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Dedication

In the last two years the Banach Algebra community has sadly lost two distin-
guishedmembers, Philip Curtis and Eberhard Kaniuth. Both, Philip and Eberhard
had a very strong and positive impact on the mathematics community. Phil Curtis
togetherwith Bill Bade organized the first conference in this series in 1974 at UCLA.
Eberhard Kaniuth has been one of the main pillars in Banach algebra theory and
abstract harmonic analysis, and had a deep and wide impact on the work taking
place in these two fields. These proceedings are dedicated to their memories.
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Preface

The 23rd conference on Banach Algebras and Applications was held in Oulu
from July 3rd to July 11th, 2017. It is the most important scientific event in the
Banach algebras community. The first conference in this sequence took place at
the University of California, Los Angeles (UCLA) in 1974. This was followed by
Leeds 1976, Long Beach 1981, Copenhagen 1985, Berkeley 1986, Leeds 1987, Berke-
ley 1988, Canberra 1989, Berkeley 1990, Cambridge 1991, Winnipeg 1993, New-
castle 1995, Blaubeuren 1997, Pomona 1999, Odense 2001, Edmonton 2003, Bor-
deaux 2005, Quebec 2007, Poznan 2009, Waterloo 2011, Gothenburg 2013, Fields
Institute (Toronto) 2015.

Withmore than 70 participants fromAmerica, Asia, Europe and Africa, it was
probably one of the biggest and most diverse events in Mathematics in Northern
Finland. Banach algebras is a multilayered area in mathematics and has many
ramifications. The diversity of the schools taking part in the conference made
the event very successful and exciting. The talks reflected recent achievements
in many areas contained in Banach algebra theory such as Banach Algebras over
Groups, Abstract Harmonic Analysis, Group Actions, Amenability, Topological
Homology, Semigroup Compactifications, Arens Irregularity, C*-Algebras and
Dynamical Systems, Operator Theory, Operator Spaces, and more.

In fact the last decade has seen somuchprogress inmany branches of Banach
Algebra theory, and so much of these new achievements has been presented at
the conference. We would like to thank the participants who came all the way to
Oulu to attend the conference and share all the exciting mathematics they have
been working on in recent years. The present volume contains sixteen refereed
articles based on the high level expository talks presented at the conference. So,
our thanks are due to the authors, there would be no proceedings without their
contributions. We are also very thankful for the efforts and time spent by the refer-
ees checking thoroughly the papers, and for detailed reports and corrections sent
to the authors. We believe the proceedings will ultimately serve as a platform for
researchers in Banach algebras theory and related areas.

Partial support was made available to us by The Mathematics Foundation
(The Finnish Academy of Science and Letters). This has helped to support a num-
ber of colleagueswho did not have any financial support from their home institute
or country. We are gratefully indebted to the Foundation and particularly to Olli
Martio for his quick and positive answer. Kiitos Olli!

BusinessOulu with Riina Aikio and Helena Pikkarainen has played an import-
ant role for the success of the event and the comfort of our guests during the confer-
ence. These two wonderful ladies were behind the wonderful social program and
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many other practical matters. Their help and enthusiasm with the conference are
gratefully acknowledged.

The painstaking task of putting all the tex files sent by the authors into the
form required by the journal was noticeably lifted off my shoulders by Nadja
Schedensack, Project Editor of de Gruyter journal, and by our department tech-
nician Pekka Kangas. To both I wish to express my sincere gratitude for their
continuous help and patience.

Finally thanks to my family and friends who had been helping me right from
the beginning long before the conference too place. Without their encourage-
ments and their help with the practical matters, this conference would not have
taken place.

Mahmoud Filali
Oulu, September 30, 2019

Fig. 1: Created by Peetu Karttunen
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Ali Baklouti and Mahmoud Filali

Beurling’s Theorem on locally compact
abelian groups

Abstract: We prove the analogue to Beurling’s theorem for any locally compact
abelian group. This generalizes an earlier work by the first author and Kaniuth on
Hardy’s uncertainty principle (cf. [1]).

Keywords: Beurling’s theorem, locally compact abelian group.

Classification: Primary 22A05; Secondary 54E15 54H11.

1 Introduction

An attractive theorem of Beurling on Fourier transform pairs says that if f ∈ L1(R)
and

∫
R

∫
R

|f(x)||f̂ (y)|exp(|xy|)dxdy < ∞, (1)

then f = 0.
In other words, the trivial function is the only function in L1(R) for which f f̂ is

integrable on R
2 with respect to the measure exp(|xy|)dxdy. Here, f̂ is the Fourier

transform of f. The theorem is stated without a proof on page 372 of Beurling’s col-
lectedworks [2]. Based on the notesHörmander tookwhenBeurling explained the
result to him in the mid-sixties, Hörmander reproduced the proof and published
it in [5]. This was followed by a long list of papers extending Beurling’s theorem to
various groups. This list is too long to cite all the papers, but the reader may con-
sult [3], where Beurling’s Theoremwas generalized to R

n, andwhich is needed for
our proofs.

In this note, we give an analogue to Beurling’s assumption (1) and prove the
analogue to Beurling’s theorem for any locally compact abelian group G.

The second author wishes to express his sincere gratitude to Sfax University for the partial fin-
ancial support.

Ali Baklouti, Département de Mathématiques, Université de Sfax, Sfax, Tunisie, mail:
ali.baklouti@fss.usf.tn
Mahmoud Filali, Department of Mathematical Sciences, University of Oulu, 90014 Oulu, Fin-
land, email: mahmoud.filali@oulu.fi

https://doi.org/10.1515/9783110602418-0001
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2 The theorem

Note first that Beurling’s theorem does not hold if G is discrete. For instance, take
the function f = δe and let Ψ be any function on G × Ĝ such that Ψ(e, .) is meas-
urable and bounded on Ĝ. Then f̂ is the constant function 1 on Ĝ and

∑
x∈G
∫
Ĝ

f(x)f̂ (y)Ψ(x, y)dxdy = ∫
Ĝ

Ψ(e, y)dy < ∞.

So we are actually concerned with non-discrete groups. We denote the scalar
product of x and y in R

n simply by xy.We use the structure theorem and write our
group as G = R

n ×H, where n ≥ 0 and H is a locally compact abelian group which
contains an open compact subgroup K, see for example [4, Theorems 24.29, 24.30].
Write u in G as u = (x, s) with x ∈ R

n and s ∈ H. Write χ in Ĝ as χ = (y, ξ) with
y ∈ R

n and ξ ∈ Ĥ.
and let φ : G → R

n and ψ : Ĝ → R
n be given, respectively, by

φ(u) = {{
{
x, if n > 0
0, if n = 0 and ψ(χ) = {{

{
y, if n > 0
0, if n = 0.

For the analogue to Beurling’s assumption (1), we set

B(f) := ∫
G

∫
Ĝ

|f(u)||f̂ (χ)|exp(|φ(u)φ(χ)|)dudχ. (2)

Then, the analogue to Beurling’s theorem may be stated as follows:

Theorem 2.1. Let G be a locally compact abelian group with dual group Ĝ and let

f ∈ L1(G). Then the implication B(f) < ∞ â⇒ f = 0 holds if and only if the connec-
ted component of the identity in G is not compact.

Proof. Suppose that the component of the identity e in G is not compact, i.e., n >
0, and write as above our group as G = R

n × H.
Note first that the assumption B(f) < ∞means that

∫
Rn

∫
Rn

∫
H

∫
Ĥ

|f(x, s)||f̂ (y, ξ)|exp(|xy|)dxdydsdξ < ∞,

and so

∫
Rn

∫
Rn

∫
H

|f(x, s)||f̂ (y, ξ)|exp(|xy|)dxdyds < ∞ (3)
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almost everywhere on Ĥ. Consider now for each x ∈ R
n , the function

F(x, ξ) = ∫
H

f(x, s)ξ(s)ds,

i.e., F(x, .) is theFourier transformof the function fx definedonH by fx(s) = f(x, s),
and note that

|F(x, ξ)| ≤ ∫
H

|f(x, s)ξ(s)|ds = ∫
H

|f(x, s)|ds. (4)

Then for each ξ ∈ Ĥ, the function Fξ : R
n → R, given by Fξ (x) = F(x, ξ), is in

L1(Rn) since
∫
Rn

|Fξ (x)|dx ≤ ∫
Rn

∫
H

|f(x, s)ξ(s)|dsdx = ∫
G

|f(u)|du,

and its Fourier transform is given, for every y ∈ R
n, by

F̂ξ (y) = ∫
Rn

Fξ (x)exp(ixy)dx = ∫
Rn

(∫
H

f(x, s)ξ(s)ds) exp(ixy)dx
= ∫

Rn

∫
H

f(x, s)ξ(s)exp(ixy)dxds = f̂ (y, ξ). (5)

The observations (3), (4) and (5) lead to

∫
Rn

∫
Rn

|Fξ (x)||F̂ξ (y)|exp(|xy|)dxdy

≤ ∫
Rn

∫
Rn

∫
H

|f(x, s)|f̂ (y, ξ)exp(|xy|)dxdyds < ∞

almost everywhere on Ĥ.
Accordingly, we may apply Beurling’s Theorem when n = 1 or [3] when n > 1

to deduce, that for almost every ξ ∈ Ĥ, Fξ (x) = f̂x(ξ) = 0 almost everywhere on
R
n . Therefore, fx = 0 for almost every x in R

n . This implies that f(x, s) = 0 almost
everywhere on G = R

n × H, as required.
Conversely, suppose that the component of e in G is compact. Then, G = Z

m ×
M, whereM contains an open compact subgroup K. Note that here φ(u) = ψ(χ) =
0 for every u ∈ G and χ ∈ Ĝ since n = 0.

We follow the notation in [4, Sections 23-24]. Let A(Ĝ, K) be the annihilator of
K in Ĝ, that is,

A(Ĝ, K) = {χ ∈ Ĝ : χ|K = 1}.
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By [4, Remarks 23.24 or 23.29], A(Ĝ, K) is a compact subgroup of Ĝ since K is open.
(The converse is also true as noted in 23.29).

Let the Haar measure on G be normalized on K, and let f be the function with
values 1 on K and 0 elsewhere. Then f is a non-trivial function in L1(G).Moreover,
for every χ ∈ Ĝ,

f̂ (χ) = ∫
G

f(u)χ(u)du = ∫
K

χ(u)du = {{{
0, if χ|K ̸= 1
1 otherwise.

Accordingly,

∫
G

∫̂
G

|f(u)||f̂ (χ)|exp(|φ(u)ψ(χ)|)dudχ = ∫
K

∫̂
G

f̂ (χ)dudχ = (∫
K

du)(∫̂
G

f̂ (χ)dχ)
= (∫

K

du)( ∫
A(Ĝ,K)

dχ) < ∞
since A(Ĝ, K) is compact. This completes the proof.
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Tomasz Ciaś

Fréchet algebras with a dominating Hilbert
algebra norm

Abstract: Let L∗(s) be the maximal O∗-algebra of unbounded operators on ℓ2
whose domain is the space s of rapidly decreasing sequences. This is a noncom-
mutative topological algebrawith involutionwhich can be identified, for instance,
with the algebra L(s) ∩ L(s�) or the algebra of multipliers for the algebra L(s�, s)
of smooth compact operators. We give a simple characterization of unital com-
mutative Fréchet ∗-subalgebras of L∗(s) isomorphic as Fréchet spaces to nuclear
power series spaces Λ∞(α) of infinite type. It appears that many natural Fréchet
∗-algebras are closed ∗-subalgebras ofL∗(s), for example, the algebras C∞(M) of
smooth functions on smooth compact manifolds and the algebra S(Rn) of smooth
rapidly decreasing functions on R

n.

Keywords: Representations of commutative Fréchet algebras with involution, to-
pological algebras of unbounded operators, nuclear Fréchet algebras of smooth
functions, dominating norm, Hilbert algebra.

Classification: Primary: 46J25. Secondary: 46A11, 46A63, 46E25, 46K15, 47L60.

1 Introduction

Let s be the Fréchet space of rapidly decreasing complex sequences and let

L
∗(s) := {x : s → s : x is linear, s ⊂ D(x∗) and x∗(s) ⊂ s},

whereD(x∗) is the domain of the adjoint of an unbounded operator x on ℓ2. The
classL∗(s) is known as the maximalO∗-algebra with domain s and it can be seen
as the largest ∗-algebra of unbounded operators on ℓ2 with domain s – for details
see the book of Schmüdgen [18, Section I.2.1]. The ∗-algebra L∗(s) can be topo-
logised in several natural ways, as is shown in [18, Sections I.3.3 and I.3.5]. Here

The research of the author was supported by the National Center of Science (Poland), grant no.
2013/10/A/ST1/00091.

Tomasz Ciaś , Faculty of Mathematics and Computer Science, Adam Mickiewicz University in 
Poznań, Umultowska 87, 61-614 Poznań, Poland, e-mail: tcias@amu.edu.pl

https://doi.org/10.1515/9783110602418-0002
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the spaceL∗(s) is considered with – the best from the functional analysis point of
view – locally convex topology τ∗ (for definition see Preliminaries and also Pro-
position 2.6). Indeed, standard tools of functional analysis, such as closed graph
theorem, open mapping theorem or uniform boundedness principle, can be ap-
plied to (L∗(s), τ∗) (see [8, Th. 4.5]). Furthermore,L∗(s) is a topological ∗-algebra
– i.e. multiplication is separately continuous and involution is continous – but it
is neither locally m-convex nor a Q-algebra. The algebra L∗(s) is isomorphic as
a topological ∗-algebra, for example, to the algebra L(s) ∩ L(s�), the algebra of
multipliers for the algebra L(s�, s) of smooth compact operators and also to the
matrix algebra

Λ(A) := {x = (xij) ∈ C
N

2

: ∀N ∈ N ∃n ∈ N ∑
i,j∈N2

|xij|max { iN
jn
,
jN

in
} < ∞};

for details and more information about topological and algebraic properties of
L∗(s) we refer the reader to [8].

The space s carries all the information about nuclear Fréchet (even locally
convex) spaces. Indeed, by the Kōmura-Kōmura theorem, a Fréchet space is nuc-
lear if and only if it is isomorphic to some closed subspace of sN (see [14, Cor. 29.9]).
What about closed subspaces of the space s itself? In [21] Vogt proved that a nuc-
lear Fréchet space is isomorphic to a closed subspace of s if and only if it has the
so-called property (DN). Moreover, quotients of s were characterised by Vogt and
Wagner in [22] via the so-called property (Ω). Consequently, we have the following
characterization: a nuclear Fréchet space is isomorphic to a complemented sub-
space of s if and only if it has the properties (DN) and (Ω). It is also well-known
that a Fréchet space with (DN), (Ω) and a Schauder basis is isomorphic to a power
series space Λ∞(α) of infinite type. However, it is still an open problem – a partic-
ular case of the famousMityagin-Pełczyński problem –whether there is a comple-
mented subspace of s without a basis.

In this paper, we are mainly interested in unital Fréchet algebras with invol-
ution which are isomorphic as Fréchet spaces to nuclear power series spaces of
infinite type. We show that a large class of them – those algebras E which admit a
dominating Hilbert norm || ⋅ || = √(⋅, ⋅) such that

(xy, z) = (y, x∗z) (1)

for all x, y, z ∈ E – can be embedded into L∗(s) as closed, even complemented, ∗-
subalgebras (see Theorem 3.5 and Remark 3.17). In the commutative case we even
have the following characterization: a unital commutative Fréchet ∗-algebra iso-
morphic as aFréchet space to anuclear power series spaceΛ∞(α)of infinite type is
isomorphic as a Fréchet ∗-algebra to a closed ∗-subalgebra ofL∗(s) if and only if it
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admits a dominatingHilbert norm satisfying condition (1) (see again Theorem 3.5).
In Theorem 3.6 we also characterize commutative Fréchet unital ∗-subalgebras of
L∗(s) consisting of bounded operators on ℓ2 and isomorphic as Fréchet space to
nuclear spacesΛ∞(α). It isworth noting that condition (1) appears in the definiton
of Hilbert algebras playing an important role in the theory of von Neumann algeb-
ras (see [9, A.54]).

The above-mentioned results may be seen as a step towards an analogue – in
the context of nuclear power series spaces of infinite type – of the celebrated com-
mutative Gelfand-Naimark theorem. In the separable case it states that there is
one to one correspondence (given by isometric ∗-isomorphisms) between Banach
algebras C(K) of continuous functions on compact Hausdorffmetrizable spaces K
and closed unital commutative ∗-subalgebras of the C∗-algebraB(ℓ2) of bounded
operators on ℓ2.

Our results are applicable. In the last section we give concrete examples of
Fréchet ∗-algebras which can be represented inL∗(s) in the way described above.
Among them there are: the algebras C∞(M) of smooth functions on smooth com-
pact manifolds, the algebras E(K) with Schauder basis of smooth Whitney jets
on compact sets K with the extension property, the algebra S(Rn) of smooth rap-
idly decreasing functions on R

n, nuclear power series algebras Λ∞(α) of infinite
type and the noncommutative algebra L(s�, s) of compact smooth operators. We
also provide one counterexample. We show that the unital commutative Fréchet
∗-algebra A∞(D) of holomorphic functions on the open unit disc D with smooth
boundary values is not isomorphic to any closed ∗-subalgebra of L∗(s).

2 Preliminaries

The canonical ℓ2 norm and the corresponding scalar product will be denoted by
|| ⋅ ||ℓ2 and ⟨⋅, ⋅⟩, respectively.

For locally convex spaces E and F, we denote by L(E, F) the space of all con-
tinuous linear operators from E to F andwe setL(E) := L(E, E). These spaces will
be considered with the topology τL(E,F) of uniform convergence on bounded sets.

By a topological ∗-algebra Ewemeana topological vector space endowedwith
at least separately continuous multiplication and continuous involution which
make E a ∗-algebra. A Fréchet ∗-algebra is a topological ∗-algebra whose under-
lying topological vector space is a Fréchet space (i.e. metrizable complete locally
convex space). We do not require a Fréchet ∗-algebra to be locally m-convex.



8 | Ciaś

Let α = (αj)j∈N be a monotonically increasing sequence in (0,∞) such that
limj→∞ αj =∞. Then

Λ∞(α) := {(ξj)j∈N ⊂ C
N : |ξ|2α,q :=

∞∑
j=1
|ξj|2e2qαj <∞ for all q ∈ N0}

equipped with the norms | ⋅ |α,q, q ∈ N0, is a Fréchet space and it is called a power
series space of infinite type. It appears that the space Λ∞(α) is nuclear if and only if
supj∈N

log j
αj
<∞ (see e.g. [14, Prop. 29.6]). In particular, for the sequence αj := log j,

j ∈ N, we obtain the space s of rapidly decreasing sequences, i.e.

s := {(ξj)j∈N ∈ C
N : |ξ|2q := ∑

j∈N
|ξj|2j2q <∞ for all q ∈ N0}. (2)

By sn we denote the Hilbert space corresponding to the norm | ⋅ |n.
The strong dual of s – i.e. the space of all continuous linear functionals on s

with the topology of uniform convergence on bounded subsets of s (see e.g. [14,
Def. on p. 267]) – is isomorphic to the space

s� := {(ξj)j∈N ∈ C
N : |ξ|2−q := ∑

j∈N
|ξj|2j−2q <∞ for some q ∈ N0} (3)

of slowly increasing sequences equipped with the inductive limit topology for
the sequence (s−n)n∈N0

of Hilbert spaces corresponding to the norms | ⋅ |−n. In
other words, the locally convex topology on s� is given by the family {| ⋅ |�B}B∈B
of seminorms , |ξ|�B := supη∈B |⟨η, ξ⟩|, where B denotes the class of all bounded
subsets of s and, recall, ⟨⋅, ⋅⟩ is the canonical scalar product on ℓ2.

Definition 2.1. A Fréchet space E with a fundamental system (|| ⋅ ||q)q∈N0
) of

seminorms
(1) has the property (DN) (cf. [14, Def. on p. 359]) if there is a continuous norm || ⋅ ||

on E – called a dominating norm – such that for all q ∈ N0 there is r ∈ N0 and
C > 0 such that

||x||2q ≤ C||x|| ||x||r
for all x ∈ E;

(2) has the property (Ω) (cf. [14, Def. on p. 367]) if for all p ∈ N0 there is q ∈ N0

such that for all r ∈ N there are θ ∈ (0, 1) and C > 0 with
||y||∗q ≤ C||y||∗p1−θ||y||∗r θ

for all y ∈ E�, where E� is the topological dual of E and
||y||∗p := sup{|y(x)| : ||x||p ≤ 1}.
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The properties (DN) and (Ω) are linear-topological invariantswhich play a key role
in a structure theory of nuclear Fréchet spaces. The following Theorem is due to
Vogt and Wagner.

Theorem 2.2. ([14, Ch. 31] and [21, 22]) A Fréchet space is isomorphic to:

(i) a closed subspace of s if and only if it is nuclear and has the property (DN);
(ii) a quotient of s if and only if it is nuclear and has the property (Ω);
(iii) a complemented subspace of s if and only if it is nuclear and has the properties

(DN) and (Ω).

We also cite another result of Vogt which will be crucial for our futher considera-
tions.

Theorem 2.3. [23, Cor. 7.7] Let E be a Fréchet space isomorphic to a power series

space Λ∞(α) of infinite type. Then for every dominating Hilbert norm || ⋅ || on E there
is an isomorphism u : E → Λ∞(α) such that ||uξ||ℓ2 = ||ξ|| for all ξ ∈ E.
Let E be a Fréchet space with a continuous Hilbert norm || ⋅ ||. Let H be the comple-
tion of E in the norm || ⋅ || and let (⋅, ⋅) be the corresponding scalar product. Then
we define

L
∗(E, || ⋅ ||) := {x : E → E : x is linear, E ⊂ D(x∗) and x∗(E) ⊂ E},

where
D(x∗) := {η ∈ H : ∃ζ ∈ H ∀ξ ∈ E (xξ, η) = (ξ, ζ)}

and x∗η := ζ for η ∈ D(x∗). In the case when E is a closed subspace of s or E =
Λ∞(α)we write L∗(E) instead of L∗(E, || ⋅ ||ℓ2 ). Since E is a dense linear subspace
of H, each x ∈ L∗(E, || ⋅ ||) can be considered as a dense unbounded operator in H
with domainD(x) = E, and thus it has the adjoint x∗ : D(x∗) → H. By definition,
the operator x∗|E, for simplicity denoted again by x∗, is in L∗(E, || ⋅ ||), as well.
Moreover, by definition,

D(xy) := {ξ ∈ D(y) : yξ ∈ D(x)} = E
for all x, y ∈ L∗(E, || ⋅ ||). This shows that L∗(E, || ⋅ ||) is a ∗-algebra. In fact, the
class L∗(E, || ⋅ ||) can be seen as the largest ∗-algebra of unbounded operators on
H with domain E and it is known as the maximal O∗-algebra with domain E (see
[18, 2.1] for details).

In the theory ofmaximalO∗-algebras – and,more generally, of algebras of un-
bounded operators in Hilbert spaces – one consider the so-called graph topology
([18, Def. 2.1.1]). With E and || ⋅ || as above, the graph topology of L∗(E, || ⋅ ||) on E
is, by definition, given by the system of seminorms (|| ⋅ ||a)a∈L∗(E,||⋅||), ||ξ||a := ||aξ||
for ξ ∈ E.
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The following easy observation is kind of folklor – for completnesswe present
here the proof.

Proposition 2.4. Let E be a Fréchet spacewith a continuousHilbert norm ||⋅||. Then
the graph topology of L∗(E, || ⋅ ||) on E is weaker than the Fréchet space toplogy.

Proof. Let (⋅, ⋅) denote the scalar product corresponding to the Hilbert norm || ⋅ ||
and let H be the completion of E in the norm || ⋅ ||. We shall show that each a ∈
L∗(E, || ⋅ ||) is a continuous map from the Fréchet space E to the Hilbert space H.
Let (ξj)j∈N ⊂ E be a sequence converging in the Fréchet space topology to 0 and
assume that aξj converges in the norm || ⋅ || to some η ∈ H. We have, for all ζ ∈ E,

lim
j→∞
(aξj , ζ) = (η, ζ)

and, on the other hand,

lim
j→∞
(aξj , ζ) = lim

j→∞
(ξj , a∗ζ) = 0.

Hence, (η, ζ) = 0 for all ζ ∈ E, and thus η = 0. Consequently, by the closed graph
theorem for Fréchet spaces (cf. [14, Th. 24.31]), the map a : E → H is continuous,
which is the desired conclusion.

Sometimes the initial Fréchet space topology and the graph topology coincide.

Proposition 2.5. Let E be a Fréchet space isomorphic to a power series space

Λ∞(α) of infinite type and let || ⋅ || be a dominating Hilbert norm on E. Then the

graph topology of L∗(E, || ⋅ ||) on E coincides with the Fréchet space topology.

Proof. Let (⋅, ⋅) denote the scalar product corresponding to the Hilbert norm || ⋅
||. By [23, Cor. 7.7], there is an isomorphism u : E → Λ∞(α) such that ||uξ||ℓ2 =
||ξ|| for all ξ ∈ E. Let ||ξ||n := |uξ|α,n for ξ ∈ E and n ∈ N. Then (|| ⋅ ||n)n∈N is a
fundamental sequence of dominating Hilbert norms on E. For n ∈ N, we define
the diagonal map dn : Λ∞(α) → Λ∞(α), dnξ := (enαj ξj)j∈N. Clearly, each dn is an
automorphism of the Fréchet space Λ∞(α) and ||dnξ||ℓ2 = |ξ|α,n for all ξ ∈ Λ∞(α).
Now, for n ∈ N, let an : E → E, an := u−1dnu. We have

(anξ, ζ) = (u−1dnuξ, ζ) = ⟨dnuξ, uζ⟩ = ⟨uξ, dnuζ⟩ = (ξ, u−1dnuζ) = (ξ, anζ)
for all ξ, ζ ∈ E, whence an ∈ L∗(E, || ⋅ ||). Consequently, since ||ξ||n = ||anξ|| for all
ξ ∈ E, i.e. || ⋅ ||n = || ⋅ ||an , the graph topology of L∗(E, || ⋅ ||) on E is finer than the
Fréchet space toppology and thus, in view of Proposition 2.4, these topologies are
equal.

There are plenty natural topologies on the spaceL∗(E, ||⋅||) (see [18, Sect. 3.3, 3.5]).
Here we are interested in the locally convex topology τ∗ on L∗(E, || ⋅ ||) given by
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the seminorms

pa,B(x) := max { sup
ξ∈B
||axξ||, sup

ξ∈B
||ax∗ξ||},

where a and B run over L∗(E, || ⋅ ||) and the class of all bounded subsets of E
equipped with the graph topology ofL∗(E, || ⋅ ||), respectively (see [18, pp. 81–82]).
It is well-known that L∗(E, || ⋅ ||) endowed with the topology τ∗ is a topological
∗-algebra (cf. [18, Prop. 3.3.15 (i)]). If we, moreover, assume that E is isomorphic
to a power series space of infinite type and || ⋅ || is a dominating Hilbert norm on
E, then, by Proposition 2.5 and [18, Prop. 3.3.15 (iv)], (L∗(E, || ⋅ ||), τ∗) is complete.
The following characterization of the topology τ∗ is a direct consequence of Pro-
position 2.5.

Proposition 2.6. Let E be a Fréchet space isomorphic to a power series space of

infinite type and let || ⋅ || be a dominating Hilbert norm on E. Let (|| ⋅ ||n)n∈N be a

fundamental sequence of norms on E. Then the topology τ∗ on L∗(E, || ⋅ ||) is given
by the seminorms (pn,B)n∈N,B∈BE

,

pn,B(x) := max{sup
ξ∈B
||xξ||n , sup

ξ∈B
||x∗ξ||n}, (4)

whereBE denote the class of all bounded subsets of E.

3 Fréchet subalgebras of L∗(s)
In this section we give abstract descriptions of two large classes of complemented
commutative Fréchet ∗-subalgebras ofL∗(s) (Theorems 3.5 and 3.6). Moreover, we
provide a criterion for the existence of a “nice” embedding in L∗(s) of not neces-
sarily commutative Fréchet ∗-algebras (see Remark 3.17).

Let us first recall the notion of Hilbert algebras.

Definition 3.1. (cf. [9, A.54]) A Hilbert algebra is a ∗-algebra E endowed with a
Hilbert norm || ⋅ || := √(⋅, ⋅) such that:
(α) (xy, z) = (y, x∗z) for all x, y, z ∈ E;
(β) for all x ∈ E there is C > 0 such that ||xy|| ≤ C||y|| for all y ∈ E, i.e. the left

multiplication maps mx : (E, || ⋅ ||)→ (E, || ⋅ ||), mx(y) := xy, are bounded;
(γ) (y∗, x∗) = (x, y) for all x, y ∈ E;
(δ) the linear span of the set E2 := {ab : a, b ∈ E} is dense in E.
Each norm || ⋅ || satisfying conditions (α)–(δ) is called a Hilbert algebra norm.

Remark 3.2. If E is unital, then condition (δ) in the above definition is trivially
satisfied. If,moreover, E is commutative, then (α) implies (γ). Hence, everyHilbert
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normon a unital commutative ∗-algebra satisfying condition (α) and (β) is already
a Hilbert algebra norm.

Definition 3.3. A Fréchet ∗-algebra is called a DN-algebra if it admits a Hilbert
dominating norm satysfying condition (α) in Definition 3.1. A DN-algebra is called
a βDN-algebra if the corresponding Hilbert dominating norm satisfies conditions
(α) and (β) simultaneously.

Remark 3.4. In [13, Def. 1.5] M. Măntoiu and R. Purice defined a Fréchet-Hilbert
algebra as a Fréchet ∗-algebra admitting a continous Hilbert algebra norm (more
precisely, in their definition the corresponding Hilbert algebra scalar product is
predetermined). Hence, in view of Remark 3.2, every unital commutative βDN-
algebra is a Fréchet-Hilbert algebra.

Our main results read as follows.

Theorem 3.5. Let E be a unital commutative Fréchet ∗-algebra isomorphic as a

Fréchet space to a nuclear power series space of infinite type. Then the following

statements are equivalent.

(i) E is isomorphic as a Fréchet ∗-algebra to a complemented ∗-subalgebra of

L∗(s).
(ii) E is isomorphic as a Fréchet ∗-algebra to a closed ∗-subalgebra of L∗(s).
(iii) E is a DN-algebra.

Theorem 3.6. Let E be a unital commutative Fréchet ∗-algebra isomorphic as a

Fréchet space to a nuclear power series space of infinite type. Then the following

statements are equivalent.

(i) E is isomorphic as a Fréchet ∗-algebra to a complemented ∗-subalgebra F of

L∗(s) such that F ⊂ L(ℓ2).
(ii) E is isomorphic as a Fréchet ∗-algebra to a closed ∗-subalgebra F ofL∗(s) such

that F ⊂ L(ℓ2).
(iii) E is a βDN-algebra.

We divide the proof into a sequence of lemmas. As a by-product, we obtain also
three results which are interesting enough to be stated as “corollaries".

For every N, n ∈ N0 we define the space

L(sn , sN) ∩ L(s−N , s−n) := {x ∈ L(sn , sN) : ∃x̃ ∈ L(s−N , s−n) x̃|sn = x}
with the norm

rN,n(x) := max { sup
|ξ|n≤1
|xξ|N , sup

|ξ|−N≤1
|x̃ξ|−n}.

Formally, the space L(sn , sN) ∩ L(s−N , s−n) is the projective limit of the Banach
spaces L(sn , sN) and L(s−N , s−n) with their standard norms, and thus it is a
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Banach space itself. Since

sup
|ξ|n≤1
|x∗ξ|N = sup

|ξ|n≤1
sup
|η|−N≤1
|⟨x∗ξ, η⟩| = sup

|ξ|n≤1
sup
|η|−N≤1
|⟨ξ, x̃η⟩| = sup

|η|−N≤1
|x̃η|−n ,

we have
rN,n(x) = max { sup

|ξ|n≤1
|xξ|N , sup

|ξ|n≤1
|x∗ξ|N},

where x∗ ∈ L(sn , sN) is the hilbertian adjoint of the operator x̃. Moreover,
L∗(s) = L(s) ∩ L(s�) (see, e.g., [8, Prop. 3.7]), hence

L
∗(s) = {x : s → s : x linear and ∀N ∈ N0 ∃n ∈ N0 rN,n(x) <∞}

as sets. Therefore, we can endow L∗(s) with the topology of the PLB-space
(a countable projective limit of a countable inductive limit of Banach spaces)

projN∈N0
indn∈N0

L(sn , sN) ∩ L(s−N , s−n).
It appears that the topology τ∗ and the PLB-topology on L∗(s) coincide.

Lemma 3.7. We have

L
∗(s) = projN∈N0

indn∈N0
L(sn , sN) ∩ L(s−N , s−n)

as topological vector spaces.

Proof. By [8, Cor. 4.2], L∗(s) is ultrabornological and

projN∈N0
indn∈N0

L(sn , sN) ∩ L(s−N , s−n)
is webbed as a PLB-space. Hence, by the open mapping theorem (see e.g. [14, Th.
24.30]), it is enough to show that the identity map

ι : projN∈N0
indn∈N0

L(sn , sN) ∩ L(s−N , s−n)→ L
∗(s)

is continuous. Let N ∈ N0 and let B be a bounded subset of s. For every m ∈ N0

choose a constant λm > 0 such that B ⊂ {ξ ∈ s : |ξ|m ≤ λm}. Then
pN,B(x) = max { sup

ξ∈B
|xξ|N , sup

ξ∈B
|x∗ξ|N} ≤ λmmax { sup

|ξ|m≤1
|xξ|N , sup

|ξ|m≤1
|x∗ξ|N}

= λmrN,m(x)
for every m ∈ N0 and x ∈ L(sm , sN) ∩ L(s−N , s−m), and thus ι is continuous.
Lemma 3.8. For every Fréchet subspace F of L∗(s) there is m ∈ N0 such that F ⊂
L(sm , ℓ2) ∩ L(ℓ2, s−m) and, moreover, for each such m,

rm : F → [0,∞), rm(x) := max{ sup
|ξ|m≤1
||xξ||ℓ2 , sup

|ξ|m≤1
||x∗ξ||ℓ2},

is a dominating norm on F.
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Proof. By the very definition of projective topology, the canonical embedding

projN∈N0
indn∈N0

L(sn , sN) ∩ L(s−N , s−n) í→ indn∈N0
L(sn , ℓ2) ∩ L(ℓ2, s−n)

is continuous and thus the identity map κ : F í→ indn∈N0
L(sn , ℓ2) ∩ L(ℓ2, s−n)

is continuous, as well. Hence, by Grothendieck’s factorization theorem [14, Th.
24.33], there ism ∈ N such that κ(F) ⊂ L(sm , ℓ2)∩L(ℓ2, s−m). Sincewe can identify
in a obvious way F with κ(F), we get the first part of the thesis.

Now, fix an arbitrary m ∈ N0 such that F ⊂ L(sm , ℓ2) ∩ L(ℓ2, s−m). Then rm
is a continuous seminorm on F. Since F is a Fréchet space, there is a sequence
(BN)N∈N, BN ⊂ BN+1, of bounded subsets of s such that (pN)N∈N,

pN(x) := max { sup
ξ∈BN
|xξ|N , sup

ξ∈BN
|x∗ξ|N}

for x ∈ F, is a fundamental sequence of seminormson F.Moreover, for everyN ∈ N

there is λN > 0 such that BN ⊂ {ξ ∈ s : |ξ|m ≤ λN}. Hence, for x ∈ F and N ∈ N,
we obtain

p2N(x) = max { sup
ξ∈BN
|xξ|2N , sup

ξ∈BN
|x∗ξ|2N}

≤ max { sup
ξ∈BN
(||xξ||ℓ2 |xξ|2N), sup

ξ∈BN
(||x∗ξ||ℓ2 |x∗ξ|2N)}

≤ max { sup
ξ∈BN
||xξ||ℓ2 ⋅ sup

ξ∈BN
|xξ|2N , sup

ξ∈BN
||x∗ξ||ℓ2 ⋅ sup

ξ∈BN
|x∗ξ|2N}

≤ λN max { sup
|ξ|m≤1
||xξ||ℓ2 ⋅ sup

ξ∈B2N
|xξ|2N , sup

|ξ|m≤1
||x∗ξ||ℓ2 ⋅ sup

ξ∈B2N
|x∗ξ|2N},

where the first inequality follows from the Cauchy-Schwartz inequality. Finally,
since

max{ab, cd} ≤ max{a, c} ⋅max{b, d}

for all a, b, c, d ≥ 0, we obtain
p2N(x) ≤ λN max { sup

|ξ|m≤1
||xξ||ℓ2 , sup

|ξ|m≤1
||x∗ξ||ℓ2} ⋅max { sup

ξ∈B2N
|xξ|2N , sup

ξ∈B2N
|x∗ξ|2N}

= λN rm(x)p2N(x)
for all x ∈ F, and thus rm is a dominating norm on F.

Corollary 3.9. (i) Every Fréchet subspace of L∗(s) is isomorphic to a closed sub-
space of s.

(ii) Every Fréchet quotient of L∗(s) is isomorphic to a quotient of s.
(iii) Every complemented Fréchet subspace ofL∗(s) is isomorphic to a complemen-

ted subspace of s.
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Proof. First note that every closed subspace and quotient of L∗(s) is nuclear be-
cause L∗(s) is nuclear itself (see [8, Prop. 3.8 & Cor. 4.2]).

(i) This follows immediately from Lemma 3.8 and [14, Prop. 31.5].
(ii) Let E be a Fréchet quotient of L∗(s). It follows from [8, Prop. 4.7] and [2,

Cor. 1.2(a) and (c)] that E, being isomorphic to a quotient ofL∗(s), has the property
(Ω). Therefore, by [14, Prop. 31.6], E is isomorphic to a quotient of s.

(iii) This is a direct consequence of the previous items and [14, Prop. 31.7].

Let ej denote the j-th unit vector in C
N. If F is a Fréchet subspace of L∗(s) then,

by Lemma 3.8, there is m ∈ N0 such that F ⊂ L(sm , ℓ2) ∩ L(ℓ2, s−m) and rm is a
continuous (dominating) norm on F. Since, for all x ∈ F, we have

[x]m := ( ∞∑
j=1
||xej||2ℓ2 j

−2m−2)1/2 ≤ ( ∞∑
j=1
j−2)1/2 ⋅ sup

|ξ|m≤1
||xξ||ℓ2

≤ π√6 max { sup
|ξ|m≤1
||xξ||ℓ2 , sup

|ξ|m≤1
||x∗ξ||ℓ2} = π√6 rm(x),

the scalar product

[⋅, ⋅]m : F × F → C, [x, y]m :=
∞∑
j=1
⟨xej , yej⟩j−2m−2, (5)

is well-defined and [ ⋅ ]m = √[⋅, ⋅]m is a continuous Hilbert norm on F.

Lemma 3.10. Let F be a commutative Fréchet ∗-subalgebra ofL∗(s) and letm ∈ N0

be such that F ⊂ L(sm , ℓ2) ∩ L(ℓ2, s−m). Then the norm [ ⋅ ]m defined by (5) is a
Hilbert dominating norm on F satisfying condition (α).

Proof. Since F is commutative, we have

||xξ||ℓ2 = ||x∗ξ||ℓ2
for all x ∈ E and all ξ ∈ s. Hence,
rm+2(x) = max { sup

|ξ|m+2≤1
||xξ||ℓ2 , sup

|ξ|m+2≤1
||x∗ξ||ℓ2} = sup

|ξ|m+2≤1
||xξ||ℓ2

= sup
|ξ|m+2≤1

!!!!!!!! ∞∑
j=1
ξj j

m+2 ⋅ x(ej j−m−2)!!!!!!!!ℓ2 ≤ sup
|ξ|m+2≤1

∞∑
j=1
|ξj|jm+2 ⋅ ||xej||ℓ2 ⋅ j−m−2

≤
∞∑
j=1
||xej||ℓ2 ⋅ j−m−2 ≤ ( ∞∑

j=1
j−2)1/2 ⋅ ( ∞∑

j=1
||xej||2ℓ2 j

−2m−2)1/2 = π√6 [x]m .
Therefore,

[ ⋅ ]m ≥ √6
π
rm+2,
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and, by Lemma 3.8, [⋅]m is a dominating norm on F. Moreover, we have

[xy, z]m =
∞∑
j=1
⟨xyej , zej⟩j−2m−2 =

∞∑
j=1
⟨yej , x∗zej⟩j−2m−2 = [y, x∗z]m ,

which completes the proof.

Definition 3.11. A closed subspace E of the space s is called orthogonally comple-
mented in s if there is a continuous projection π in s onto E admitting the exten-
sion to the orthogonal projection in ℓ2. Then we call π an orthogonal projection in
s onto E.

Lemma 3.12. Let E be a Fréchet space isomorphic to a nuclear power series space

of infinite type and let || ⋅ || be a dominating Hilbert norm on E. Then there is an

orthogonally complemented subspace G of s and an isomorphism w : E → G of

Fréchet spaces such that ||wξ||ℓ2 = ||ξ|| for all ξ ∈ E.
Proof. Since E is isomorphic to a nuclear power series space of infinite type, by
[14, Lemma29.2(3)&Lemma29.11(3)], E has the properties (DN) and (Ω). Hence, by
[14, Prop. 31.7], E is isomorphic to a complemented subspace of s. Thismeans that
there is a complemented subspace F of s with a continuous projection π : s → F

and a Fréchet space isomorphism ψ : E → F. Hence, || ⋅ ||ψ : F → [0,∞) defined
by ||ξ||ψ := ||ψ−1ξ|| is a dominating Hilbert norm on F. Since, || ⋅ ||ℓ2 is also a
dominating Hilbert norm on F, by [23, Cor. 7.7], there is an automorphism u of
F such that ||uξ||ℓ2 = ||ξ||ψ for all ξ ∈ F. Moreover, by [23, Th. 7.2], there is an
automorphism v of s such that ρ := vπv−1 is the orthogonal projection in s onto
G := v(F) and a simple analysis of the proof of [23, Th. 7.2] shows that ||vξ||ℓ2 =
||ξ||ℓ2 for all ξ ∈ F. Therefore, the operator w := vuψ has the desired properties.

Lemma 3.13. Let E be a Fréchet space isomorphic to a nuclear power series space

of infinite type and let || ⋅ || be a dominating Hilbert norm on E. LetH denote the com-

pletion of E in the norm || ⋅ ||. Then there is a map φ ∈ L(H, ℓ2) and an orthogonally
complemented subspace G of s such that

(i) φ(E) = G;
(ii) φ∗(s) = E;
(iii) ||φξ||ℓ2 = ||ξ|| for all ξ ∈ E;
(iv) φϕ∗ is the orthogonal projection in ℓ2 with φϕ∗(s) = G.
Moreover, the map

φ : L∗(E, || ⋅ ||)→ L
∗(s), x Ü→ φxφ∗,

is a continuous injective ∗-algebra homomorphism with imφ = L∗(G) and the map
P : L∗(s)→ L

∗(G), x Ü→ φϕ∗xφϕ∗,
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is a continuous projection onto L∗(G).

Proof. By Lemma 3.12, there is an orthogonally complemented subspace G of s
and an isomorphism w : E → G of Fréchet spaces such that ||wξ||ℓ2 = ||ξ|| for all
ξ ∈ E. Let ρ : s → s be the orthogonal projection onto G. The operators w, ρ and
the identity map ι : G í→ s can be extended to the continuous linear operators
between Hilbert spaces (for simplicity denoted by the same symbols): w : H → G,
ρ : ℓ2 → ℓ2 and ι : G í→ ℓ2, where G is the closure of G in ℓ2. Therefore, the Her-
mitian adjoints w∗ and ι∗ of the operators w and ι are well-defined. We have thus
the following commutative diagram of continuous linear maps between Fréchet
and Hilbert spaces

E G s

H G ℓ2

w ι

w ι

and the diagram with the corresponding adjoint operators

ℓ2 G H

ℓ2.

ι∗

ρ
ι

w∗

It follows easily that ι∗ : ℓ2 → G is the orthogonal projection onto G, whence
ι∗(s) = ρ(s) = G. Moreover, w∗(G) = E. Indeed, if (⋅, ⋅) denotes the scalar product
on E corresponding to the Hilbert norm || ⋅ ||, then

(w∗wξ, η) = ⟨wξ, wη⟩ = (ξ, η)
for all ξ, η ∈ E. Hence, E being dense in H, w∗w = idH , and so w∗(G) = E. Con-
sequently, we have the following commutative diagram

s G E

s.

ι∗

ρ
ι

w∗

It is easy to check that φ := ιw satisfies conditions (i)–(iii) and a simple com-
putation shows that φϕ∗ is a self-adjoint projection (and thus orthogonal) on ℓ2
with φϕ∗(s) = G. In consequence, φ : L∗(E, || ⋅ ||) → L∗(s), x Ü→ φxφ∗, is an
injective ∗-homomorphism with imφ = L∗(G) and, moreover,

P : L∗(s)→ L
∗(G), x Ü→ φϕ∗xφϕ∗


