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Preface

The first edition of “Close Range Photogrammetry” was published in 2006 by Whittles
Publishing. This was a translated and extended version of the original German book
“Nahbereichsphotogrammetrie” and was well received by the large international
community of photogrammetrists, metrologists and computer vision experts. This
success was further recognized by the International Society of Photogrammetry and
Remote Sensing (ISPRS) which awarded the authors the then newly inaugurated Karl
Kraus Medal for excellence in authorship (2010).

The second edition, entitled “Close-Range Photogrammetry and 3D Imaging”,
was published by de Gruyter in 2014. This was based on the latest German version
of “Nahbereichsphotogrammetrie” but extended to reflect new methods and
systems for 3D imaging, particularly in the field of image analysis. This version also
formed the basis for a translation into Russian, published by URSS in 2018.

This current third edition is again an updated version of “Nahbereichsphotogram-
metrie”. Popular new methods such as SfM (structure-from-motion), SGM (semi-global
matching) and SLAM (simultaneous localization and mapping) have been presented
in more detail. Further new content covers low-cost 3D sensors, mobile indoor
mapping, robot-based metrology systems and registration of point clouds, to mention
just a few topics.

Three-dimensional information acquired from imaging sensors is widely used
and accepted. The field of photogrammetry, optical 3D metrology and 3D imaging is
still growing, especially in areas which have no traditional link to photogrammetry
and geodesy. However, whilst 3D imaging methods are established in many scien-
tific communities, photogrammetry is still an engineering-driven technique where
quality and accuracy play an important role.

It is the expressed objective of the authors to appeal to non-photogrammetrists
and experts from many other fields in order to transfer knowledge and avoid re-
invention of the wheel. The structure of the book therefore assumes different levels of
pre-existing knowledge, from beginner to scientific expert. For this reason, the book
also presents a number of fundamental techniques and methods in mathematics,
adjustment techniques, physics, optics, image processing and others. Although this
information may also be found in other textbooks, the objective here is to create a
closer link between different fields and present a common notation for equations and
parameters.

The authors are happy to accept suggestions for misprints or corrections.
A list of known errors in the current and previous editions can be found at
https://www.degruyter.com/books/9783110607246. Additional information is also
available under nahbereichsphotogrammetrie.de.

The authors would also like to express their gratitude to the many generous
colleagues who have helped complete the work. In addition, we would like to thank
all the companies, universities and institutes which have provided illustrative

https://doi.org/10.1515/9783110607253-201

https://www.degruyter.com/books/9783110607246
https://doi.org/10.1515/9783110607253-201


material and other valuable technical information. We are grateful also to our
publisher, de Gruyter, for supporting the translation work. Finally, of course, we
would like to thank our families and colleagues for their patience and support
during many months of translation, writing and editing.

Oldenburg/Guernsey/London, August 2019
Thomas Luhmann, Stuart Robson, Stephen Kyle, Jan Boehm
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1 Introduction

1.1 Overview

1.1.1 Content

Chapter 1 provides an overview of the fundamentals of photogrammetry, with
particular reference to close-range measurement. After a brief discussion of the
principal methods and systems, typical areas of applications are presented. The
chapter ends with a short historical review of close-range photogrammetry.

Chapter 2 deals with mathematical basics. These include the definition of some
important coordinate systems and the derivation of geometric transformations which
are needed for a deeper understanding of topics presented later. In addition, a
number of geometrical elements important for object representation are discussed.
The chapter concludes with a summary of least squares adjustment and statistics.

Chapter 3 is concerned with photogrammetric image acquisition for close-range
applications. After an introduction to physical basics and the principles of image
acquisition, geometric fundamentals and imaging models are presented. There follow
discussions of digital imaging equipment as well as specialist areas of image recording.
The chapter ends with a summary of targeting and illumination techniques.

Analytical methods of image orientation and object reconstruction are presented
in Chapter 4. The emphasis here is on bundle adjustment. The chapter also presents
methods for dealing with single, stereo and multiple image configurations based on
measured image coordinates, and concludes with a review of panorama and multi-
media (underwater) photogrammetry.

Chapter 5 brings together many of the relevant methods of digital photo-
grammetric image analysis. Those which are most useful to dimensional analysis
and three-dimensional object reconstruction are presented, in particular methods
for feature extraction and image matching.

Photogrammetric systems developed for close-range measurement are discussed
in Chapter 6. They are classified into interactive systems, tactile and laser-based
measuring systems, systems for the measurement of points and surfaces, systems for
dynamic processes and, finally, systems on mobile platforms such as drones.

Chapter 7 discusses imaging project planning and quality criteria for practical
measurement tasks. After an introduction to network planning and optimization,
quality criteria and approaches to accuracy assessment are discussed. The chapter
concludes with strategies for camera and system calibration.

Finally, Chapter 8 uses case studies and examples to demonstrate the potential for
close-range photogrammetry in fields such as architecture and heritage conservation,
the construction industry, manufacturing industry, medicine and science.
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1.1.2 References

Relevant literature is directly referenced within the text in cases where it is highly
recommended for the understanding of particular sections. In general, however,
further reading is presented in Chapter 9 which provides an extensive list of
thematically ordered literature. Here each chapter in the book is assigned a structured
list of reference texts and additional reading. Efforts have been made to suggest
reference literature which is easy to access. In addition, the reader is advised to
make use of conference proceedings, journals and the webpages of universities,
scientific societies and commercial companies for up-to-date information.

1.2 Fundamental methods

1.2.1 The photogrammetric process

Photogrammetry encompasses methods of image measurement and interpretation in
order to derive the shape and location of an object from one or more photographs of
that object. In principle, photogrammetric methods can be applied in any situation
where the object to be measured can be photographically recorded. The primary
purpose of a photogrammetric measurement is the three-dimensional reconstruction of
an object in digital form (coordinates and derived geometric elements) or graphical
form (images, drawings, maps). The photograph or image represents a store of
information which can be re-accessed at any time.

Figure 1.1 shows examples of photogrammetric images. The reduction of a three-
dimensional object to a two-dimensional image implies a loss of information. In the
first place, object areas which are not visible in the image cannot be reconstructed
from it. This not only includes hidden parts of an object such as the rear of a
building, but also regions which cannot be interpreted due to lack of contrast or size

Fig. 1.1: Photogrammetric images.
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limitations, for example individual bricks in a building façade. Whereas the position
in space of each point on the object may be defined by three coordinates, there are
only two coordinates available to define the position of its image. There are geometric
changes caused by the shape of the object, the relative positioning of camera and
object, perspective imaging and optical lens defects. Finally, there are also radiometric
(colour) changes since the reflected electromagnetic radiation recorded in the image
is affected by the transmission media (air, glass) and the light-sensitive recording
medium (film, electronic sensor).

For the reconstruction of an object from images it is therefore necessary to
describe the optical process by which an image is created. This includes all
elements which contribute to this process, such as light sources, properties of the
surface of the object, the medium through which the light travels, sensor and
camera technology, image processing, and further processing (Fig. 1.2).

Methods of image interpretation and measurement are then required which
permit the image of an object point to be identified from its form, brightness or
colour distribution. For every image point, values in the form of radiometric data
(intensity, grey value, colour value) and geometric data (position in image) can then
be obtained. This requires measurement systems with the appropriate geometric and
optical quality.

From these measurements and a mathematical transformation between image
and object space, the object can finally be modelled.

Figure 1.3 simplifies and summarizes this sequence. The left hand side indicates
the principal instrumentation used whilst the right hand side indicates the methods
involved. Together with the physical and mathematical models, human knowledge,
experience and skill play a significant role. They determine the extent to which the
reconstructed model corresponds to the imaged object or is fit for purpose.

light source

sensor

media

processing
reconstruction

object

model

Fig. 1.2: From object to image.
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1.2.2 Aspects of photogrammetry

Because of its varied application areas, close-range photogrammetry has a strong
interdisciplinary character. There are not only close connections with other
measurement techniques but also with fundamental sciences such as mathematics,
physics, information sciences or biology.

Close-range photogrammetry also has significant links with aspects of graphics
and photographic science, for example computer graphics and computer vision,
digital image processing, computer aided design (CAD), geographic information
systems (GIS) and cartography.

Traditionally, there are further strong associations of close-range photo-
grammetry with the techniques of surveying, particularly in the areas of adjustment
methods and engineering surveying. With the increasing application of photo-
grammetry to industrial metrology and quality control, links have been created
in other directions, too.

Figure 1.4 gives an indication of the relationship between size of measured
object, required measurement accuracy and relevant technology. Although there is
no hard-and-fast definition, it may be said that close-range photogrammetry applies
to objects ranging from 0.2m to 200m in size, with accuracies under 0.1mm at the
smaller end (manufacturing industry) and around 1 cm at the larger end (architecture
and construction industry).

Optical methods using light as the information carrier lie at the heart of non-
contact 3D measurement techniques. Measurement techniques using electromagnetic
waves may be subdivided in the manner illustrated in Fig. 1.5. The following lists
techniques based on light waves:

image acquisition

image measurement

object reconstruction

physical
modelsimaging system

measuring system

processing system
mathematical

models

object model

object

human
being

Fig. 1.3: The photogrammetric process: from object to model.
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– Triangulation techniques:
Photogrammetry (single, stereo and multiple imaging), angle measuring systems
(theodolites), indoor GPS, structured light (light section procedures, fringe
projection, phase measurement, moiré topography), light-field cameras, etc.

– Focusing methods:
Single camera distance measurement by focus setting of optical devices, e.g.
microscopes.

– Shading methods:
Single-camera surface reconstruction by analysing shadows or intensity changes
(shape from shading).

– Interferometry:
Optically coherent time-of-flight measurement, holography, speckle interferom-
etry, coherent radar.

– Time-of-flight measurement:
Distance measurement by optical modulation methods, pulse modulation, etc.

The clear structure of Fig. 1.5 is blurred in practice since multi-sensor and hybrid
measurement systems utilize different principles in order to combine the advantages
of each.

Photogrammetry can be categorized in a multiplicity of ways:

TOF 
camera

1 10 102 103 104
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[m]

10-2

10-3

10-1

1 

10 

102

103

104
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cu

ra
cy

industrial
metrology

industrial
photogrammetry

lasertracker

aerial
photogrammetry

DGPS

tachymetric.
surveying

GPS

remote
sensing

interfero-
metry

microscopy

architectural 
and 
engineering
photogrammetry

terrestrial
laserscanning

UAV

object size

Fig. 1.4: Relationship between measurement methods and object size and accuracy (unsharp
borders indicating typical fields of applications of measuring methods).
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– By camera position and object distance:
– satellite photogrammetry: processing of remote sensing and satellite

images, h > ca.  km
– aerial photogrammetry: processing of aerial photographs, h > ca. m
– UAV photogrammetry: processing of aerial photographs from drones,

h < ca. m
– terrestrial photogrammetry: measurements from a static terrestrial location
– close-range photogrammetry: imaging distance d < ca. m
– underwater photogrammetry: object recording in or through water
– macro photogrammetry: image scale >  (microscope imaging)
– mobile mapping: data acquisition from moving vehicles, d < ca.

m

– By number of measurement images:
– single-image photogrammetry: single-image processing, mono-plotting,

rectification, orthophotos
– stereo photogrammetry: dual image processing, stereoscopic

measurement
– multi-image photogrammetry: n images where n>, bundle triangulation

– By method of recording and processing:
– plane table photogrammetry: graphical evaluation (until ca. )
– analogue photogrammetry: analogue cameras, opto-mechanical

measurement systems (until ca. )
– analytical photogrammetry: analogue images, computer-controlled

measurement
– digital photogrammetry: digital images, computer-controlled

measurement
– videogrammetry: digital image acquisition and measurement

non-contact
3D measuring methods

light waves
λ ≈ 0.3 ... 1 μm

micro waves
λ ≈ 10 ... 300 mm

ultrasonic waves
 λ ≈ 0.1 ... 1 mm

time-of-flighttriangulation
methods interferometry

photogrammetry structured 
light

focusing
methods

shading
methods

laser scanning

laser trackingindoor GPS

TOF cameras

X-ray
λ ≈ 0.01 ... 1 nm

theodolites

Fig. 1.5: Non-contact measuring methods.
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1.2.3 Image-forming model

Photogrammetry is a three-dimensional measurement technique which uses central
projection imaging as its fundamental mathematical model (Fig. 1.6). Shape and
position of an object are determined by reconstructing bundles of rays in which, for
each camera, each image point P′, together with the corresponding perspective centre
O′, defines the spatial direction of the ray to the corresponding object point P. Provided
the imaging geometry within the camera and the location of the imaging system in
object space are known, then every image ray can be defined in 3D object space.

From the intersection of at least two corresponding (homologous), spatially
separated image rays, an object point can be located in three dimensions. In
stereo photogrammetry two images are used to achieve this. In multi-image photo-
grammetry the number of images involved is, in principle, unlimited.

The interior orientation parameters describe the internal geometric model of a
camera.

With the model of the pinhole camera as its basis (Fig. 1.7), the most important
reference location is the perspective centre O, through which all image rays pass.
The interior orientation defines the position of the perspective centre relative to a
reference system fixed in the camera (image coordinate system), as well as

– panorama photogrammetry: panoramic imaging and processing
– line photogrammetry: analytical methods based on straight lines and

polynomials
– phasogrammetry: analytical methods based on phase

measurements

– By availability of measurement results:
– offline photogrammetry: sequential, digital image recording, separated

in time or location from measurement
– online photogrammetry: simultaneous digital imaging and processing for

immediate measurement
– real-time photogrammetry: recording and measurement completed within a

specified time period particular to the application

– By application or specialist area:
– architectural photogrammetry: architecture, heritage conservation, archaeology
– engineering photogrammetry: general engineering (construction) applications
– industrial photogrammetry: industrial (manufacturing) applications
– forensic photogrammetry: applications to diverse legal problems
– multi-media photogrammetry: recording through media of different refractive

indices
– shape from stereo: stereo image processing (computer vision)
– structure-from-motion: multi-image processing (computer vision)
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departures from the ideal central projection (image distortion). The most important
parameter of interior orientation is the principal distance, c, which defines the
distance between image plane and perspective centre (see Section 3.3.2).

A real and practical photogrammetric camera will differ from the pinhole
camera model. The necessity of using a relatively complex lens, a camera housing
which may not be built for stability and an image recording surface which may be
neither planar nor perpendicular to the optical axis of the lens will all give rise to
departures from the ideal imaging geometry. The interior orientation, which will
include parameters defining these departures, must be determined by calibration
for every camera.

P

P'

O'

Z

Y

X

Fig. 1.6: Principle of photogrammetric measurement.

c

h

P

P'

O'
x'

X

Fig. 1.7: Pinhole camera model.
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A fundamental property of a photogrammetric image is the image scale or
photo scale. The photo scale factor m defines the relationship between the object
distance, h, and principal distance, c. Alternatively it is the relationship between a
distance, X, parallel to the image plane in the object, and the corresponding
distance in image space, x′:

m= h
c
= X
x′

(1:1)

The image scale is in every case the deciding factor in resolving image details,
defined by the ground sample distance (GSD) which is derived from the pixel
spacing Δs′ in the camera:

GSD=m ·Δs′ (1:2)

The image scale also determines the photogrammetric measurement accuracy, since
any measurement error in the image is multiplied in the object space by the scale
factor (see Section 3.3.1). Of course, when dealing with complex objects, the scale
will vary throughout the image and a nominal or average value is usually quoted.

The exterior orientation parameters specify the spatial position and orientation of
the camera in a global coordinate system. The exterior orientation is described by the
coordinates of the perspective centre in the global system and three suitably defined
angles expressing the rotation of the image coordinate system with respect to the
global system (see Section 4.2.1). The exterior orientation parameters are calculated
indirectly, after measuring image coordinates of well identified object points.

Every measured image point corresponds to a spatial direction from projection
centre to object point. The length of the direction vector is initially unknown, i.e.
every object point lying on the line of this vector generates the same image point. In
other words, although every three-dimensional object point transforms to a unique
image point for given orientation parameters, a unique reversal of the projection is
not possible. The object point can be located on the image ray, and thereby absolutely
determined in object space, only by intersecting the ray with an additional known
geometric element such as a second spatial direction or an object plane.

Every image generates a spatial bundle of rays, defined by the imaged points and
the perspective centre, in which the rays were all recorded at the same point in time.
If all the bundles of rays from multiple images are intersected as described above, a
dense network is created. For an appropriate imaging configuration, such a network
has the potential for high geometric strength. Using the method of bundle adjustment
any number of images (ray bundles) can be simultaneously oriented, together with
the calculation of the associated three-dimensional object point locations (Fig. 1.6,
Fig. 1.8, see Section 4.4).

1.2 Fundamental methods 9



1.2.4 Photogrammetric systems and procedures

1.2.4.1 Digital system
With few exceptions, photogrammetric image recording today uses digital cameras
supported by image processing based on methods of visual and digital image analysis.
A closed digital system is therefore possible which can completely measure an object
directly on site and without any significant time loss between image acquisition and
delivery of results (Fig. 1.9).

Fig. 1.8: Bundle of rays from multiple images.

targeting

image acquisition

object

orientation
processing

post-processing

FIELD

USER

additional meas.

Fig. 1.9: Digital photogrammetric system.
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By using suitably targeted object points and automatic pattern recognition,
complex photogrammetric tasks can be executed fully automatically, hence
eliminating the need for manual image measurement, orientation and processing.
This approach is particularly important in industrial applications where, in the
first instance, 3D coordinates of discrete points are required. The measurement of
free-form surfaces through the use of dense point clouds is performed by stereo
or multi-image matching of textured object areas. By adopting the method of
structure-from-motion (SfM), arbitrary configurations of images can be oriented
fully automatically. In contrast, the measurement of linear object structures
largely remains a visual, interactive process.

Digital image recording and processing offer the possibility of a fast, closed
data flow from taking the images to presenting the results. Two general procedures
are distinguished here. Offline photogrammetry uses a single camera with
measurement results generated after all images have first been recorded and then
evaluated together. Online photogrammetry records simultaneously using at least
two cameras, with immediate generation of results. If the result is delivered within a
certain process-specific time period, the term real-time photogrammetry is commonly
used.

Automation and short processing cycles enable a direct integration with
other processes where decisions can be made on the basis of feedback of the
photogrammetric results. Digital systems are therefore critical to the application
of photogrammetry in complex real-time processes, in particular industrial
manufacturing and assembly, robotics and medicine where feedback with the
object or surroundings takes place.

When imaging scenes with purely natural features, without the addition
of artificial targets, the potential for automation is much lower. An intelligent
evaluation of object structures and component forms demands a high degree of visual
interpretation which is conditional on a corresponding knowledge of the application
and further processing requirements. However, even here simple software interfaces,
and robust techniques of image orientation and camera calibration, make it possible
for non-expert users to carry out photogrammetric recording and analysis.

1.2.4.2 Recording and analysis procedures
Figure 1.10 shows the principal procedures in close-range photogrammetry which
are briefly summarized in the following sections.
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1. Recording
a) Targeting1: target selection and attachment to object features to improve

automation and increase the accuracy of target measurement in the image.
b) Determination of control points or scaling lengths: creation of a global

object coordinate system by definition of reference (control) points and/or
reference lengths (scales).

c) Image recording: digital image recording of the object with a photogrammetric
system.

2. Pre-processing
a) Numbering and archiving: assigning photo numbers to identify individual

images and archiving or storing the photographs.
b) Computation: calculation of reference point coordinates and/or distances

from survey observations, e.g. using network adjustment.

targeting

image recording RECORDINGcontrol points/
scaling lengths

image numbering
and archiving

computation

image point 
measurement

approximation

bundle
adjustment

removal of
outliers

coordinates of
object points

single point
measurement

exterior
orientations

graphical
plotting

interior
orientations

rectification/
orthophoto

PRE-PROCESSING

ORIENTATION

MEASUREMENT & 
ANALYSIS

correspondence
analysis

Fig. 1.10: Recording and analysis procedures (red – can be automated).

1 Also increasingly known as signalizing, particularly to highlight the use of artificial targets.
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3. Orientation
a) Measurement of image points: identification and measurement of reference

and scale points, identification and measurement of tie points.
b) Correspondence analysis: matching of identical points (features) in all images.
c) Approximation: calculation of approximate (starting) values for unknown

quantities to be calculated by the bundle adjustment.
d) Bundle adjustment: adjustment program which simultaneously calculates

parameters of both interior and exterior orientation as well as the object
point coordinates which are required for subsequent analysis.

e) Removal of outliers: detection and removal of gross errors which mainly
arise during measurement of image points.

4. Measurement and analysis
a) Single point measurement: creation of three-dimensional object point

coordinates, e.g. point clouds, for further numerical processing.
b) Graphical plotting: production of scaled maps or plans in analogue or digital

form, e.g. hard copies for maps and electronic files for CAD models or GIS.
c) Rectification/Orthophoto/3D visualization: generation of transformed images

or image mosaics which remove the effects of tilt relative to a reference plane
(rectification) and/or remove the effects of perspective (orthophoto).

To a significant extent, this sequence can be automated (see connections in red in
Fig. 1.10). This automation requires that either object features are suitably marked
and identified using coded targets or, if there are sufficient textured and dense
images available, processing can be done using structure-from-motion. In both
cases the calculation of initial values and removal of outliers (gross errors) must be
done by robust estimation methods.

1.2.5 Photogrammetric products

In general, photogrammetric systems supply three-dimensional object coordinates
derived from image measurements. From these, further elements and dimensions
can be derived, for example lines, distances, areas and surface definitions, as well
as quality information such as comparisons against design and machine control
data. The direct determination of geometric elements such as straight lines, planes
and cylinders is also possible without explicit calculation of point coordinates. In
addition, the recorded image is an objective data store which documents the state
of the object at the time of recording. The visual data can be provided as corrected
camera images, orthophotos or graphical overlays (Fig. 1.11). Examples of graphical
presentation are shown in Figs. 1.12 and 1.13.
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photogrammetric processing

coordinates graphical information

drawings, maps

CAD data

image rectifications

orthophotos

distances, areas

comparison with design

process control data

surface data

Fig. 1.11: Typical photogrammetric products.

Fig. 1.12: Measurement image overlaid with part of the photogrammetrically generated CAD data.

Fig. 1.13: Cylindrical projection of CAD data.
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1.3 Application areas

Much shorter imaging ranges, typically from a few centimetres to a few hundred
metres, and alternative recording techniques, differentiate close-range photogrammetry
from its aerial and satellite equivalents.

The following comments, based on ones made by Thompson as long ago as
1963, identify applications in general terms by indicating that photogrammetry and
optical 3D measurement techniques are potentially useful when:
– the object to be measured is difficult to access;
– the object is not rigid and its instantaneous dimensions are required;
– it is not certain that measurement will be required at all, or even what

measurements are required (i.e. the data is preserved for possible later
evaluation);

– the object is very small;
– the use of direct measurement would influence the measured object or disturb

events around it;
– real-time results are required;
– the simultaneous recording and the measurement of a very large number of

points is required.

The following specific application areas (with examples) are amongst the most
important in close-range photogrammetry:

– Automotive, machine and
shipbuilding industries:

Fig. 1.14: Car safety test.

– inspection of tooling jigs
– reverse engineering of design
models

– manufacturing control
– optical shape measurement
– recording and analysing car safety
tests

– robot calibration
– driver assistance systems
– measurement of ship sections
– shape control of ship parts
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– Aerospace industry:

Fig. 1.15: Parabolic mirror.

– measurement of parabolic
antennae and mirrors

– control of component assembly
– inspection of tooling jigs
– space simulations

– Architecture, heritage conservation,
archaeology:

Fig. 1.16: Building record.

– façade measurement
– historic building documentation
– deformation measurement
– reconstruction of damaged
buildings

– mapping of excavation sites
– modelling monuments and
sculptures

– D models and texturing

– Engineering:

Fig. 1.17: Engineering.

– as-built measurement of process
plants

– measurement of large civil
engineering sites

– deformation measurements
– pipework and tunnel
measurement

– mining
– evidence documentation
– road and railway track
measurement

– wind power systems
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– Medicine and physiology:

Fig. 1.18: Spinal analysis.

– dental measurements
– spinal deformation
– plastic surgery
– neuro surgery
– motion analysis and ergonomics
– microscopic analysis
– computer-assisted surgery
(navigation)

– Police work and forensic analysis:

Fig. 1.19: Accident recording.

– accident recording
– scene-of-crime measurement
– legal records
– measurement of individuals

– Animation and movie/film industries

Fig. 1.20: Motion capture.

– body shape recording
– motion analysis (of actors)
– D movies
– virtual reality (VR)
– augmented reality (AR)
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In general, similar methods of recording and analysis are used for all application
areas of close-range photogrammetry and the following features are shared:
– powerful image recording systems;
– freely chosen imaging configuration with almost unlimited numbers of pictures;
– photo orientation based on the technique of bundle triangulation;
– visual and digital analysis of the images;
– presentation of results in the form of 3D models, 3D coordinate files, CAD data,

photographs or drawings.

Industrial and engineering applications make special demands of the photogrammetric
technique:
– limited recording time on site (no significant interruption of industrial processes);
– delivery of results for analysis after only a brief time;
– high accuracy requirements;
– traceability of results to standard unit of dimension, the Metre;
– proof of accuracy attained.

– Information systems:

Fig. 1.21: Pipework measurement.

– building information modelling
(BIM)

– facility management
– production planning
– Plant Design Management System
(PDMS)

– image databases
– internet applications (digital
globes)

– Natural sciences:

Fig. 1.22: Flow measurement.

– liquid flow measurement
– wave topography
– crystal growth
– material testing
– glacier and soil movements
– etc.
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1.4 Historical development

It comes as a surprise to many that the history of photogrammetry is almost as long
as that of photography itself and that, for at least the first fifty years, the predominant
application of photogrammetry was to close range, architectural measurement rather
than to topographical mapping. Only a few years after the invention of photography
during the 1830s and 1840s by Fox Talbot in England, by Niepce and Daguerre in
France, and by others, the French military officer Laussedat began experiments in
1849 into measuring from perspective views by working on the image of a façade
of the Hotel des Invalides. Admittedly Laussedat, usually described as the first
photogrammetrist, was in this instance using a camera lucida for he did not obtain
photographic equipment until 1852.

Figure 1.23 shows an early example of Laussedat’s work for military field mapping
by “metrophotographie”. As early as 1858 the German architect Meydenbauer used
photographs to draw plans of the cathedral of Wetzlar and by 1865 he had constructed
his “great photogrammeter”, a forerunner of the phototheodolite. In fact, it was
Meydenbauer and Kersten, a geographer, who coined the word “photogrammetry”,
this first appearing in print in 1867. Figure 1.24 shows an early example of a
photogrammetric camera with a stable construction without moving components.

Meydenbauer used photography as an alternative to manual methods of measuring
façades. For this he developed his own large-format, glass-plate cameras (see Fig. 1.25)

Fig. 1.23: Early example of photogrammetric field recording, about 1867 (Laussedat 1898).
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and, between 1885 and 1909, compiled an archive of around 16,000 metric2 images of
the most important Prussian architectural monuments. This represents a very early
example of cultural heritage preservation by photogrammetry.

The phototheodolite, as its name suggests, represents a combination of camera
and theodolite. The direct measurement of orientation angles leads to a simple
photogrammetric orientation. A number of inventors, such as Porro and Paganini in
Italy, in 1865 and 1884 respectively, and Koppe in Germany, 1896, developed such
instruments (Fig. 1.26).

Horizontal bundles of rays can be constructed from terrestrial photographs,
with two or more permitting a point-by-point survey using intersecting rays. This
technique, often called plane table photogrammetry, works well for architectural
subjects which have regular and distinct features. However, for topographic
mapping it can be difficult identifying the same feature in different images,
particularly when they were well separated to improve accuracy. Nevertheless,
despite the early predominance of architectural photogrammetry, mapping was
still undertaken. For example, in the latter part of the 19th century, Paganini
mapped the Alps, Deville the Rockies and Jordan the Dachel oasis, whilst
Finsterwalder developed analytical solutions.

The development of stereoscopic measurement around the turn of the century
was a major breakthrough in photogrammetry. Following the invention of the
stereoscope around 1830, and Stolze’s principle of the floating measuring mark in
1893, Pulfrich in Germany and Fourcade in South Africa, at the same time but

Fig. 1.24: One of the first photogrammetric
cameras, by Brunner, 1859 (Gruber 1932).

Fig. 1.25: Metric cameras by Meydenbauer (ca. 1890);
left: 30×30cm2, right: 20×20cm2 (Albertz 2009).

2 A “metric” camera is defined as one with known and stable interior orientation.
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independently,3 developed the stereocomparator which implemented Stolze’s principle.
These enabled the simultaneous setting of measuring marks in the two comparator
images, with calculation and recording of individual point coordinates (Fig. 1.27).

Fig. 1.26: Phototheodolite by Finsterwalder (ca. 1895) and Zeiss Jena 19/1318 (ca. 1904).

Fig. 1.27: Pulfrich’s stereocomparator (1901, Zeiss).

3 Pulfrich’s lecture in Hamburg announcing his invention was given on 23rd September 1901,
while Fourcade delivered his paper in Cape Town nine days later on 2nd October 1901.
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Photogrammetry then entered the era of analogue computation, very different to the
numerical methods of surveying. Digital computation was too slow at that time to
compete with continuous plotting from stereo instruments, particularly of contours,
and analogue computation became very successful for a large part of the 20th century.

In fact, during the latter part of the 19th century much effort was invested in
developing stereoplotting instruments for the accurate and continuous plotting of
topography. In Germany, Hauck proposed a device and, in Canada, Deville claimed
“the first automatic plotting instrument in the history of photogrammetry”.
Deville’s instrument had several defects, but they inspired many developers such as
Pulfrich and Santoni to overcome them.

In Germany, conceivably the most active country in the early days of photo-
grammetry, Pulfrich’s methods were very successfully used in mapping. This
inspired von Orel in Vienna to design an instrument for the “automatic” plotting of
contours, which lead to the Orel-Zeiss Stereoautograph in 1909. In England, F. V.
Thompson anticipated von Orel in the design of the Vivian Thompson stereoplotter
and subsequently the Vivian Thompson Stereoplanigraph (1908). This was
described by E. H. Thompson (1974) as “the first design for a completely automatic
and thoroughly rigorous photogrammetric plotting instrument”.

The rapid development of aviation, which began shortly after this, was another
decisive influence on the course of photogrammetry. Not only is the Earth, photo-
graphed vertically from above, an almost ideal subject for the photogrammetric
method, but also aircraft made almost all parts of the Earth accessible at high speed. In
the first half, and more, of the 20th century these favourable circumstances allowed
impressive development in photogrammetry, with tremendous economic benefit in air
survey. On the other hand, the application of stereo photogrammetry to the complex
surfaces relevant to close-range work was impeded by far-from-ideal geometry and a
lack of economic advantage.

Although there was considerable opposition from surveyors to the use of photo-
graphs and analogue instruments for mapping, the development of stereoscopic
measuring instruments forged ahead in very many countries during the period
between the First World War and the early 1930s. Meanwhile, non-topographic use
was sporadic for the reasons that there were few suitable cameras and that
analogue plotters imposed severe restrictions on principal distance, on image
format and on disposition and tilts of cameras. Instrumentally complex systems
were being developed using optical projection (for example Multiplex), opto-
mechanical principles (Zeiss Stereoplanigraph) and mechanical projection using
space rods (for example Wild A5, Santoni Stereocartograph), designed for use with
aerial photography. By 1930 the Stereoplanigraph C5 was in production, a
sophisticated instrument able to use oblique and convergent photography. Even if
makeshift cameras had to be used at close range, experimenters at least had
freedom in the orientation and placement of these cameras and this considerable
advantage led to some noteworthy work.
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As early as 1933 Wild stereometric cameras were being manufactured and used
by Swiss police for the mapping of accident sites, using the Wild A4 Stereoautograph,
a plotter especially designed for this purpose. Such stereometric cameras comprise
two identical metric cameras fixed to a rigid base of known length such that their
axes are coplanar, perpendicular to the base and, usually, horizontal4 (Fig. 3.36a, see
Section 4.3.1.4). Other manufacturers have also made stereometric cameras (Fig. 1.29)
and associated plotters (Fig. 1.31) and a great deal of close-range work has been
carried out with this type of equipment. Initially glass plates were used in metric
cameras in order to provide a flat image surface without significant mechanical effort
(see example in Figs. 1.28, 1.30). From the 1950s, film was increasingly used in metric
cameras which were then equipped with a mechanical film-flattening device.

The 1950s were the start of the period of analytical photogrammetry. The expanding
use of digital, electronic computers in that decade shifted interest from prevailing
analogue methods to a purely analytical or numerical approach to photogrammetry.
While analogue computation is inflexible, in regard to both input parameters and
output results, and its accuracy is limited by physical properties, a numerical
method allows virtually unlimited accuracy of computation and its flexibility is
limited only by the mathematical model on which it is based. Above all, it permits
over-determination which may improve precision, lead to the detection of gross
errors and provide valuable statistical information about the measurements and the

Fig. 1.28: Zeiss TMK 6 metric camera. Fig. 1.29: Zeiss SMK 40 and SMK 120 stereometric cameras.

4 This is sometimes referred to as the “normal case” of photogrammetry.
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results. The first analytical applications were to photogrammetric triangulation. As
numerical methods in photogrammetry improved, the above advantages, but above
all their flexibility, were to prove invaluable at close range.

Subsequently stereoplotters were equipped with devices to record model
coordinates for input to electronic computers. Arising from the pioneering ideas
of Helava (1957), computers were incorporated in stereoplotters themselves,
resulting in analytical stereoplotters with fully numerical reconstruction of the
photogrammetric models. Bendix/OMI developed the first analytical plotter, the
AP/C, in 1964 and, during the following two decades, analytical stereoplotters
were produced by the major instrument companies and others (example in
Fig. 1.32). While the adaptability of such instruments has been of advantage in
close-range photogrammetry, triangulation programs with even greater flexibility
were soon to be developed, which were more suited to the requirements of close-
range work.

Analytical photogrammetric triangulation is a method, using numerical
data, of point determination involving the simultaneous orientation of all the
photographs and taking all inter-relations into account. Work on this line
of development, for example by the Ordnance Survey of Great Britain, had
appeared before World War II, long before the development of electronic
computers. Analytical triangulation required instruments to measure photo
coordinates. The first stereocomparator designed specifically for use with aerial
photographs was the Cambridge Stereocomparator designed in 1937 by E. H.

Fig. 1.30: Jenoptik UMK 1318. Fig. 1.31: Zeiss Terragraph stereoplotter.
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Thompson. By 1955 there were five stereocomparators on the market and
monocomparators designed for use with aerial photographs also appeared.

In the 1950s many mapping organizations were also experimenting with the new
automatic computers, but it was the ballistic missile industry which gave the impetus
for the development of the bundle method of photogrammetric triangulation. This
is commonly known simply as the bundle adjustment and is today the dominant
technique for triangulation in close-range photogrammetry. Seminal papers by
Schmid (1956–57, 1958) and Brown (1958) laid the foundations for theoretically
rigorous block adjustment. A number of bundle adjustment programs for air survey
were developed and became commercially available, such as those by Ackermann
et al. (1970) and Brown (1976). Programs designed specifically for close-range work
have appeared since the 1980s, such as STARS (Fraser & Brown 1986), BINGO (Kruck
1983), MOR (Wester-Ebbinghaus 1981) or CAP (Hinsken 1989).

The importance of bundle adjustment in close-range photogrammetry can
hardly be overstated. The method imposes no restrictions on the positions or the
orientations of the cameras, nor is there any necessity to limit the imaging system
to central projection. Of equal or greater importance, the parameters of interior
orientation of all the cameras may be included as unknowns in the solution.
Until the 1960s many experimenters appear to have given little attention to the
calibration5 of their cameras. This may well have been because the direct calibration
of cameras focused for near objects is usually much more difficult than that of
cameras focused for distant objects. At the same time, the inner orientation must

Fig. 1.32: Analytical Stereoplotter Zeiss Planicomp (ca. 1980).

5 In photogrammetry, unlike computer vision, “calibration” refers only to interior orientation.
Exterior orientation is not regarded as part of calibration.
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usually be known more accurately than is necessary for vertical aerial photographs
because the geometry of non-topographical work is frequently far from ideal. In
applying the standard methods of calibration in the past, difficulties arose because of
the finite distance of the targets, either real objects or virtual images. While indirect,
numerical methods to overcome this difficulty were suggested by Torlegård (1967)
and others, bundle adjustment now removes this concern. For high precision work, it
is no longer necessary to use metric cameras which, while having the advantage of
known and constant interior orientation, are usually cumbersome and expensive.
Virtually any camera can now be used. Calibration via bundle adjustment is usually
known as self-calibration (see Section 4.4). Many special cameras have been developed
to extend the tools available to the photogrammetrist. One example promoted by
Wester-Ebbinghaus (1981) was a modified professional photographic camera with an
inbuilt réseau, an array of engraved crosses on a glass plate which appear on each
image (see Fig. 1.33).

The use of traditional stereo photogrammetry at close ranges has declined. As an
alternative to the use of comparators, multi-photo analysis systems which use a
digitizing pad as a measuring device for photo enlargements, for example the Rollei
MR2 from 1986 (Fig. 1.34) have been widely used for architectural and accident
recording.

Since the middle of the 1980s, the use of opto-electronic image sensors has
increased dramatically. Advanced computer technology enables the processing
of digital images, particularly for automatic recognition and measurement of
image features, including pattern correlation for determining object surfaces.
Procedures in which both the image and its photogrammetric processing are

Fig. 1.33: Rolleiflex SLX semi-metric camera (ca. 1980).
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digital are often referred to as digital photogrammetry. Automated precision
monocomparators, in combination with large format réseau cameras, were
developed for high-precision, industrial applications, e.g. by Fraser and Brown
(1986) or Luhmann and Wester-Ebbinghaus (1986), see Figs. 1.35 and 1.36.

Fig. 1.34: Rollei MR2 multi-image restitution system (ca. 1990).

Fig. 1.35: Partial-metric camera
GSI CRC-1 (ca. 1986).

Fig. 1.36: Réseau-Scanner Rollei RS1 (ca. 1986).
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Initially, standard video cameras were employed. These generated analogue video
signals which could be digitized with resolutions up to 780 × 580 picture elements
(pixel) and processed in real time (real-time photogrammetry, videogrammetry). The
first operational online multi-image systems became available in the late 1980s
(example in Fig. 1.37). Analytical plotters were enhanced with video cameras to become
analytical correlators, used for example in car body measurement (Zeiss Indusurf 1987,
Fig. 1.38). Closed procedures for simultaneous multi-image processing of grey level
values and object data based on least squares methods were developed, e.g. by
Förstner (1982) and Gruen (1985).

The limitations of video cameras in respect of their small image format and low
resolution led to the development of scanning cameras which enabled the high
resolution recording of static objects to around 6000 × 4500 pixels. In parallel with
this development, electronic theodolites were equipped with video cameras to
enable the automatic recording of directions to targets (Kern SPACE). With the
Leica/Rollei system POM (Programmable Optical Measuring system, Fig. 1.39) a
complex online system for the measurement of automotive parts was developed
which used réseau-scanning cameras (Fig. 1.40) and a rotary table for all-round
measurements.

Digital cameras with high resolution, which can provide a digital image without
analogue signal processing, have been available since the beginning of the 1990s.
Resolutions ranged from about 1000 × 1000 pixels, e.g. the Kodak Megaplus, to over
4000 × 4000 pixels. Easily portable still video cameras could store high resolution
images directly in the camera, e.g. the Kodak DCS 460 (Fig. 1.41). They have led to a
significant expansion of photogrammetric measurement technology, particularly in
the industrial field. See, for example, systems from GSI, AICON and GOM. Online
photogrammetric systems (Fig. 1.42) have been brought into practical use, in addition
to offline systems, both as mobile systems and in stationary configurations. Coded
targets allowed the fully automatic identification and assignment of object features

Fig. 1.37: Online multi-image system Mapvision (1987). Fig. 1.38: Zeiss Indusurf (1987).
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and orientation of the image sequences. Surface measurement of large objects were
now possible with the development of pattern projection methods combined with
photogrammetric techniques.

Interactive digital stereo systems, such as the Leica/Helava DSP and Zeiss
PHODIS, have existed since around 1988 (Kern DSP-1). They have replaced analytical
plotters, but they are rarely employed for close-range use. Interactive, graphical
multi-image processing systems are of more importance here as they offer processing
of freely chosen image configurations in a CAD environment, for example the Phocad
PHIDIAS (Fig. 1.43). Easy-to-use, low-cost software packages, such as the Eos Systems
PhotoModeler (Fig. 1.44) or Photometrix iWitness, provide object reconstruction and

Fig. 1.41: Still-video camera Kodak DCS
460 (ca. 1996).

Fig. 1.42: GSI VSTARS online industrial measurement
system (ca. 1991).

Fig. 1.39: POM online system with digital rotary table
(1990).

Fig. 1.40: Réseau-scanning camera Rollei
RSC (1990).
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creation of virtual 3D models from digital images without the need for a deep under-
standing of photogrammetry. Since around 2010 computer vision algorithms (interest
operators, structure-from-motion approaches) have become very popular and provide
fully automated 3D modelling for arbitrary imagery without any pre-knowledge or on-
site measurements. These systems provide dense point clouds and true orthophotos as
well. See, for example, systems from Agisoft, Pix4D, RealityCapture and MicMac, and
the example output in Fig. 1.45.

A trend in close-range photogrammetry is now towards the integration or
embedding of photogrammetric components in application-oriented hybrid systems.
This includes links to such packages as 3D CAD systems, databases and information
systems, quality analysis and control systems for production, navigation systems for
autonomous robots and vehicles, 3D visualization systems, internet applications, 3D
animations and virtual reality. Another trend is the increasing use of methods from
computer vision, such as projective geometry or pattern recognition, for rapid
solutions which do not require high accuracy. Multi-sensor systems such as laser
scanners combined with cameras, GNSS-enabled cameras and cameras with integrated
range finders are growing in importance. There is increased interest, too, in mobile

Fig. 1.43: PHIDIAS-MS multi-image analysis system (1994, Phocad).
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Fig. 1.45: Structure-from-Motion software PhotoScan (2017, Agisoft).

Fig. 1.44: Multi-image analysis system PhotoModeler (ca. 2008, Eos Systems).
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and dynamic applications. Finally, the continuing fall in the cost of digital cameras
and processing software will ensure that photogrammetry is open to everyone.

Close-range photogrammetry is today a well-established, universal 3D measuring
technique, routinely applied in a wide range of interdisciplinary fields. There is every
reason to expect its continued development long into the future.
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2 Mathematical fundamentals

This chapter presents mathematical fundamentals which are essential for a deeper
understanding of close-range photogrammetry. After defining some common co-
ordinate systems, the most important plane and spatial coordinate transformations
are summarized. An introduction to homogeneous coordinates and graphical
projections then follows and the chapter concludes with the basic theory of least-
squares adjustment.

2.1 Coordinate systems

2.1.1 Pixel and sensor coordinate system

The pixel coordinate system is designed for the storage of data defined by the rows
and columns of a digital image. It is a left-handed system, u,v, with its origin in the
upper left element (Fig. 2.1, Section 5.1.2). The digital image can be viewed as a
two-dimensional matrix with m columns and n rows which, in the case of multiple
stored channels such as colour channels, can also be defined as multi-dimensional
(see also Section 5.1.3). A digital image only has a relationship to the physical
image sensor in the camera when the pixel coordinate system directly corresponds
to the sensor coordinate system or the corner point coordinates of an image detail
are stored. For transformation into a metric image coordinate system the physical
pixel separations Δs′u, Δs′v must be given. This shifts the origin to the centre of the
sensor (centre of image) and converts to a right-handed system (see Section 3.3.2.1
and eq. (2.2)).
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Fig. 2.1: Pixel coordinate system.
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2.1.2 Image and camera coordinate systems

The image coordinate system defines a two-dimensional, image-based reference
system of right-handed rectangular Cartesian coordinates, x′,y′. In a film camera its
physical relationship to the camera is defined by reference points, either fiducial
marks or a réseau, which are projected into the acquired image (see Section 3.3.2.1).
For a digital imaging system, the sensor matrix normally defines the image coordinate
system (see Section 2.1.1). Usually the origin of the image or frame coordinates is
located at the image centre.

The relationship between the plane image and the camera, regarded as a spatial
object, can be established when the image coordinate system is extended by the z′
axis normal to the image plane, preserving a right-handed system (see Fig. 2.2). This
3D coordinate system will be called the camera coordinate system and its origin is
located at the perspective centre O′. This axis coincides approximately with the optical
axis. The origin of this 3D camera coordinate system is located at the perspective
centre O′. The image position B1 corresponds to a location in the physically acquired
image, which is the image negative. With respect to the positive, this is laterally
reversed and upside down (Fig. 2.3 left). For a number of mathematical calculations it
is easier to use the corresponding image position B2, in the equivalent positive image
(upright, see Fig. 2.3 right).

Here the vector of image coordinates x′ points in the same direction as the vector to
the object point P. In this case the principal distance must be defined as a negative
value leading to the three-dimensional image vector x′:
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Fig. 2.2: Image and camera coordinate system.
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Thus the image vector x′ describes the projection ray, with respect to the image
coordinate system, from the image point to the object point. The spatial position of
the perspective centre in the image coordinate system is given by the parameters of
interior orientation (see Section 3.3.2).

The transformation between pixel and metric image using the physical pixel
sizes Δs′u, Δs′v and sensor format s′x, s′y gives:

s′x =m ·Δs′u s′y = n ·Δs′v

x′= −
s′x
2

+ u ·Δs′u y′= −
s′y
2

+ v ·Δs′v
(2:2)

Where the photogrammetric calculation is required in a right-handed pixel coordinate
system, with the origin located at the image centre, the transformation is defined by
Δs′u = Δs′v = 1.

2.1.3 Model coordinate system

The spatial Cartesian model coordinate system xyz is used to describe the relative
position and orientation of two or more images (image coordinate systems).
Normally its origin is at the perspective centre of one of the images. In addition, the
model coordinate system may be parallel to the related image coordinate system
(see Section 4.3.3 and Fig. 2.4).
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Fig. 2.3: Image coordinate system in negative (left) and positive image (right).
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2.1.4 Object coordinate system

The term object coordinate system, also known as the world coordinate system, is
here used for every spatial Cartesian coordinate system XYZ that is defined by
reference points of the object. For example, national geodetic coordinate systems
(X = easting, Y = northing, Z = altitude, origin at the equator) are defined by
geodetically measured reference points.1 Another example is the local object or
workpiece coordinate system of a car body that is defined by the constructional
axes (X = longitudinal car axis, Y = front axle, Z = height, origin at centre of front
axle) or a building with design axes in one corner (Fig. 2.5).

A special case of three-dimensional coordinate system is an arbitrarily oriented
one used by a 3D measuring system such as a camera or a scanner. This is not
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Fig. 2.4: Model coordinate system.
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Fig. 2.5: Object coordinate systems.

1 National systems of geodetic coordinates which use the geoid as a reference surface are equiva-
lent to a Cartesian coordinate system only over small areas.
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directly related to any superior system or particular object but if, for instance, just
one reference scale is given (Fig. 2.6), then it is still possible to measure spatial
object coordinates.

The definition of origin, axes and scale of a coordinate system is also known as the
datum.

2.2 Coordinate transformations

2.2.1 Plane transformations

2.2.1.1 Homogeneous coordinates
Homogeneous coordinates can be derived from Cartesian coordinates by adding one
dimension and scaling by an arbitrary factor λ. In two dimensions this leads to:
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75 where x= u=w, y= v=w, λ≠0 (2:3)

Three-dimensional Cartesian coordinates are converted to homogeneous coordinates
in an analogous way.2

3D measuring system

orientation frame
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Fig. 2.6: 3D instrument coordinate system.

2 Homogeneous vectors are denoted in bold and italic text.
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The homogeneous coordinate transformation

x′= λTx (2:4)

maintains its projection properties independently of λ. Consequently, all major
coordinate transformations (translation, rotation, similarity, central projection) can
be formed in a consistent way and can be combined in an arbitrary order to a total
transformation T (see Section 2.2.3). The photogrammetric projection equations can
also be elegantly expressed in homogeneous coordinates (see Section 4.2.4.2).

2.2.1.2 Similarity transformation
The plane similarity transformation is used for the mapping of two plane Cartesian
coordinate systems (Fig. 2.7). Generally a 4-parameter transformation is employed
which defines two translations, one rotation and a scaling factor between the two
systems. Angles and distance proportions are maintained.

Given a point P in the xy source system, the XY coordinates in the target system are

X = a0 + a1 · x−b1 · y Y =b0 +b1 · x+ a1 · y (2:5)

or

X = a0 +m · ðx · cos α− y · sin αÞ Y = b0 +m · ðx · sin α+ y · cos αÞ (2:6)

Here a0 and b0 define the translation of the origin, α is the rotation angle and m is
the global scaling factor. In order to determine the four coefficients, a minimum of
two identical points is required in both systems. With more than two identical
points the transformation parameters can be calculated by an over-determined
least-squares adjustment.
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Fig. 2.7: Plane similarity transformation.
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In matrix notation (2.5) is expressed as

X=A ·x+ a
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or in non-linear form with a0 = X0 und b0 = Y0:

X=m ·R ·x+X0
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(2:8)

R is the rotation matrix corresponding to rotation angle α. This is an orthogonal
matrix having orthonormal column (or row) vectors and it has the properties:

R− 1 =RT and RT ·R= I (2:9)

For the reverse transformation of coordinates from the target system into the source
system, the transformation eq. (2.8) is re-arranged as follows:

x= 1
m

·R− 1 · ðX−X0Þ

x

y

" #
= 1
m

·
cos α sin α

− sin α cosα

" #
·

X −X0

Y −Y0

" # (2:10)

or explicitly with the coefficients of the forward transformation:

x= a1ðX − a0Þ+b1ðY − b0Þ
a21 +b21

y= a1ðY −b0Þ− b1ðX − a0Þ
a21 +b21

(2:11)

2.2.1.3 Affine transformation
The plane affine transformation is also used for the mapping of two plane coordinate
systems (Fig. 2.8). This 6-parameter transformation defines two displacements, one
rotation, one shearing angle between the axes and two separate scaling factors.

For a point P in the source system, the XY coordinates in the target system are
given by

X = a0 + a1 · x+ a2 · y Y =b0 +b1 · x+b2 · y (2:12)

or in non-linear form with a0 = X0 und b0 = Y0:

X =X0 +mX · x · cos α−mY · y · sinðα+ βÞ
Y =Y0 +mX · x · sin α+mY · y · cosðα+ βÞ (2:13)
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The parameters a0 and b0 (X0 and Y0) define the displacement of the origin,
α is the rotation angle, β is the shearing angle between the axes and mX, mY are
the scaling factors for x and y. In order to determine the six coefficients, a
minimum of three identical points is required in both systems. With more than
three identical points, the transformation parameters can be calculated by over-
determined least-squares adjustment.

In matrix notation the affine transformation can be written as:

X=A ·x+ a
X

Y

" #
=

a1 a2

b1 b2

" #
·

x

y

" #
+

a0

b0

" #

or

X

Y

" #
=

mX · cos α −mY · sinðα+ βÞ
mX · sin α mY · cosðα+ βÞ

" #
·

x

y

" #
+

X0

Y0

" #
(2:14)

A is the affine transformation matrix. For transformations with small values of rotation
and shear, the parameter a1 corresponds to the scaling factor mX and the parameter b2
to the scaling factormY.

For the reverse transformation from coordinates in the target system to coordinates
in the source system, eq. (2.14) is re-arranged as follows

x=A− 1 · ðX− aÞ (2:15)

or explicitly with the coefficients with the original, forward transformation:

x= a2ðY −b0Þ−b2ðX − a0Þ
a2b1 − a1b2

y= b1ðX − a0Þ− a1ðY −b0Þ
a2b1 − a1b2

(2:16)

X

αP1

P2

β

P3

Y

T
X,Yx, y

Fig. 2.8: Plane affine transformation.
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2.2.1.4 Polynomial transformation
Non-linear deformations (Fig. 2.9) can be described by polynomials of degree n:

In general, the transformation model can be written as:

X =
Xn
j=0

Xj
i=0

ajixj− iyi Y =
Xn
j=0

Xj
i=0

bjixj− iyi (2:17)

where n = degree of polynomial

A polynomial with n = 2 is given by:

X = a00 + a10 · x+ a11 · y+ a20 · x2 + a21 · x · y+ a22 · y2

Y =b00 +b10 · x+b11 · y+b20 · x2 + b21 · x · y+b22 · y2
(2:18)

The polynomial with n = 1 is identical to the affine transformation (2.12). In general,
the number of coefficients required to define a polynomial transformation of degree
n is u= ðn+ 1Þ · ðn+ 2Þ. In order to determine the u coefficients, a minimum of u/2
identical points is required in both systems.

2.2.1.5 Bilinear transformation
The bilinear transformation is similar to the affine transformation but extended by a
mixed term:

X = a0 + a1 · x+ a2 · y+ a3 · x · y
Y =b0 + b1 · x+b2 · y+b3 · x · y

(2:19)

In order to determine the eight coefficients, a minimum of four identical points is
required.

The bilinear transformation can be used in the unconstrained transformation and
interpolation of quadrilaterals, for example in réseau grids or digital surface models.

For the transformation of a square with side length Δ (Fig. 2.10), the coefficients
can be calculated as follows:

T
X,Yx, y

Fig. 2.9: Plane polynomial transformation.
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a0

a1

a2

a3

2
66664

3
77775=A ·

x1

x2

x3

x4

2
66664

3
77775 and

b0

b1

b2

b3

2
66664

3
77775=A ·

y1

y2

y3

y4

2
66664

3
77775 (2:20)

where A=
1 0 0 0

− 1=Δ 1=Δ 0 0
− 1=Δ 0 1=Δ 0
1=Δ2 − 1=Δ2 − 1=Δ2 1=Δ2

2
664

3
775

2.2.1.6 Projective transformation
The plane projective transformation maps two plane coordinate systems using a
central projection. All projection rays are straight lines through the perspective
centre (Fig. 2.11).

T
X,Yx, y

Δ

Δ

Fig. 2.10: Bilinear transformation.

x, y

X,Y

Fig. 2.11: Plane projective transformation.
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The transformation model is:

X = a0 + a1 · x+ a2 · y
1+ c1 · x+ c2 · y

Y = b0 +b1 · x+b2 · y
1+ c1 · x+ c2 · y

(2:21)

The system of equations (2.21) is not linear. By multiplying by the denominator and
rearranging, the following linear form can be derived. This is suitable as an observation
equation in an adjustment procedure:

a0 + a1x+ a2y−X − c1xX − c2yX =0

b0 +b1x+b2y−Y − c1xY − c2yY =0
(2:22)

In order to determine the eight coefficients, four identical points are required where
no three may lay on a common straight line. With more than four points, the system
of equations can be solved by adjustment (see calculation scheme in Section 4.2.6).
For the derivation of (2.21) the spatial similarity transformation can be used (see
Section 2.2.3).

The reverse transformation can be calculated by re-arrangement of eq. (2.21):

x= a2b0 − a0b2 + ðb2 − b0c2ÞX + ða0c2 − a2ÞY
a1b2 − a2b1 + ðb1c2 − b2c1ÞX + ða2c1 − a1c2ÞY

y= a0b1 − a1b0 + ðb0c1 − b1ÞX + ða1 − a0c1ÞY
a1b2 − a2b1 + ðb1c2 −b2c1ÞX + ða2c1 − a1c2ÞY

(2:23)

In this form the equations again express a projective transformation. By substitution
of terms the following form is derived:

x= a′0 + a′1X + a′2Y
1+ c′1X + c′2Y

y= b′0 + b′1X +b′2Y
1+ c′1X + c′2Y

(2:24)

where

a′0 =
a2b0 − a0b2

N
b′0 =

a0b1 − a1b0
N

c′1 =
b1c2 −b2c1

N

a′1 =
b2 −b0c2

N
b′1 =

b0c1 −b1
N

c′2 =
a2c1 − a1c2

N

a′2 =
a0c2 − a2

N
b′2 =

a1 − a0c1
N

N = a1b2 − a2b1

The plane projective transformation preserves rectilinear properties and intersection
points of straight lines. In contrast, angles, length and area proportions are not
invariant. An additional invariant property of the central projection are the cross
ratios of distances between points on a straight line. They are defined as follows:
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λ= AB

BC
� AD

CD
= A*B*

B*C*
� A*D*

C*D*
= A′B′

B′C′
� A′D′

C′D′
= A′′B′′

B′′C′′
� A′′D′′

C′′D′′
(2:25)

The cross ratios apply to all straight lines that intersect a bundle of perspective rays
in an arbitrary position (Fig. 2.12).

The plane projective transformation is applied to single image analysis, e.g. for
rectification or coordinate measurement in single images (see Section 4.2.6).

Example 2.1:
Given 8 points in the source and target coordinate systems with the following plane coordinates:

No. x y X Y

 −. −.  

 −. .  

 . .  

 . −.  

 . .  

 −. .  

 . −.  

 −. −.  

These correspond to the image and control point coordinates in Fig. 5.50.
The plane transformations described in Section 2.2.1.1 to Section 2.2.1.6 then give rise to the

following transformation parameters:

A* B*
C*

D*

D'
C'

B' A'

g*

g'

D"C"B"
A"

A B C D
g

Fig. 2.12: Cross ratios.

44 2 Mathematical fundamentals



The standard deviation s0 indicates the spread of the transformed points in the XY system. It can
be seen that the projective transformation has the best fit, with the 2nd order polynomial as
second best. The other transformations are not suitable for this particular distribution of points.

Using homogeneous coordinates the plane projective transformation can be
expressed as:

X =H · x

X

Y

1

2
664

3
775=

h11 h12 h13

h21 h22 h23

h31 h32 h33

2
664

3
775 ·

x

y

1

2
664
3
775 (2:26)

This formulation is known as homography. Since the matrix H can be scaled without
altering its projective properties (see Section 2.2.1.1), there are eight degrees of
freedom as there are in the plane projective transformation of eq. (2.21).

2.2.2 Spatial rotations

2.2.2.1 Rotation matrix using trigonometric functions
For plane transformations, rotations take effect about a single point. In contrast,
spatial rotations are performed successively about the three axes of a spatial
coordinate system. Consider a point P in the source system xyz which is rotated with
respect to the target system XYZ. Using trigonometric functions, individual rotations
about the three axes of the target system are defined as follows (Fig. 2.13):

Coeff. -param
transf.

-param
transf.

Bilinear
transf.

Projective
transf.

Polynomial
nd order

a . . . . .
a . . . . .
a . . −. .
a . .
a .
a −.
b . . . . .
b . . . −. .
b . . . .
b . −.
b .
b .
c −.

c −.
s [mm] . . . . .
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1. Rotation about Z-axis:
A Z-axis rotation is conventionally designated by angle κ. This is positive in an
anticlockwise direction when viewed down the positive Z axis towards the
origin. From eq. (2.8), this results in the following point coordinates in the
target system XYZ:

X = x · cos κ− y · sin κ or X =Rκ ·x
Y = x · sin κ+ y · cos κ
Z = z

X

Y

Z

2
64

3
75=

cos κ − sin κ 0

sin κ cos κ 0

0 0 1

2
64

3
75 ·

x

y

z

2
64
3
75

(2:27)

2. Rotation about Y-axis:
The corresponding rotation about the Y-axis is designated by rotation angle φ.
This results in the following XYZ target point coordinates:

X = x · cosφ+ z · sinφ or X=Rφ ·x
Y = y

Z = − x · sinφ+ z · cosφ
X

Y

Z

2
64

3
75=

cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

2
64

3
75 ·

x

y

z

2
64
3
75 (2:28)

3. Rotation about X-axis:
Finally, the X axis rotation is designated by angle ω, which results in XYZ values:

X = x or X=Rω ·x
Y = y cosω− z · sinω
Z = y · sinω+ z · cosω

X

Y

Z

2
64

3
75=

1 0 0

0 cos ω − sinω
0 sinω cosω

2
64

3
75 ·

x

y

z

2
64
3
75

(2:29)

Y

Xz=Z

X

Z

φ

y=Y

Z

Y

ω

x=X

P

κ

P P

Fig. 2.13: Definition of spatial rotation angles.
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The given rotation matrices are orthonormal, i.e.

R ·RT =RT ·R= I R− 1 =RT and detðRÞ= 1 (2:30)

The complete rotation R of a spatial coordinate transformation can be defined by
the successive application of 3 individual rotations, as defined above. Only certain
combinations of these 3 rotations are possible and these may be applied about
either the fixed axial directions of the target system or the moving axes of the
source system. If a general rotation is defined about moving axes in the order ω φ κ,
then the complete rotation is given by:

X=R ·x (2:31)

where

R=Rω ·Rφ ·Rκ (2:32)

and

R=

r11 r12 r13

r21 r22 r23

r31 r32 r33

2
664

3
775

=

cosφ cos κ − cosφ sin κ sinφ

cosω sin κ+ sinω sinφ cos κ cosω cos κ− sinω sinφ sin κ − sinω cosφ

sinω sin κ− cosω sinφ cos κ sinω cos κ+ cosω sinφ sin κ cosω cosφ

2
664

3
775

If the rotation is alternatively defined about fixed axes in the order ω φ κ, then the
rotation matrix is given by:

R* =Rκ ·Rφ ·Rω (2:33)

This is mathematically equivalent to applying the same rotations about moving
axes but in the reverse order.

From eq. (2.31) the inverse transformation which generates the coordinates of a
point P in the rotated system xyz from its XYZ values is therefore given by:

x=RT ·X (2:34)

where

RT =RT
κ ·RT

φ ·RT
ω (2:35)

Note that in this inverse transformation, the individually inverted rotation matrices
are multiplied in the reverse order.

From the matrix coefficients r11. . .r33 in eq. (2.32), the individual rotation angles
can be calculated as follows:
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sinφ= r13 sinφ= r13

tanω= −
r23
r33

or cosω= −
r33

cosφ

tan κ= −
r12
r11

cos κ= r11
cosφ

(2:36)

Equation (2.36) shows that the determination of φ is ambiguous due to solutions for
sin φ in two quadrants. In addition, there is no unique solution for the rotation angles
if the second rotation (φ in this case) is equal to 90° or 270° (cosine φ in r11 and r33
then causes division by zero). This effect also exists in gimbal systems (gyroscopes)
where it is known as gimbal lock.

A simple solution to this ambiguity problem is to alter the order of rotation. In
the case that the secondary rotation is close to 90°, the primary and secondary
rotations can be exchanged, leading to the new order φ ω κ. This procedure is
used in close-range photogrammetry when the viewing direction of the camera is
approximately horizontal (see Fig. 2.14 and also Section 4.2.1.2). The resulting
rotation matrix is then given by:

Rφωκ =Rφ ·Rω ·Rκ (2:37)

where

Rφωκ =

r11 r12 r13

r21 r22 r23

r31 r32 r33

2
664

3
775

=

cosφ cos κ+ sinφ sinω sin κ − cosφ sin κ+ sinφ sinω cos κ sinφ cosω

cosω sin κ cosω cos κ − sinω

− sinφ cos κ+ cosφ sinω sin κ sinφ sin κ+ cosφ sinω cos κ cosφ cosω

2
664

3
775

X

Y

Z

x'

y'

z'ω

φ

κ

Fig. 2.14: Image configuration where ω = 0°, φ = 90° and κ = 90°.
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Example 2.2:
Referring to Fig. 2.14, an image configuration is shown where the primary rotation ω = 0°, the
secondary rotation φ = 90° and the tertiary rotation κ = 90°. In this case the Rφωκ reduces to

Rφωκ =
0 0 1

1 0 0

0 1 0

2
64

3
75

This rotation matrix represents an exchange of coordinate axes. The first row describes the
transformation of the X axis. Its x, y and z elements are respectively 0, 0 and 1, indicating a
transformation of X to z. Correspondingly, the second row shows Y transforming to x and the
third row transforms Z to y.

The exchange of rotation orders is not a suitable solution for arbitrarily oriented images
(see Fig. 3.37 and Fig. 4.55). Firstly, the rotation angles of images freely located in 3D
space are not easy to visualize. Secondly, ambiguities cannot be avoided, which leads
to singularities when calculating orientations. The effects can be avoided by rotation
matrices based on algebraic functions (see next sections).

2.2.2.2 Rotation matrix using quaternions
The ambiguities for trigonometric functions (above) can be avoided when a rotation
matrix with algebraic functions is used and where the rotation itself is a single rotation
angle α about an axis in space defined by a normalized direction vector n = [nx,ny,nz]

T

(see Fig. 2.15).
The direction vector of the rotation axis is also defined by three components a,

b, c and the rotation implicitly defined by a value d. These four elements define a

X

Y

Z

ω
φ

κ

P

nZ

nX

P'

nY

n

α

Fig. 2.15: Rotation around an axis in space.
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four-dimensional vector known as a quaternion which is associated with a rotation
matrix as follows:

R=
d2 + a2 −b2 − c2 2ðab− cdÞ 2ðac+bdÞ

2ðab+ cdÞ d2 − a2 +b2 − c2 2ðbc− adÞ
2ðac−bdÞ 2ðbc+ adÞ d2 − a2 −b2 + c2

2
64

3
75 (2:38)

The individual elements of the quaternion must be normalized by a scaling factor
m = 1 where:

m= a2 +b2 + c2 + d2 (2:39)

The resulting unit quaternion q:

q=

a=m

b=m

c=m

d=m

2
66664

3
77775=

q1

q2

q3

q0

2
66664

3
77775=

nx sinðα=2Þ
ny sinðα=2Þ
nz sinðα=2Þ
cosðα=2Þ

2
66664

3
77775 (2:40)

gives rise to the correctly orthonormal rotation matrix:

R=
1− 2ðq22 + q23Þ 2ðq1q2 − q0q3Þ 2ðq0q2 + q1q3Þ
2ðq1q2 + q0q3Þ 1− 2ðq21 + q23Þ 2ðq2q3 − q0q1Þ
2ðq1q3 − q0q2Þ 2ðq0q1 + q2q3Þ 1− 2ðq21 + q22Þ

2
64

3
75 (2:41)

The parameters a. . .c, or q1. . .q3, are called the vector components of the quaternion
and the parameter d, or q0, is called the scalar component. The rotation matrix
becomes a unity matrix when α = 0, corresponding to q1 = 1 and q1 = q2 = q3 = 0.

Since the axis only specifies direction, and its length has no importance,
only two of its parameters are independent. Together with the rotation angle,
three independent parameters therefore still remain to describe a rotation in
space. This form of rotation is often used in computer graphics, e.g. OpenGL or
VRML. The only ambiguity associated with quaternions is the fact that a rotation
defined by q is identical to a rotation defined by q–1, i.e. a rotation can be formed
equally in the reversed viewing direction using the inverted quaternion.

The quaternion can be calculated from a given orthonormal rotation matrix R
as follows:

q0 = ± 1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r11 + r22 + r33

p = cos
α
2

q1 =
r32 − r23
4q0

q2 =
r13 − r31
4q0

q3 =
r21 − r12
4q0

(2:42)
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The sign of q0, or equivalently the value of angle α, cannot be uniquely defined (see
above). The transformation of the coefficients q into Euler angles of the rotation
matrix (2.41) is done analogously to (2.36) or directly by

ω= − arctan
2ðq2q3 − q0q1Þ
q20 − q21 − q22 + q23

� �
φ= arcsin 2ðq0q2 + q1q3Þð Þ

κ= − arctan
2ðq1q2 − q0q3Þ
q20 + q21 − q22 − q23

� � (2:43)

whereby the ambiguities described in Section 2.2.2.1 still exist.

Example 2.3:
Given the rotation matrix

R=
0.996911 −0.013541 −0.077361
0.030706 0.973820 0.225238
0.072285 −0.226918 0.971228

2
64

3
75

Application of eq. (2.36) results in the following rotation angles:
ω = –13.0567°, φ = –4.4369°, κ = 0.7782°.

Application of eqs. (2.42) and (2.38) results in the following quaternion:
q1 = –0.113868, q2 = –0.037686, q3 = 0.011143, q0 = 0.927183 und α = 13.834°

See also Example 4.2 in Section 4.2.3.1

In summary, a rotation matrix with algebraic functions offers the following benefits
in contrast to trigonometric functions:
– no singularities, (i.e. no gimbal lock);
– no dependency on the sequence of rotations;
– no dependency on the definition of coordinate axes;
– simplified computation of the design matrix (the first derivatives of a, b, c, d are

linear);
– faster convergence in adjustment systems;
– faster computation by avoiding power series for internal trigonometric calculations.

However, the geometric interpretation of quaternions is more complex, e.g. in error
analysis of rotation parameters around particular rotation axes.

2.2.2.3 Rodrigues rotation matrix
The rotation matrix according to Rodrigues is also based on a rotation around an
axis in space. Using the quaternion in (2.42) and the parameters
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a′= 2q1 · tan ðα=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 + q22 + q23

q b′= 2q2 · tan ðα=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 + q22 + q23

q c′= 2q3 · tan ðα=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 + q22 + q23

q (2:44)

the Rodrigues matrix is derived:

R= 1

4+ a′
2 +b′

2 + c′
2

4+ a′
2 − b′

2 − c′
2

2a′b′− 4c′ 2a′c′+ 4b′

2a′b′+ 4c′ 4− a′
2 + b′

2 − c′
2

2b′c′− 4a′

2a′c′− 4b′ 2b′c′+ 4a′ 4− a′
2 − b′

2 + c′
2

2
664

3
775 (2:45)

The Rodrigues matrix consists of three independent parameters but cannot describe
rotations where α = 180° as the tangent function is undefined at 90° (tan (α/2)).

2.2.2.4 Rotation matrix with direction cosines
The spatial rotation matrix can be regarded as a matrix of direction cosines of the
angles δ between the original and the rotated coordinate axes. The unit vectors i,j,k
are defined in the direction of the rotated axes (Fig. 2.16).

R=
cos δxX cos δyX cos δzX
cos δxY cos δyY cos δzY
cos δxZ cos δyZ cos δzZ

2
64

3
75= i j k½ � (2:46)

2.2.2.5 Normalization of rotation matrices
If the coefficients of a rotation matrix are not explicitly derived from three rotational
values, but instead are the result of a calculation process such as the determination of
exterior orientation or a spatial similarity transformation, then the matrix can show
departures from orthogonality and orthonormality. Possible causes are systematic
errors in the input data or limits to computational precision. In this case, the matrix
can be orthonormalized by methods such as the Gram-Schmidt procedure or the
following similar method:

X

Y

Z

x

y

z

k
j

i

Fig. 2.16: Direction cosines.
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With the initial rotation matrix (to be orthonormalized)

R=
r11 r12 r13

r21 r22 r23

r31 r32 r33

2
64

3
75= u v w½ � (2:47)

create direction vectors which have unit length (unit vectors), are mutually orthogonal
and which form the new (orthonormal) matrix as follows:

u′= u
uj j s=v−

u ·u′
u′

v′= s
sj j w′=u×v′

R′= ½u′ v′ w′� : orthonormalized matrix (2:48)

Example 2.4:
A rotation matrix R is defined by angles ω = 35°, φ = 60°, κ = 30° according to eq. (2.32). In this
example, the values of the coefficients after the third decimal place are subject to computational
error (see also Example 2.4):

R=
0.433273 0.844569 −0.324209

−0.248825 0.468893 0.855810
0.876000 −0.284795 0.409708

2
64

3
75 and detðRÞ= 1.018296

which, when multiplied by its transpose, does not result in a unit matrix:

RTR=
1.017015 −0.000224 −0.005486

−0.000224 1.014265 0.010784
0.005486 0.010784 1.005383

2
4

3
5 and detðRTRÞ= 1.036927

The matrix orthonormalized according to (2.48) is given by:

R′ =
0.429633 0.8387032 −0.334652

−0.246735 0.465529 0.849944
0.868641 −0.282594 0.406944

2
64

3
75 and detðR′Þ= 1.000000

The three column vectors are now orthogonal to one another in pairs and all have unit length.

2.2.2.6 Comparison of coefficients
The spatial rotation defined in

X=R ·x

depends on the nine coefficients r11. . .r33 of R. See, for example, the rotation order
ω φ κ about rotated axes which defines R in eq. (2.32). If the identical transformation
result is to be achieved by a rotation matrix R′ using a different rotation order, the
coefficients of R′ must be equal to those of R:

R=R′
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If the rotation angles ω′,φ′,κ′ of rotation matrix R′ are to be calculated from the
explicitly given angles ω,φ,κ of R, this can be achieved by a comparison of matrix
coefficients and a subsequent reverse calculation of the trigonometric functions.

Example 2.5:
Given the rotation matrix of eq. (2.32) defined by angles ω = 35°, φ = 60°, κ = 30°, determine the
rotation angles ω′,φ′,κ′ belonging to the equivalent rotation matrix R′ defined by eq. (2.37):
1. Evaluate the coefficients r11. . .r33 of R by multiplying out the individual rotation matrices in the

order R=Rω ·Rφ ·Rκ, substituting the given values of ω φ κ:

R=
0.433013 −0.250000 0.866025
0.839758 0.461041 −0.286788

−0.327576 0.851435 0.409576

2
64

3
75

2. Write the coefficients r′11. . .r
′
33 of R

′ in trigonometric form by multiplying the individual rotation
matrices in the order R′ =Rφ ·Rω ·Rκ. Assign to each coefficient the values from R, i.e. r′11 = r11,
r′12 = r12, and so on.

3. Calculate the rotation angles ω′,φ′,κ′ of R′ by solution of trigonometric equations:
ω′ = 16.666° φ′ = 64.689° κ′ = 61.232°

2.2.3 Spatial transformations

2.2.3.1 General transformations
The general linear transformation of homogeneous coordinates is given by:

X = λ ·T · x (2:49)

where λ is an arbitrary scaling factor not equal to zero and T is the transformation
or projection matrix.3

=
1,13,1

1,33,3T =
T11 T12

T21 T22

a44a43a42a41

a34a33a32a31

a24a23a22a21

a14a13a12a11

(2.50)

The result of this transformation always results in a new homogeneous coordinate
vector. The four sub-matrices contain information as follows:

3 Note that T is a homogeneous matrix whilst the four sub-matrices are not.
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T11 : scaling, reflection in a line, rotation
T12 : translation
T21 : perspective
T22 : homogeneous scaling (factor w)

Scaling or reflection about a line is performed by the factors sX, sY, sZ:

TS =

1000
0sZ00
00sY0
000sX

: scaling, reflection in a line (2.51)

A spatial rotation results if T11 is replaced by the rotation matrix derived in Section
2.2.2:

TR =

1000
0r33r32r31

0r23r22r21

0r13r12r11

: spatial rotation (2.52)

Translation by a vector xT,yT,zT is performed by the matrix:

TT =

1000
zT100
yT010
xT001

: translation (2.53)

Combined transformations T1, T2 etc. can be created by sequential multiplication of
single projection matrices as follows:

X =T · x =Tn · . . . ·T2 ·T1 · x (2:54)

In general, the multiplication order may not be changed because the projections
are not necessarily commutative.

The reverse transformation is given by:

x =T − 1 ·X =T − 1
1 ·T − 1

2 · . . . ·T − 1
n ·X (2:55)

This inversion is only possible if the projection matrix is not singular, as is the normal
case for the transformation of one 3D system into another. However, if the vector x is
projected onto a plane, the projection matrix does become singular. The original
coordinates cannot then be calculated from the transformed plane coordinates X.

2.2.3.2 Central projection
The central projection is of fundamental importance in photogrammetry and it can
also can be expressed by a homogeneous transformation.

2.2 Coordinate transformations 55



The central projection is modelled firstly for the following special case. The
projection plane is oriented normal to the viewing direction Z with the distance –c to
the perspective centre at O. Referring to Fig. 2.17, the following ratios can be derived.

x′

− c
= X
Z + c

y′

− c
= Y
Z + c

z′

− c
= Z
Z + c

(2:56)

and further rearranged to give x′, y′ and z′:

x′= c
X

c−Z
y′= c

Y
c−Z

z′= c
Z

c− Z
(2:57)

If the perspective centre moves to infinity (focal length c becomes infinite), the term
c/(c–Z) becomes 1 and the central projection changes to a parallel projection.

In matrix notation the homogeneous transformation is firstly written as

=⋅

−1

=

c − Z
cZ
cY
cX

Z
Y
X

c
c

c
c

w
z
y
x

100
000
000
000

(2.58)

and for the resulting Cartesian coordinates after division by c – Z:

x0 ¼ 1
c� Z

�x ¼ TP ·X

Z = z'

X = x'

X = x'

c

X

x 'projection
plane

Z

P(X,Y,Z)

image-
plane

P'(x ',y ',-c)

P'(x ',y ',0)

O

–c

x '

Z

Fig. 2.17: Central projection.
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⋅
⋅
⋅

=⋅=

1

(c − Z )
(c − Z )
(c − Z )

100
000
000
000

1
′

′

′

Zc
Yc
Xc

Z
Y
X

c /(c − Z )
c /(c − Z )

c /(c − Z )
c /(c − Z )

–1 /(c − Z )
z
y
x

(2.59)

Without affecting validity, the image coordinate system can then be shifted to the
perspective centre (red position in Fig. 2.17), which leads to the following projection
equations:

x′= − c
Z

·X = 1
m

·X y′= − c
Z

·Y = 1
m

·Y (2:60)

If the above mentioned special case is extended to an arbitrary exterior orientation
of the image plane (position and orientation in space), the transformation of object
coordinates into image coordinates can be performed by the following matrix
operation with respect to (2.63):

x′=TP ·T − 1
R ·T − 1

T ·X (2:61)

2.2.4 Spatial similarity transformation

2.2.4.1 Mathematical model
The spatial similarity transformation is used for the shape-invariant mapping of a three-
dimensional Cartesian coordinate system xyz into a corresponding target system XYZ.
Both systems can be arbitrarily rotated, shifted and scaled with respect to each other. It
is important to note that the rectangularity of the coordinate axes is preserved. This
transformation is therefore a special case of the general affine transformation which
requires 3 scaling factors and 3 additional shearing parameters for each coordinate
axis – a total of 12 parameters.

The spatial similarity transformation, also known as a 3D Helmert transformation,
is defined by 7 parameters, namely 3 translations to the origin of the xyz system
(vector X0 defined by X0,Y0,Z0), 3 rotation angles ω,φ,κ about the axes XYZ (implied
by orthogonal rotation matrix R) and one scaling factorm (Fig. 2.18). The 6 parameters
for translation and rotation correspond to the parameters of exterior orientation
(see Section 4.2.1). Parameters are applied in the order rotate – scale – shift and the
transformation function for a point P(x,y,z), defined by vector x, is given by:

X=X0 +m ·R ·x (2:62)

or
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X

Y

Z

2
64

3
75=

X0

Y0

Z0

2
64

3
75+m ·

r11 r12 r13

r21 r22 r23

r31 r32 r33

2
64

3
75 ·

x

y

z

2
64
3
75

Using homogeneous coordinates, the spatial similarity transformation of eq. (2.62)
is given by m = sx = sy = sz, (see eq. 2.51):

r11 r12 r13

r21 r22 r23

r31 r32 r33

⋅=

⋅⋅⋅=

⋅⋅⋅=

11000

11000
0
0
0

1000
000
000
000

1000
100
010
001

1
0

0

0

z
y
x

Z0

Y0

X0mr11 mr12 mr13

mr21 mr22 mr23

mr31 mr32 mr33

z
y
x

m
m

m

Z
Y
X

Z
Y
X

X TT TS TR x

(2.63)

In order to determine the seven parameters, a minimum of seven observations is
required. These observations can be derived from the coordinate components of at
least three spatially distributed reference points (control points). They must contain
at least 2 X, 2 Y and 3 Z components4 and they must not lie on a common straight
line in object space.

X

Y

Z

ω
φ

κ

P

Fig. 2.18: Spatial similarity transformation.

4 It is assumed that the viewing direction is approximately parallel to the Z axis. For other image
orientations appropriately positioned minimum control information is required.
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The spatial similarity transformation is of fundamental importance to photo-
grammetry for two reasons. Firstly, it is a key element in the derivation of the
collinearity equations, which are the fundamental equations of analytical photo-
grammetry (see Section 4.2.2). Secondly, it is used for the transformation of local 3D
coordinates such as model coordinates or 3D measuring machine coordinates, into
an arbitrary superior system, for example an object or world coordinate system, as
required, say, for absolute orientation (see Section 4.3.5) or bundle adjustment (see
Section 4.4). It can also be used to detect deviations or deformations between two
groups of points.

There are simplified solutions for a transformation between two systems that are
approximately parallel. In the general case both source and target system have an
arbitrary relative orientation, i.e. any possible translation and rotation may occur. The
calculation of transformation parameters then requires linearization of the system of
equations defined by the similarity transformation (2.62). Sufficiently accurate initial
values are then required in order to determine the unknown parameters (see below).
An alternative solution is presented in Section 2.2.4.3.

The system of equations is normally over-determined and the solution is
performed by least-squares adjustment (see Section 2.4). This derives an optimal fit
between both coordinate systems. According to eq. (2.62) every reference point
defined in both systems generates up to three equations:

X =X0 +m · ðr11 · x+ r12 · y+ r13 · zÞ
Y =Y0 +m · ðr21 · x+ r22 · y+ r23 · zÞ
Z =Z0 +m · ðr31 · x+ r32 · y+ r33 · zÞ

(2:64)

By linearizing the equations at approximate parameter values, corresponding
correction equations are built up. Any reference point with defined X, Y and Z co-
ordinates (full reference point) provides three observation equations. Correspondingly,
reference points with fewer coordinate components generate fewer observation equa-
tions but they can still be used for parameter estimation. Thus a transformation
involving 3 full reference points already provides 2 redundant observations. The 3-2-1
method (see Section 4.4.3), used in industrial metrology, is based on 6 observations,
does not derive a scale change, and therefore results in zero redundancy.

Each reference point or each observation can be weighted individually (see
Section 2.4.1.2). For example, this can be based on an a priori known accuracy of
the reference point measurement. If there is no reliable information to indicate
that reference coordinates have different accuracies, all observations should be
weighted equally. Otherwise transformation parameters may be biased and, as a
result, transformed points may be subject to deformation.

There is a special case of the 3D similarity transformation when the scale factor
is fixed, i.e. 6 unknown parameters remain. This transformation is then often
known as a rigid-body transformation.
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2.2.4.2 Approximate values
In order to calculate approximate values of the translation and rotation parameters
of the similarity transformation, an intermediate coordinate system is formed. This
is derived from 3 reference points P1,P2,P3, defined in an intermediate system uvw
and known in both the target system XYZ and the source system xyz (Fig. 2.19). The
purpose at this stage is to calculate the parameters which transform the reference
points from intermediate system uvw to coordinate systems XYZ and xyz.

PXYZ =Ru!X ·Puvw +Tu!X Pxyz =Ru!x ·Puvw +Tu!x (2:65)

Solving both equations for Puvw and re-arranging:

RT
u!X · ðPXYZ −Tu!XÞ=RT

u!x · ðPxyz −Tu!xÞ

and finally for the coordinates of a point in system XYZ:

PXYZ =Ru!X ·RT
u!x ·Pxyz +Tu!X −Ru!X ·RT

u!x ·Tu!x

=R0
x!X ·Pxyz + ðTu!X −R0

x!X ·Tu!xÞ
(2:66)

Here matrices Ru→X and Ru→x describe the rotation of each system under analysis
with respect to the intermediate system. The vectors Tu→X and Tu→x describe the
corresponding translations. The expression in brackets describes the translation
between systems XYZ and xyz:

X0
x!X =Tu!X −R0

x!X ·Tu!x (2:67)

X

Y

Z

P1

P2

P3Su

w
v

xSXS

Y0

X0 Z0

RU→X Ru→x

Fig. 2.19: Calculation of approximate values for 3D similarity transformation.
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To calculate the required parameters, the u axis of the intermediate system is
constructed through P13 and P2 and the uv plane through P3 (corresponds to the 3-2-
1 method). From the local vectors defined by the reference points Pi(Xi,Yi,Zi), i = 1. . .
3, normalized direction vectors are calculated. Here vectors u,v,w are derived from
the coordinates of Pi in the source system xyz, while U,V,W are calculated from the
target system coordinates XYZ:

U= P2 −P1

P2 −P1j j W= U× ðP3 −P1Þ
U× ðP3 −P1Þj j V=W×U

u= p2 −p1

p2 −p1j j w= u× ðp3 −p1Þ
u× ðp3 −p1Þj j v=w×u

(2:68)

Vector u is a unit vector on the u axis, w is perpendicular to the uv plane and v is
perpendicular to u and w. These 3 vectors directly define the rotation matrix from
uvw to XYZ (see eq. 2.46):

RU!X = U V W½ � Ru!x = u v w½ � (2:69)

The approximate rotation matrix from the xyz to the XYZ system is obtained from
successive application of the above two matrices as follows:

R0
x!X =RU!X ·RT

u!x (2:70)

The approximate scale factor can be calculated from the point separations:

m0 = P2 −P1j j
p2 −p1j j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2 −X1Þ2 + ðY2 −Y1Þ2 + ðZ2 − Z1Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − x1Þ2 + ðy2 − y1Þ2 + ðz2 − z1Þ2

q (2:71)

Using the centroid of the reference points in both coordinate systems, approximate
values for the translation parameters of the similarity transformation can be calculated:

XS =

XS

YS

ZS

2
664

3
775=Tu!X : centroid in XYZ system

xS =

xS

yS

zS

2
664

3
775=Tu!x : centroid in xyz system

(2:72)
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According to (2.67) the translation can then be calculated:

X0
x!X =XS −m0 ·R0

x!X ·xS (2:73)

Example 2.6:
5 points are known in the source and target systems and have the following 3D coordinates:

No. x y z X Y Z

 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .

Approximate values, calculated using points 1, 2 and 3 as above, are:

Rotation: R0x!X =
0.433558 −0.250339 0.865654
0.839451 0.461481 −0.286979

−0.327641 0.851097 0.410226

2
4

3
5

Scale factor: m0 = 1.501637

Translation: X00 =
− 23.430
10.185
9.284

2
4

3
5

The adjusted parameters are given in Example 2.7.

2.2.4.3 Calculation with eigenvalues and quaternions
The rotation matrix of the spatial similarity transformation can also be derived directly
from the two sets of points as the related quaternion can be determined by eigenvalue
analysis. Firstly, the 3D coordinates of points Pi are reduced to their centroid:

�Xi =Xi −XS �xi =xi −xS (2:74)

Using the matrices SX and Sx formed by the coordinate components of all n points
Pi

SX =

X1 Y1 Z1

X2 Y2 Z3

..

. ..
. ..

.

Xn Yn Zn

2
666664

3
777775=

X1

X2

..

.

Xn

2
666664

3
777775 Sx =

x1 y1 z1

x2 y2 z3

..

. ..
. ..

.

xn yn zn

2
666664

3
777775=

x1
x2

..

.

xn

2
666664

3
777775 (2:75)

the 3×3 matrix M is calculated

M= STX · Sx (2:76)
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which then is used to form the following symmetrical matrix N:

N=

m11 +m22 +m33 m23 −m32 m31 −m13 m12 −m21

m11 −m22 −m33 m12 +m21 m31 +m13

−m11 +m22 −m33 m23 +m32

−m11 −m22 +m33

2
66664

3
77775 (2:77)

The eigenvector of N with the largest eigenvalue λmax gives the required quaternion
of the rotation between both systems.

Translation and scale are calculated according to Section 2.2.4.1 or by:

m= λmax=
Xn
i= 1

xTi xi X0
x!X =XS −m0 ·R0

x!X ·xS (2:78)

Example 2.7:
Using the five points from Example 2.6 the following transformation parameters are calculated:

Least-squares adjustment Eigenvalues and quaternions

m = . m = .
X = –. X = –.
Y = . Y = .
Z = . Z = .

R=
0.433878 −0.250183 0.865539
0.839270 0.461625 −0.287278

−0.327682 0.851065 0.410260

2
64

3
75 R=

0.433878 −0.250183 0.865540
0.839270 0.461625 −0.287278

−0.327682 0.851065 0.410260

2
64

3
75

ω = .° ω = .°
φ = .° φ = .°
κ = .° κ = .°
S = . S = .

RMS X;Y;Z = 0.075; 0.177; 0.173 RMS X;Y;Z = 0.075; 0.177; 0.173

Example 2.7 demonstrates that the calculation using quaternions generates the
same result as least-squares adjustment based on the observation equations (2.64).
However, the possible need for individual weighting of observations is much more
complex if eigenvalues are used. Where applicable, the eigenvalue computation
should be followed by a least-squares adjustment with a suitable stochastic model.

2.3 Geometric elements

The geometric reconstruction of a measured object is the major goal of a photo-
grammetric process. This section therefore gives a short summary of geometric
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elements and their mathematical definition. It distinguishes between planar
elements, spatial elements and surface descriptions that are the basic result of a
photogrammetric measurement. For a detailed description of the methods of
analytical geometry, the reader should refer to specialist literature on geometry
and 3D computer graphics.

Except in very few cases, photogrammetric methods are based on measurement
of discrete object points. Geometric elements such as straight lines, planes, cylinders
etc. are normally calculated in a post-processing step using the measured 3D points.
For over-determined solutions, least-squares fitting methods are used. Computed
geometric elements can then either be combined or intersected in order to create
additional geometric elements such as the intersection line between two planes.
Alternatively, specific dimensions can be derived from them, such as the distance
between two points (Fig. 2.20).

In addition to the determination of regular geometric shapes, the determination and
visualization of arbitrary three-dimensional surfaces (free-form surfaces) is of
increasing importance. This requires a basic knowledge of different ways to represent
3D surfaces, involving point grids, triangle meshing, analytical curves, voxels etc.

Many of these calculations are embedded in state-of-the-art 3D CAD systems or
programs for geometric quality analysis. CAD and photogrammetric systems are
therefore often combined. However, geometric elements may also be directly
employed in photogrammetric calculations, e.g. as conditions for the location of
object points (see Section 4.3.2.3). In addition, some evaluation techniques enable
the direct calculation of geometric 3D elements without the use of discrete points
(e.g. contour method, Section 4.4.7.2).

points
XYZ

calculated geometric 
elements

derived geometric
elements

adjustment

combination

points on
cylinders

cylinder, axis

intersection point of 
cylinder axes

derived
quantities

distance between
two intersetcion points

Process Example 1 Example 2

points on a 
free-form surface

triangulation mesh, 
planes

intersection with
rays of sight

supression of
hidden lines

Fig. 2.20: Calculation progress for geometric elements.
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