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Preface: Multivariate algorithms and
information-based complexity

The authors of this book include several of the invited speakers in the workshopMul-
tivariate Algorithms and Information-Based Complexity, which was part of the RICAM
Special Semester onMultivariate Algorithms and their Foundations in Number Theory
in the fall of 2018. The special semester consisted of four larger and two smaller work-
shops on various topics ranging fromPseudo-Randomness andDiscrepancy Theory to
Information-Based Complexity and Uncertainty Quantification. This book arises from
the second workshop, which took place at the Johann Radon Institute for Computa-
tional andAppliedMathematics (RICAM) of the Austrian Academy of Sciences in Linz,
Austria, on November 5–9, 2018.

Multivariate continuous problems occur in a multitude of practical applications,
such as physics, finance, computer graphics, and chemistry. The number of variables
involved, d, can be in the hundreds or thousands. The information complexity of a
given problem is the minimal number of information operations required by the best
algorithm to solve the problem for a prescribed set of inputs within a certain error
threshold, ε. Typical examples of information operations are function values and lin-
ear functionals. The field of information-based complexity (IBC), founded by Traub
andWozniakowski in the 1980s, analyzes the information complexity for multivariate
problemsanddetermineshow it depends ond and ε. A crucial question is underwhich
circumstances one can avoid a curse of dimensionality, namely, exponential growth
of the information complexity with d. This book addresses the analysis of multivariate
(continuous) problems, especially from the IBC viewpoint.

The problems discussed by the authors reflect the breadth of current inquiry un-
der the umbrella of multivariate algorithms and IBC. The chapter entitled“The con-
trol variate integration algorithm for multivariate functions defined at scattered data
points” studies a method of approximating the integral of a multivariate function,
in which one uses the exact integral of a control variate based on a least-squares
multivariate quasiinterpolant. Numerical examples demonstrate that such an algo-
rithm can overcome the curse of dimensionality formultivariate least-squares fits. The
second chapter, titled “An adaptive random bit multilevel algorithm for SDEs”, con-
siders the approximations of expectations for functionals applied to the solutions of
stochastic differential equations by employing Monte Carlo methods based on ran-
dom bits instead of random numbers. An adaptive random bit multilevel algorithm is
provided and compared numerically to other methods. The chapter “RBF-based pe-
nalized least-squares approximation of noisy scattered data on the sphere” deals with
the approximation of noisy scattered data on the 2-dimensional unit sphere. In par-
ticular, global and local penalized least-squares approximation based on radial basis
functions (RBFs) are explored. The authors of the fourth chapter in this book, “On
the power of random information”, consider a problem from the core of IBC theory,
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namely the quality of random information in approximation and integration prob-
lems. Random information is compared to optimal information for such problems. It
is shown that in some cases random information can be almost optimal, whereas in
other cases it may yield much worse results than optimal information. The chapter
“Optimality criteria for probabilistic numerical methods” lies in the field of Bayesian
decision theory. To be more precise, the authors study an optimality criterion from
Bayesian experimental design and consider its implied optimal information in the
numerical context. Furthermore, this chapter compares this information to informa-
tion commonly used in average-case-optimal numerical methods. The sixth chapter
of the book, “ε-Superposition and truncation dimensions, andmultivariate decompo-
sition method for∞-variate linear problems” deals with linear problems on weighted
normed function spaces, the elements of which depend on infinitely many variables.
The author focuses on the ε-truncation and ε-superpositiondimension, aswell asmul-
tivariate decomposition methods, which are means to reduce the number of variables
in the problem to a relatively small finite number. The anchored and other types of
decompositions are used. The chapter “Adaptive approximation for multivariate lin-
ear problems with inputs lying in a cone” completes the book and considers adaptive
approximation algorithms for functions lying in particular subsets of certain function
spaces. In contrast to much of the IBC literature, it is not assumed that the functions
to be approximated lie in a ball of a certain radius, but instead in a cone. It is shown
that for such problems it is an advantage to use adaptive rather than nonadaptive al-
gorithms for function approximation.

All chapters were reviewed by renowoned experts. We wish to thank these anony-
mous referees for their precious help.

We would like to express our gratitude towards all speakers of the workshop for
giving excellent talks on their respective fields of expertise and for contributing to the
success of the workshop:
– Paul Constantine (University of Colorado),
– Martin Ehler (University of Vienna),
– Mario Hefter (TU Kaiserslautern),
– Stefan Heinrich (TU Kaiserslautern),
– Kerstin Hesse (Paderborn University),
– Fred J. Hickernell (Illinois Institute of Technology),
– James (Mac) Hyman (Tulane University),
– Thomas Müller-Gronbach (University of Passau),
– Erich Novak (University of Jena),
– Chris Oates (Newcastle University and Alan Turing Institute),
– Houman Owhadi (California Institute of Technology),
– Sergei Pereverzyev (RICAM), Leszek Plaskota (University of Warsaw),
– Paweł Przybyłowicz (AGH University of Science and Technology Kraków),
– Klaus Ritter (TU Kaiserslautern),
– Ingo Steinwart (University of Stuttgart),
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– Michaela Szölgyenyi (University of Klagenfurt),
– Greg W. Wasilkowski (University of Kentucky),
– Henryk Woźniakowski (Columbia University and University of Warsaw),
– Henry Wynn (London School of Economics),
– Larisa Yaroslavtseva (University of Passau).

We also would like to thank all those who participated in the workshop. Annette
Weihs andWolfgang Forsthuber provided valuable administrative and technical sup-
port. Further information on the RICAM Special Semester “Multivariate Algorithms
and their Foundations in Number Theory” can be found at

https://www.ricam.oeaw.ac.at/specsem/specsem2018/

The financial support of the Johann Radon Institute for Computational and Ap-
pliedMathematics (RICAM)of theAustrianAcademyof Sciences is gratefully acknowl-
edged.

Fred J. Hickernell and Peter Kritzer,
Chicago and Linz, March 2020.
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Jeremy Dewar, Mu Tian, and James M. Hyman
1 The control variate integration algorithm for
multivariate functions defined at scattered
data points

Abstract: We describe numerical studies to demonstrate the accuracy and efficiency
of approximating the integral of a function over a prescribed multidimensional re-
gion using the exact integral of a control variate based on a least-squares multivariate
polynomial quasiinterpolant. This control variate integration approach is shown to be
effective in approximating the integral of smooth functions, where only a few function
values are available. We compare thesemethods with traditional Monte Carlo quadra-
ture on independent and identically distributed random and low-discrepancy (quasi-
Monte Carlo) points. We verify that the control variate integration methods converge
at the same rate as Monte Carlo methods, but have a much smaller error constant. We
provide numerical examples to demonstrate that sparse quasiinterpolation methods
are a practical approach to reduce the curse of dimensionality for high-dimensional
multivariate least-squares fits.

Keywords: Quadrature, cubature, multivariate, integration, low discrepancy sam-
pling, quasi-Monte Carlo

MSC 2010: 62H12, 65D30, 65D05

1.1 Introduction

Estimating the integrals of high-dimensional multivariate functions arises in estimat-
ing themarginal likelihood inBayesian analysis of problems ranging fromquantifying
the uncertainty in pricing financial options [3, 15, 22] to the solution of stochastic par-
tial differential equations with random coefficients, such as the flow of fluids through
porous media [4, 18]. There are accurate and robust numerical methods to integrate
a function over a low-dimensional domain. Most of these methods are either built on
a lattice grid or a particular set of deterministic points, such as Gaussian or Smolyak

Acknowledgement: The authors thank Lin Li for his feedback on these simulations and many helpful
discussions about the CVI and future extensions of the method. We are grateful to Chris Oates for his
many helpful suggestions to improve the paper. This research was partially supported by the funding
from Tulane University Evelyn and John G. Phillips Distinguished Chair in the Mathematical Sciences.

Jeremy Dewar, James M. Hyman, Department of Mathematics, Tulane University, New Orleans, LA
70118, USA, e-mails: jdewar@tulane.edu, mhyman@tulane.edu
Mu Tian, Facebook, 1101 Dexter Ave N, Seattle, WA 98109, USA, e-mail: mtian@fb.com
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quadrature points, and are based on the exact integration of an interpolating function
through the sample points.

As the dimension of the problem increases, traditional numerical integration al-
gorithms [6] suffer from the curse of dimensionality, and require the number of sam-
ples to increase exponentially. Integration formulas built on sparse grids [2, 21] par-
tially overcame the curse of dimensionality. However, even these approaches suffer
from the curse of dimensionality above eight to ten dimensions. Monte Carlo (MC) in-
tegration is based on independent identically distributed (IID) pseudo-random sam-
pling and the mean of the samples converges, with probability 1, to the desired inte-
gral by the strong law of large numbers. The MC has a probabilistic convergence rate
of Op(1/√N), independent of the dimension, as the number of samples, N, increases.

The quasi-Monte Carlo (QMC) method is based on nonrandom low-discrepancy
sampling (LDS) and converges faster, O((logN)(d−1)/N), where d is the dimension [3,
9]. Recent improvements in the generating functions for low-discrepancy sampling
has improved the asymptotic convergence rates of QMC methods [2, 8, 19]. Unfortu-
nately, the errors of the best QMCmethods can still be unacceptably large when there
are few samples.

For higher-dimensional situations when there are few samples, f (xi), available,
we fit a least-squares quasiinterpolant, ̂f (x), through the data that minimizes the vari-
ance of the residuals, ri = ̂f (xi)− f (xi). This least squares fit is a quasiinterpolant, since
it is not exact at the data points and is a control variate estimating the underlying
function. We then approximate the integral of f (x) by the exact integral of ̂f (x) and an
estimate for the integral of the residual. We demonstrate that this control-variate inte-
graton, (CVI), algorithm is an effective approach [12] for smooth functions, where there
are few samples, and the effective dimension is relatively small. This is often the case
when additional function evaluations (samples), f (x), are not available or expensive,
such as with large-scale simulations.

TheMC and QMCmethods approximate the integral of the underlying function by
the mean of the samples. This approximation is equivalent to fitting the data with a
least squares constant and integrating this constant. That is, traditional Monte Carlo
integration can be viewed as a CVI using a least-squares constant function. We ob-
served that the higher-degree quasiinterpolants could reduce this error by a factor of
10, 100, or more.

Let x ∈ Rd and the function f (x) : Rd → R1 be integrable and bounded. The
integral of f (x) on the d-dimensional unit hypercube Ω = [0, 1]d is∫

[0,1]d

f (x)dx = 1∫
0

⋅ ⋅ ⋅ 1∫
0

f (x1, x2, . . . , xd)dx1⋅ ⋅ ⋅dxd . (1.1)

All integrations in this paper will be over the domain [0, 1]d, and the domain will be
dropped from the integral notation from here on. When the integral is over a differ-
ent region, we will assume that the problem can be mapped to the unit cube through
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a change of variables. Note that creating a good mapping can be a nontrivial prob-
lem [16]. Even in bounded regions with large aspect ratios, the mapping can convert
a function that is equally smooth in all directions to one that can vary much more in
some directions than others.

A traditional approach for approximating the integral is by weighted sum [7],

If
def= ∫ f (x)dx ≈ N∑

i=1
wif (xi) def= ̂If , (1.2)

where wi is the integration weight associated with the sample point f (xi), and xi ∈[0, 1]d for i = 1, . . . ,N samples. If the samples are approximately uniformly distributed
in [0, 1]d, then the Monte Carlo methods use the sample mean, wi = 1/N, to approx-
imate the integral. Most classical integration methods define the weights so that the
quadrature is exact for a class of functions interpolating the data.

The asymptotic integration error estimates for the MC method is| ̂If − If | = Op( 1√N σ(f )) , (1.3)

where σ(f ) = [∫(f (x) − If )2dx]1/2. The corresponding asymptotic integration error esti-
mate for QMC method is | ̂If − If | = O( (logN)(d−1)N

V[f ]) . (1.4)

Here, V[f ] is the variation in f , V[f ] = ∫ | 𝜕df𝜕x1 ⋅⋅⋅𝜕xd |dx1⋅ ⋅ ⋅dxd +∑Ni=1 V[f (xi)] [20]. Note that
the QMC error is not a tight bound, and in practice, the error often converges faster.
Also, although the QMC method converges faster, the error can be biased, unlike the
MC method [3].

In the CVI, we first fit the sample with a least-squares quasiinterpolant, ̂f (x). We
then use this function as a control variate and estimate the integral by the exact inte-
gral of ̂f , plus an approximation of the residual r(x) = f (x) − ̂f (x),∫ f (x)dx = ∫ ̂f (x)dx + ∫ f (x) − ̂f (x)dx = ∫

exact

̂f (x)dx + ∫ r(x)dx . (1.5)

The error is now determined by the integral of the residual and asymptotically
decreases at the same rate as the original Monte Carlo approximation. This is to be
expected since the error estimates are the product of the sample discrepancy based
on the distribution and number of samples, which are unchanged, and the variation
of the function being integrated, which is independent of the number of samples.

Since the integral of the control variate, ∫ ̂f , is known exactly, the only error is
the integral of the residual ∫ r(x)dx. That is, the CVI integration error estimates are
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the same as the MC and QMC error estimates when applied to integrating the residual
r(x), as they were for integrating f (x). The residual is in the null space of the basis
functions. Therefore, the expected value is zero, E(r) = 0, if the quasiinterpolant is
exact for constant functions. If we assume that the integral of the residual is zero,
then the Monte Carlo methods can be viewed as a CVI, where the quasiinterpolant is
the constant function.

TheCVI is also called a regression estimator, and is typically usedwith low- degree
approximating functions [5, 12, 14, 17]. Our numerical study focuses on using higher-
degree polynomial control variates and analyzing themagnitude of the error (i. e., the
constant in front of that convergence rate) for both a fixed number of samples N, and
as the number of samples increases. We also analyze the complexity of the algorithm
as the dimension d increases.

1.2 Quasiinterpolation algorithm

We represent our control variates as a sum of orthogonal basis functions, f (x) =∑k ∑j βj,kψj,k(x), with total degree K. The multivariate basis functions, ψj,k(x) : Rd →
R1 of degree k ≤ K, are decomposed into the product univariate basis functions,{ϕkji
(xi)}tdkj=1 : R1 → R1,

ψj,k(x) = d∏
i=1

ϕkji
(xi) . (1.6)

Here, x = [x1, x2, . . . , xd]T ∈ Rd and kji is the highest degree of xi in the univariate basis
functionϕkji

(xi), where j ranges from 1 to tdK = (K+d−1d−1 ) and is constrained by∑di=1 kji ≤ K.
In this paper, we use the Legendre polynomial basis functions shifted to the interval[0, 1]: ϕ0(x) = 1, ϕ1(x) = 2x − 1, ϕ2(x) = 6x2 − 6x + 1, . . ..

A polynomial of total degree K hasM = ∑Kl=1 tdl = (K+dd ) basis functions. We order
and relabel βl and ψl(x) lexicographically as a function of j and k, and express our
control variate quasiinterpolant as ̂f (x) = M∑

l=1
β̂lψl(x). (1.7)

High-degreepolynomials inhigh-dimensions are quickly constrainedby the curse
of dimensionality (Table 1.1). For the solution to be unique and the coefficients identi-
fiable, then, theremust bemore independent samples than coefficients in the quasiin-
terpolating function. For evenmoderate degree polynomials inmoderate dimensional
problems, the number of terms rapidly increases.
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Table 1.1: Table of the number of terms in multivariate polynomial with total degree K . The mixed
variable terms in multivariate polynomials create an explosion in the number of terms as a function
of the degree and dimension. For example, a 5th degree polynomial in 20 dimensions has 53,130
terms. We use sparse quasiinterpolation algorithms to reduce the number of terms in the quasiinter-
polant.

K / d = 1 2 3 4 5 10 20

0 1 1 1 1 1 1 1
1 2 3 4 5 6 11 21
2 3 6 10 15 21 66 231
3 4 10 20 35 56 286 1,771
4 5 15 35 70 126 1,001 10,626
5 6 21 56 126 252 3,003 53,130
6 7 28 84 210 462 8,008 230,230

10 11 66 286 1,001 3,003 184,756 30,045,015

The coefficients β̂l are defined by solving the linear ordinary least-squares problem

β̂ = argmin
β1 ,β2 ,...βM

∑
i
( ̂f (xi) − f (xi))2 = argmin

β1 ,β2 ,...βM
‖Aβ − f‖22 . (1.8)

Here, xi is the ith sample value, and the (i, j)th element of the designmatrixA is defined
by ai,j = ψj(xi).

One of the challenges in least squares approximations is the variance-bias trade-
off. If the expansion has too many high-degree terms, the variance increases and the
function will be over-fit. If there are too few terms, then the function will be underfit,
and the residual errors will be biased and larger than necessary. We use an l1 penalty
function (LASSO) to regularize the least-squares fit andpick out themost needed terms
using sparse subset selection. That is, instead of solving the standard least-squares
problem (1.8), we add an l1 penalty term and solve

β̂ = argmin
β1 ,β2 ,...βM
{ 1
2
‖Aβ − f‖22 + λ‖β‖1} . (1.9)

We solve the systemusing cyclic coordinate descent algorithm [10, 13], and the optimal
λ is determined by a cross-validation test. If the function f (x) varies in some directions
more than others, then this sparse subset selection approach extracts the appropriate
basis functions based on the effective dimension of the active subspaces.

We used all the samples when fitting the data and chose λ by the simple method
of increasing λ until just below, where there was a significant increase in the norm of
the residuals, ‖ŷ − y‖. We will be comparing this approach with more sophisticated
cross-validation data-splitting methods in the future.
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An advantage of using sparse subset selection is that the quadrature only has to
be evaluated on the remaining sparse set basis functions with nonzero coefficients.
We also considered using a simpler l2 regularization for the least squares fit. This re-
sults in solving an easier (linear) problem for the control variate coefficients, but re-
quires evaluating the integral of all of the basis functions. It is not clear which of these
approaches will be the most effective, and we are currently comparing them on both
smooth and nonsmooth test problems.

1.3 Numerical examples
We compare the methods on five- and six-dimensional smooth functions by generat-
ing LDS and IID samples form uniform distributions of size 500 ≤ N ≤ 4000, and
quasiinterpolating polynomials with total degrees K = 0, 1, . . . 5. We then compare the
methods a nonsmoothwedge function in six dimensions.We analyze the distributions
of errors from an ensemble of 300 runs, each with distinct samples. The IID samples
are generated using theMATLABpseudorandomgenerator, rand, and the LDS are gen-
erated using the Niederreiter or Sobol sequences.

For the test problems, we calculate the exact error, the convergence rate, the con-
stant factor in the error estimate, and an approximate integration error using boot-
strapping. We compute the error distributions over a large ensemble of simulations to
avoid misleading results, where any particular sample set might have unusually large
or small errors.

For each case in the ensemble of 300 runs, the testing procedure is to
1. generate the N sample locations {xi}N1 ,
2. evaluate f (xi),
3. fit a (possibly regularized) least-squares polynomial ̂f (x) of degree K through the

sample,
4. define the approximate integral as ∫ ̂f (x)dx,
5. estimate the error using bootstrapping (resampling with replacement) [13], and

finally
6. evaluate the true integration error for the CVI, e = |∫( ̂f (x) − f (x))dx|.
After each run, the true integration error is compared with the bootstrapping approx-
imation of the standard error.

We compared the convergence rate of the CVI method on smooth and discontin-
uous functions defined on IID and LDSs, for N ranging from a few hundred to a few
thousand, and polynomial quasiinterpolants of degree less than 5.


