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Preface

This volume contains 12 chapters that provide some recent developments in the analy-
sis and numerics ofMaxwell’s equations. The contributions result fromWorkshop 1 on
“Analysis andNumerics of Acoustic and Electromagnetic Problems” held at the Radon
Institute for Computational and Applied Mathematics (RICAM) in Linz, Austria, Octo-
ber 17–22, 2016. This workshop was the first workshop within the Special Semester
on “Computational Methods in Science and Engineering,” which took place in Linz,
October 10–December 16, 2016; see also the website:

https://www.ricam.oeaw.ac.at/specsem/specsem2016/

Maxwell’s equations of electro-dynamics are of huge importance in mathematical
physics, engineering, and especially in mathematics, leading since their discovery to
interesting mathematical problems and even to new fields of mathematical research,
particularly in the analysis and numerics of partial differential equations and applied
functional analysis. The impact to science in general has been formulated by the
famous physicist, Richard Feynman:

From a long view of the history of mankind – seen from, say, ten thousand years from now – there
can be little doubt that the most significant event of the 19th century will be judged as Maxwell’s
discovery of the laws of electrodynamics. The American Civil War will pale into provincial insignifi-
cance in comparison with this important scientific event of the same decade.

The deep understanding of Maxwell’s equations and the possibility of their numer-
ical solution in complex geometries and different settings have led to very efficient
and robust simulation methods in Computational Electromagnetics. Moreover, effi-
cient simulation methods pave the way for optimizing electromagnetic devices and
processes. Digital communication and e-mobility are two fields where simulation
and optimization techniques that are based on Maxwell’s equations play a deciding
role.

More than 70 scientists from 14 countries participated in the workshop; see Fig-
ure 1. The workshop brought together different communities, namely people work-
ing in analysis of Maxwell’s equations with those working in numerical analysis of
Maxwell’s equations and computational electromagnetics and acoustics. This collec-
tion of selected contributions contains original papers that are arranged in an alpha-
betical order. We are now going to give short description of these contributions.

In Chapter 1, Alonso Rodríguez, Bertolazzi, and Valli proposed and analyzed
two variational saddle-point formulations of the curl-div system. Moreover, suitable
Hilbert spaces and curl-free and divergence-free finite elements are employed. Finally,
numerical tests illustrate the performance of the proposed approximation methods.

https://doi.org/10.1515/9783110543612-201
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Figure 1: Participants of the first workshop of the special semester 2016 at RICAM.

In Chapter 2, Bauer gives an asymptotic expansion of time dependentMaxwell’s equa-
tions in terms of iterated div-curl systems in case that charge velocities are small in
comparison with the speed of light.

In Chapter 3, Bauer, Pauly, and Schomburg prove that the space of differential
forms with weak exterior- and co-derivative is compactly embedded into the space of
square integrable forms. Mixed boundary conditions and weak Lipschitz domains
are considered. Furthermore, canonical applications such as Maxwell estimates,
Helmholtz decompositions, and static solution theories are shown.

In Chapter 4, Bonnet-Ben Dhia, Fliss, and Tjandrawidjaja considered the 2D
Helmholtz equationwith a complexwavenumber in the exterior of a convex polygonal
obstacle with a Robin-type boundary condition using the principle of the half-space
matchingmethod. It is proved that this system is of Fredholm type and the theoretical
results are supported by numerical experiments.

In Chapter 5, Cogar, Colton, and Monk present an approach to the problem of the
possible non-uniqueness of solutions to inverse electromagnetic scattering problems
in anisotropicmedia through the use of appropriate “target signatures,” i. e., eigenval-
ues associated with the direct scattering problem that are accessible to measurement
from a knowledge of the scattering data. In this contribution, three different sets of
eigenvalues are utilized as target signatures.

In Chapter 6, Costabel and Dauge investigate Maxwell eigenmodes in three-
dimensional bounded electromagnetic cavities that have the form of a product of
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lower dimensional domains in some system of coordinates such as Cartesian, cylin-
drical, and spherical variables. As application of their general formulas, explicit
eigenpairs in a cuboid, in a circular cylinder, and in a cylinder with a coaxial circular
hole are found.

In Chapter 7, Hiptmair andPechstein show stable discrete regular decompositions
for Nédélec’s tetrahedral edge element spaces of any polynomial degree on a bounded
Lipschitz domain. Such decompositions have turned out to be crucial in the numerical
analysis of “edge” finite element methods for variational problems in computational
electromagnetics. Key tools for these constructions are continuous regular decompo-
sitions, boundary-aware local co-chain projections, projection-based interpolations,
and quasi-interpolations with low regularity requirements.

In Chapter 8, Kress presents a survey on uniqueness, that is, identifiability and on
reconstruction issues for inverse obstacle scattering for time-harmonic acoustic and
electromagnetic waves. New integral equation formulations for transmission eigen-
values that play an important role through their connections with the linear sampling
method and the factorization method for inverse scattering problems for penetrable
objects are given as well.

In Chapter 9, Nicaise and Tomezyk suggest a variational formulation of the time-
harmonic Maxwell equation with impedance boundary conditions in polyhedral do-
mains, and show existence and uniqueness of weak solutions by a compact pertur-
bation argument. Corner and edge singularities are investigated and a wavenumber
explicit error analysis is performed.

In Chapter 10, Osterbrink and Pauly investigate time-harmonic electro-magnetic
scattering or radiation problems governed byMaxwell’s equations in an exterior weak
Lipschitz domain with mixed boundary conditions. A solution theory in terms of a
Fredholm-type alternative using the framework of polynomially weighted Sobolev
spaces, Eidus’ principle of limiting absorption, and local compact embeddings is
presented.

In Chapter 11, Picard considers a coupled system of Maxwell’s equations and
the equations of elasticity, where the coupling occurs not via material properties
but through an interaction on an interface separating the two regimes. Evolutionary
well-posedness in the sense of Hadamard well-posedness supplemented by causal
dependence is shown for a natural choice of generalized interface conditions. The
results are obtained in a Hilbert space setting (Picard’s approach) incurring no regu-
larity constraints on the boundary and the interface of the underlying regions.

In Chapter 12, Waurick addresses the continuous dependence of solutions to cer-
tain equations on the coefficients. Three examples are discussed: A homogenization
problem for a Kelvin–Voigt model for elasticity, the discussion of continuous depen-
dence of the coefficients for acoustic waves with impedance-type boundary condi-
tions, and a singular perturbation problem for a mixed-type equation. By means of
counterexamples optimality of these results are obtained.
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The careful reviewing process was only possible with the help of the anonymous
referees who did an invaluable work that helped the authors to improve their contri-
butions. Furthermore, we would like to thank the administrative and technical staff
of RICAM for their support during the special semester. Last but not least, we express
our thanks to Apostolos Damialis and Nadja Schedensack from the Walter de Gruyter
GmbH, Berlin/Boston, for continuing support and patience while preparing this vol-
ume.

Linz, Essen, St. Petersburg Ulrich Langer
December 2018 Dirk Pauly

Sergey Repin
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Ana Alonso Rodríguez, Enrico Bertolazzi, and Alberto Valli
1 The curl–div system: theory and finite
element approximation

Abstract: We first propose and analyze two variational formulations of the curl–div
system that rewrite it as a saddle-point problem. Existence and uniqueness results are
then an easy consequence of this approach. Second, introducing suitable constrained
Hilbert spaces, we devise other variational formulations that turn out to be useful for
numerical approximation. Curl-free and divergence-free finite elements are employed
for discretizing theproblem, and the correspondingfinite element solutions are shown
to converge to the exact solution. Several numerical tests are also included, illustrating
the performance of the proposed approximation methods.

Keywords: Curl–div system, well-posedness, finite element approximation

MSC 2010: 65N30, 35J56, 35Q35, 35Q60

1 Introduction
The curl–div system often appears in electromagnetism (electrostatics, magnetostat-
ics) and in fluid dynamics (rotational incompressible flows, velocity–vorticity formu-
lations). Let Ω ⊂ ℝ3 be a bounded domain (i. e., a bounded, open and connected set):
depending on the boundary condition, in its most basic form it reads

{{
{{
{

curlu = J in Ω
divu = f in Ω
u × n = a on 𝜕Ω ,

(1.1)

or

{{
{{
{

curlu = J in Ω
divu = f in Ω
u ⋅ n = b on 𝜕Ω ,

(1.2)

with in addition some topological conditions assuring uniqueness.
The aim of this paper is two-fold: first, at the theoretical level, we present a couple

of saddle-point variational formulations of the curl–div systemand show that they are

Ana Alonso Rodríguez, Alberto Valli, Department of Mathematics, University of Trento, Povo (Trento),
Italy, e-mails: ana.alonso@unitn.it, alberto.valli@unitn.it
Enrico Bertolazzi, Department of Industrial Engineering, University of Trento, Povo (Trento), Italy,
e-mail: enrico.bertolazzi@unitn.it

https://doi.org/10.1515/9783110543612-001
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well-posed; second, focusing on discretization, we devise other non-standard varia-
tional formulations of this problem which lead to simple and efficient finite element
schemes for its numerical approximation.

Concerning the second issue, the main novelty resides in the functional frame-
work we adopt: we look for the solution in the spaces of curl-free or divergence-free
vector fields. For the sake of implementation, we also describe in detail how to con-
struct a simple finite element basis for these vector spaces; convergence of the finite
element approximations is then shown easily. A key point of our approach is a suit-
able tree–cotree decomposition of the graph given by the nodes and the edges of the
mesh.

The paper is organized as follows. In Section 2, after having recalled some clas-
sical results, by means of a saddle-point approach we show that the curl–div system
has a unique solution, for both types of boundary condition. Sections 3 and 4 are de-
voted to devising two other new variational formulations, that will be used for numer-
ical approximation, and to prove that they are well-posed. In Section 5, we give an
overview of some previous results related to the discretization of the curl–div system.
In Sections 6 and 7, the finite element numerical approximation of the curl–div sys-
tem based on the new variational formulations is described and analyzed. In the last
section, we finally present several numerical results that illustrate the performance of
the proposed approximation methods.

2 Theoretical results
Let us start with some notation. Let Ω be a bounded domain of ℝ3 with Lipschitz
boundary 𝜕Ω and let (𝜕Ω)0, . . . , (𝜕Ω)p be the connected components of 𝜕Ω, (𝜕Ω)0 being
the external one. From the topological point of view, p is the rank of the second ho-
mology group of Ω, namely, the second Betti number β2(Ω). The unit outward normal
vector on 𝜕Ω is indicated by n.

The space of infinitely differentiable functions with compact support in Ω is de-
noted by C∞0 (Ω). The classical Sobolev spaces are denoted by Hs(Ω) or Hs(𝜕Ω), for
s ∈ ℝ; for s = 0, we write H0(Ω) = L2(Ω). The space of (essentially) bounded and
measurable functions defined in Ω is denoted by L∞(Ω). Moreover, we define

H(curl;Ω) = {v ∈ (L2(Ω))3 | curl v ∈ (L2(Ω))3} ,

H(curl0;Ω) = {v ∈ (L2(Ω))3 | curl v = 0 in Ω} ,

H(div;Ω) = {ξ ∈ (L2(Ω))3 | div ξ ∈ L2(Ω)} ,

H(div0;Ω) = {ξ ∈ (L2(Ω))3 | div ξ = 0 in Ω} .

The space of traces on 𝜕Ω of functions ϕ belonging to H1(Ω) is the space H1/2(𝜕Ω)
(whose dual space is the space H−1/2(𝜕Ω)); the space of normal traces ξ ⋅ n on 𝜕Ω of
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vector fields ξ belonging to H(div;Ω) is H−1/2(𝜕Ω); the space of tangential traces v × n
on 𝜕Ω of vector fields v belonging to H(curl;Ω) is denoted by H−1/2(divτ; 𝜕Ω) (for the
interested reader, an intrinsic characterization of this space can be found in Buffa and
Ciarlet [24, 25]; see also Alonso Rodríguez and Valli [8, Section A1]).

In the following, we also need to consider a set closed curves in Ω, denoted by
{σn}

g
n=1, that are representatives of a basis of the first homology group (whose rank is

therefore equal to g, the first Betti number β1(Ω)): in other words, this set is a maxi-
mal set of non-bounding closed curves in Ω. Let us recall that an explicit and efficient
construction of the closed curves {σn}

g
n=1 is given by Hiptmair and Ostrowski [39]. For

a more detailed presentation of the homological concepts that are useful in this con-
text, see, e. g., Bossavit [20, Chap. 5], Hiptmair [37, Section 2 and Section 3], Gross and
Kotiuga [35, Chapter 1 and Chapter 3]; see also Benedetti et al. [13], Alonso Rodríguez
et al. [4].

2.1 The curl–div system with assigned tangential component on
the boundary

Let η be a symmetric matrix, uniformly positive definite in Ω, with entries belonging
to L∞(Ω). Given J ∈ (L2(Ω))3, f ∈ L2(Ω), a ∈ H−1/2(divτ; 𝜕Ω), α ∈ ℝp, we look for
u ∈ (L2(Ω))3 such that

{{{{{{{{
{{{{{{{{
{

curl(ηu) = J in Ω
divu = f in Ω
(ηu) × n = a on 𝜕Ω

∫
(𝜕Ω)r

u ⋅ n = αr for each r = 1, . . . , p .

(2.1)

The data must satisfy the necessary conditions div J = 0 in Ω, ∫Ω J ⋅ ρ + ∫𝜕Ω a ⋅ ρ = 0 for
each ρ ∈ ℋ(m), whereℋ(m) is the space of Neumann harmonic fields, namely,

ℋ(m) = {ρ ∈ (L2(Ω))3 | curlρ = 0 in Ω,divρ = 0 in Ω,ρ ⋅ n = 0 on 𝜕Ω} , (2.2)

whose dimension is known to be equal to g, the rank of the first homology group of
Ω, and finally J ⋅ n = divτ a on 𝜕Ω (for a summary of the properties of the spaces of
harmonic fields and for a definition of the tangential divergence operator divτ; see,
e. g., Alonso Rodríguez and Valli [8, Section A1 and Section A4]).

By means of a variational approach Saranen [59, 60] has shown that this problem
has a unique solution (see also the results proved in Alonso Rodríguez and Valli [8,
Section A3], and the more abstract approach by Picard [52, 53]). Let us briefly sum-
marize the principal points of this procedure. The method is based on the Helmholtz
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decomposition, namely, a splitting of the solution in three terms, orthogonal with re-
spect to the scalar product ∫Ω η

−1v ⋅w, that reads

ηu = η curlq + grad χ + ηh .

Here, the vector field q satisfies curl(η curlq) = J in Ω and (η curlq) × n = a on 𝜕Ω; χ
is the solution to div(η−1 grad χ) = f in Ω and χ = 0 on 𝜕Ω; h is a generalized Dirichlet
harmonic field, namely, it is an element of the finite dimensional vector space

ℋη(e) = {π ∈ (L
2(Ω))3 | curl(ηπ) = 0 in Ω,divπ = 0 in Ω,

(ηπ) × n = 0 on 𝜕Ω} ,
(2.3)

whose dimension is known to be equal to p (precisely,h is the unique element ofℋη(e)
satisfying ∫(𝜕Ω)r h ⋅ n = αr − ∫(𝜕Ω)r η

−1 grad χ ⋅ n for each r = 1, . . . , p).
Since a solution q to curl(η curlq) = J in Ω and (η curlq) × n = a on 𝜕Ω is not

unique (q+gradϕ is still a solution), other equations have to be added. Typically, one
imposes the gauge conditions divq = 0 in Ω, q ⋅ n = 0 on 𝜕Ω and q⊥ℋ(m).

The approach we have just described has thus led to two variational problems:
a standard Dirichlet boundary value problem for χ, and a constrained problem for q
(the determination of the harmonic field h also needs some additional work, but it is
an easy finite dimensional problem).

Numerical approaches for approximating these two problems are easily devised.
In fact, the first one is a standard elliptic problem. Numerical approximation can be
performed by scalar nodal elements in H1(Ω), looking for the unknown χ and then
computing its gradient, or by means of a mixed method in H(div;Ω) × L2(Ω), in which
grad χ ∈ H(div;Ω) is directly computed as an auxiliary unknown.

Concerning the problem related to the vector field q, a first choice is to work in
H(curl;Ω) ∩ H(div;Ω), hence with globally-continuous nodal finite elements for each
component of q; the drawback is that, in the presence of re-entrant corners, the solu-
tion is singular (it does not belong to (H1(Ω))3) and (H1(Ω))3 is a closed subspace of
H(curl;Ω)∩H(div;Ω), hence in this case a finite element scheme cannot be convergent
(see, e. g., Costabel et al. [29]).

An alternative method is to formulate the problem as a saddle-point problem for
the vector fieldq inH(curl;Ω), inwhich the divergence constraint is imposed in aweek
sense, introducing a scalar Lagrange multiplier; in this way the number of degrees of
freedom is rather high, as, besides an edge approximation of the vector fieldq, one has
also to consider a nodal approximation of the scalar Lagrange multiplier. The result-
ing algebraic problem is associated to an indefinite matrix; however, for its resolution
efficient regularization techniques are known (see Hiptmair [37, Section 6.1]).

A way for avoiding the introduction of a Lagrange multiplier is to solve the equa-
tion curl(η curlq) = J in Ω by using edge elements without any gauge. Though the
matrix to deal with is singular, the conjugate gradient method is known to be a viable
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tool for solving the associated algebraic problem (see the theoretical result by Kaass-
chieter [40]; see also Bossavit [20, Section 6.2], Bíró [16]); however, the computation of
the right-hand side should be done with particular care (see Fujiwara et al. [33], Bíró
et al. [17], Ren [56]), and, for problems with a large number of unknowns, it is not easy
to devise an efficient preconditioner.

Summing up, the most classical variational formulations of the curl–div system
are not completely satisfactory when numerical approximation has to be performed.
We will present in Section 3 a new variational formulation of problem (2.1) that looks
much more suitable for finite element discretization.

However, before coming to this point, we want to put the problem on a solid foun-
dation, providing in this and in the following section a proof of the well-posedness of
the curl–div system. Instead of reporting the classical result obtained by Saranen [59,
60], we propose a saddle-point formulation that to our knowledge has not been con-
sidered yet. With this approach, one does not introduce the potentials q and χ, keeps
the original unknown u and imposes the curl constraint by means of a Lagrange mul-
tiplier: it could be seen as a least-squares formulation with a constraint on the curl of
u, or similarly, a Lagrangian method for a constrained optimization problem.

Let us derive step by step the variational problem we are interested in. Taking the
gradient of the second equation in (2.1) we obtain grad divu = grad f . Multiplying for
a test vector field ξ , integrating in Ω and integrating by parts we obtain

−∫
Ω

(divu − f )div ξ + ∫
𝜕Ω

(divu − f )ξ ⋅ n = 0 .

The integral on the boundary will be omitted in the variational formulation, in order
to impose in a suitable weak sense the condition divu − f = 0 on 𝜕Ω.

Multiplying the first equation in (2.1) by v, integrating in Ω and integrating by
parts we find

∫
Ω

J ⋅ v = ∫
Ω

curl(ηu) ⋅ v = ∫
Ω

ηu ⋅ curl v + ∫
𝜕Ω

n × ηu ⋅ v ,

hence

∫
Ω

ηu ⋅ curl v = ∫
Ω

J ⋅ v + ∫
𝜕Ω

a ⋅ v .

Then, introducing a Lagrange multiplier p, we are led to consider the problem

∫
Ω

divudiv ξ + ∫
Ω

ηξ ⋅ curlp = ∫
Ω

f div ξ

∫
Ω

ηu ⋅ curl v = ∫
Ω

J ⋅ v + ∫
𝜕Ω

a ⋅ v .
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Now the natural question is: which are the variational spaces for u, ξ , p and v? Define
the Hilbert spaces

𝒲 = {ξ ∈ H(div;Ω) | ∫
(𝜕Ω)r

ξ ⋅ n = 0 for each r = 1, . . . , p}

𝒬 = {v ∈ H(curl;Ω) | ∫
Ω

v ⋅w = 0 for eachw ∈ H(curl0;Ω)} .
(2.4)

We choose u, ξ ∈ 𝒲 and p, v ∈ 𝒬. It is worth noting that the space H(curl0;Ω) can be
described as

H(curl0;Ω) = gradH1(Ω)
⊥
⊕ℋ(m) (2.5)

(see, e. g., Alonso Rodríguez and Valli [8, Section A3]). Therefore, by integration by
parts, an element v ∈ 𝒬 can be characterized as an element in H(curl;Ω) such that
div v = 0 in Ω, v ⋅ n = 0 on 𝜕Ω and v⊥ℋ(m).

Summing up, our variational problem is

find u ∈𝒲 ,p ∈ 𝒬 :

∫
Ω

divudiv ξ + ∫
Ω

ηξ ⋅ curlp = ∫
Ω

f div ξ

∫
Ω

ηu ⋅ curl v = ∫
Ω

J ⋅ v + ∫
𝜕Ω

a ⋅ v

for each ξ ∈𝒲 , v ∈ 𝒬 .

(2.6)

Before analyzing this problem, we need an additional tool. It is known that it is
possible to select a basis {πη

s }
p
s=1 of the space of harmonic fieldsℋη(e) defined in (2.3)

with the properties

∫
(𝜕Ω)r

πη
s ⋅ n = δrs

(see, e. g., Alonso Rodríguez and Valli [8, Section A4]; for η = Id we simply write πs).
Then, if u is a solution to problem (2.1) with αr = 0, r = 1, . . . , p, we check easily that
u +∑pr=1 αrπ

η
r is a solution to problem (2.1) with given αr .

This also says that a solution u of problem (2.1), if it exists, is unique. In fact,
taking vanishing data, it follows from the first three equations that u ∈ ℋη(e), and
consequently it can be written as u = ∑ps=1 usπ

η
s . Then, for each r = 1, . . . , p,

0 = ∫
(𝜕Ω)r

u ⋅ n =
p
∑
s=1

us ∫
(𝜕Ω)r

πη
s ⋅ n = ur ,

and in conclusion u = 0.
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Theorem 1. If (u,p) is a solution to problem (2.6) then p = 0 and u is a solution to
problem (2.1) for αr = 0, r = 1, . . . , p.

Proof. By the Stokes theorem for closed surfaces, we know that curl v ∈ 𝒲 for each
v ∈ 𝒬. Therefore, taking ξ = curlp in the first equation we find

∫
Ω

η curlp ⋅ curlp = 0 ,

hence curlp = 0; since the elements in 𝒬 are orthogonal to H(curl0;Ω) (with respect
to the L2(Ω)-scalar product), it follows p = 0.

Choosing ξ ∈ (C∞0 (Ω))
3 we find that grad(divu − f ) = 0 in Ω in the distributional

sense, hence (divu − f ) is constant in Ω. Take ξ̂ ∈ H(div;Ω) and define ξ̂r = ∫(𝜕Ω)r ξ̂ ⋅n.
Then ξ = ξ̂−∑pr=1 ξ̂rπ

η
r belongs to𝒲 and satisfies div ξ = div ξ̂ . Hence thefirst equation

in problem (2.6) is satisfied for each ξ̂ ∈ H(div;Ω), and by integration by parts we find
divu − f = 0 on 𝜕Ω, hence divu = f in Ω.

Let us prove that the second equation is indeed satisfied for each v̂ ∈ H(curl;Ω).
Let Pv̂ be the L2(Ω)-orthogonal projection of v̂ on H(curl0;Ω). Then Pv̂ = grad ω̂ + ρ̂,
with ω̂ ∈ H1(Ω) and ρ̂ ∈ ℋ(m), v = (v̂ − Pv̂) ∈ 𝒬, and curl v = curl v̂. Moreover,

∫
Ω

J ⋅ v + ∫
𝜕Ω

a ⋅ v = ∫
Ω

J ⋅ v̂ + ∫
𝜕Ω

a ⋅ v̂ − ∫
Ω

J ⋅ Pv̂ − ∫
𝜕Ω

a ⋅ Pv̂

and, by integrating by parts in Ω and on 𝜕Ω,

∫
Ω

J ⋅ Pv̂ + ∫
𝜕Ω

a ⋅ Pv̂ = ∫
Ω

J ⋅ (grad ω̂ + ρ̂) + ∫
𝜕Ω

a ⋅ (grad ω̂ + ρ̂)

= −∫
Ω

div Jω̂ + ∫
𝜕Ω

J ⋅ nω̂ + ∫
Ω

J ⋅ ρ̂ − ∫
𝜕Ω

divτ aω̂ + ∫
𝜕Ω

a ⋅ ρ̂ = 0 ,

having used the compatibility conditions on the data J and a.
Hence the second equation is satisfied for each v̂ ∈ H(curl;Ω), and taking v̂ ∈

(C∞0 (Ω))
3 it follows curl(ηu) = J in Ω in the distributional sense. Repeating the same

procedure for v̂ ∈ H(curl;Ω), integration by parts gives ηu × n = a on 𝜕Ω.

The existence of a solution to problem (2.1) is therefore reduced to the proof of the
existence of a solution to problem (2.6). This is a consequence of well-known results
for saddle-point problems (see, e. g., Boffi et al. [19, Section 4.2]). In fact, the following
two propositions permit us to apply the general well-posedness theory.

Proposition 1. The bilinear form a(ψ, ξ ) = ∫Ω divψdiv ξ is coercive in the space
ℬ0 × ℬ0, where

ℬ0 = {ξ ∈𝒲 | ∫
Ω

ηξ ⋅ curl v = 0 for all v ∈ 𝒬} .
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Proof. Indeed, we have already seen that, if ξ ∈ ℬ0, then it follows that ∫Ω ηξ ⋅curl v =
0 for all v ∈ H(curl;Ω). Therefore, by integration by parts we deduce at once that
curl(ηξ ) = 0 in Ω and ηξ × n = 0 on 𝜕Ω. Coercivity follows from the Friedrichs in-
equality: there exists a constant C > 0 such that for any vector field ξ belonging to
H(div;Ω), with curl(ηξ ) ∈ (L2(Ω))3, ηξ × n = 0 on 𝜕Ω and satisfying ∫(𝜕Ω)r ξ ⋅ n = 0 for
each r = 1, . . . , p, it holds

‖ξ ‖L2(Ω) ≤ C(‖curl(ηξ )‖L2(Ω) + ‖div ξ ‖L2(Ω)) .

This result can be shown by adapting in a straightforward way the proof presented,
e. g., in Fernandes and Gilardi [32], using the fact that the space

{ξ ∈ H(div;Ω) | curl(ηξ ) ∈ (L2(Ω))3,ηξ × n = 0 on 𝜕Ω}

is compactly imbedded in (L2(Ω))3 (see, e. g., Weber [64], Picard [54]).

Proposition 2. The bilinear form b(ξ , v) = ∫Ω ηξ ⋅ curl v satisfies an inf–sup condition,
namely, there exists β > 0 such that for each v ∈ 𝒬 there exists ξ ∈𝒲, ξ ̸= 0, satisfying

∫
Ω

ηξ ⋅ curl v ≥ β‖ξ ‖𝒲‖v‖𝒬 .

Proof. If curl v = 0 in Ω, nothing has to be proved. Then suppose that curl v ̸= 0. We
have already seen that curl v ∈ 𝒲 for each v ∈ 𝒬, and that any vector field v ∈ 𝒬
satisfies div v = 0 in Ω, v ⋅ n = 0 on 𝜕Ω and v⊥ℋ(m). The thesis follows by choosing
ξ = curl v, as div ξ = 0 in Ω and the Friedrichs inequality

‖v‖L2(Ω) ≤ C‖curl v‖L2(Ω)

is valid for v ∈ H(curl;Ω) ∩ H(div0;Ω) satisfying v ⋅ n = 0 on 𝜕Ω and v⊥ℋ(m) (see,
e. g., Girault and Raviart [34, Section 3.5] ifℋ(m) = 0, or Fernandes and Gilardi [32] if
ℋ(m) ̸= 0).

In conclusion, bymeans of these twopropositionswehaveproved that the saddle-
point problem (2.6) has a unique solution, and thus the same is true for problem (2.1).

2.2 The curl–div system with assigned normal component on
the boundary

Let μ be a symmetric matrix, uniformly positive definite in Ω, with entries belonging
to L∞(Ω). Given J ∈ (L2(Ω))3, f ∈ L2(Ω), b ∈ H−1/2(𝜕Ω), β ∈ ℝg , we look for u ∈ (L2(Ω))3
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such that

{{{{{{{{
{{{{{{{{
{

curlu = J in Ω
div(μu) = f in Ω
μu ⋅ n = b on 𝜕Ω

∮
σn

u ⋅ ds = βn for each n = 1, . . . , g ,

(2.7)

where the data satisfy the necessary conditions div J = 0 in Ω, ∫Ω f = ∫𝜕Ω b; moreover,
sinceweneed to give ameaning to the line integral ofu onσn, we follow the arguments
in Alonso Rodríguez et al. [7, Section 2] and we also assume that J ⋅n = 0 on 𝜕Ω (which
is more restrictive than the necessary condition ∫(𝜕Ω)r J ⋅ n = 0 for each r = 1, . . . , p).

The variational approach proposed by Saranen [59, 60] shows that this problem
has a unique solution (see also Alonso Rodríguez and Valli [8, Section A3], and the
results obtained by Picard [52, 53]). Again, the method is based on a orthogonal de-
composition result, through which the solution is split as

u = μ−1 curlq + grad χ + h ,

where the vector field q is a solution to curl(μ−1 curlq) = J in Ω and q × n = 0 on 𝜕Ω;
χ is the solution to div(μ grad χ) = f in Ω and μ grad χ ⋅ n = b on 𝜕Ω; h is a generalized
Neumann harmonic field, namely, it is an element of the finite dimensional vector
space

ℋμ(m) = {ρ ∈ (L
2(Ω))3 | curlρ = 0 in Ω,div(μρ) = 0 in Ω,

μρ ⋅ n = 0 on 𝜕Ω} ,
(2.8)

whose dimension is known to be equal to g (precisely, h is the unique element of
ℋμ(m) satisfying ∮σn h ⋅ ds = βn − ∮σn μ

−1 curlq ⋅ ds for each n = 1, . . . , g).
Since a solution q to curl(η curlq) = J in Ω and q × n = 0 on 𝜕Ω is not unique

(q + gradϕ, with ϕ = 0 on 𝜕Ω, is still a solution), other equations have to be added.
The standard gauge conditions are divq = 0 in Ω and q⊥ℋ(e), whereℋ(e) is the space
of Dirichlet harmonic vector fields, namely,

ℋ(e) = {π ∈ (L2(Ω))3 | curlπ = 0 in Ω,divπ = 0 in Ω,
π × n = 0 on 𝜕Ω} .

(2.9)

We do not specify the details of the proof of the existence of a solution q because here,
as in the previous case, we base the theoretical analysis of the curl–div system (2.7)
on a saddle-point variational formulation, quite close to that proposed by Kikuchi [42]
(the limitations in that paper are that the domain has a simple topological shape, the
boundary conditions are homogeneous and the coefficient μ is a constant scalar pa-
rameter). With this approach, the introduction of the potentials q and χ is not needed,
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the original unknown u is kept and the equation related to the divergence is imposed
by ameans of Lagrangemultiplier; more precisely, what we propose looks like a least-
squares formulationwith a constraint on the divergence ofu. Let us also point out that
another variational formulation, more suitable for numerical approximation, will be
introduced in Section 4.

We proceed as follows. Taking the curl of the first equation in (2.7) we obtain
curl curlu = curl J. Multiplying for a test vector fieldv, integrating inΩand integrating
by parts we obtain

∫
Ω

(curlu − J) ⋅ curl v + ∫
𝜕Ω

n × (curlu − J) ⋅ v = 0 .

The integral on the boundary will be omitted in the variational formulation, in order
to impose in a suitable weak sense the condition n × (curlu − J) = 0 on 𝜕Ω.

Multiplying the second equation in (2.7) by φ, integrating in Ω and integrating by
parts we find

∫
Ω

fφ = ∫
Ω

div(μu)φ = −∫
Ω

μu ⋅ gradφ + ∫
𝜕Ω

μu ⋅ nφ ,

hence

∫
Ω

μu ⋅ gradφ = −∫
Ω

fφ + ∫
𝜕Ω

μu ⋅ nφ .

Then, introducing a Lagrange multiplier λ, we are led to consider the problem

∫
Ω

curlu ⋅ curl v + ∫
Ω

μv ⋅ grad λ = ∫
Ω

J ⋅ curl v

∫
Ω

μu ⋅ gradφ = −∫
Ω

fφ + ∫
𝜕Ω

bφ .

The variational spaces are

𝒱 = {v ∈ H(curl;Ω) | curl v ⋅ n = 0 on 𝜕Ω,

∮
σn

v ⋅ ds = 0 for each n = 1, . . . , g}

ℛ = {φ ∈ H1(Ω) | ∫
Ω

φ = 0} ,

(2.10)

and the variational problem is
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find u ∈ 𝒱 , λ ∈ ℛ :

∫
Ω

curlu ⋅ curl v + ∫
Ω

μv ⋅ grad λ = ∫
Ω

J ⋅ curl v

∫
Ω

μu ⋅ gradφ = −∫
Ω

fφ + ∫
𝜕Ω

bφ

for each v ∈ 𝒱 ,φ ∈ ℛ .

(2.11)

Let us select a basis {ρμm}
g
m=1 of the space of harmonic fieldsℋμ(m) defined in (2.8)

with the properties

∮
σn

ρμm ⋅ ds = δnm

(see, e. g., Alonso Rodríguez and Valli [8, Section A4]; for μ = Id we simply write ρm).
Then, if u is a solution to problem (2.7) with βn = 0, n = 1, . . . , g, the vector field u +
∑gn=1 βnρ

μ
n is a solution to problem (2.7) with assigned βn.

A consequence of this remark is that a solution u of problem (2.7), if it exists, is
unique. Taking in fact vanishing data, it follows from the first three equations that
u ∈ ℋμ(m), and thus it can be written as u = ∑

g
n=1 unρ

μ
n. Then, for each n = 1, . . . , g,

0 = ∮
σn

u ⋅ ds =
g
∑
m=1

um∮
σn

ρμm ⋅ ds = un ,

and in conclusion u = 0.

Theorem 2. If (u, λ) is a solution to problem (2.11), then λ = 0 and u is a solution to
problem (2.7) for βn = 0, n = 1, . . . , g.

Proof. For φ ∈ ℛ it holds ∮σn gradφ ⋅ ds = 0 for each n = 1, . . . , g, hence gradφ ∈ 𝒱 for
each φ ∈ ℛ. Therefore, taking v = grad λ in the first equation we find

∫
Ω

μ grad λ ⋅ grad λ = 0 ,

hence grad λ = 0 and λ = const inΩ; since the elements inℛhave zeromean, it follows
λ = 0.

Choosing v ∈ (C∞0 (Ω))
3 we find that curl(curlu − J) = 0 in Ω in the distributional

sense. Moreover, integrating by parts we also find

∫
𝜕Ω

(curlu − J) ⋅ n × v = 0

for each v ∈ 𝒱. Since (curlu − J) is curl-free, from (2.5) we know that it can be written
as

curlu − J = grad χ +
g
∑
n=1

ζnρn
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for χ ∈ H1(Ω) and ζn ∈ ℝ. Thus we have

0 = ∫
𝜕Ω

(curlu − J) ⋅ n × v = ∫
𝜕Ω

grad χ ⋅ n × v +
g
∑
n=1

ζn ∫
𝜕Ω

ρn ⋅ n × v .

In addition, we recall from Buffa [23], Hiptmair et al. [38] that the tangential trace of
v ∈ 𝒱 can be written on 𝜕Ω as

n × v = n × grad ϑ +
g
∑
m=1

ηmn × ρ

m ,

where ϑ ∈ H1(Ω), ηm ∈ ℝ and the vector fields ρm satisfy the relations

∫
𝜕Ω

ρn ⋅ n × ρ

m = δnm

(see Hiptmair et al. [38], Alonso Rodríguez et al. [7, Lemmas 4 and 5]). By integration
by parts on 𝜕Ω, we find

∫
𝜕Ω

grad χ ⋅ n × v = − ∫
𝜕Ω

χ divτ(n × v) = 0 ,

as divτ(n×v) = − curl v ⋅n on 𝜕Ω; similarly, ∫𝜕Ω ρn ⋅n× grad ϑ = 0 for each n = 1, . . . , g.
In conclusion, we have obtained

0 = ∫
𝜕Ω

(curlu − J) ⋅ n × v =
g
∑

n,m=1
ζnηm ∫
𝜕Ω

ρn ⋅ n × ρ

m =

g
∑
n=1

ζnηn .

Since ηn are arbitrary, it follows ζn = 0 for each n = 1, . . . , g, and consequently curlu −
J = grad χ inΩ.On the other hand, from the assumptions on the data, div(curlu−J) = 0
in Ω and (curlu − J) ⋅ n = 0 on 𝜕Ω, hence grad χ = 0 in Ω.

Let us prove now that the second equation is indeed satisfied for each φ̂ ∈ H1(Ω).
Let φ̂Ω =

1
measΩ ∫Ω φ̂. Then φ = (φ̂ − φ̂Ω) ∈ ℛ and grad φ̂ = gradφ. Moreover,

−∫
Ω

f φ̂ + ∫
𝜕Ω

bφ̂ = −∫
Ω

fφ + ∫
𝜕Ω

bφ − φ̂Ω(−∫
Ω

f + ∫
𝜕Ω

b)

= −∫
Ω

fφ + ∫
𝜕Ω

bφ ,

having used the compatibility conditions on the data f and b.
Hence the second equation is satisfied for each φ̂ ∈ H1(Ω), and taking φ̂ ∈ C∞0 (Ω)

it follows div(μu) = f in Ω in the distributional sense. Repeating the same procedure
for φ̂ ∈ H1(Ω), integration by parts gives μu ⋅ n = b on 𝜕Ω.
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As in the previous section, the existence of a solution to problem (2.7) is therefore
reduced to the proof of the existence of a solution to a variational saddle-point prob-
lem, in this case problem (2.11). Applying the general theory reported, e. g., in Boffi
et al. [19, Section 4.2], we prove that problem (2.11) has a unique solution. In fact, the
following results hold true.

Proposition 3. The bilinear form a(w, v) = ∫Ω curlw ⋅ curl v is coercive in the space
𝒟0 ×𝒟0, where

𝒟0 = {v ∈ 𝒱 | ∫
Ω

μv ⋅ gradφ = 0 for all φ ∈ ℛ} .

Proof. Indeed, we already know that, if v ∈ 𝒟0, then it holds ∫Ω μv ⋅ gradφ = 0 for all
φ ∈ H1(Ω). Therefore, by integration by parts we deduce at once that div(μv) = 0 in Ω
and μv ⋅ n = 0 on 𝜕Ω. Coercivity follows from the Friedrichs inequality

‖v‖L2(Ω) ≤ C(‖curl v‖L2(Ω) + ‖div(μv)‖L2(Ω)) .

This inequality is valid for a vector field v belonging to H(curl;Ω), with div(μv) ∈
L2(Ω), μv ⋅ n = 0 on 𝜕Ω, and satisfying curl v ⋅ n = 0 on 𝜕Ω and ∮σn v ⋅ ds = 0 for
each n = 1, . . . , g. This result can be shown by adapting in a straightforward way the
proof presented, e. g., in Fernandes andGilardi [32] (see alsoAlonsoRodríguez et al. [7,
Lemma 9]), using the fact that the space

{v ∈ H(curl;Ω) | div(μv) ∈ (L2(Ω))3,μv ⋅ n = 0 on 𝜕Ω}

is compactly imbedded in (L2(Ω))3 (see, e. g., Weber [64], Picard [54]).

Proposition 4. The bilinear form b(v,φ) = ∫Ω μv ⋅gradφ satisfies an inf–sup condition,
namely, there exists β > 0 such that for each φ ∈ ℛ there exists v ∈ 𝒱, v ̸= 0, satisfying

∫
Ω

μv ⋅ gradφ ≥ β‖v‖𝒱‖φ‖ℛ .

Proof. We can suppose gradφ ̸= 0. The thesis follows by choosing v = gradφ, as
curl v = 0 in Ω and the Poincaré inequality

‖φ‖L2(Ω) ≤ C‖ gradφ‖L2(Ω)

is valid for φ ∈ ℛ (see, e. g., Dautray and Lions [31, p. 127]).

In conclusion, we have proved that the saddle-point problem (2.11) has a unique
solution, and thus the same is true for problem (2.7).
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Remark 1. The same existence result can be proved for the problem

{{{{{{{{
{{{{{{{{
{

curlu = J in Ω
div(μu) = f in Ω
μu ⋅ n = b on 𝜕Ω

∫
Ω

μu ⋅ ρμn = βn for each n = 1, . . . , g ,

(2.12)

where the field J is only required to satisfy the necessary compatibility conditions
div J = 0 in Ω and ∫(𝜕Ω)r J ⋅ n = 0 for each r = 1, . . . , p (namely, the more restrictive
assumption J ⋅ n = 0 on 𝜕Ω has been dropped).

In the variational formulation, one has only to replace the space 𝒱 by

𝒱♯ = {v ∈ H(curl;Ω) | ∫
Ω

μv ⋅ ρμn = 0 for all n = 1, . . . , g} ,

keeping the other spaceℛ (that still satisfies gradℛ ⊂ 𝒱♯).
The proofs can be easily adapted: the only point that deserves some explanation

is that now the variational solution u is shown to satisfy curl(curlu − J) = 0 in Ω, and
moreover, (curlu−J)×n = 0 on 𝜕Ω. This latter result follows from the fact that the first
variational equation is indeed satisfied for all v̂ ∈ H(curl;Ω), and not only for v ∈ 𝒱♯.
In fact, let Pμv̂ be the orthogonal projection of v̂ on ℋμ(m) with respect to the scalar
product ∫Ω μv ⋅w. Then v = (v̂−Pμv̂) ∈ 𝒱♯ and curl v = curl v̂, as the elements inℋμ(m)
are curl-free.

Thus (curlu − J) ∈ ℋ(e), and the conditions ∫(𝜕Ω)r (curlu − J) ⋅ n = 0 for each r =
1, . . . , p permit to conclude that curlu− J = curlΦ in Ω (see, e. g., Cantarella et al. [26]).
Therefore,

∫
Ω

(curlu − J) ⋅ (curlu − J) = ∫
Ω

(curlu − J) ⋅ curlΦ

= ∫
Ω

curl(curlu − J) ⋅Φ + ∫
𝜕Ω

(curlu − J) ⋅ n ×Φ = 0 ,

namely, curlu = J in Ω.

3 A new variational formulation for problem (2.1)

The discussion at the beginning of Section 2.1 should have explainedwhy our aimhere
is to find a different variational formulation for problem (2.1), a formulation that turns
out to be more suitable for numerical approximation.
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In our procedure, the first step is to find a vector field u⋆ ∈ (L2(Ω))3 satisfying

{{{
{{{
{

divu⋆ = f in Ω

∫
(𝜕Ω)r

u⋆ ⋅ n = αr for each r = 1, . . . , p . (3.1)

Such a vector field does exist: for instance, one can think to take J = 0 and a = 0 in
(2.1), or any choice of J and a satisfying the compatibility conditions (indeed, we will
not assume in the sequel that curl(ηu⋆) = 0 or (ηu⋆) × n = 0).

The vector fieldW = u − u⋆ satisfies

{{{{{{{{
{{{{{{{{
{

curl(ηW) = J − curl(ηu⋆) in Ω
divW = 0 in Ω
(ηW) × n = a − (ηu⋆) × n on 𝜕Ω

∫
(𝜕Ω)r

W ⋅ n = 0 for each r = 1, . . . , p ,

(3.2)

and the second step of the procedure is finding a simple variational formulation of
this problem.

Multiplying the first equation by a test function v ∈ H(curl;Ω), integrating in Ω
and integrating by parts, we find:

∫
Ω

J ⋅ v = ∫
Ω

curl[η(W + u⋆)] ⋅ v

= ∫
Ω

η(W + u⋆) ⋅ curl v − ∫
𝜕Ω

[η(W + u⋆) × n] ⋅ v

= ∫
Ω

ηW ⋅ curl v + ∫
Ω

ηu⋆ ⋅ curl v − ∫
𝜕Ω

a ⋅ v .

Let us introduce the space

𝒲0 = {ξ ∈ H(div;Ω) | div ξ = 0 in Ω,

∫
(𝜕Ω)r

ξ ⋅ n = 0 for each r = 1, . . . , p} .
(3.3)

Note that this space can be written as 𝒲0 = curl[H(curl;Ω)]: in fact, the inclusion
curl[H(curl;Ω)] ⊂ 𝒲0 is obvious, while the inclusion𝒲0 ⊂ curl[H(curl;Ω)] is a clas-
sical result concerning vector potentials (see, e. g., Cantarella et al. [26]). The vector
fieldW is thus a solution to

W ∈𝒲0 : ∫
Ω

ηW ⋅ curl v = ∫
Ω

J ⋅ v − ∫
Ω

ηu⋆ ⋅ curl v

+ ∫
𝜕Ω

a ⋅ v ∀ v ∈ H(curl;Ω) .
(3.4)
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More precisely,W is the unique solution of that problem: in fact, assuming J = u⋆ =
a = 0, and taking v such that curl v =W, it follows at this point ∫Ω ηW ⋅W = 0, hence
W = 0.

Let us remark at once that, due to the identity𝒲0 = curl[H(curl;Ω)], an edge finite
element scheme related to this variational formulation leads to a well-structured stiff-
ness matrix: the one of the curl curl operator (for a suitable set of the basis functions,
see (6.9) and Proposition 6).

Remark 2. Let us consider the electrostatic problem in a domain with simple topo-
logical shape, namely, problem (2.1) with J = 0 in Ω, a = 0 on 𝜕Ω, and p = 0. We
have already seen in Section 2.1 that ηu = grad χ in Ω, where the potential χ satisfies
div(η−1 grad χ) = f in Ω and χ = 0 on 𝜕Ω. In this situation, the simplest way for de-
termining the approximate solution is clearly to solve this Dirichlet boundary value
problem by using nodal finite elements.

4 A new variational formulation for problem (2.7)
The variational formulation of the curl–div system with assigned normal component
on the boundary that we present here is similar to the onewe have proposed in Alonso
Rodríguez et al. [4] for the problem of magnetostatics. However, we think it can be
interesting for its particular simplicity, as here we will formulate the problem in the
space 𝒱0 = grad[H1(Ω)], while in [4] it was set in the space H(curl0;Ω), which in the
general topological case is more complicated to discretize.

Also in this case, we need a preliminary step: to find a vector field u∗ ∈ (L2(Ω))3

satisfying

{{{
{{{
{

curlu∗ = J in Ω

∮
σn

u∗ ⋅ ds = βn for each n = 1, . . . , g . (4.1)

This vector field does exist: for instance, one can choose f = 0 and b = 0 in (2.7), or
any choice of f and b satisfying the compatibility condition (indeed, we do not need
to assume in the sequel that div(μu∗) = 0 or (μu∗) ⋅ n = 0).

The vector field V = u − u∗ satisfies

{{{{{{{{
{{{{{{{{
{

curlV = 0 in Ω
div(μV) = f − div(μu∗) in Ω
(μV) ⋅ n = b − (μu∗) ⋅ n on 𝜕Ω

∮
σn

V ⋅ ds = 0 for each n = 1, . . . , g ,

(4.2)

and now we only have to find a variational formulation of this problem.
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Multiplying the second equation by a test function ϕ ∈ H1(Ω), integrating in Ω
and integrating by parts we find:

∫
Ω

fϕ = ∫
Ω

div[μ(V + u∗)]ϕ

= −∫
Ω

μ(V + u∗) ⋅ gradϕ + ∫
𝜕Ω

[μ(V + u∗) ⋅ n]ϕ

= −∫
Ω

μV ⋅ gradϕ − ∫
Ω

μu∗ ⋅ gradϕ + ∫
𝜕Ω

bϕ .

Let us introduce the space

𝒱0 = {v ∈ H(curl;Ω) | curl v = 0 in Ω,

∮
σn

v ⋅ ds = 0 for each n = 1, . . . , g} .
(4.3)

Note that this space can be written as 𝒱0 = grad[H1(Ω)]: in fact, the inclusion
grad[H1(Ω)] ⊂ 𝒱0 is obvious, while the inclusion 𝒱0 ⊂ grad[H1(Ω)] is a classical
result concerning scalar potentials (see, e. g., Cantarella et al. [26]). The vector field V
is thus a solution to

V ∈ 𝒱0 : ∫
Ω

μV ⋅ gradϕ = −∫
Ω

fϕ − ∫
Ω

μu∗ ⋅ gradϕ

+ ∫
𝜕Ω

bϕ ∀ ϕ ∈ H1(Ω) .
(4.4)

It is easy to see thatV is indeed the unique solution of that problem: in fact, assuming
f = b = 0, u∗ = 0, and taking ϕ such that gradϕ = V, it follows at once ∫Ω μV ⋅ V = 0,
hence V = 0.

Also in this case we remark that, due to the identity 𝒱0 = grad[H1(Ω)], a nodal
finite element scheme related to this variational formulation leads to a very simple
andnice stiffnessmatrix: the one of the Laplace operator−Δ (for all the basis functions
except one, see (7.7)).

5 Finite element approximation: generalities

Without pretending to be exhaustive, in this section we give a general overview of the
methods that have been proposed for the finite element numerical approximation of
the curl–div problem (mainly for the magnetostatic case given by (2.7) with f = 0 and
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b = 0); our aim is simply to show here the advantage of the finite element methods we
are going to introduce.

The magnetostatic problem has been considered since a long time, though very
often in a simple topological situation, as it is probably the “most frequently encoun-
tered field problem in electrical engineering design” (see Chari et al. [28]).

A formulation in terms of a vector potential A such that curlA = μu is quite clas-
sical, and has been analyzed by Coulomb [30], Barton and Cendes [12], Preis et al. [55]
(see also the more recent point of view involving mimetic finite differences presented
in Brezzi and Buffa [22], Lipnikov et al. [43]). Since the unknown is a vector field, the
computational cost is higher than that needed to solve problem (2.7), that, as we will
see in (7.7), in our formulation is essentially a scalar problem. Moreover, the magnetic
vector potential approach presents two additional disadvantages: firstly, the right-
hand sides f and bmust be vanishing, or, if this not the case, one has the additional
step given by the identification of a scalar function Ψ such that div(μ gradΨ) = f in Ω
and μ gradΨ ⋅ n = b on 𝜕Ω; secondly, the vector potential A needs a gauge condition,
thus another scalar equation (and unknown) has to be introduced. The method we
devise in Section 6 for solving problem (2.1) has two steps: the first one has the aim of
simply reducing the problem to the search of a suitablemagnetic vector potential, and
the second step can be performedwithout introducing a differential gauge, so that the
overall scheme is cheap and efficient.

The remark concerning the computational cost also holds for many methods
formulated in terms of the field u: let us mention the mixed methods proposed by
Kikuchi [42], Kanayama et al. [41], the least-squares approaches by Chang and Gun-
zburger [27], Bensow and Larson [14], Bochev et al. [18], the negative-norm least-
squares schemes by Bramble and Pasciak [21], the weak Galerkin formulations by
Wang andWang [63], and the evenmore expensive two field-basedmethods by Rikabi
et al. [58], Perugia [49] and Alotto and Perugia [10].

The co-volume method proposed by Nicolaides and Wu [48] is based on a system
of two orthogonal grids like the classical Voronoi–Delaunay mesh pair, and for this
reason this approach is not completely general, as some restrictions on the primal
mesh and on the topological properties of the computational domain are needed.

Finally, the methods based on a magnetic scalar “potential” (the so-called re-
duced scalar potential) require the preliminary determination of a source field He.
Doing this by means of the Biot–Savart formula is not cheap from the computational
point of view, and sometimes it induces cancellation errors (see Simkin and Trow-
bridge [62], Balac and Caloz [11]). In Mayergoyz et al. [45], it was suggested how to
avoid this drawback by introducing an additional scalar potential, thus proposing a
more expensive scheme (a complete analysis of this more complex formulation is in
Bermudez et al. [15]). The method we propose in Section 7 for solving problem (2.7)
presents two steps: the first one leads to a problem where the unknown is essentially
a magnetic scalar “potential,” but this is done without using the Biot–Savart formula,
and in the end it turns out to be cheap and reliable.
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Our methods in Section 6 and Section 7 are related to the so-called tree–cotree
gauge used for the numerical approximation of magnetostatic and eddy current prob-
lems (see, e. g., Albanese and Rubinacci [1, 2], Ren and Razek [57], Manges and Cen-
des [44]); it could be seen as a rigorous mathematical version of that approach.

Before going on, a few remarks are in order. The techniques based on a tree–cotree
decomposition of the nodes and the edges of the mesh can have some drawbacks,
both for the construction of scalar or vector potentials and for the determination of
a finite element basis. In fact, the stability of the methods depends on the choice of
the tree (see Hiptmair [36]), and a clear theoretical result concerning the best selec-
tion for numerical approximation is not known. In this paper, as well as in our previ-
ous experience (see Alonso Rodríguez et al. [4], Alonso Rodríguez et al. [5]), choosing
a breadth-first spanning tree has shown to be suitable and has lead to efficient nu-
merical schemes. However, there are no rigorous results on this subject, and a deeper
analysis, that would be quite interesting, could be the topic of a future research.

Let us introduce now some notation. In the following sections, we assume that
Ω ⊂ ℝ3 is a polyhedral bounded domain with Lipschitz boundary 𝜕Ω. We consider a
tetrahedral triangulation 𝒯h = (V ,E, F,T) of Ω, denoting by V the set of vertices, E the
set of edges, F the set of faces and T the set of tetrahedra of 𝒯h.

We will use these spaces of finite elements (see Monk [46, Section 5.6, Section 5.5,
Section 5.4 and Section 5.7] for a complete presentation): the space Lh of continuous
piecewise-linear elements, with dimension nv, the number of vertices in 𝒯h; the space
Nh ofNédélec edge elements of degree 1,with dimension ne, the number of edges in 𝒯h;
the space RTh of Raviart–Thomas elements of degree 1, with dimension nf , the number
of faces in 𝒯h; the space PCh of piecewise-constant elements, with dimension nt, the
number of tetrahedra in 𝒯h.

The following inclusions are well known:

Lh ⊂ H1(Ω) , Nh ⊂ H(curl;Ω) , RTh ⊂ H(div;Ω) PCh ⊂ L2(Ω) .

Moreover, grad Lh ⊂ Nh, curlNh ⊂ RTh and div RTh ⊂ PCh. The basis of Lh is denoted
by {ψh,1, . . . ,ψh,nv }, with ψh,i(vj) = δi,j for 1 ≤ i, j ≤ nv; the basis of Nh is denoted by
{wh,1, . . . ,wh,ne }, with ∫ej wh,i ⋅ τ = δi,j for 1 ≤ i, j ≤ ne; the basis of RTh is denoted by
{rh,1, . . . , rh,nf }, with ∫fm rh,l ⋅ ν = δl,m for 1 ≤ l,m ≤ nf .

Fixing a total ordering v1, . . . , vnv of the elements of V , an orientation on the el-
ements of E and F is induced: if the end points of ej are va and vb for some a, b ∈
{1, . . . , nv} with a < b, then the oriented edge ej will be denoted by [va, vb], with unit
tangent vector τ = vb−va

|vb−va|
; if the face fm has vertices va, vb and vc with a < b < c, the ori-

ented face fm will be denoted by [va, vb, vc] and its unit normal vector ν = (vb−va)×(vc−va)|(vb−va)×(vc−va)|
is obtained by the right-hand rule.

We have already introduced the set of closed curves {σn}
g
n=1. We recall here that

indeed they can be constructed as 1-cycles in 𝒯h, therefore, they are suitable for being
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employed in finite element approximation (see Hiptmair and Ostrowski [39]; see also
Alonso Rodríguez et al. [4]).

6 Finite element approximation of problem (3.4)

We are ready now for the presentation of our finite element approximation procedure
of problem (2.1). It can be performed in two steps. The first one, that is quite cheap, is
finding a finite element potential u⋆h ∈ RTh such that

{{{
{{{
{

divu⋆h = fh in Ω

∫
(𝜕Ω)r

u⋆h ⋅ n = αr for each r = 1, . . . , p , (6.1)

where fh ∈ PCh is the piecewise-constant interpolant IPCh f of f . This can be done by
means of a simple and efficient algorithm as shown in Alonso Rodríguez and Valli [9].

The second step concerns the numerical approximation of problem (3.4). Here,
the main issue is to determine a finite element subspace of 𝒲0, and a suitable finite
element basis. The natural choice is clearly

𝒲0,h = {ξ h ∈ RTh | div ξ h = 0 in Ω,

∫
(𝜕Ω)r

ξ h ⋅ n = 0 for each r = 1, . . . , p} .
(6.2)

For the ease of notation, let us set nQ = ne − (nv − 1). As proved in Alonso Rodríguez
et al. [6], the dimension of𝒲0,h is equal to nQ − g, and a basis is given by the curls of
suitable Nédélec elements belonging to Nh.

To make clear this point, following Alonso Rodríguez et al. [6], some notation
are necessary. As shown in Hiptmair and Ostrowski [39] (see also Alonso Rodríguez
et al. [4]), it is possible to construct a set of 1-cycles {σn}

g
n=1, representing a basis of the

first homology groupℋ1(Ω,ℤ), as a formal sumof edges in 𝒯h with integer coefficients.
More precisely, let us consider the graph given by the vertices and the edges of 𝒯h on
𝜕Ω. The number of connected components of this graph coincides with the number of
connected components of 𝜕Ω. For each r = 0, 1, . . . , p, let Sr𝜕Ω = (V

r
𝜕Ω,M

r
𝜕Ω) be a span-

ning tree of the corresponding connected component of the graph. Then consider the
graph (V ,E), given by all the vertices and edges of 𝒯h, and a spanning tree S = (V ,M)
of this graph such thatMr

𝜕Ω ⊂ M for each r = 0, 1, . . . , p. Let us order the edges in such
a way that the edge el belongs to the cotree of S for l = 1, . . . , nQ and the edge enQ+i be-
longs to the tree S for i = 1, . . . , nv − 1. In particular, denote by eq, q = 1, . . . , 2g, the set
of edges of 𝜕Ω, constructed by Hiptmair and Ostrowski [39], that have the following
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properties: they all belong to the cotree, and each one of them “closes” a 1-cycle γq
that is a representative of a basis of the first homology groupℋ1(𝜕Ω,ℤ) (whose rank is
indeed equal to 2g). With this notation, we recall that the 1-cycles σn can be expressed
as the formal sum

σn =
2g
∑
q=1

An,qγq =
2g
∑
q=1

An,qeq +
ne
∑

i=nQ+1
an,iei , (6.3)

for suitable and explicitly computable integers An,q.
The idea that leads to the construction of the basis of𝒲0,h is now the following:

first, consider the set

{curlwh,l}
nQ
l=2g+1 ,

Then look for g functions zh,λ ∈ RTh, λ = 1, . . . , g, of the form

zh,λ =
2g
∑
υ=1

c(λ)υ curlwh,υ ,

where the linearly independent vectors c(λ) ∈ ℝ2g are chosen in such a way that

∮
σn

(
2g
∑
υ=1

c(λ)υ wh,υ) ⋅ ds = 0

for n = 1, . . . , g. This can be done since σn is formed by the “closing” edges eq, q =
1, . . . , 2g, and by edges belonging to the spanning tree, so that

∮
σn

(
2g
∑
υ=1

c(λ)υ wh,υ) ⋅ ds =
2g
∑
q=1

An,q ∫
eq

(
2g
∑
υ=1

c(λ)υ wh,υ) ⋅ τ =
2g
∑
q=1

An,qc
(λ)
q ,

and thematrixA ∈ ℤg×2g with entriesAn,q has rank g (seeHiptmair andOstrowski [39],
Alonso Rodríguez et al. [4, Section 6]). Thus we only have to determine a basis c(λ) ∈
ℝ2g of the kernel of A, λ = 1, . . . , g. An easy way for determining these vectors c(λ) is
presented in Alonso Rodríguez et al. [6].

Proposition 5. The vector fields

{curlwh,l}
nQ
l=2g+1 ∪ {curl(

2g
∑
υ=1

c(λ)υ wh,υ)}
g

λ=1
⊂𝒲0,h

are linearly independent and in particular they are a basis of𝒲0,h.

Proof. The proof that these vector fields are linearly independent is in Alonso Ro-
dríguez et al. [6, Proposition 2]. The second statement is then straightforward, as their
number is nQ − g, the dimension of𝒲0,h.
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Let us denote this basis by {curlωh,l}
nQ
l=g+1, with

ωh,l =
{{{
{{{
{

wh,l for l = 2g + 1, . . . , nQ
2g
∑
υ=1

c(l−g)υ wh,υ for l = g + 1, . . . , 2g .
(6.4)

Proposition 6. The vector fields {ωh,l}
nQ
l=g+1 are linearly independent.

Proof. Suppose we have∑nQl=g+1 θlωh,l = 0 for some θl. This can be rewritten as

0 =
nQ
∑

l=2g+1
θlwh,l +

2g
∑
l=g+1

θl(
2g
∑
υ=1

c(l−g)υ wh,υ)

=
nQ
∑

l=2g+1
θlwh,l +

2g
∑
υ=1
(

2g
∑
l=g+1

θlc
(l−g)
υ )wh,υ ,

thus θl = 0 for l = 2g + 1, . . . , nQ and ∑2gl=g+1 θlc
(l−g)
υ = 0 for υ = 1, . . . 2g, as {wh,l}

nQ
l=1

are linearly independent. Since the vectors c(l−g) ∈ ℝ2g , l = g + 1, . . . , 2g, are linearly
independent, we also obtain θl = 0 for l = g + 1, . . . , 2g, and the result follows.

We are now in a position to formulate the finite element approximation of (3.4),
that reads as follows:

Wh ∈𝒲0,h : ∫
Ω

ηWh ⋅ curl vh = ∫
Ω

J ⋅ vh − ∫
Ω

ηu⋆h ⋅ curl vh

+ ∫
𝜕Ω

a ⋅ vh ∀ vh ∈ N
⋆
h ,

(6.5)

where

N⋆h = span{ωh,l}
nQ
l=g+1 . (6.6)

The corresponding algebraic problem is a square linear system of dimension nQ − g,
and it is uniquely solvable. In fact, we note that𝒲0,h = curlN⋆h , hence we can choose
v⋆h ∈ N

⋆
h such that curl v⋆h = Wh; from (6.5) we find at once Wh = 0, provided that

J = u⋆h = a = 0.
The convergence of this finite element scheme is easily shown by standard argu-

ments. For the ease of reading, let us present the proof.

Theorem 3. Let W ∈ 𝒲0 and Wh ∈ 𝒲0,h be the solutions of problem (3.4) and (6.5),
respectively. Set u = W + u⋆ and uh = Wh + u⋆h , where u

⋆ ∈ H(div;Ω) and u⋆h ∈ RTh
are solutions to problem (3.1) and (6.1), respectively. Assume that u is regular enough, so
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that the interpolant IRTh u is defined. Then the following error estimate holds:

‖u − uh‖H(div;Ω) ≤ c0(‖u − I
RT
h u‖L2(Ω) + ‖f − I

PC
h f ‖L2(Ω)) . (6.7)

Proof. Since N⋆h ⊂ H(curl;Ω), we can choose v = vh ∈ N
⋆
h in (3.4). By subtracting (6.5)

from (3.4), we end up with

∫
Ω

η[(W + u⋆) − (Wh + u
⋆
h)] ⋅ curl vh = 0 ∀ vh ∈ N

⋆
h ,

namely,

∫
Ω

η(u − uh) ⋅ curl vh = 0 ∀ vh ∈ N
⋆
h . (6.8)

Then, recalling that𝒲0,h = curlN⋆h , so thatWh = curl v⋆h for a suitable v
⋆
h ∈ N
⋆
h , using

(6.8) we find

c1‖u − uh‖
2
L2(Ω) ≤ ∫

Ω

η(u − uh) ⋅ (u − uh)

= ∫
Ω

η(u − uh) ⋅ (u −Wh − u
⋆
h )

= ∫
Ω

η(u − uh) ⋅ (u − curl v
⋆
h − u
⋆
h )

= ∫
Ω

η(u − uh) ⋅ (u − curl vh − u
⋆
h )

≤ c2‖u − uh‖L2(Ω)‖u − ξ h − u
⋆
h‖L2(Ω) ∀ ξ h ∈𝒲0,h .

We can choose ξ h = (I
RT
h u − u⋆h ) ∈ 𝒲0,h; in fact, div(IRTh u) = IPCh (divu) = I

PC
h f = fh

and ∫(𝜕Ω)r I
RT
h u ⋅ n = ∫(𝜕Ω)r u ⋅ n = αr for each r = 1, . . . , p. Then it follows at once

‖u−uh‖L2(Ω) ≤
c2
c1
‖u− IRTh u‖L2(Ω). Moreover, div(u−uh) = f − fh = f − I

PC
h f , and the thesis

is proved.

A sufficient condition for defining the interpolant ofu is thatu ∈ (H
1
2+δ(Ω))3, δ > 0

(see Monk [46, Lemma 5.15]). This is satisfied if, e. g., η is a scalar Lipschitz function
in Ω and a ∈ (Hγ(𝜕Ω))3, γ > 0 (see Alonso and Valli [3]). Moreover, if u ∈ (H1(Ω))3 and
f ∈ H1(Ω) we have ‖u − uh‖H(div;Ω) = O(h).

6.1 The algebraic problem

The solutionWh ∈ 𝒲0,h is given byWh = ∑
nQ
l=g+1Wl curlωh,l. Hence the finite dimen-

sional problem (6.5) can be rewritten as
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nQ
∑
l=g+1

Wl ∫
Ω

η curlωh,l ⋅ curlωh,m = ∫
Ω

J ⋅ωh,m − ∫
Ω

ηu⋆h ⋅ curlωh,m

+ ∫
𝜕Ω

a ⋅ωh,m ,
(6.9)

for eachm = g + 1, . . . , nQ.

Theorem 4. The matrix K⋆ with entries

K⋆ml = ∫
Ω

η curlωh,l ⋅ curlωh,m

is symmetric and positive definite.

Proof. It is enough to recall that the vector fields {curlωh,l}
nQ
l=g+1 are linearly indepen-

dent (see Proposition 5). More precisely, they are a basis of𝒲0,h, henceK⋆ is the mass
matrix in𝒲0,h with weight η.

7 Finite element approximation of problem (4.4)
Similar to the previous case, also the finite element approximation of problem (2.7)
involves two steps. The first one is finding a finite element potential u∗h ∈ Nh such that

{{{
{{{
{

curlu∗h = Jh in Ω

∮
σn

u∗h ⋅ ds = βn for each n = 1, . . . , g , (7.1)

where Jh ∈ RTh is the Raviart–Thomas interpolant IRTh J of J (we therefore assume that
J is so regular that its interpolant IRTh J is defined; for instance, as already recalled, it
is enough to assume J ∈ (H

1
2+δ(Ω))3, δ > 0: see Monk [46, Lemma 5.15]). An efficient

algorithm for computing u∗h , based on a tree–cotree decomposition of the mesh, is
described in Alonso Rodríguez and Valli [9].

The second step is related to the numerical approximation of problem (4.4). It is
quite easy to find a finite element subspace of 𝒱0 and a suitable finite element basis.
The natural choice is clearly

𝒱0,h = {vh ∈ Nh | curl vh = 0 in Ω,

∮
σn

vh ⋅ ds = 0 for each n = 1, . . . , g} ,
(7.2)

which can be rewritten as 𝒱0,h = grad Lh. Since the dimension of this space is nv − 1,
a finite element basis is determined by taking gradψh,i, i = 1, . . . , nv − 1, ψh,i being the
basis functions of the finite element space Lh.
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The finite element approximation of (4.4) is easily obtained:

Vh ∈ 𝒱0,h : ∫
Ω

μVh ⋅ gradϕh = −∫
Ω

f ϕh − ∫
Ω

μu∗h ⋅ gradϕh

+ ∫
𝜕Ω

bϕh ∀ ϕh ∈ L
∗
h ,

(7.3)

where

L∗h = span{ψh,i}
nv−1
i=1 = {ϕh ∈ Lh |ϕh(vnv ) = 0} . (7.4)

The corresponding algebraic problem is a square linear system of dimension nv − 1,
and it is uniquely solvable. In fact, since 𝒱0,h = grad L∗h , we can choose ϕ

∗
h ∈ L
∗
h such

that gradϕ∗h = Vh; from (7.3) we find at once Vh = 0, provided that f = b = 0, u∗h = 0.
The convergence of this finite element scheme is easily proved by following the

arguments previously presented.

Theorem 5. LetV ∈ 𝒱0 andVh ∈ 𝒱0,h be the solutions of problem (4.4) and (7.3), respec-
tively. Set u = V+u∗ and uh = Vh +u∗h , where u

∗ ∈ H(curl;Ω) and u∗h ∈ Nh are solutions
to problem (4.1) and (7.1), respectively. Assume that u and J are regular enough, so that
the interpolants INh u and IRTh J are defined. Then the following error estimate holds:

‖u − uh‖H(curl;Ω) ≤ c0(‖u − I
N
h u‖L2(Ω) + ‖J − I

RT
h J‖L2(Ω)) . (7.5)

Proof. Since L∗h ⊂ H
1(Ω), we can choose ϕ = ϕh ∈ L∗h in (4.4). By subtracting (7.3) from

(4.4), we end up with

∫
Ω

μ[(V + u∗) − (Vh + u
∗
h)] ⋅ gradϕh = 0 ∀ ϕh ∈ L

∗
h ,

namely,

∫
Ω

μ(u − uh) ⋅ gradϕh = 0 ∀ ϕh ∈ L
∗
h . (7.6)

Then, since 𝒱0,h = grad L∗h and thus Vh = gradϕ∗h for a suitable ϕ
∗
h ∈ L
∗
h , from (7.6) we

find

c1‖u − uh‖
2
L2(Ω) ≤ ∫

Ω

μ(u − uh) ⋅ (u − uh)

= ∫
Ω

μ(u − uh) ⋅ (u − Vh − u
∗
h )

= ∫
Ω

μ(u − uh) ⋅ (u − gradϕ
∗
h − u
∗
h )
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= ∫
Ω

μ(u − uh) ⋅ (u − gradϕh − u
∗
h )

≤ c2‖u − uh‖L2(Ω)‖u − vh − u
∗
h‖L2(Ω) ∀ vh ∈ 𝒱0,h .

We can choose vh = (INh u − u
∗
h ) ∈ 𝒱0,h; in fact, curl(I

N
h u) = I

RT
h (curlu) = I

RT
h J = Jh and

∮σn I
N
h u ⋅ ds = ∮σn u ⋅ ds = βn for each n = 1, . . . , g. Then we find at once ‖u − uh‖L2(Ω) ≤

c2
c1
‖u−INh u‖L2(Ω). Moreover, curl(u−uh) = J−Jh = J−I

RT
h J, and the assertion follows.

Sufficient conditions for defining the interpolants of u and J = curlu are that they
both belong to (H

1
2+δ(Ω))3, δ > 0 (see Monk [46, Lemma 5.15 and Theorem 5.41]). This

is for instance satisfied if μ is a scalar Lipschitz function in Ω and b ∈ Hγ(𝜕Ω), γ > 0
(see Alonso and Valli [3]). Moreover, if u ∈ (H1(Ω))3 and J ∈ (H1(Ω))3 we have ‖u −
uh‖H(curl;Ω) = O(h).

7.1 The algebraic problem

The solutionVh ∈ 𝒱0,h is given byVh = ∑
nv−1
i=1 Vi gradψh,i. Hence the finite dimensional

problem (7.3) can be rewritten as

nv−1
∑
i=1

Vi ∫
Ω

μ gradψh,i ⋅ gradψh,j = −∫
Ω

fψh,j − ∫
Ω

μu∗h ⋅ gradψh,j

+ ∫
𝜕Ω

bψh,j ,
(7.7)

for each j = 1, . . . , nv − 1.
We have at once the following.

Theorem 6. The matrix K∗ with entries

K∗ji = ∫
Ω

η gradψh,i ⋅ gradψh,j

is symmetric and positive definite.

8 Numerical results
In this section,wepresent somenumerical experimentswith the aimof illustrating the
effectiveness of the two proposed formulations and the behavior of their finite element
approximation.

All the numerical computations have been performedbymeans of aMacBookPro,
with a processor 2.9 GHz Intel Core i7, 16 GB 2133MHz RAM. We have used Netgen (see
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[61]) to construct the meshes, and the package Pardiso (see [51, 50]) to solve the lin-
ear systems by means of a direct method (thus circumventing possible conditioning
problems).

A peculiar point of our procedure is the choice of a suitable spanning tree of the
graph given by the nodes and the edges of the mesh. As we have already noted, the
stability of the method depends on this choice, in a way that is not completely clar-
ified at the theoretical level. In our computations, we have systematically chosen a
breadth-first spanning tree; this, together with the use of direct solvers for the alge-
braic systems, has always provided good numerical results. Breadth-first spanning
trees have also shown to be an efficient choice in Alonso Rodríguez et al. [4], Alonso
Rodríguez et al. [5].

We consider different test cases for each one of the two proposed formulations.
For both formulations, the first test case is a problem with a known analytical solu-
tion. In this way, we can validate the code and illustrate the convergence properties
of the finite element discretization. In the second test case, the data are very similar
to those of the first test case, the difference only being a concentrated perturbation of
the datum at the right-hand side of the divergence equation. We expect a solution that
mainly differs from the solution of the first test case in a neighborhood of the support
of the perturbation. For the problem inwhich the tangential component of the velocity
is assigned, we present the computations for two different topological situations, in
order to show that the approximation method is insensitive to the shape of the com-
putational domain. In the third test case, the computational domain is similar to that
of problem number 13 in the TEAM workshop (see [47]). The aim of this test case is to
check the behaviour of the methods in a more realistic setting.

8.1 Numerical results for the problem with assigned tangential
component on the boundary

Let us recall the system of equations that we consider:

{{{{{{{{
{{{{{{{{
{

curl(ηu) = J in Ω
divu = f in Ω
(ηu) × n = a on 𝜕Ω

∫
(𝜕Ω)r

u ⋅ n = αr for each r = 1, . . . , p .

For the sake of simplicity, in the sequel we will take η equal to the identity.
The data of the first test are such that the vector field u = [−x1x2, x1x2,0]T is the

exact solution, hence in particular we have J = [0,0, x2 + x1]T and f = x1 − x2.
The computational domainΩ is a cylinderwith a cavity. The cylinder has a vertical

axis, height equal to H = 100, and the cross section given by the circle centered at the
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origin and of radius R = 60. The cavity is a similar cylinder but with height h = 60
and cross section of radius r = 30. The boundary of Ω has therefore two connected
components. We include the Netgen file describing the geometry.

algebraic3d

solid cyl1 = cylinder(0,0,0;0,0,1; 60.)

and plane( 0, 0, 50 ; 0, 0, 1 )

and plane( 0, 0,-50 ; 0, 0, -1 );

solid cyl2 = cylinder(0,0,0;0,0,1; 30.)

and plane( 0, 0, 30 ; 0, 0, 1 )

and plane( 0, 0,-30 ; 0, 0, -1 );

solid cyl_in_cyl = cyl1 and not cyl2;

tlo cyl_in_cyl;

To check that the convergence rate is linear as expected, we solve the problem with
five different meshes, described in Table 1.1.

Table 1.1: Description of the five meshes for the problem with assigned tangential component on the
boundary (first test case, simply-connected domain).

Elements Faces Edges Vertices DOF

Mesh 1 538 1246 886 180 707
Mesh 2 4304 9288 6048 1066 4983
Mesh 3 34432 71584 44264 7114 37151
Mesh 4 275456 561792 337712 51378 286335
Mesh 5 2203648 4450816 2636256 389090 2247167

The relative error is computed in the following way:

RE(h) =
√∑t∈T |t|(u|t − uh|t)2

√∑t∈T |t|(u|t)2
, (8.1)

being T the set of tetrahedra of the mesh and |t| the volume of the tetrahedron t.
The convergence rate is estimated comparing the error for two different meshes:

Estimated Rate = log[RE(h1)/RE(h2)]
log(h1/h2)

. (8.2)



1 The curl–div system: theory and finite element approximation | 29

Table 1.2: Relative error, mesh size, convergence rate and computational cost for the problem with
assigned tangential component on the boundary (first test case, simply-connected domain).

Relative error h Rate CPU [ms]

Mesh 1 0.216 41.99 ≈ 14
Mesh 2 0.131 31.68 1.657 ≈ 62
Mesh 3 0.068 16.30 0.969 ≈ 707
Mesh 4 0.034 8.16 0.998 ≈ 11161
Mesh 5 0.017 4.09 1.009 ≈ 407829

The results are reported in Table 1.2.
In the second test case, we consider a perturbed problem, namely, a problemwith

the same values of J, a, and αr for each r = 1, . . . , p, but with a new value for the diver-
gence, given by fϵ = f + ϵ, where ϵ = 1000 in the ball of radius 10 centered at the point
[45,0,0]T and ϵ = 0 otherwise. In Figure 1.1, one can compare the solutions of the first
test case and of the second test case (namely, of the problem with a known analytical
solution and of the perturbed problem). We are not showing the whole computational
domain but only a cut along the plane x2 = 10.

Figure 1.1: The solution u of the test problem in a simply-connected domain with a known analytical
solution (left) and with a perturbed value for the divergence (right). In the figures, the domain is cut
along the plane x2 = 10.

In order to show the proposed method is also working for a domain with a more gen-
eral topological shape, we have solved the problem for a toroidal domain with a con-
centric toroidal cavity. The connected components of the boundary are two and also
the first Betti number of the computational domain is equal to two. More precisely, the
computational domainΩ is the subtraction two domains: the larger one is the cylinder
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of height 2 with circular cross section of radius 1.2 minus the cylinder with the same
height and cross section of radius 0.4; the cavity is the cylinder of height 1.6 with cir-
cular cross section of radius 1 minus the cylinder of the same height and cross section
of radius 0.6. All the mentioned cylinders have their axis coincident with the x3-axis.

For completeness, we include the Netgen file describing the geometry:

algebraic3d

solid cyl1a = cylinder(0,0,0;0,0,1; 1.2)

and plane( 0, 0, 1 ; 0, 0, 1 )

and plane( 0, 0,-1 ; 0, 0, -1 );

solid cyl1b = cylinder(0,0,0;0,0,1; 0.4)

and plane( 0, 0, 1 ; 0, 0, 1 )

and plane( 0, 0,-1 ; 0, 0, -1 );

solid cyl2a = cylinder(0,0,0;0,0,1; 1.)

and plane( 0, 0, 0.8 ; 0, 0, 1 )

and plane( 0, 0,-0.8 ; 0, 0, -1 );

solid cyl2b = cylinder(0,0,0;0,0,1; 0.6)

and plane( 0, 0, 0.8 ; 0, 0, 1 )

and plane( 0, 0,-0.8 ; 0, 0, -1 );

solid cyl1 = cyl1a and not cyl1b;

solid cyl2 = cyl2a and not cyl2b;

solid cyl_in_cyl = cyl1 and not cyl2;

tlo cyl_in_cyl;

The data of this test are such that the exact solution is u = [x3x1, x3x2, x23]
T , hence in

particular we have J = [−x2, x1,0]T and f = 4x3.
Again we have solved the problem with five different meshes, described in Ta-

ble 1.3. The results are reported in Table 1.4.
In this case, the related perturbed problem has this form: we have kept the same

values of J, a and αr for each r = 1, . . . , p, just modifying the datum at the right-hand
side of the divergence equation, now given by f̂ϵ = f + ϵ, with ϵ = −15 in the ball
centered at the point [−0.8,0,0.9]T and radius 0.1, ϵ = 15 in the ball centered at the
point [0.8,0,0.9]T and radius 0.1 and ϵ = 0 otherwise.
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Table 1.3: Description of the five meshes for the problem with assigned tangential component on the
boundary (first test case, non-simply connected domain).

Elements Faces Edges Vertices DOF

Mesh 1 1358 3169 2264 453 1810
Mesh 2 10864 23540 15393 2717 12675
Mesh 3 86912 181072 112270 18110 94159
Mesh 4 695296 1419584 854668 130380 724287
Mesh 5 5562368 11240704 6663384 985048 5678335

Table 1.4: Relative error, mesh size, convergence rate and computational cost for the problem with
assigned tangential component on the boundary (first test case, non-simply connected domain).

Relative error h Rate CPU [ms]

Mesh 1 0.685 0.101 ≈80
Mesh 2 0.498 0.060 1.634 ≈170
Mesh 3 0.250 0.031 0.956 ≈1931
Mesh 4 0.125 0.015 1.008 ≈ 34779
Mesh 5 0.063 0.008 1.012 ≈2481110

Figure 1.2: The solution u of the test problem in a non-simply connected domain with a known ana-
lytical solution (left) and with a perturbed value for the divergence (right). In the figures, only half of
the domain is drawn.

In Figure 1.2, one can compare the solutions of the problem with a known analytical
solution and of the perturbed problem.We are showing only half of the computational
domain.

Let us note that we have not indeed constructed the basis described in Proposi-
tion 5, as we have used the set of generators {curlwh,l}

nQ
l=1, that in the case of a non-
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simply connected domain, are not linearly independent (the dimension of 𝒲0,h is
nQ − g). In this case, the associated linear system is singular, but it is possible to find
a solution in an efficient way (for instance, using the package Pardiso).

In the third test problem, the domain is the box (−300 300) × (−300 300) ×
(−250 250) (in mm), with three cavities corresponding to two channels and a plate
(see Figure 1.3). The geometry is inspired to the problem number 13 in the TEAM
workshop (see [47]). The thickness of the channels and the plate is δ = 3.2mm,
the width w = 50mm and the height l = 126.4mm (so the plate is the hexaedron
(−1.6, 1.6) × (−25, 25) × (−63.2, 63.2)). The distance between the plate and the channels
is 0.5mm, while the distance between the channels and the plane x2 = 0 is 15mm.
The datum J is supported in a coil placed between the channels and the plate. More
precisely, its support is the cylinder of height 100mmwith circular cross section cen-
tered at the origin and of radius 120mm minus the analogous cylinder of the same
height and cross section of radius 30mm. Within the coil, we have J = [−x2, x1,0]T ,
while J is zero outside the coil. All the other data, namely, f , a and αr for r = 1, . . . , p,
are equal to zero.

The Netgen description of the geometry is the following.

algebraic3d

solid m1 = orthobrick(4.2,15,60;122.2,65,63.2);

solid m2 = orthobrick(4.2,15,-63.2;122.2,65,-60);

solid m3 = orthobrick(122.2,15,-63.2;125.4,65,63.2);

solid n1 = orthobrick(-122.2,-65,60;-4.2,-15,63.2);

solid n2 = orthobrick(-122.2,-65,-63.2;-4.2,-15,-60);

solid n3 = orthobrick(-125.4,-65,-63.2;-122.2,-15,63.2);

solid s = orthobrick(-1.6,-25,-63.2;1.6,25,63.2);

solid m = m1 or m2 or m3;

solid n = n1 or n2 or n3;

solid hole = m or n or s;

solid box = orthobrick(-300,-300,-250;300\,300\,250);

solid cyla = cylinder(0,0,0;0,0,1; 120.)

and plane( 0, 0, 50 ; 0, 0, 1 )

and plane( 0, 0,-50 ; 0, 0, -1 );

solid cylb = cylinder(0,0,0;0,0,1; 30.)
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and plane( 0, 0, 50 ; 0, 0, 1 )

and plane( 0, 0,-50 ; 0, 0, -1 );

solid cyl = cyla and not cylb;

solid mat1 = box and not (hole or cyl);

tlo cyl;

tlo mat1;

In Figure 1.3, we show the computational domain and the datum J. A description of
the usedmesh is in Table 1.5. Figure 1.4 shows the solution u of the third test problem.

We also show in Figure 1.5 four level sets of the solution and in Figure 1.6 ten dif-
ferent level sets from |u| = 1000 to |u| = 3000.

Figure 1.3: The computational domain and the datum of the third test problem.

Table 1.5: Description of the mesh for the third test problem.

Elements Faces Edges Vertices DOF

2070592 4171728 2461752 360620 2101133
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Figure 1.4: The solution u of the third test problem.

Figure 1.5: Four level sets of the solution u of the third test problem: |u| = 300 (top-left), |u| = 1200
(top-right), |u| = 2500 (bottom-left), |u| = 5000 (bottom-right).
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Figure 1.6: A single figure with ten level sets of the solution u, from |u| = 1000 to |u| = 6000.

8.2 Numerical results for the problem with assigned normal
component on the boundary

We recall the system of equations:

{{{{{{{{
{{{{{{{{
{

curlu = J in Ω
div(μu) = f in Ω
μu ⋅ n = b on 𝜕Ω

∮
σn

u ⋅ ds = βn for each n = 1, . . . , g ,

and, for the sake of simplicity, in the sequel we will take μ equal to the identity.
In the first and second test case, the computational domain is the toroidal domain

with a concentric toroidal cavity that we have considered in the previous section. The
data of the first test are again such that the exact solution is u = [x3x1, x3x2, x23]

T . In
Table 1.6, we report the data of the meshes used for estimating the convergence rate,
already presented in Table 1.3 but now including the number of degrees of freedom of
this specific formulation.

Table 1.6: Description of the five meshes for the problem with assigned normal component on the
boundary.

Elements Faces Edges Vertices DOF

Mesh 1 1358 3169 2264 453 452
Mesh 2 10864 23540 15393 2717 2716
Mesh 3 86912 181072 112270 18110 18109
Mesh 4 695296 1419584 854668 130380 130379
Mesh 5 5562368 11240704 6663384 985048 985047


