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Introduction
We are just an advanced breed of monkeys on a minor planet of a very average star.
But we can understand the Universe. That makes us something very special.

|Stephen Hawking|

Modern mathematical cosmology was constructed between 1907 and 1915 by Albert
Einstein, in which he used his gravity model to understand the dynamics of the uni-
verse. This model was built using his general theory of relativity (also known as gen-
eral relativity), which was constructed in 1916 using Riemannian geometry. Although
hismodel stated that the universe is expanding, observations did not support this pre-
diction until 1922. In 1922, Alexander Friedman used the modified equations of gen-
eral relativity to obtain the same result as Einstein of an expanding universe. Since
there was no observational evidence of cosmic expansion, Einstein modified the field
equations of general relativity by adding a term called the cosmological constant. The
cosmological constant provides a repulsion to compensate the gravity attraction and
to stop expansion, leading to a static model. In 1929, observational evidence changed
the fate of the Einstein’s general relativity model: Edwin Hubble’s research on the red
shift of distant galaxies confirmed the prediction that the universe is expanding. As a
result, Einstein considered the cosmological constant as his biggest blunder. Follow-
ing Hubble’s discovery, cosmologists started to construct expanding universe models
in the context of general relativity, in which the consequences of different assump-
tions about the distribution of matter in the universe are investigated. Therefore, the
initially simple cosmologicalmodels have been replaced bymore complexmodels tak-
ing into account nonlinearity and dissipation.

The modern cosmological models are based on the Friedman–Lemaitre family of
models,whicharebuilt from theRobertson–Walker (1934) spatially homogeneous and
isotropic geometries. Although there is observational evidence supporting thesemod-
els on the largest scales, at smaller scales they do not provide a good description. The
questions are [19]: On what scales is the geometry of the universe nearly Friedman–
Robertson–Walker (FRW)? Why is it FRW? How did the universe come to have such an
improbable geometry?

The answer to these questions can be found in inflation theory [22, 31]. According
to this theory, the quantum fluctuations in the very early universe formed the seeds of
inhomogeneities that could then grow. To examine these questions one needs to con-
sider the family of cosmological solutions in the full state space of solutions, allowing
one to see how realisticmodels are, related to each other and to higher symmetrymod-
els including, in particular, the Friedman–Lemaitre models.

Here we discuss general techniques for examining the FRW-type family of models
and their generalizations, which could be useful in describing the universe at large
scales. First of all, in FRW-type approaches the universe is characterized by cosmic-
scale parameters, which are functions of the global time variable. From this point of
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X | Introduction

view the isotropic universe is a dynamical system with one degree of freedom. But at
smaller scales the anisotropy of the universe could be important, which is why one
can consider a more general situation, with three different scale parameters depend-
ing on one global time. In this case, which is in the class of the so-called Bianchi fam-
ily of universes, we have a dynamical system with three degrees of freedom and the
FRW universe appears as the only symmetric reduction valid for the isotropic case.
The general anisotropic case can be described by the Riccati equation and this equa-
tion admits transformation to the time dependent damped harmonic oscillator. This
is why such models are called oscillatory models of the universe.

A timedependentmetric also leads to the problemof the complexity of the physics
in a time dependent background. Brandenberger [9] showed that inflationary metrics
also imply time dependent frequency for the gravitational wavemodes. This allows us
to extend the canonical quantizationmethod for nonunitary time evolution to include
the quantization formalism for a parametric oscillator. [29] studied a harmonic oscil-
lator with a time dependent frequency and a constantmass in an expanding universe.
In the inflating case, the FRW metrics produce a damped harmonic oscillator equa-
tion for the partial waves of the field hμν [21]. [1] discussed the canonical quantization
of nonunitary time evolution in an inflating universe. They considered gravitational
wave modes in the FRW metrics in a de Sitter phase, then applied the quantization
method to the damped oscillator mentioned above. Following this, the doubling of
the hμν partial waves, which was called double universe, was shown by [3].

If damped oscillatorymodels are very important at small scales, the natural ques-
tion is what happens upon quantization of these models, when one cannot neglect
quantum fluctuations. One of the first approaches to quantize the damped harmonic
oscillator is to start with the classical equation of motion, then find the Lagrangian
and then theHamiltonian,whichwill lead to theHamilton equations ofmotion, andfi-
nally to quantize themby the canonical formalismmethod. This approach is called the
(Bateman)–Caldirola–Kanai model, which derives quantum mechanics from a dissi-
pative Hamiltonian. This Hamiltonian was actually proposed earlier by Bateman, but
in a classical context [5]. This approach has the attractive quality of providing an ex-
act solution, in essence because the classical equation ofmotion has an exact solution
and formal quantizationmerely has the effect of converting the classical variables into
operators. A second approach uses an interaction Hamiltonian and applies perturba-
tion theory. One is a rather simple system (the undamped harmonic oscillator) that we
construct, but anenvironmentof thedampedharmonic oscillator also exists. These, in
fact, close the system, which creates a realistic or artificial embedding within a larger
system that preserves energy. This way, Hamiltonians that describe a total, conserved
energy can be obtained. An example of this line of thought is the so-called doubling
the degrees of freedom approach. In fact, this idea can also be traced back to a Hamil-
tonian thatwas coinedbyBateman, the so-calleddualHamiltonian [5]. The idea is that
the damped oscillator is coupled to its time reversed image oscillator, which absorbs
the energy lost so that the energy of the whole system is conserved or closed. In fact,
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since the phase space of the whole system describes the damped harmonic oscillator
and its image, the degrees of freedom are effectively doubled. Another way of looking
at this is that adding a time reversed oscillator restores the breaking of the time rever-
sal symmetry. Difficulties arose during earlier attempts to elaborate this idea, such as
time evolution leading out of the Hilbert space of states, but later a satisfactory quan-
tization could be achieved within the framework of quantum field theory [8, 14]. The
doubling of degrees of freedom approach has the conceptual disadvantage that the
environment to which the damped harmonic oscillator is coupled is artificial. How-
ever, the word ‘artificial’ is only used for well-known systems. Since the structure of
universe is not well defined, this approach has the advantage of showing the main
form of dissipation as a system.

Apart from these approaches for a dampedharmonic oscillatorwith a constant fre-
quency and damping coefficient, the general form of a time dependent Hamiltonian
that describes a classical forced oscillator with a time dependent damping coefficient
and frequency were studied by [23]. This kind of system was also considered by other
studies [27, 33]. Moreover, Kim demonstrated that canonical transformations in clas-
sical mechanics correspond to unitary transformations in quantum mechanics [43].
Additionally, Kim and Lee studied time dependent harmonic and anharmonic oscil-
lators and found the exact Fock space and density operator for a time dependent an-
harmonic oscillator [28].

The goal of the first part of this book is to study the dissipative geometry of uni-
verse models in general relativity in the following contexts.

In Chapter 1, the fundamental definitions of general relativity, such as Christoffel
symbols, Riemann tensor, Ricci tensor and Ricci scalar (Section 1.1) as well as the defi-
nitions of the Einstein field equations both in the presence and in the absence of mat-
ter, and the definitions of the cosmological constant, are given. We also discuss one of
the most important tensors of general relativity: the energy momentum tensor, which
tells us the energy-like aspects of the system. In Section 1.2, we discuss the universe as
a dynamical system based on time dependent and scale factor dependent metrics. In
this framework, the solution of the Einstein field equations and the derivation of the
equation of state are given. These equations are particularly important since they can
help us understand the universe as a dynamical system.

In Chapter 2, the construction of the universe models begins with the idea that
the universe on large scales is isotropic and homogeneous. As a result, the Friedman
universe models are considered, including four basic group of models: static, empty,
non-empty with zero cosmological constant, and non-empty models with nonzero
cosmological constant (Section 2.1). In Section 2.2, Milne’s model and its fundamental
properties are discussed, and Milne’s model and the Friedmanmodels are compared.

In Chapter 3, anisotropic and homogeneous universe models are investigated in
terms of different density and pressure functions. In Section 3.1, the general solution
of the field equations is obtained with respect to the anisotropic and homogeneous
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metrics. In the subsequent subsections, the particular solution of the field equations
in the radiation dominated model is given.

In Chapter 4, the linearization of the Einstein equations are given,whichproduces
gravitational waves on the Minkowski background and from the Fourier expansion of
the field. The Fourier component of the field satisfying the harmonic oscillator equa-
tion with constant frequency (Section 4.1) is obtained. Following this, in Section 4.2,
the linearization of the same equation on the de Sitter background produces damped
harmonic oscillator systems with respect to the Bateman approach; the double uni-
verse models can be formed with respect to this approach. In Chapter 5, applying the
factorization procedure to Friedman equations, bosonic and fermionicmodels of FRW
universe are described. In Chapter 6, we consider an oscillatory universe models with
time dependent gravitational and cosmological constants.

The second part of this book is devoted to study of the variational formulation of
time dependent harmonic oscillators.

The Lagrangian and the Hamiltonian descriptions are crucial to understand the
damped oscillator in quantum and classical theory. Hence, the background of these
descriptions is given in Chapter 7. In Section 7.1, we give the definitions of the gener-
alized coordinates and the velocities. In Section 7.2, a formulation for the study of a
mechanical system, which is called least action principle, is discussed. In Section 7.3,
the Hamiltonian andHamilton’s equations, the Poisson brackets and the properties of
the Poisson brackets are discussed. In Section 8.1, the solution of damped harmonic
oscillator is considered for three different cases: overdamping, critical damping and
underdamping. An extension of analytical mechanics to include dissipation, is dis-
cussed in Section 8.2. In Section 8.3, we give the definition of the Bateman dual de-
scription, andusing this approachwe investigate the Lagrangian and theHamiltonian
functions for doublet damped oscillator systems. In Section 8.4, the time dependent
Hamiltonianwith time dependent mass satisfying the standard damped harmonic os-
cillator equation, which is called the Caldirola–Kanai Hamiltonian, is given. In Sec-
tion 8.5, the Caldirola–Kanai Hamiltonian with a constant damping coefficient and
frequency is quantized.

In Chapter 9, the two different formulations of damped oscillator with time de-
pendent damping and frequency are related to the self-adjoint extension of the Sturm
Liouville problem (Section 9.1) are given. In Section 9.2, the particular representations
for the time dependent frequencies and the damping coefficient functions, related
withdifferent special functions arediscussed. InChapter 10, theRiccati representation
of the special functions as oscillator-type problems is considered and some particular
cases are given. In Chapter 11, quantization of damped oscillators with time depen-
dent damping and frequency is considered. Exact quantum solution of this problem in
Gaussian form is constructed in termsof theRiccati equationand the classical damped
parametric oscillator, studies in previous chapters.
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1 Pseudo-Riemannian geometry and
general relativity

The two theories established by Albert Einstein – special relativity and general rela-
tivity in 1905 and 1915 respectively – are the modern theories of space and time. These
theories changed our view of Newton’s concepts of absolute time.

In both special and general relativity theories, the notions of separate vectors in
space and time are abandoned, and the notions of spacetime and four-dimensional
quantities are introduced. In this four-dimensional spacetime, the separationbetween
two events is given by the spacetime interval, also called the metric, ds2. In special
relativity, the spacetime interval in four dimensions is given by the Minkowski (four-
dimensional, flat) metric,

ds2 = ημνdxμdxν , (1.1)

where ημν is the metric tensor,

ημν = (−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) , (1.2)

and xμ represent coordinates in the Minkowski space,

xμ = (ct, x, y, z) . (1.3)

As can be seen, the Minkowski spacetime metric/interval is similar to the Euclidean
space. For example, inEuclidean space, the infinitesimal spatial distancebetween two
points is simply ds2 = dx2 + dy2 + dz2. The main difference is that while all the space
coordinate contributions are positive, the time coordinate appears with negative sign
in the Minkowski metric.

Additionally, events in general relativity occur in four-dimensional, curved space-
time rather than in flat Minkowski spacetime. Curved spacetime is defined by pseudo-
Riemannian geometry, where the separation between two events like in the Riemann-
ian spacetime is

ds2 = gμνdxμdxν , (1.4)

inwhich gμν is called the Riemannianmetric tensor. In contrast to theMinkowskimet-
ric ημν, the pseudo-Riemannian metric is coordinate dependent, gμν(x). The metric
components transform as a tensor

gμν = ∂xα

∂xμ
∂xβ

∂xν gαβ , (1.5)

where the partial derivatives ∂xα
∂xμ and ∂xβ

∂xν form transformation matrices of the basis
vectors.

https://doi.org/10.1515/9783110515367-001



4 | 1 Pseudo-Riemannian geometry and general relativity

In the next section, the definitions and formulations of general relativity theory
will be given in a general framework.

1.1 Curvature of spacetime and Einstein field equations

Suppose a general coordinate system with general basis eα and a general four-
vector V, then this four-vector can be represented as

V = Vαeα , (1.6)

in which Vα are the vector components. The first derivative of this vector in terms of
general coordinates becomes

∂V
∂xβ

= ∂Vα

∂xβ
eα + Vα ∂eα

∂xβ
. (1.7)

Here, the partial derivatives of the basis vectors are

∂eα
∂xβ

= Γμαβeμ , (1.8)

where Γμαβ stands for the Christoffel symbols. If we substitute the derivative of the basis
vectors (1.8) into the first derivative of the four-vector, we obtain

∂V
∂xβ

= (∂Vα

∂xβ
+ VμΓαμβ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

components

eα⏟⏟⏟⏟⏟⏟⏟
basis

. (1.9)

The components of the first derivative of the four-vector give the covariant derivative

Vα
;β = Vα

,β + VμΓαμβ . (1.10)

Note that covariant derivative of a vector is a tensor. As is shown, the covariant deriva-
tive specifies a derivative of a four-vector along tangent vectors in curved spacetime.
Here the connection, or the Christoffel symbol Γαμβ, holds some important properties:
(1) it is symmetric: Γαμν = Γανμ
(2) it is torsion-free (no twist of a moving frame), indicating that the metric is covari-

antly constant gμν;β = 0.
The torsion-free property of the Christoffel symbols is particularly important. Simi-
larly, the partial derivative of the metric tensor in special relativity is zero. However,
in the arbitrary coordinate system of the pseudo-Riemannian geometry, the partial
derivative of the metric tensor will not give zero, since the metric components are co-
ordinate dependent. In the latter case, connections canbe thought of as inertial forces.

Computationally it is very difficult to obtain the Christoffel symbols. However, for
symmetric connection compatible with the metric, it is much easier to calculate the


