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Preface

Direct and large-eddy simulations of turbulent flow form the subject of this book.
These simulation strategies are focused on capturing the primary features of unsteady
flow through computation. In direct numerical simulation, the governing equations
are represented numerically with sufficiently high temporal—and spatial—resolution
to capture all dynamically relevant flow features. The basis for large-eddy simulation
is somewhat different in nature. Next to an element of numerical modeling, the large-
eddy approach is characterized by an element of mathematical–physical modeling to
account for the desired coarsening of the description.

Amajor step in the large-eddy approach consists of the smoothing and regulariza-
tion of the dynamical complexities of the full flow equations. This is achieved through
some form of explicit or implicit filtering. A closure problem arises as a consequence
of the filtering that introduces the element of modeling into the simulation strategy.
In fact, an external length-scale, identified with the width of the filter, is introduced,
that offers control over the smallest features in the flow description. The dynamical
effects of flow structures that are smaller than this filter- width constitute the closure
problem which needs to be properly parameterized through the explicit introduction
of a so-called subgrid model. Here, a combination of understanding of turbulence,
mathematical structure preservation and the use of data available from the flow prob-
lem at hand is crucial. This entails phenomenological models that are meant to yield
simulation results of ‘sufficient accuracy’ and at ‘much reduced computational costs’.
These two qualitative indications, i. e., ‘sufficient accuracy’ and ‘much reduced com-
putational costs’, are at the core of this book—these concepts will be quantified gener-
ically as well as in their problem-specific context in various ways.

The search for a proper and acceptable balance between the reduction of infor-
mation contained on the one hand, while retaining sufficient accuracy on the other
hand, are recurring topics in this book and express themselves, e. g., in attention to
the mathematical properties of the modeling process, the development of accurate
numerical methods, the construction of suitable subgrid models to represent the dis-
persive and dissipative effects of small-scale turbulence and the analysis of the inter-
action between discretization and modeling errors that complicate the interpretation
and reliability of actual large-eddy simulations.

The material in this book is organized into four parts. In the first part, some ba-
sic phenomenology of turbulence is described, together with the governing equations
and the introduction of the filtered flow representation. The second part addresses the
main numerical elements associated with direct and large-eddy simulation, i. e., the
time-integration and the spatial discretization. Subgrid modeling is discussed in the
third part, including the mathematical–physical aspects of the modeling process as
well as a collection of basic—andmore involved subgrid models. Finally, in the fourth
part, the central validation and interacting error dynamics are illustrated.

https://doi.org/10.1515/9783110532364-201
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VIII | Preface

This book has arisen from courses that were given in recent years for PhD stu-
dents of the J.M. Burgers Center, a research school for fluid dynamics in the Nether-
lands, lectures compiled in the context of an ERCOFTAC summer school (European
research community for flow, turbulence and combustion), e. g., in Krakow (Poland),
in Trieste (Italy), in the context of the ANIMATE project headed by the University of
Czestochowa (Poland) and in lectures for BIMOS – the Berlin International Graduate
School in Model and Simulation Based Research. The emphasis has been put onmak-
ing the basic problem areas in large-eddy simulation transparent and accessible. It
is hoped that this book provides a clear overview, as well as easy access to this more
specialized literature. This book is an updated and extended exposition of the earlier
‘Elements of Direct and Large-Eddy Simulation’ [65].

This book aims to appeal to academic researchers as well as CFD practitioners in
industry. It is intended for PhD candidates and can also be used as a textbook at the
level of MSc (or MEng) studies in engineering, applied mathematics and physics. It is
hoped that this book provides a good introduction to large-eddy simulation as well
as stimulation for further research into numerical methods and turbulence modeling,
and their application in technology and natural sciences.

Bad Bentheim, October 23, 2022 Bernard J. Geurts
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Part I: Phenomenology of turbulent flow





1 Direct and large-eddy simulation: context and
introduction

Abstract: A global introduction to direct and large-eddy simulation is given. The gov-
erning equations of fluid flow are introduced and some of their mathematical and
physical background is discussed. A short phenomenology of basic turbulent flow fea-
tures is presented. This provides a pragmatic justification for the general framework
of so-called reduced-flow descriptions. These descriptions are aimed at capturing the
primary properties of turbulent fluid flow and are obtained by suitably reducing the
dynamical complexity of the underlying governing equations. In particular, the basis
for large-eddy simulation is obtained by spatially filtering the system of flow equa-
tions. The central closure problem that arises from this filtering is identified and an
overview of the capabilities and limitations of direct and large-eddy simulations is
sketched.

1.1 Introduction

Simulation strategies that are focused on strongly unsteady turbulent flow phenom-
ena have grown tremendously in importance over the past few decades [73, 152, 179,
181]. The renowned and seemingly unpredictable state of turbulent fluid flow has be-
comemore accessible to large-scale numerical simulation andmodeling studies. This
has been made possible due to three main developments, i. e., increased computa-
tional capabilities of modern computers, improvements in accuracy and efficiency of
numerical methods and advances in modeling turbulent flow features. In this book,
we will concentrate on the latter two elements and describe numerical methods and
small-scale turbulence modeling of relevance to complex turbulent flows.

Two closely related simulation strategies form the central objective are: direct
numerical simulation (usually denoted by the acronym DNS) and large-eddy simu-
lation (known by the acronym LES). In the DNS approach one aims to solve the full
system of well-established fluid flow equations without any further approximations
other than of a numerical nature. In this respect one may think of, in principle, well-
controllable numerical effects associated with, e. g., discretization method, spatial
resolution, flow geometry representation and boundary conditions. The large-eddy
simulation approach involves, in addition, a reduction of the dynamical complexity,
e. g., by spatial convolution filtering employing a low-pass filter and the treatment of
the corresponding closure problem [106, 125, 126, 144, 171, 187].

Filtering and closure
With the use of a low-pass filter operation, one may effectively remove those features
from the flow description that are smaller than the so-called width of the filter Δ. Si-

https://doi.org/10.1515/9783110532364-001
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4 | 1 Direct and large-eddy simulation: context and introduction

multaneously, the filter leaves structures larger than Δ basically unaffected. Conse-
quently, the filtering results in a significant smoothing of a flow field on scales be-
low Δ, while retaining the main structures that are larger than Δ. The filter-width Δ
represents an externally specified characteristic length-scale in the large-eddy formu-
lation of any flow problem, next to the length-scales associated with the flow geom-
etry of the problem considered and the fundamental length-scales corresponding to
the flow conditions.

The explicit filtering of the nonlinear terms in the governing equations gives rise
to a central closure problem in the large-eddy formulation [58]. This closure problem
is defined with direct reference to the adopted filter operation [70]. To characterize
this relation between filter and closure problem, the filter-width Δ is an important pa-
rameter. In fact, to obtain a viable large-eddy flow description, the unclosed filtered
equations require the modeling of the dynamic consequences of all turbulent flow
features that are smaller than Δ. This is achieved through the introduction of a so-
called ‘subgrid model’ . In particular, the required model for the ‘sub-Δ’ flow features
needs to be formulated solely in terms of the filtered flow solution in order to arrive at
a ‘closed’ description. The reduced dynamic complexity and associated reduced com-
putational costs, i. e., the extended range of applicability of LES compared to DNS,
constitute the main virtues of the large-eddy approach. Simultaneously, the model-
ing of the filtered nonlinear terms that make up the closure problem represents the
primary challenge.

The DNS and LES simulation strategies are closely related. On the one hand, in
direct numerical simulation, the complete turbulent solution is obtained once all fea-
tures are numerically approximated in a well-controlled fashion. On the other hand,
in large-eddy simulation, a solution to the filtered governing equations is the final
goal. The amount of detail contained in the large-eddy solution and the burden put
on the small-scales turbulence modeling depend largely on Δ. In particular, if Δ tends
to zero, a gradual convergence from LES to DNS should arise since the filtering be-
comes less and less effective within this limit. A relevant parameter that measures
the dynamic importance of the sub-Δ flow features is the ratio between Δ and the
smallest fundamental turbulent length-scale η characterizing the finest dynamically
relevant details in a DNS solution. Usually, the so-called Kolmogorov length-scale
[112] is selected for η.

Crossover from LES to DNS
The crossover from a strongly reduced LES description at sizeable Δ/η to a ‘well-
resolving’ LES at smaller Δ/η and finally to a full-scale DNS as Δ/η ≲ 𝒪(1), identifies
the LES approach as a so-called ‘rational’ modeling approach to turbulent flow sim-
ulation. By ‘rational’ we imply that the fully detailed description (DNS) is contained
as a limiting case in a family of reduced descriptions (LES). The ‘normalized’ filter-
width Δ/η, or the filter-width Δ itself, can be used as label for the ‘members’ in the LES
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family. This label identifies a measure for the ‘distance’ by which a particular LES is
separated from the corresponding DNS. In this way, the large-eddy approach is seen
to be a perturbation of the full direct simulation approach.

This interpretation of the large-eddy approach allows, in principle, simple control
over the error that may arise in a large-eddy simulation. In fact, by suitably adjusting
the filter width Δ the ‘distance’ with respect to the corresponding direct simulation
can be controlled. If we ignore numerical complications for the moment, the accu-
racy with which a certain (statistical) quantity needs to be predicted determines an
upper bound for Δ/η for each specific subgrid model. Development of a large-eddy
simulation should include at least the search for a balance between the advantageous
reduction of the computational costs on the one hand and dealing with the corre-
sponding reduction of information content in the smoothed solution on the other
hand.

The crossover between LES and DNS that arises by reducing Δ also explains many
of the similarities in techniques, challenges and problems associatedwith these simu-
lation strategies. It forms the mainmotivation for discussing them in a single book. In
order to appreciate these simulation strategies, twomain elements emerge. First, a de-
tailed knowledge of numerical methods, such as temporal and spatial discretization,
and of their effective processing on present-day computers is required. Second, limita-
tions in computational capabilities, as well as the required detail of flow information,
may introduce the option of reducing the completeness of the flow description. The
latter implies less computational effort but also introduces the element of having to
model turbulent flow features. In addition, the combination of numerical methods
and specific small-scale turbulencemodeling within any simulation approach creates
the opportunity for interaction between these two elements, especially at a marginal
spatial resolution. This may significantly complicate the LES interpretation and ro-
bustness.

Computational dynamical system
The final computational dynamical system that arises from the numerical and phys-
ical modeling is a complex model whose dynamical features are designed to mimic
the characteristic aspects of the fluid flow. Whether this mimicking has actually been
achieved and to what extent this is actually required is a matter of precise and sys-
tematic assessment of flowpredictions arising from the complete computationalmod-
els. Specific, application-related requirements usually play an important role in this
assessment. Because of the nonlinear interactions between elements of mainly nu-
merical, or of a mainly turbulence modeling nature, and the unknown long-time ac-
cumulation of these effects, a significant role for systematic validation is unavoid-
able [67, 68, 232].

In order for LES to be computationally effective, the predefined length-scale Δ
must be much larger than the smallest turbulent length scales in the flow. The corre-
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sponding significant smoothing then induces a substantial reduction in the effective
degrees of freedom. Typically, this also implies a sizeable deviation between the LES
predictions of the smallest retained scales of order Δ and filtered DNS predictions of
flow features with the same scales. Hence, a close correspondence between instanta-
neous snapshots of LES and filtered DNS solutions is not likely for all scales. Still, the
smoothing effects may bemuchmoremodest for a number of ‘derived’ flow properties
such as mean-flow and statistical fluctuation predictions. In this way, the resulting
computational dynamical systems can play their role in capturing the primary flow
features, despite the inherent deviations that may arise in relation to predicting the
instantaneous smallest scales.

Turbulence, theory and experiment
The study of turbulent flows has a long relationship with applied mathematics and
theoretical physics. Extensive (approximate) analytical theory has been and continues
to be developedn and eventually a feeling of ‘understanding’ of fluid flow can arise
only from these approaches. However, the complexity of turbulence strongly limits
progress. Therefore, physical experiments and simulation are the only direct alterna-
tives to guide and underpin further theoretical developments. Moreover, experiments
and simulation can provide invaluable information in various technological appli-
cation areas, in biology, geophysical flows etc. and support engineering and design
activities.

Experimental research has been and will remain of fundamental importance
in this field, for example through physical-scale experiments. In particular, recent
developments in nonintrusive field measurements such as Particle Image Velocime-
try (PIV), Particle Tracking Velocimetry (PTV) and related approaches will supply
a precise impression of unsteady (coherent) flow details [171]. This will create new
opportunities for validation as well as application of DNS and LES. The simulation
approach can be advantageous over actual experiments whenmany flow quantities at
a single instance are needed. Moreover, sometimes one may attempt to obtain quan-
tities that are difficult to measure or perform experiments under extreme conditions
that are hard to represent experimentally, e. g., at high velocities such as in aero-
dynamics, at high temperatures such as in combustion, those involving hazardous
substances such as in nuclear engineering or at large scales such as in astronomy
or geophysics. Although simulations may be advantageous under these conditions,
care must be taken to properly validate and assess the simulation approach and to
use it as much as possible as a complementary technique, side by side with physical
experiments.

It is the purpose of this book to give an introduction to the direct and large-eddy
simulation strategies, to arrive at a sufficiently varied intuitive understanding of their
potentials and limitations and to develop a constructive capability to formulate rele-
vant validation and verification approaches to assess the quality of specific compu-
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tations. Particular interest will hence be given to numerical methods, to turbulence
modeling and to their dynamic interaction. These elements constitute the backbone
of this book.

The organization of this chapter is as follows. In section 1.2 the governing equa-
tions will be identified and scaled to yield the basic dimensionless description of fluid
flow used as the starting point for DNS and LES. Some basic properties of these equa-
tions are sketched in Section 1.3 to identify a context for reduced descriptions. In Sec-
tion 1.4 the spatial filtering of the equations will be described in a somewhat more
quantitative way and the full-closure problem will be specified. An overview of DNS–
LES capabilities and limitations is provided in Section 1.5.

1.2 Navier–Stokes equations for (in)compressible flow

In this section, wewill introduce the Navier–Stokes equations for incompressible flow
in dimensional form and subsequently render these equations dimensionless. More-
over, we introduce the corresponding Kelvin circulation theorem and discuss some
basic transformation properties. In addition, we specify the one-dimensional Burg-
ers equation which is an important model equation illustrating some basic properties
of the complete Navier–Stokes system. Following this, we extend the incompressible
formulation and describe the compressible flow equations.Wewill also sketch several
further extensions that involve external forces, e. g., such as gravity, or solid-body ro-
tations. Finally, we introduce passive and active scalar equations. These scalar fields
can be used to model, e. g., buoyancy-driven flows such as may be encountered in
numerous geophysical applications or to describe combustion and heat-release pro-
cesses. This provides a point of reference for a variety of illustrations later on in the
book.

Incompressible fluids
The starting point for the numerical simulation of fluid flow is formed by Newton’s
equations of motion for a continuous medium. If a fluid is considered to be incom-
pressible, then its state of motion can be described by {u∗i , p∗}, where u∗i denotes the
Cartesian velocity component in the x∗i direction and p∗ is the pressure. Here, i runs
from 1 to d, where d is the dimension of the problem. We label quantities that have
a physical dimension with an asterisk and express the governing equations in their
dimensional form first.

In three spatial dimensions, the four fields {u∗i , p∗}may be dependent on location
x∗ = [x∗1 , x∗2 , x∗3 ] and time t∗. Many good textbooks exist that give a detailed account
of the phenomenological modeling involved in the governing equations for fluid flow,
known as the Navier–Stokes equations [53, 91, 125]. The final set of equations repre-
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sents the physical concepts of conservation of mass and momentum and can be writ-
ten as:

𝜕u∗j
𝜕x∗j = 0 (1.1)

𝜕u∗i
𝜕t∗ + 𝜕(u∗i u∗j )𝜕x∗j + 𝜕(p∗/ρ∗)𝜕x∗i − ν∗ 𝜕2u∗i𝜕x∗2j = 0 (1.2)

for i = 1, 2, 3. Here, ν∗ denotes the kinematic viscosity ν∗ = μ∗/ρ∗, where μ∗ is the
viscosity and ρ∗ the (constant) fluid density. In these equations the continuity equa-
tion (1.1) represents conservation ofmass and (1.2) represents conservation ofmomen-
tum. Throughout this book, we will use the summation convention for repeated in-
dices. As an example, in this notation we have

𝜕u∗j
𝜕x∗j = 𝜕u∗1𝜕x∗1 + 𝜕u∗2𝜕x∗2 + 𝜕u∗3𝜕x∗3 = ∇∗ ⋅ u∗ = div∗(u∗) = 0, (1.3)

where ∇∗ = [𝜕/𝜕x∗1 , 𝜕/𝜕x∗2 , 𝜕/𝜕x∗3 ] and div∗ denotes the divergence operator. This ex-
ample illustrates how one can transfer from the selected notation to other notations
frequently used in the literature.

In order to facilitate a comparison between seemingly different flowproblems and
to help the interpretation of trends in observed flow behavior as a function of varia-
tions in physical parameters, it is helpful to render the equations (1.1) and (1.2) di-
mensionless. If we identify the physical dimensions that play a role in incompressible
flowproblemswenotice thatmass, length and time arise.With properly selected refer-
ence variables, the Navier–Stokes equations can be made dimensionless, and several
possible choices exist. Here, we introduce next to ρ∗ a reference length ℓ∗ a reference
velocityU∗ and a reference kinematic viscosity ν∗. These base quantities together also
define a reference time-scale ℓ∗/U∗. If we now introduce

t = t∗
(ℓ∗/U∗) ; xi =

x∗i
ℓ∗ ; ui =

u∗i
U∗ ; p = p∗

ρ∗(U∗)2 , (1.4)

then after some rewritingwemay obtain the dimensionless incompressible fluid equa-
tions

𝜕juj = 0 (1.5)

𝜕tui + 𝜕j(uiuj) + 𝜕ip −
1
Re
𝜕jjui = 0; i = 1, 2, 3. (1.6)

Here, we introduced the shorthand notations 𝜕/𝜕t → 𝜕t and 𝜕/𝜕xj → 𝜕j. As a result
of the scaling of the variables, the Reynolds number Re has been introduced and is
defined as Re = (U∗ℓ∗)/ν∗ = (ρ∗U∗ℓ∗)/μ∗.
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We observe two different contributions to the time-derivative of the velocity fields
in (1.6), called ‘fluxes’. The nonlinear term 𝜕j(uiuj) and the gradient of pressure 𝜕ip
are known as convective fluxes, while the linear term 𝜕jjui/Re is the viscous flux. The
Reynolds number is the only dimensionless group that arises in the description of in-
compressible flow of Newtonian fluids. The Reynolds number is ameasure of the ratio
between the ‘destabilizing’ contributions arising from the convective terms compared
to the ‘stabilizing’ effects due to the viscous terms [125]. Correspondingly, it comes
as no surprise that turbulent flow may arise for sufficiently large Re, while strongly
viscous ‘Stokes’ or ‘creeping’ flow corresponds to the limit of vanishing Re. We will
discuss this at greater length momentarily.

Conservation principle
The Navier–Stokes equations express a physical conservation principle whichmay be
recognized from the fact that these equations can be written in divergence form. We
introduce a shorthand notation for (1.6) as

𝜕tui = 𝜕jfji, (1.7)

with

fji = −(ujui + pδji −
1
Re
𝜕jui), (1.8)

in which δji denotes Kronecker’s delta, i. e., δji = 1 if j = i and δji = 0 otherwise. If we
integrate (1.7) over an arbitrarily fixed volume of fluid V , we find

d
dt
∫
V

ui dV = ∫
V

𝜕tui dV = ∫
V

𝜕jfji dV = ∫𝜕V fjinj dS, (1.9)

where 𝜕V denotes the boundary ofV andn = [n1, n2, n3] is the outward unit normal on
𝜕V . Use was made of the divergence theorem of Gauss in the last step in (1.9). Equa-
tion (1.9) shows that the volume integral of ui over V can only change in time due
to fluxes across the boundary of V . This conservation property provides a basis for
numerous spatial discretization methods, such as finite volume and finite element
methods. Expression (1.9) provides an example of a so-called ‘weak’ formulation of
the governing equations. The weak formulation expresses the fact that the equations
of motion are only required to be satisfied in an integral sense. This relaxes some of
the smoothness conditions that solutions to the differential form of the Navier–Stokes
equations (1.6) have to satisfy. We will return to this in later chapters, e. g., Chapter 3
and Chapter 5.
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Kelvin theorem
Another important analytical property is the Kelvin theorem associated with the
Navier–Stokes equations. This involves a line-integral with reference to evolving fluid
loops. In fact, one has

d
dt
∮
Γ(u) ui dxi = 1

Re
∮
Γ(u) 𝜕jjui dxi (1.10)

for a closed fluid loop Γ(u) that moves with the Eulerian velocity u(x, t). At the limit in
whichRe→∞, the integral of the velocity over Γ(u) is a constant of themotion. This is
a basic property of solutions to the so-called Euler equations that emerge as the invis-
cid limit of the viscous Navier–Stokes formulation. The Kelvin theorem can be used to
formulate regularized flow descriptions which share this conservation property with
the Navier–Stokes system. It can serve as a basis for large-eddymodeling [51] to which
we will return in Chapter 6.

Transformation properties
The Navier–Stokes equations possess a number of transformation invariances and
symmetries that play an important role in the flow dynamics [54, 199]. As an exam-
ple, these invariances can be used to guide subgrid modeling that is consistent with
generic properties of the basic flow equations [158]. In general, one considers transfor-
mations (x, t)→ (X, t) for which the Navier–Stokes equations are invariant. The most
basic transformation with this property is the scaling that implies X = ax for a con-
stant a. Consequently, U = Ẋ = au, and one may readily verify the invariance of the
equations under this transformation. Likewise, one may verify the invariance of the
equationsupon translation, i. e.,X = x−a for a fixed shift of the origina. The equations
also possess rotational symmetry. Thismay be expressed by the relationshipXi = Aijxj,
whereA is a fixed unitarymatrix (det(A) = 1). The velocity transforms in the sameway
Ui = Aijuj, and the equations remain invariant under rotations. Finally,wemention the
Galilean invariance of the Navier–Stokes equations defined through transformations
of the type

X = x + Vt − a (1.11)

in whichV is a constant velocity difference between the two coordinate systems and a
is an initial shift of the origin. These four examples are only the better known transfor-
mation properties of the Navier–Stokes equations; further details and extensive stud-
ies of their consequences may be found in the literature (e. g., [83]). The relevance
of such transformation and symmetry properties for large-eddy modeling lies in the
consequences for proposed turbulence models in case one requires that the modeled
equations also possess as many as possible of these properties.
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Burgers equation
Since the full system of Navier–Stokes equations can, in general, not be solved analyt-
ically, a mathematically much simpler model system is desired with which important
basic properties of the governing equations can be effectively illustrated. Although
properties of any simplified model system will deviate in some respects from the full
system of equations, certain Navier–Stokes phenomena can still be understood and
illustrated qualitatively at the level of the model system. For the Navier–Stokes equa-
tions, the viscous Burgers equation is a popular model system. In one spatial dimen-
sion, the Burgers equation reads

𝜕tu + 𝜕x(
1
2
u2) − 1

Re
𝜕xxu = f , (1.12)

in which f denotes a forcing term. The unforced equation can formally be solved an-
alytically by suitably transforming the solution u. The Burgers equation displays a
characteristic quadratic nonlinearity and a linear viscous contribution, which also
arises in the full Navier–Stokes system, while the pressure gradient term is absent.
This model system has been extensively studied. In particular, with a suitable forcing
term f , (numerical) solutions can be obtained that share quite a number of proper-
ties with fully turbulent solutions governed by the complete system of Navier–Stokes
equations. The study of these solutions and their relation with real turbulence is sug-
gestively called ‘Burgulence’ in the literature [53].

Compressible fluids
So far, we have considered incompressible fluids such as water. We next turn to com-
pressible fluids that correspond to most common gases and mixtures such as air. In
this case the fluid density is a function of location and time: ρ(x, t). In addition, an
equation of state is required that relates pressure to density and temperature. Com-
monly, the ideal gas law is adopted for this relationship. Hence, for compressible flow,
not only the gradient of the pressure is relevant, as in the incompressible case, but also
the actual value of p is important. This extension also implies that, next to a reference
density ρ∗, reference length ℓ∗, reference velocity U∗ and reference viscosity μ∗, the
introduction of a reference temperature T∗ is required to render the governing equa-
tions in dimensionless form [222]. The dimensionless compressible flowequations can
be expressed as

𝜕tρ + 𝜕j(ρuj) = 0 (1.13)
𝜕t(ρui) + 𝜕j(ρuiuj) + 𝜕ip − 𝜕jσij = 0; i = 1, 2, 3 (1.14)

𝜕te + 𝜕j((e + p)uj) − 𝜕j(σijui) + 𝜕jqj = 0. (1.15)

Here, e is the total energy density given by
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e = ℰ(ρ,u, p) = p
γ − 1
+
1
2
ρuiui, (1.16)

which introduces the function ℰ as a useful shorthand notation for later convenience
when filtering these equations (see also [228]). In the definition of the energy density,
we introduced γ = CP/CV as the ratio of the specific heats at constant pressure CP and
constant volume CV , respectively. For air γ ≈ 7/5.

In order to complete the compressible formulation, additional constitutive rela-
tionships need to be introduced. The viscous stress tensor σ, for Newtonian fluids, is
based on the temperature T and velocity vector u

σij = ℱij(u,T) =
μ(T)
Re

Sij(u); i, j = 1, 2, 3, (1.17)

where

Sij(u) = 𝜕jui + 𝜕iuj − λδij𝜕kuk ; i, j = 1, 2, 3 (1.18)

is the rate of strain tensor, and the shorthand notation using ℱij will become clear
when filtering the equations. In most applications it is common to set the parameter
λ = 2/3, in which case Sij is a traceless tensor.

The dimensionless viscosity μ(T) that appears in (1.17) can be modeled in various
ways. For flows that are nearly incompressible, one may adopt μ = 1, while in more
general cases it is a function of temperature T. A simple model that is frequently con-
sidered uses μ(T) = T, whereas the dynamic viscosity for air is in good approximation
parameterized by Sutherland’s law

μ(T) = T
3
2
1 + C
T + C
, (1.19)

where the constant C is related to the reference temperature T∗ that was used to ren-
der the compressible flow equations dimensionless. Commonly, this constant is set
C = 110.4 (K)/T∗, where T∗ is measured in Kelvin (K). For common atmospheric con-
ditions, T∗ ≈ 273 (K) and C ≈ 0.4.

To complete the compressible formulation, the heat flux vector q is given by

qj = 𝒬j(T) = −
μ(T)

(γ − 1)RePrM2 𝜕jT ; j = 1, 2, 3, (1.20)

expressing qj through the function 𝒬j in terms of the temperature T. Here, we intro-
duced the Prandtl number Pr. For air the Prandtl number is on the order of one, but a
value of Pr ≈ 0.72 is commonly adopted. Moreover, we introduced the reference Mach
number as M = U∗/c∗, where c∗ = √γR∗T∗ is the reference value for the speed of
sound in which R∗ is the ideal gas constant. Finally, the temperature is related to the
density and the pressure by the ideal gas law
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T = 𝒯 (ρ, p) = γM2 p
ρ
. (1.21)

The Mach number is a measure for compressibility effects in a flow. As the Mach num-
ber approaches zero, the dynamics of the compressible flow equations approach the
incompressible limit, whereas supersonic flows correspond toM > 1, and additional
features such as shock-waves may arise.

Hyperbolic conservation laws
The Navier–Stokes equations (1.13)–(1.15) are so called hyperbolic conservation laws.
As in the incompressible counterpart (1.5)–(1.6), these equations contain viscous and
convective contributions. The viscous terms are those that contain the stress tensor
σij or the heat-flux vector qj. These are related to dissipative effects that represent the
tendency to reduce rapid, strongly localized fluctuations. These terms involve second-
order spatial derivatives. The remaining contributions that contain first-order spatial
derivatives are the convective terms that constitute the strong nonlinear effects that
are responsible for the complex evolution of turbulent flow. If we introduce the state-
vectorW = [ρ, ρui, e], then the compressible Navier–Stokes equations can be written
in a compact form as

𝜕tW + ∇ ⋅ fc − ∇ ⋅ fv = 0, (1.22)

where fc and fv contain the convective and the viscous flux-vector contributions re-
spectively. These flux-vectors can be inferred from (1.13)–(1.15). The reason for identi-
fying these two types of terms is not only related to the physical significance of these
terms, but also to the fact that both impose specific and separate numerical require-
ments as will be clarified later.

The compressible flow equations play an important role as versatile points of de-
parture in a number of application areas. At sufficiently low Mach numbers, their dy-
namics is in a number of aspects virtually identical to incompressible flows, while
with increasingMachnumber additional effects come into play, e. g., shock-waves that
may arise as the f low becomes supersonic. These facts make this system of equations
an appealing general model system for exposing various developments in direct and
large-eddy simulation. For this reason, a number of descriptions and illustrations in
this book will be based on the compressible formulation, although it is understood
that those findings apply equally well to the incompressible case. The converse also
applies, and we will move freely between either of these basic formulations in the re-
mainder of this book and select the formulation that is most economical to illustrate
a specific point.

To complete this section we sketch some examples in which the basic Navier–
Stokes formulation is extended to describe further complicating effects that may be of
relevance in specific applications. Usually, these extensions require the introduction
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of additional terms in the equations or even additional equations that are dynamically
coupled to the basic flow equations.

Gravity-driven flow
The first class of extensions involves additional terms on the right-hand side of equa-
tion (1.22). These additional terms can be source terms, e. g., in case external body
forces play a role. For example, buoyancy effects and gravity-driven currents can be
represented through the introduction of such a source term in themomentum and en-
ergy equations. If g∗ denotes the gravitational constant, then the equations can be
written as

𝜕tρ + 𝜕j(ρuj) = 0 (1.23)

𝜕t(ρui) + 𝜕j(ρuiuj) + 𝜕ip − 𝜕jσij =
ρgi
Fr2

(1.24)

𝜕te + 𝜕j((e + p)uj) − 𝜕j(σijui) + 𝜕jqj =
ρgjuj
Fr2
, (1.25)

where thegravitational accelerationg∗ = g∗[g1, g2, g3]. As a result of introducinganew
physical element in the formulation, a corresponding dimensionless group arises in
the equations. In gravity-driven flows, this is the so-called Froude number given by
Fr = U∗/√g∗ℓ∗. Likewise, if electromagnetic interactions play a role in the evolution
of a flow, additional source terms can be introduced to describe these effects. Such
extensions of the equations with ‘source’ terms imply that the conservation property
is no longer maintained. Another important extension of the basic equations arises
by considering ‘external’ motions of the frame of reference. As an example, one may
think of solid-body rotations that play an important role in various geophysical prob-
lems, e. g., in ocean-circulation modeling. If we consider rotation about a rotation-
vectorω∗, then the Navier–Stokes equations require the introduction of an additional
term 2u∗ ×ω∗. The corresponding dimensionless group, in this case, is the so-called
Rossby number that involvesω∗ = |ω∗| next to the reference quantities previously in-
troduced.

Active and passive scalars
The second class of extensions can be characterized as extensions that require the ad-
ditional introduction of equations or systems of equation that are in someway dynam-
ically coupled to the basic Navier–Stokes equations. One may think of applications
in the field of combustion that imply the introduction of source terms in the Navier–
Stokes equations, alongside additional equations that describe theparticular combus-
tion model and involve reaction product terms that incorporate the reaction rate and
the enthalpy of formation of reaction products, among others [162]. Moreover, non-
Newtonian flow behavior and dispersion phenomena may require such modeling. As
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an example, we consider ‘passive’ and ‘active’ scalars. In the case of passive scalars,
one commonly considers

𝜕t(ρc) + 𝜕j(ujρc) −
1
Sc
𝜕jjc = 0, (1.26)

where Sc denotes the so-called Schmidt number that characterizes molecular diffu-
sive transport. The scalar field c is convected by the flow field uj, and the finer features
of c such as regions of large gradients are smoothed by the action of diffusion. Passive
scalars can be used to quantify various aspects of turbulentmixing processes thatmay
be relevant in process-engineering or relate to the spread of polluting agents. In Fig. 1.1
we dipicted the evolution of the separating interface between the ‘upper’ and ‘lower’
parts of a shear layer as it transitions to turbulence [62]. The interface is defined as the
isosurface c = 1/2. These scalar fields are also of more theoretical significance. Addi-
tional effects, such as the influence of local curvature on the evolution of the scalar,
can be represented by introducing corresponding terms to (1.26).

Figure 1.1: Evolution of separating interface between a passive ‘heavy’ fluid (top) and ‘lighter’ ambi-
ent fluid (bottom) at t = 10 (a), t = 30 (b), t = 60 (c) and t = 100 (d). The simulation was performed at
a Schmidt number Sc = 10. From [62].
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The coupling between the evolution of c and the flow field is only one-way, hence
the term ‘passive’ scalar. Various flow problems, such as those associated with buoy-
ancy effects, require additional coupling between the equation for the scalar and the
Navier–Stokes equations giving rise to so-called two-way coupling models. This type
of extensions involves the mutual interaction between, e. g., combustion, buoyancy
or complexmaterial properties and turbulence, and can give rise to strong turbulence
modulation, which is an important field of applied and theoretical study. As an exam-
ple, the effect of strong buoyancy is illustrated in Fig. 1.2, displaying the occurrence of
interpenetrating ‘fingers’ of fluid. The influence of gravity on the evolving turbulent
flow of an unstably stratified shear layer is quite striking in this case (compare with
Fig. 1.1 which illustrates a passive scalar evolution).

Figure 1.2: Snapshots of the separating interface between an active ‘heavy’ fluid (top) and ‘lighter’
ambient fluid (bottom) at t = 20 (a) and t = 40 (b) at Sc = 10. From [62].

1.3 Complexity reduction: options and limitations

In the previous section, the governing equations for fluid flow were introduced.
Naively, one might think that, with the application of modern computers and proper
numerical methods, turbulent flow problems would finally be resolved. Instead, one
faces a well-known but still surprising deadlock. On the one hand, the basic physical
principles and numerical formulations are available, but on the other hand, existing
tools for analysis are not sufficiently powerful, and the required computational effort
is typically so unrealistically high that it renders the necessary simulation studies
unfeasible. Regarding the latter issue of computational effort, one could, instead,
concentrate on simulation strategies in which the dynamic complexity of the flow is
reduced. Conceivably, this could lead to formulations that would, at least, be feasible
within the limits of present-day computers. Whether such a reduced description still
satisfies the quality criteria posed by the application context is a matter that requires
careful, problem-specific assessment.
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In this section, we will therefore first sketch the backgrounds of some of the very
high complexity solitions of turbulent flows. Then, we introduce and illustrate low-
pass filters.While low-pass filtering is undoubtedly very effective in reducing the com-
plexity of a signal and hence the cost associated with its accurate numerical repre-
sentation, this filtering also leads to a potentially significant reduction in information
content. Correspondingly, predictions based on filtered solutions will be less accurate
and less complete. Whether this loss of accuracy is acceptable or not in a given ap-
plication area needs to be considered with great care. After all, the goal is to obtain a
proper balance between complexity reduction and retention of an adequate amount
of flow detail for quantitative predictions. We will consider this central problem area
in some detail in this section as well.

Burgers flow complexity
The high complexity of turbulent flow solutions arises from the action of the nonlin-
ear convective fluxes. This can be illustrated quite easily by turning to the unforced
viscous Burgers equation (1.12). If we consider an initial state of the form u = sin(kx),
with wave-number k, then we find from insertion into (1.12) a total flux which is given
explicitly by

𝜕tu|t=0 = −k2 sin(2kx) − k2Re sin(kx). (1.27)

We notice that there are two essentially different contributions to the flux. First, we
see a contribution with wave number 2k arising from the nonlinear convective flux.
This will induce a component in the solution with wave number 2k as well as the
solution evolves. Second, the viscous flux gives a contribution with a wave number
equal to that of the initial state. This contribution implies that the amplitude of the
initial sin(kx)will be reduced as the solution develops, but it will not alter its spectral
content.

As time progresses, further wave numbers will emerge in the solution due to the
continuing (self-)interactions between solution components of different wave num-
bers. If we consider any two Fourier modes from a Fourier series of the solution, e. g.,
modes ∼ exp(ik1x) and ∼ exp(ik2x) with wave-numbers k1 and k2, then a convective
flux with wave-number k1 + k2 will emerge owing to the quadratic nature of the con-
vective nonlinearity. This flux component will obviously contribute to the k1 + k2 com-
ponent in the evolving solution that gradually will become more complex, i. e., with
more Fourier modes contributing significantly to the solution.

In Fig. 1.3 the evolution of the initial state u(x,0) = sin(2πx) is shown, subject
to periodic boundary conditions. Clearly, as time progresses, the solution develops a
sharp gradient, which corresponds to high values of the wave number, next to smooth
parts in which the solution varies approximately linearly. The latter regions are asso-
ciated with small values of the wave number. Thus, from an initial state with only
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Figure 1.3: Evolution of the solution to the viscous Burgers equation at Re = 100. Shown are the
initial condition u(x,0) = sin(2πx) (dashed), the intermediate solutions at t = 0.1,0.2,0.3, . . . (solid)
and the solution at t = 1 (dash-dotted).
onewave number, the evolving Burgers solution is characterized by a number of wave
numbers that differ considerably in size. The ratio between the largest and the small-
est relevant wave numbers is governed by the Reynolds number: As Re increases, so
does this ratio, implying that smaller and smaller length scales become dynamically
important with increasing Re. In the Burgers example, this leads to a sharper gradient
in the middle of the domain as Re increases.

The ratio of the magnitude of the two fluxes in (1.12) depends on k and Re. We
can identify two regimes in this explicit example. If k ≪ Re /2, then the viscous flux
is much smaller than the convective flux; clearly, structures with ‘large’ length scales
(i. e., small k) behave nearly inviscidly. On the other hand, if k ≫ Re /2, then the k2-
dependence of the amplitude of the viscous fluxwill render this fluxmuch larger than
the convective flux. So, even if Re ≫ 1, an almost purely dissipative dynamical behav-
ior results for structures that are sufficiently localized in space.

Three-dimensional flow complexity: energy-cascade
The Burgers example concisely illustrates the essential differences between convec-
tive and viscous fluxes. Quantitatively, however, the impression obtained from this
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one-dimensional example is not accurate. Realistic three-dimensional turbulent flow
fields possess a much more intricate structure in which simultaneously many more
modes contribute significantly to the solution. The complexity of such turbulent so-
lutions, however, still follows from the same basic action and interplay of convective
and viscous fluxes as observed in the Burgers equation.

A realistic turbulent flow field contains (vortical) structures with many different
length-scales, including a very wide spectrum of small-scale components [125, 171].
The length-scales of these components are much smaller than the length-scales that
define the flow geometry, i. e., length-scales characteristic of the correspondingmean
flow. Among these different structures, which we will loosely refer to as ‘eddies’, we
can identify a hierarchy in the mean dynamical interactions. In particular, interac-
tions among eddies with a comparably large length-scale (small k) are approximately
inviscid in nature and can give rise to eddies with smaller length-scales (higher k). For
example, onemay think of events in which a comparably large structure disintegrates
into a number of spatially more localized structures. This process of approximately
inviscid interactions among eddies creates a whole variety of short and longer living
dynamic structures of various length-scales up to structures that are spatially so lo-
calized that their motions are dominated by linear viscous actions.

The characteristic convective–viscous interactions give rise to a basic flow sce-
nario that is known as the ‘energy-cascade’ . In this scenario kinetic energy is trans-
ferred, on average, from the large to the smaller scales [112, 123]. This is referred to
as ‘forward’ scatter The reverse process can also arise: Within an evolving flow, lo-
cally situations may arise in which eddies with small length-scales can merge into
eddies with a larger characteristic size. In this way, energy can also be transferred to
larger-scale features that are known as ‘backscatter’ events. In actual turbulent flows,
these backscatter events almost outweigh the ‘forward’ scatter events. However, the
final statistical mean direction of energy flow is from the larger to the smaller scales
[25, 53, 112].

In a turbulent flow, the energy-cascade is kept alive through external conditions,
e. g., related to inflow perturbations or continuous agitation. The length-scales by
which these external conditions provide forcing to the flow are assumed to be quite
large and correspond to structures with approximately inviscid dynamics. As a result
of the (self-)interactions just described, a complex turbulent flow can emerge from this
forcing, with smaller and smaller structures appearing up to a length-scale at which
viscous dissipation becomes dominant. The length-scale of the flow-features that are
significantly influenced by dissipation (the tail of the spectrum at high k) depends on
the Reynolds number. An increase in Re corresponds to a reduction of the smallest
dynamically relevant scale as was also noticed previously in relation to the Burgers
equation.

Using dimensional analysis, Kolmogorov [112] obtained predictions of the small-
est dynamically relevant dissipative flow feature ℓd. He showed that the dissipative
length-scale ℓd ∼ Re−3/4 in three dimensions. In homogeneous turbulence, a so-called
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inertial rangeof length-scales is known todevelop inbetween the forcing length scales
and ℓd. In this range, the kinetic energy spectrum displays a behavior proportional to
k−5/3. Roughly speaking, the inertial range of scales provides a ‘conveyor belt’ for the
energy that was supplied to the flow at the large scales and that is dissipated as heat
at scales on the order of ℓd. Since general turbulent flows typically share several main
characteristics with homogeneous flows in various (localized) regions of their flow
domain, the Kolmogorov prediction for the scaling of ℓd provides a useful guideline
for the dynamic range in more general flows as well. This is known as the isotropy
hypothesis.

Degrees of freedom
In order to accurately capture all relevant features of a turbulent flow, it is clear that a
representation is required that is capable of capturing the huge amount of information
that is contained in the physical details of the flow. In a numerical treatment, the solu-
tion is ‘discretized’ which implies, among other things, that the continuous solution
is approximated by a finite set of values corresponding as closely as possible to the
values of the solution on a grid of discrete positions in physical space. This approach
is followed, e. g., in finite difference methods [128]. Alternative representations exist
in which one attempts to approximate the solution by expanding it with respect to
an appropriate set of basis functions, e. g., in spectral [24] or finite element methods.
Hence, in these approaches, one also approximates the continuous solution in terms
of a finite set of values, i. e., the expansion coefficients of the solution relative to the
adopted basis.

The complexity of the turbulent flow that is approximated depends strongly on
the flow conditions. To characterize the degrees of freedom and consequently, the re-
quired amount of discrete values that is needed for an accurate approximation we
introduce an ‘integral’ length-scale ℓ, which is characteristic of the mean flow or of
the flow geometry, next to the ‘dissipation’ scale ℓd. We assume that ℓ ≫ ℓd. Using Kol-
mogorov’s prediction for ℓd, one has ℓ/ℓd ∼ Re3/4. To capture all features of the flow
with sufficient detail, we assume that the basic method requires n grid-points per ℓd.
The value of n obviously depends on the specific numerical method. There is a con-
sensus that n should range from 3 to 5 for most common methods in order to provide
at least some accuracy with which the smallest structures are captured (wewill return
to this in more detail in later chapters). In three spatial dimensions, this implies the
total required resolution, i. e., the number of grid points,

N = ( ℓ
(ℓd/n)
)
3
∼ n3 Re9/4, (1.28)

which displays an essential scaling on Re. Similar estimates can bemade for the num-
ber of basis functions that are required in spectral or finite element methods.


