar
to discovered attacks in chess. A player may be unable to move at one point in the
game, but after their opponent moves, the game is once again playable by the first
player. As an example, consider a simple out-star with two red pebbles on the source
and a single blue pebble on a sink node. Left has nomoves, but once Rightmoves, Left
can move their pebble to the source. The presence of discovered moves precludes this
being a strong placement game. For more on these types of games, see [7] and [12].

3 Blue-red-green blocking pebbles
In this section, we will address some families of game values that are achievable in
blocking pebbles. We will only address finite graphs, and hence we will not en-
counter nondyadic rationals. This is similar to BRG-hackenbush, described in Sec-
tion 1. Due to the complexity of analysis,wewill also restrict our graphs to orientations
of stars, paths, and small graphs.

We begin with a simple result.

Theorem 3.1. For every k ∈ ℤ, there is a position in blocking pebbles with value k.

Proof. Let G be a single arc directed from u to v. If k > 0, then place 2k blue pebbles
and a single red pebble on u, and no pebbles on v. Switch red and blue pebbles if
k < 0. This allows for k-many moves for Left by moving blue pebbles from u to v, but
the presence of a red pebble on u prevents moving any blue pebbles in the reverse
direction. Zero is trivially achieved by a graph with no pebbles or by any number of
other pebble distributions.

Regarding infinitesimals, ↓ is realized by an out-star with two leaves; that is, a ver-
tex uwith out-neighbors v1, v2. Vertex v1 has a blue pebble, and v2 has one red and one
green pebble. Left can move the blue or green pebble to u, which is simple to identify
as ∗. Right, however, can move the green to the source vertex u resulting in ∗, the red
to u resulting in zero, or both red and green pebbles to u, which is also a zero position.
The initial position is {∗ | 0, ∗} = ↓.

Due to the blocking rule, blocking pebbles is relatively unique among partisan
combinatorial games. In BRG-hackenbush the presence of amove for one player does
not inhibit moves for the other. In clobber, another two-player partisan combinato-
rial game (see [2]), the presence of a red piece actually encourages movement for Left,
and vice versa. This is a property common to all dicot games. However, in blocking
pebbles a single well-placed blue pebble, for example, can cut off many of Right’s
moves. The only other well-known ruleset with this property appears to be Amazons,
which does not allow for discovered moves. It is natural, then, that many positions
result in game values that are switches.
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Parts (1) and (4) of the next result show that every integer switch is achievable
with a specified pebbling configuration on the out-star K1,2.

In the following lemma, we use the following notation for a bLue/Red pebbling
configuration of the out-star K1,2: [(a, b), [c, d], [e, f ]] is the configuration with a blue
pebbles and b red pebbles on the central vertex, c blue pebbles and d red pebbles on
one of the pendant vertices, and e blue pebbles and f red pebbles on the other pendant
vertex.

Lemma 3.2. The following results pertain to a given blocking pebbles configuration
on the out-star K1,2.
1. For c ≥ 1, the position [(a, b), [0, c], [0,0]] has value −⌊ b2 ⌋ if a = 1 and value {⌊

a
2 ⌋ −

1 | ⌊ a−b2 ⌋ + 1} if a ≥ 2,
2. for a, b, c, d ≥ 1, the position [(a, b), [c,0], [0, d]] has value ⌊ a−b2 ⌋,
3. for a, b, c, d, e ≥ 1, the position [(a, b), [c,0], [d, e]] has value ⌊ a−12 ⌋,
4. for a, b, c, d ≥ 1, the position [(0,0), [a, b], [c, d]] has value {a + c − 1 | − (b + d − 1)},
5. for a, b, c ≥ 1, the position [(0,0), [a, b], [0, c]] has value {a − 1 | − (3(b + c) − 5)},
6. for a, b ≥ 1, the position [(0,0), [a, b], [0,0]] has value {3a − 5 | − (3b − 5)},
7. for b ≥ 1, [(1,0), [0, b], [0,0]] and [(2,0), [0, b], [0,0]] are both zero positions.

Proof. For Case (1), the position [(1, 1), [c,0], [0,0]] is the zero position. It is also read-
ily checked that the position [(1, 2), [c,0], [0,0]] has value 0.

If b > 2, then Left has no move from [(1, b), [c,0], [0,0]]. From [(1, b), [c,0], [0,0]]
Rightmaymove to the position [(1, b−2), [c,0], [0, 1]], whichhas value ⌊−b+12 ⌋ = −⌊

b
2 ⌋+1

by induction. Hence [(1, b), [c,0], [0,0]] has value −⌊ b2 ⌋ as required.
If a ≥ 2, then Left’s best move from [(a, b), [c,0], [0,0]] is to [(a− 2, b), [c,0], [1,0]],

which has value ⌊ a−22 ⌋ (Right has no move from this position, and Left has ⌊ a−22 ⌋
moves). Right’s only move is to [(a, b − 2), [c,0], [0, 1]], which has value ⌊ a−b+22 ⌋, also
by induction. Hence [(a, b), [c,0], [0,0]] has value {⌊ a2 ⌋ − 1|⌊

a−b
2 ⌋ + 1} when a ≥ 2.

For Case (2), it is clear that the position [(1, 1), [c,0], [0, d]] is a zero position. If
a ≥ 2, then from [(a, 1), [c,0], [0, d]] Left has a move to [(a − 2, 1), [c + 1,0], [0, d]], and
Right has no move. Thus [(a, 1), [c,0], [0, d]] has value ⌊ a−12 ⌋ by induction.

A similar argument establishes the claim that [(1, b), [c,0], [0, d]] has value ⌊ 1−b2 ⌋.
Now if a, b ≥ 2, then from [(a, b), [c,0], [0, d]] Left has the move to [(a − 2, b), [c +

1,0], [0, d]], and Right has the move to [(a, b − 2), [c,0], [0, d + 1]]. By induction we see
that [(a, b), [c,0], [0, d]] has value

{⌊
a − 2 − b

2
⌋
 ⌊

a − b + 2
2
⌋} = {⌊

a − b
2
⌋ − 1
 ⌊

a − b
2
⌋ + 1} = ⌊a − b

2
⌋.

For Case (3), note that if a = 1, then there are no moves for either player; the
formula given correctly yields the game value 0. If a = 2, then from the position
[(2, b), [c,0], [d, e]] Left has the move to [(0, b), [c + 1,0], [d, e]]. From here Left has no
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a

b

c

Figure 2.3: A transitive triple graph.

move, and Right has e moves. Thus the position [(0, b), [c + 1,0], [d, e]] has value −e.
Hence [(2, b), [c,0], [d, e]] has value 0, as required.

If a > 2, then from [(a, b), [c,0], [d, e]] Left can move to [(a − 2, b), [c + 1,0], [d, e]],
which has value ⌊ a−32 ⌋ = ⌊ a−12 ⌋ − 1 by induction. Right has no moves from [(a, b), [c,0],
[d, e]]. Hence [(a, b), [c,0], [d, e]] has value

{⌊
a − 1
2
⌋ − 1
} = ⌊

a − 1
2
⌋,

as desired.
For Case (4), note that Left’s only move from [(0,0), [a, b], [c, d]] is to [(1,0), [a −

1, b], [c, d]]. This last position has value a + c − 1 by induction. Similarly, Right’s only
move from [(0,0), [a, b], [c, d]] is to [(0, 1), [a, b−1], [c, d]]. This position has value−(b+
d − 1) by induction. It now follows that [(0,0), [a, b], [c, d]] has value

{a + c − 1 | −(b + d − 1)}.

Cases (5) and (6) follow from the previous result, and Case (7) is trivial.

We now consider a transitive 3-cycle graph (Fig. 2.3) with vertices a, b, c and arcs
ab, ac, and bc. The pebbling configurations considered below are written so that the
first array entry corresponds to the source vertex a, the second corresponds to b, and
the third to the sink vertex c.

An interesting result concerning the transitive 3-cycle cropsup from the somewhat
unnatural starting position where 1 blue pebble and k red pebbles occupy the same
starting vertex. Specifically, we prove the following:

Theorem 3.3. For k > 1, the pebbling configuration on the transitive 3-cycle given by
[[0,0], [0,0], [1, k]] has game value (3 − 3k)+k−4.

We see the game tree of the base case in Figure 2.4.
To prove this result, we consider several positions, which arise as subpositions of

the above pebbling configuration.

Lemma 3.4. Consider the following pebbling configurations of the transitive 3-cycle T.
Then the position
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[[0,0], [0,0], [1, 1]]
[[0,0], [1,0], [0, 1]][[1,0], [0,0], [0, 1]] [[0, 1], [0,0], [1,0]][[0,0], [0, 1], [1,0]]

[[1,0], [0,0], [0, 1]][[0, 1], [1,0], [0,0]][[1,0], [0, 1], [0,0]][[0, 1], [1,0], [0,0]][[1,0], [0, 1], [0,0]][[0, 1], [0,0], [1,0]]
[[1,0], [0, 1], [0,0]] [[0, 1], [1,0], [0,0]]

Figure 2.4: Game tree of the position [[0,0], [0,0], [1, 1]] on the transitive 3-cycle.
1. [[1,0], [0, j], [0, k]] has value −3k − 2j + 2 if at least one of j or k is ≥ 1;
2. [[0, j], [1,0], [0, k]] has value −3k − 2j + 3 if j, k ≥ 1;
3. [[0,0], [1,0], [0, k]] has value −3k + 3 if k ≥ 2 and value − 12 if k = 1;
4. [[0, j], [1,0], [0,0]] has value −2j + 3 if j ≥ 2 and value 0 if j = 1;
5. [[0, j], [0, k], [1,0]] has value −3k − 2j + 4 if j, k ≥ 1;
6. [[0, j], [0,0], [1,0]] has value −2j + 4 if j ≥ 2 and value 1 if j = 1;
7. [[0,0], [0, k], [1,0]] has value {−2k + 2 | −3k + 5} if k ≥ 2 and value 1

2 if k = 1;
8. [[0,0], [0, j], [1, k]] has value {−3k − 2j + 2 | −4k − 3j + 5} if j ≥ 2 and k ≥ 1 and value
{−3k | −4k + 3} if j = 1 and k ≥ 1;

9. [[0, j], [0,0], [1, k]] has value {−3k − 2j + 3 | −4k − 2j + 5} if j, k ≥ 1; and
10. [[0, ℓ], [0, j], [1, k]] has value −4k − 3j − 2ℓ + 4 if j, k, ℓ ≥ 1.

Proof. All claims will be proven simultaneously using induction (on the height of the
game tree). Base cases are easily checked and left to the interested reader.

Case (1): From [[1,0], [0, j], [0, k]] Left has no move; Right’s best move is to [[1,0],
[0, j + 1], [0, k − 1]]. By induction this position has value −3k − 2j + 3 by (1). Hence
[[1,0], [0, j], [0, k]] has value

{ | −3k − 2j + 3} = −3k − 2j + 2,

as desired.

Case (2): Left again has no move from the starting position. Right’s best move is to
[[0, j + 1], [1,0], [0, k − 1]]. If k = 1, then this position has value −2j + 1 by (4); if k ≥ 2,
then this position has value −3k − 2j + 4 by (2). In either case, [[0, j], [1,0], [0, k]] has
value −3k − 2j + 3.

Case (3): First, suppose that k ≥ 2. Left can move to [[1,0], [0,0], [0, k]] from
[[0,0], [1,0], [0, k]]. From (1), this position has value −3k + 2. Right’s best move is
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to [[0, 1], [1,0], [0, k − 1]] with value −3k + 4. Hence [[0,0], [1,0], [0, k]] has value

{−3k + 2 | −3k + 4} = −3k + 3.

If k = 1, then Left’s only move becomes [[1,0], [0,0], [0, 1]], which has value
−1 by (1), and Right’s only move is to [[0, 1], [1,0], [0,0]] with value 0 by (4). Thus
[[0,0], [1,0], [0, 1]] has value − 12 .

Case (4): For j ≥ 3, Left has no move from [[0, j], [1,0], [0,0]], and Right can move
to [[0, j − 2], [1,0], [0, 1]] with value −2j + 4, by (2), giving [[0, j], [1,0], [0,0]] the game
value of −2j + 3.

If j = 2, thenRight’smove is to [[0,0], [1,0], [0, 1]]with value− 12 . Thus [[0, 2], [1,0],
[0,0]] has a value of −1(= −2 ⋅ 2 + 3).

Finally, if j = 1, then neither Left nor Right has a move from [[0, 1], [1,0], [0,0]],
and so its value is 0.

Case (5): Let k ≥ 2. Left has no move, and Right can move to [[0, j + 1], [0, k −
1], [1,0]] (Right’s best move). By induction this position has value −3k − 2j + 5 giving
[[0, j], [0, k], [1,0]] the value −3k − 2j + 4.

If k = 1, then, again, Left has no move. However, Right can move to [[0, j +
1], [0,0], [1,0]]. By (6) this position has value −2j+ 2, thus giving [[0, j], [0, 1], [1,0]] the
value −2j + 1.

Case (6): First, we consider the case j > 2. Left’s only move is to [[0, j], [1,0], [0,0]].
By (4) this position has value −2j + 3. Right’s only move is to [[0, j − 2], [0, 1], [1,0]]. By
(5) this position has value −2j + 5. Hence, if j > 2, then [[0, j], [0,0], [1,0]] has value
−2j + 4.

If j = 2, [[0, 2], [1,0], [0,0]] has value −1 by (4). Right’s move to [[0,0], [0, 1], [1,0]]
has value 1

2 by (7). Thus [[0, 2], [0,0], [1,0]] has value 0.
Finally, if j = 1, then Left’s move [[0, 1], [1,0], [0,0]] has value 0, and Right has no

moves. Thus [[0, 1], [0,0], [1,0]] has value 1.

Case (7): If k ≥ 2, Left’s move to [[1,0], [0, k], [0,0]] has value −2k + 2 by (1). In
this case, Right’s move to [[0, 1], [0, k − 1], [1,0]] has value −3k + 5 by (5). Therefore
[[0,0], [0, k], [1,0]] has value

{−2k + 2 | −3k + 5}.

If k = 1, then [[1,0], [0, 1], [0,0]] has value 0, and [[0, 1], [0,0], [1,0]] has value 1.
Hence [[0,0], [0, 1], [1,0]] has value 1

2 .

Case (8): First suppose j ≥ 2 and k ≥ 2. Then Left’s move to [[1,0], [0, j], [0, k]] has
value −3k−2j+2 by (1). Right has two sensible moves: one to [[0, 1], [0, j], [1, k− 1]] and
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one to [[0, 1], [0, j − 1], [1, k]]. The former has value −4k − 3j + 6 by (10), and the latter
has value −4k − 3j + 5, also by (10). Thus [[0,0], [0, j], [1, k]] has value

{−3k − 2j + 2 | −4k − 3j + 5}.

Next, we look at the case where j ≥ 2 and k = 1. Left’s move to [[1,0], [0, j], [0, 1]]
has value −2j − 1 by (1). Right’s move to [[0, 1], [0, j], [1,0]] has value −3j + 2 by (5).
Right’s move to [[0, 1], [0, j− 1], [1, 1]] has value −3j+ 1 by (10). Hence [[0,0], [0, j], [1, 1]]
has value

{−2j − 1 | −3j + 1}.

Wenow consider the case j = 1 and k ≥ 2. Left’s onlymove is to [[1,0], [0, 1], [0, k]].
This position has value −3k by (1). Right’s move to [[0, 1], [0,0], [1, k]] has value {−3k +
1 | −4k + 3} by (9), and his move to [[0, 1], [0, 1], [1, k − 1]] has value −4k + 3 by (10).
Therefore the position [[0,0], [0, 1], [1, k]] has value

{−3k | {−3k + 1 | −4k + 3},−4k + 3}.

It can be shown that the option {−3k + 1 | −4k + 3} is reversible. Hence the canonical
form of the position [[0,0], [0, 1], [1, k]] has value

{−3k | −4k + 3}.

Finally, we consider the case j = 1 and k = 1. Left’s move from [[0,0], [0, 1], [1, 1]]
to [[1,0], [0, 1], [0, 1]] has value −3 by (2). Right’s move to [[0, 1], [0,0], [1, 1]] has value
{−2 | −1} = − 32 . The move to [[0, 1], [0, 1], [1,0]] has value −1 by (5). Thus the position
[[0,0], [0, 1], [1, 1]] has value {−3 | − 32 } = −2.

Case (9): First, suppose that k ≥ 2. Then Left’s move from [[0, j], [0,0], [1, k]] to
[[0, j], [1,0], [0, k]] has value −3k−2j+3 by (2). Right’s bestmove is to [[0, j], [0, 1], [1, k−
1]] with value −4k − 2j + 5, thus giving the position [[0, j], [0,0], [1, k]] the game value
of

{−3k − 2j + 3 | −4k − 2j + 5}.

If k = 1, then Left’s only move has value −2j, again by (2). Right’s move to
[[0, j], [0, 1], [1,0]] has value −2j + 1 by (5). Hence [[0, j], [0,0], [1, 1]] has value

{−2j | −2j + 1} = (−4j + 1)/2.

Case (10): Let j = 1 and k ≥ 2. Left has no move from this starting position, and
Right has three sensible moves. Right can move to [[0, ℓ + 1], [0,0], [1, k]] with value
{−3k − 2ℓ+ 1 | −4k − 2ℓ+ 3} by (9), or to [[0, ℓ+ 1], [0, 1], [1, k − 1]]with value −4k − 2ℓ+ 3
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by (10), or to [[0, ℓ], [0, 2], [1, k]]with value −4k−2ℓ+2 by (10). The lastmove is optimal
for Right, and hence the position [[0, ℓ], [0, 1], [1, k]] has game value −4k − 2ℓ + 1, as
required.

If j = 1 and k = 1, then Left has no move from [[0, ℓ], [0, 1], [1, 1]], and Right has
again three sensiblemoves. Right’smove to [[0, ℓ+1], [0,0], [1, 1]] has value (−4ℓ−3)/2
by (9), Right’s move to [[0, ℓ], [0, 2], [1,0]] has value −2ℓ− 2 by (5), and Right’s move to
[[0, ℓ+1], [0, 1], [1,0]] has value −2ℓ−1 by (5). Therefore the position [[0, ℓ], [0, 1], [1, 1]]
has value −2ℓ − 3.

If j ≥ 2 and k = 1, then Left has no move from [[0, ℓ], [0, j], [1, 1]], and Right has
threemoves, eachnot costingapebble tomake:Right canmove to [[0, ℓ+1], [0, j], [1,0]]
with value−3j−2ℓ+2 by (5), Right canmove to [[0, ℓ], [0, j+1], [1,0]]with value−3j−2ℓ+1
by (5), and Right can move to [[0, ℓ + 1], [0, j − 1], [1,0]] with value −3j − 2ℓ + 1 by (10).
Hence the position [[0, ℓ], [0, j], [1, 1]] has value −3j − 2ℓ.

Finally, if j ≥ 2 and k ≥ 2, then, as in every other subcase, Left has no move.
Right has his usual threemoves: Right canmove to [[0, ℓ+1], [0, j], [1, k−1]]with value
−4k − 3j − 2ℓ + 6 by (10), to [[0, ℓ], [0, j + 1], [1, k − 1]]with value −4k − 3j − 2ℓ + 5, or to
[[0, ℓ+ 1], [0, j − 1], [1, k]]with value −4k − 3j − 2ℓ+ 5. Thus [[0, ℓ], [0, j], [1, k]] has game
value −4k − 3j − 2ℓ + 4.

With Lemma 3.4 in hand, we can now prove Theorem 3.3.

Proof. Left has twomoves from the starting position [[0,0], [0,0], [1, k]]: Left canmove
to [[1,0], [0,0], [0, k]]with value −3k + 2 by Lemma 3.4(1) or to [[0,0], [1,0], [0, k]]with
value −3k + 3 by 3.4(3). The latter move is clearly the optimal move for her.

There are two types of moves that Right canmake: Right canmove to [[0, ℓ], [0,0],
[1, k − ℓ]], where 1 ≤ ℓ ≤ k, or to [[0,0], [0, j], [1, k − j]], where 1 ≤ j ≤ k.

First suppose that Right moves to [[0, ℓ], [0,0], [1, k − ℓ]], where 1 ≤ ℓ < k. This
position has value

{−3k + ℓ + 3 | −4k + 2ℓ + 5} = (−3k + ℓ + 3) + {0 | −k + ℓ + 2}

by Lemma 3.4(9).
Next, suppose that Right moves to [[0, k], [0,0], [1,0]]. This position has value

−2k + 4

by Lemma 3.4(6).
We now consider the other type of move for Right. Suppose that Right moves to

[[0,0], [0, j], [1, k − j]], where 1 < j < k. This position has value

{−3k + j + 2 | −4k + j + 5} = (−3k + j + 2) + {0 | −k + 3}

by Lemma 3.4(8).
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Next, suppose that Right moves to [[0,0], [0, 1], [1, k − 1]]. This position has value

{−3k + 3 | −4k + 7} = (−3k + 3) + {0 | −k + 4}

by Lemma 3.4(8).
Finally, suppose that Right moves to [[0,0], [0, k], [1,0]]. This position has value

{−2k + 2 | −3k + 5} = (−2k + 2) + {0 | −k + 3}

by Lemma 3.4(7).
We will now show that the move to [[0,0], [0, 1], [1, k − 1]] is Right’s optimal move.

First note that since {0 | −k + 4} ≤ 1, it follows that

(−3k + 3) + {0 | −k + 4} ≤ −3k + 4 < −2k + 4.

Next, observe that if k = 2, then

(−3 ⋅ 2 + 3) + {0 | −2 + 4} = −2 < −3
2
= (−2 ⋅ 2 + 2) + {0 | −2 + 3}.

If k ≥ 3, then −k + 2 < {0 | −k + 3}, and so it follows that

−3k + 4 = (−2k + 2) + (−k + 2) < (−2k + 2) + {0 | −k + 3}.

Hence

(−3k + 3) + {0 | −k + 4} < (−2k + 2) + {0 | −k + 3}

for k ≥ 2.
To show that

(−3k + 3) + {0 | −k + 4} < (−3k + ℓ + 3) + {0 | −k + ℓ + 2}, ℓ ≥ 1,

it suffices to show that {ℓ | −k+2ℓ+2}+{k−4 | 0} > 0. To this end, note that Left’smove
to ℓ+ {k −4 | 0} is a winning first move. Right’s move to −k + 2ℓ+ 2+ {k −4 | 0} leads to
(−k+2ℓ+2)+(k−4) = 2ℓ−2 ≥ 0 after Left’s response. Right’s move to {ℓ | −k+2ℓ+2}+0
is not better, leading to ℓ + 0 = ℓ ≥ 1.

Our last task is showing that

(−3k + 3) + {0 | −k + 4} < (−3k + j + 2) + {0 | −k + 3} for j > 1.

This can be established by showing that {j − 1 | −k + j + 2} + {k − 4 | 0} > 0. The
proof of this fact is virtually identical to that of the similar statement in the preceding
paragraph, and so it will be omitted.
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It now follows that the value of the position [[0,0], [0,0], [1, k]] is

{−3k + 3 | −3k + 3 + {0 | −k + 4}} = (−3k + 3) + {0 | {0 | −(k − 4)}} = (−3k + 3) +k−4 .
In the table below, we present, without proof, other interesting game values

achievable as bLue/Red Blocking Pebbles positions.

Underlying Digraph Pebbling Configuration Game Value

Transitive 3-Cycle [[1,0], [2,4], [0,0]] 1/4
Transitive 3-Cycle [[3,1], [0,0], [0,1]] 1/2
Transitive 3-Cycle [[2,3], [0,0], [1,0]] 3/4
Transitive 3-Cycle [[4,4], [0,0], [0,0]] ±1/2
Transitive 3-Cycle [[3,5], [0,0], [1,0]] ↑ ∗
Transitive 3-Cycle [[3,5], [2,0], [0,0]] ↑[2] ∗
Directed P3 [[0,0], [2,2], [0,0]] ∗2
We end this section with a short discussion of the differences between blocking peb-
bles and BRG-hackenbush.

As noted above, the blocking mechanic of blocking pebbles results in a prepon-
derance of switches, whereas BRG-hackenbushhas no such positions. Also, whilewe
would be surprised to find a dyadic that is not the game value for some blocking peb-
bles position, we have found many dyadic rationals difficult to construct, even with
the use of computational methods. BRG-hackenbush positions, on the other hand,
are easily constructed that have rational noninteger game values.

3.1 Green-only games

The game of Blocking Pebbles restricted to green pebbles is an impartial game,
with positions admitting only nimbers as game values. The interested reader will seek
out [3, 1] formore on Sprague–Grundy theory andnimbers.Whereas there is no use for
players to employ a blocking strategy, the game remains mathematically interesting
for its connections to its roots in graph pebbling.

First, we consider in-stars and out-stars, with green pebble distributions denoted
by ⟩g0, g1, . . . , gn⟨ and ⟨g0, g1, . . . , gn⟩, respectively. In each case, gi ≥ 0, and g0 is the
number of pebbles on the center vertex.

Theorem 3.5. The value of an in-star with distribution ⟩g0, g1, . . . , gn⟨ is ∗g0.

Proof. We will demonstrate this using induction on g0. First, note that if g0 = 0, then
any move of a green pebble to the center from a leaf, resulting in the loss of a pebble,
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can be countered by returning it to the same leaf. Next, we note that any move from
⟩g0, g1, . . . , gn⟨ results in a change to g0 and that there is a move from this position that
results in any number of pebbles on the center node strictly less than g0. Hence the
in-star is equivalent to a nim heap of size g0.

The nim dimension of a ruleset is the greatest integer k where a position in the
ruleset has value ∗2k−1 but no position has value ∗2k . A ruleset in which the nim di-
mension is unbounded is said to have infinite nim dimension, as Santos and Silva [6]
showed is true for konane. Theorem 3.5 implies that green blocking pebbles also
has infinite nim dimension, whereas the nim dimension of blue-red blocking peb-
bles is still unknown.

The fact revealed in Theorem 3.5 that an in-star is equivalent to a single nim heap
can be generalized to multiple heaps with an out-star.

Theorem 3.6. The value of an out-star with distribution ⟨g0, g1, . . . , gn⟩ is ∗(∑
n
i=1 ⊕gi),

that is, the nim sum of all heaps.

Proof. We note that this game is analogous to nim, except that instead of removing
pebbles from a heap, they are moved to the center at no cost. The player with the ad-
vantage simply plays the winning Nim strategy. Any move of a pebble from the center
vertex to a leaf can immediately be reversed at a net cost of one pebble from the cen-
ter. Thus the number of pebbles at the center does not contribute to the game value,
which equals the nim sum of the leaf heaps.

On a path, we get a similar result.

Theorem 3.7. If (g1, . . . , gn) is a distribution of green pebbles along a path directed left
to right, then the game value is ∗(∑⊕g2k).

Proof. An empty path is trivial, so let us assume that the claim is false and consider
the set C of all counterexamples with the fewest total number of pebbles. From C
let (g01 , g02 , . . . , g0n ) be the last when ordered lexicographically. Any move from this
position either decreases the total number of pebbles or increases its lexicographic
position. Therefore all options of (g01 , g02 , . . . , g0n ) are outside C, and hence the claim
holds for them. Since each has a digital sum of even terms that differs from (∑⊕ g2k),
and all smaller sums are realized through nim moves on the even heaps, we see
that (g01 , g02 , . . . , g0n ) also satisfies the claim. Therefore, C is empty, and the claim is
true.

Note that in Theorems 3.5, 3.6, and 3.7 the strategy is equivalent to nim. In fact, in
these particular cases, blocking pebbles is very similar to the game of poker nim,
wherein players make nimmoves but retain any removed pebbles, and may add them
to a heap instead of removing. Although poker nim is loopy and blocking pebbles
is not, both games played optimally have the same strategy and the same reciprocal
moves for non-nim moves.


