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Preface

In January 2016, we had the pleasure to welcome a number of leading experts and
many young researchers working in the field of fluid-structure interactions for a one-
week international symposium including a winter school on

Modeling, Adaptive Discretizations and Solvers for Fluid-Structure Interaction

at the Johann Radon Institute for Computational and Applied Mathematics (RICAM)
in the beautiful winter in Linz, Austria.

Motivated by the fascinating variety of topics presented in this symposium, we
decided to collect nine of them into a book thatmight serve for future reference. These
topics compriseboth reviewsof state-of-the-art fluid-structure interaction (FSI) aswell
as very recent research directions and are written by well-known experts in the field.

The aim of this book is a collection of various topics in order to highlight current
directions in multiphysics problems. Despite the fact that a lot of progress has been
made in the understanding and simulation of FSI in the last decades, FSI is still one
of the most challenging topics in numerical mathematics and engineering. A number
of open questions and challenges persist, e.g., in the design of efficient and robust
solvers for FSI with large deformation and contact as well as regarding the numerical
analysis of algorithms and discretization.

In order to facilitate the reading of this book, we classify the articles into three groups:
– Modeling and discretization;
– Solvers;
– Applications.

Despite the challenges of classical FSI on its own, there are several chapters that even
go beyond FSI and a couple with further physical phenomena, e.g., thermal and frac-
ture. Nonstandard discretization techniques such as extended ALE, high-resolution
interface meshes, Eulerian FSI, and phase-field are addressed. With regard to the nu-
merical solution, insight intomonolithic andpartitioned approaches is provided. Sev-
eral applications in vascular flows, binary-fluid-solid interaction, and cracked solids
complement the contents.

Finally, we want to thank our sponsors that supported the FSI symposium and fi-
nally enabled us to start this book: the Austrian Academy of Sciences (OEAW), Johann
Radon Institute for Computational and Applied Mathematics (RICAM) Linz, the Doc-
toral Program DK W1214 ‘Computational Mathematics’ at the Johannes Kepler Uni-
versity Linz and the graduate school HGS MathComp at the Interdisciplinary Center
for Scientific Computing (IWR) in Heidelberg, Germany. We specifically acknowledge

https://doi.org/10.1515/9783110494259-201



VI | Preface

Ulrich Langer for scientific and Annette Weihs for administrative support. We also
want to mention the unique and friendly atmosphere for the organization of such
events at RICAM Linz (which has also been proven by the series of Special Semesters
taking place here over the last few years). Last but not least, we thank de Gruyter for
their professional and friendly cooperation in producing this book.

Heidelberg, Germany Stefan Frei
Stockholm, Sweden Bärbel Holm
Magdeburg, Germany Thomas Richter
Palaiseau, France; Linz, Austria Thomas Wick
Graz, Austria; Linz, Austria Huidong Yang
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Steffen Basting, Annalisa Quaini, Suncica Canic, and Roland
Glowinski
1 On the implementation and benchmarking of an
extended ALE method for FSI problems

Abstract: The simulation of fluid-structure interaction (FSI) problems is particu-
larly challenging when the structural displacement is large. In this situation, certain
techniques known to be robust for small structural displacement, such as arbitrary
Lagrangian–Eulerian (ALE) methods, fail. Recently, we proposed an extended ALE
method that overcomes this failure, while keeping the same mesh connectivity and
enforcing mesh alignment with the structure. Our extended ALE method relies on a
variational mesh optimization technique, where mesh alignment with the structure
is achieved via a constraint. Once a mesh has been obtained from the constrained
optimization problem, the FSI problem is solved using either a Dirichlet–Neumann
algorithm, or a Robin–Neumann algorithm. Here, we provide implementation de-
tails for our extended ALE approach, with particular focus on the use of quadratic
isoparametric finite elements for a more accurate representation of the fluid-structure
interface, an adaptive relaxation procedure based on Aitken’s acceleration to speed
up the convergence of the Dirichlet–Neumann algorithm, and the structure solver.
We validate the structure solver against a benchmark with an exact solution and we
assess our extended ALE method through an extensive series of numerical examples
involving 2D FSI problems

Keywords: Mesh optimization, Arbitrary Lagrangian–Eulerian formulation, Fluid-
structure interaction, Domain decomposition methods

Classification: 74F10, 65N30, 76D05
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4 | 1 Extended ALE Method

1.1 Introduction

The focus of this work is on the numerical simulation of the motion of an elastic body
immersed in an incompressible, viscous fluid, with the structure undergoing large
displacements. The motivation comes from fluid-structure interaction (FSI) between
blood flow and heart valves. Several difficulties are associated with accurate numer-
ical simulation of this class of fluid-structure interaction problems. Firstly, the cou-
pled multiphysics problem is highly nonlinear and the so-called added mass effect is
known to cause various numerical difficulties when the fluid and structure have com-
parable densities [21, 68]. Then, large changes in the fluid domain occur due to the
large structural displacements. Finally, accurate approximation of the hydrodynamic
force at the fluid-structure interface is needed to correctly reproduce the physics of
the problem. Before outlining how we tackle the above-mentioned difficulties, let us
attempt to briefly summarize the vast literature on numerical approaches for this class
of problems.

To deal with the fluid domain motion associated with structural displacements,
numerical methods can be classified into the methods with fixed meshes and the
methods withmovingmeshes. The fixedmeshmethods include the Immersed Bound-
ary Method (IBM) [58–60], the Fictitious Domain Method [1, 39, 40], the level set
method [23, 24, 37], and the so-called Eulerian FSI methods [28, 64, 73]. These meth-
ods rely on a fixed fluidmesh used in a fluid solver, while the presence of the structure
is implemented in different ways. For example, in the IBM the fluid feels the structure
through external forces acting on the fluid, where the coupling between the (fixed)
fluid mesh and a (Lagrangian) structure mesh is performed via Dirac Delta functions.
To get around the difficulties associated with the discretization of the Dirac Delta, and
the low accuracy it causes in the calculation of the hydrodynamic force, modifications
of the IBM were introduced. They include the extended IBM [71], and the Immersed
Finite Element Method [74]. Conversely, in the Fictitious Domain Method, the cou-
pling between the fluid and structure is enforced via Lagrange multipliers (imposing
continuity of velocity, or the no-slip condition). This approach was applied first to
problems with rigid particles and later to problems with flexible structures, where
Lagrange multipliers were located along the structure surface [3, 44, 69, 70]. In all
the cases discussed above, adaptive mesh refinement typically needs to be used to
obtain reasonable accuracy in the calculation of the hydrodynamic force acting on
the structure.

The moving mesh methods are typically based on arbitrary Lagrangian–Eulerian
(ALE) approaches, introduced in [25, 47] for FSI problems discretized with the Finite
Elementmethod. Earlier works [45, 57] introduced ALEmethods for the Navier–Stokes
equations inmovingdomainsdiscretizedwith theFiniteDifferencemethod. Insteadof
beingfixed, the fluidmesh follows themotion of the elastic body via amapping, called
the ALE mapping, which is calculated based on the current location of the structure
(e.g., as a harmonic extension of the current interface position onto the fluid domain).
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ALE methods were proven to be accurate and robust for hemodynamics applications
involving small mesh displacements (e.g., [32]). Although these methods offer many
advantages provided by the explicit representation of the fluid-structure interface [7,
46, 68], problems arise whenever strong deformations or even topological changes of
the interface lead to a degeneration of the computational mesh. To deal with large
structural displacements, “remeshing” was introduced in [27, 52, 53]. By remeshing
it is normally meant that a new mesh with different connectivity is generated from
scratch when the quality of the given mesh is poor.

Mixed ALE and fictitious domain formulations have also been proposed [26, 43].
These approaches also require adaptive mesh refinement for an accurate calculation
of the viscous shear stresses on the solid boundary.

For completeness, we also mention a mesh-free Lattice–Boltzmann method [20,
29, 31, 48], which has also been used for the simulation of FSI problems with large
structural displacements.

In the presentworkweprovide implementation details and additional benchmark
testing for an extended ALE approach we recently proposed in [10]. Our method cap-
tures large structural displacements without changing mesh connectivity and it accu-
rately approximates the fluid-structure interface and the hydrodynamic forceswithout
the need for adaptive mesh refinement. The method is based on a fixed “base” mesh
that is adapted to approximate the interface via an ALE-type mapping, while main-
taining mesh connectivity (nodes or elements are neither inserted nor removed). The
fundamental building block is a variational mesh optimization approach that does
not rely on any combinatorial considerations. Alignment of the optimized mesh with
the structure interface is stated as a constraint of amesh optimization problem thanks
to a level set description of the geometry.

The main features of our extended ALE approach are:
– Nondegenerate meshes of provably optimal quality;
– The alignment of themeshwith the interface, which allows for a simple definition

and efficient implementation of problem-specific finite element spaces, such as
spaces allowing for discontinuities across the interface;

– Fixed mesh connectivity, whichmakes the method easy to implement in an exist-
ing standard ALE code.

We remark that similar approaches to ours are presented in [5, 14, 22] (the fixed-mesh
ALE approach) and in [35, 36] (methodology based on “universal meshes” [63]). The
main benefits of our variational approachover those in [5, 14, 22, 35, 36] are: no explicit
combinatorial testing is needed and the resulting meshes are guaranteed to be non-
degenerate. Once a mesh has been obtained from the above-mentioned constrained
optimization problem, the FSI problem is solved with classical Domain Decomposi-
tion algorithms (e.g., [62]): either the Dirichlet–Neumann (DN) method, which is com-
bined with an Aitken’s acceleration technique [49], or the Robin–Neumann method
(RN). Because of the modularity of DN and RN algorithms, each physics subprob-
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lem is solved separately, with the coupling conditions enforced in an iterative fash-
ion. We remark that the use of Robin interface conditions has led to efficient parti-
tioned FSI algorithms when the structure lies on part of the fluid domain boundary;
see, e.g., [4, 6, 18, 19, 42, 56].

We test our approach through a series of benchmark cases that involve the interac-
tion of an inextensible, elastic beamwith a 2D incompressible fluid. We show that our
extended ALE method allows one to easily capture the pressure discontinuity across
the interface, which coincides with the 1D elastic structure. Methods based on non-
aligned fixed meshes cannot capture such a discontinuity, unless further techniques
are used, such as, e.g., the enrichment of the function spaces as in X-FEM, see [34].
Moreover, thanks to the mesh alignment with the interface, the coupling conditions
requiredby theDomainDecompositionmethods are easily enforced. To treat the struc-
ture, we combine a generalized Crank–Nicolson scheme with an Uzawa-type algo-
rithm for solving the saddle-point problem associatedwith an augmented Lagrangian
method employed to handle the inextensibility condition. This nontrivial structure
solver is described in Section 1.5.2 and validated against a benchmark with exact so-
lution in Section 1.6.1.

The outline of the paper is as follows. In Section 1.2 we state the problem. The con-
strained optimization approach, which is at the core of our Extended ALE method, is
explained in Section 1.3. We describe the Domain Decomposition algorithms in Sec-
tion 1.4, and summarize the numericalmethods that we use for the time and space dis-
cretization of the fluid and structure problems in Section 1.5. In Section 1.6, we present
numerical results obtained on a series of numerical tests carefully chosen to highlight
the main features of the method. Conclusions are drawn in Section 1.7.

1.2 Problem definition

Consider a time-independent domain Ω ⊂ ℝ2 containing an elastic beam forming a
1Dmanifold Γ(t) ⊂ Ω whose location depends on time. The beam is surrounded by an
incompressible, viscous fluid occupying domain Ωf(t) := Ω \ Γ(t). See Figure 1.1.

Γ(t)

n2

n1

Γin Γout

Γdown

Γup

a

Fig. 1.1: Computational domain.
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1.2.1 The fluid problem

The fluid flow is governed by the Navier–Stokes equations for an incompressible, vis-
cous fluid:

ρf (∂u∂t + (u ·∇)u) − ∇ · σ = 0 in Ωf(t) , (1.1)∇ · u = 0 in Ωf(t) , (1.2)

for t ∈ (0, T], where ρf is the fluid density, u is the fluid velocity, and σ the Cauchy
stress tensor. For Newtonian fluids σ has the following expression

σ(u, p) = −pI + 2μϵ(u) ,
where p is the pressure, μ is the fluid dynamic viscosity, and ϵ(u) = (∇u + (∇u)T)/2 is
the strain rate tensor. Equations (1.1)–(1.2) need to be supplemented with initial and
boundary conditions.

In order to describe the evolution of the fluid domain, we begin by adopting an
Arbitrary Lagrangian–Eulerian (ALE) approach [47]. More precisely, let Ω̂f ⊂ ℝ2 be a
fixed reference domain. We consider a smooth ALE mapping

A : [0, T] × Ω̂f → ℝ2 ,

A(t, Ω̂f) = Ωf(t) , ∀t ∈ [0, T] .
For each time instant t ∈ [0, T], A is assumed to be a homeomorphism. The domain
velocityw is defined as

w(t, · ) = ∂tA(t,A(t, · )−1).
For any sufficiently smooth function F : [0, T] ×ℝ2 → ℝ, we may define the ALE time
derivative of F as

∂F
∂t

x̂ = ∂F∂t (t,A(t, x̂)) = ∂F∂t (t, x) +w(t, x) · ∇F(t, x),
where x = A(t, x̂), x̂ ∈ Ω̂. With these definitions, we can write the incompressible
Navier–Stokes equations in ALE formulation as follows:

ρf
∂u
∂t

x̂ + ρf(u −w) ·∇u − ∇ · σ = 0 in Ωf(t) , (1.3)∇ · u = 0 in Ωf(t) , (1.4)

for t ∈ (0, T].
1.2.2 The structure problem

For the structure problem, we consider a linearly elastic inextensible beam equation.
Thismeans that the beam is not allowed to shrink or stretch while interactingwith the
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fluid. The motion of an inextensible beam, while well studied (e.g., [26, 38, 41] and
references therein), remains a challenging problem numerically. The main difficulty
stems from the nonlinearity due to the inextensibility condition.

We assumenegligible torsional effects for the beam. Let us denote by ρs the linear
density (i.e., mass per unit length), by L the length, and by EI the flexural stiffness of
the beam. We will use the following notation, with s denoting arc length and t time:

y = ∂y
∂s

, ẏ = ∂y
∂t

, y = ∂2y
∂s2

, ÿ = ∂2y
∂t2

.

Using the virtual work principle, the beam motion for t ∈ (0, T] is modeled by the
following. Find x(t) ∈ K such that:

L∫
0

ρsẍ · yds + L∫
0

EI x · yds = L∫
0

f · yds , ∀y ∈ dK(x) , (1.5)

where x = x(t, s) is the parametric curve defining the beam position, f denotes the
force acting on the beam, and

K = {y ∈ (H2(0, L))2, y = 1, y(0) = a, y(0) = b} , (1.6)

dK(x) = {y ∈ (H2(0, L))2, x · y = 0, y(0) = 0, y(0) = 0} . (1.7)

In our case, f is the hydrodynamic force, which will be specified in Section 1.2.3. For
problem (1.5) we choose boundary conditions

x(0) = a , x(0) = b , x(L) = x(L) = 0 . (1.8)

The conditions at s = 0 are called the essential boundary conditions, describing a
clamped beam, while the conditions at s = L are called the natural boundary con-
ditions. The nonlinear inextensibility condition for the beam, |x| = 1, is embedded
into the set K.

1.2.3 The coupled fluid-structure interaction problem

Weconsider two-way couplingbetween thefluid and structure: themotionof thebeam
is driven by the contact force exerted by the fluid, while at the same time the motion
of the beam influences the fluid motion. The coupling conditions are described by the
following. Let us denote the interface by

Γ(t) = {x(t, s), s ∈ [0, L]} .
Let n1 be the unit normal vector pointing to the “left” (left with respect to the parame-
terization of x) and n2 = −n1 be the unit normal pointing to the “right”, see Figure 1.1.
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Notice that the fluid-structure interface coincides with the structure domain. The hy-
drodynamic force acting on the structure (beam) is given by the jump in the normal
fluid stress across the interface Γ(t):

f Γ = −σ1n1 − σ2n2 , (1.9)

whereσ i(x) = limϵ→0− σ(x+ϵn i), x ∈ Γ, i = 1, 2.Using this notation,wecannowstate
the coupling conditions. For t ∈ (0, T], the fluid problem (1.3),(1.4) and the structure
problem (1.5) are coupled by the following two conditions:
1. kinematic coupling condition (continuity of velocity, i.e., the no-slip condition)

u = ẋ on Γ(t) ; (1.10)

2. dynamic coupling condition (balance of contact forces)

f Γ = f on Γ(t) , (1.11)

where f is given by Equation (1.5).

Here, notation u = ẋ in (1.10) is used to express the relation u(t, x(t, s)) = ẋ(t, s), s ∈[0, L] (analogously for f Γ and f in (1.11)). Since x denotes the location of structure
points and not the structure displacement, both the structure and fluid are given in
Eulerian coordinates.

For the purposes that will be clear belowwhenwe introduce the Robin–Neumann
scheme, we remark here that the coupling conditions (1.10)–(1.11) can bewritten in an
equivalent form by introducing the constants αf > 0 and αs > 0 (αf ̸= αs), and writing:

αfu − f Γ = αf ẋ − f on Γ(t) , (1.12)
αsu + f = αsẋ + f Γ on Γ(t).

1.3 Numerical representation of the geometry

Themain feature of our extended ALEmethod is a variationalmesh optimization tech-
nique combined with an additional constraint to enforce the alignment of the struc-
ture interface with the edges of the resulting triangulation. The mesh optimization in
this section corresponds to a reparametrization of the ALE mapping.

1.3.1 Optimal triangulations

Let T be an initial, reference triangulation of the domain Ω (not necessarily approxi-
mating the structure interface at this stage). Following a variational mesh optimiza-
tion technique introduced by M. Rumpf in [65], we aim at finding an “optimal” trian-
gulation Topt resulting from an optimalmesh deformation χopt of T, i.e.,Topt = χopt(T).
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Deformation χopt belongs to the set D of piecewise affine, orientation preserving, and
globally continuous deformations:

D = {χ ∈ (C0(Ω))2 : ∇χ|T ∈ GL(2), det(∇χ|T) > 0, ∀T ∈ T} , (1.13)

with GL(2) = {A ∈ ℝ2×2 : det(A) ̸= 0}.
Deformation χopt ∈ D is “optimal” in the sense that it is the argument for which a

certain functional F attains its minimum value:

F(χopt) = min
χ∈D

F(χ) . (1.14)

We assume that the functional in (1.14) can be represented by a sum of weighted,
element-wise contributions FT:

F(χ) = ∑
T∈T

μTFT(χ) ,
where μT > 0 denotes a positive weight with ∑T μT = 1. Let RT denote the linear
reference mapping from a prescribed reference element Topt (an equilateral simplex
with customizable edge length h) to T. Under the assumptions of translational invari-
ance, isotropy and frame indifference of the functionals, it can be shown that in two
dimensions FT may be expressed as a function of the invariants of χ : ‖∇RT(χ)‖2 and
det(∇RT (χ)) [65]. For example, given a function F̃T : ℝ × ℝ → ℝwe can write:

FT(χ) = F̃T(a, d) := F̃T(‖∇RT (χ)‖2, det(∇RT(χ))) .
Here, ‖ · ‖ denotes the Frobenius norm. Note that the quantity ‖∇RT (χ)‖2 measures the
change of edge lengths with respect to the reference element, and det(∇RT(χ)) mea-
sures the change in area.

In order to rule out deformations with vanishing determinant, we need

lim
det(∇RT (χ))→0

FT(χ) = ∞ .

With the additional assumption that the local functional FT(χ) = F̃T(a, d) is polycon-
vex (i.e., F̃T(a, d) is convex with respect to each argument), it can be proven that an
optimal deformation exists and is globally injective [65].

A classical example of such a function FT is given by

FT(χ) = (‖∇RT (χ)‖2 − 2)2 + det(∇RT(χ)) + 1
det(∇RT (χ)) . (1.15)

The optimally deformed simplex is obtained if χopt|T = I, i.e., if

FT(χopt) = FT(I) = (2 − 2)2 + 1 + 1 = 2 .

The variational mesh smoothing approach described above has several advan-
tages:
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– Minimization problem (1.14) yields triangulations that are provably optimal in the
sense of the local measure (1.15).

– These triangulations can be shown to be nondegenerate, i.e., no self-intersection
of elements occurs. This is the main property needed by our mesh optimization
approach in order to work reliably even when the structure displacement is large.

– Theelement-wise representationofF providesbuilt-in, localmeshquality control.

The price to pay for those advantages is that functional F in (1.14) is highly nonlinear,
nonconvex, and global minimizers may not be unique.

1.3.2 Interface aligned mesh

We are now interested in having a triangulation that is nondegenerate, optimal (as ex-
plained in the previous subsection) and aligned with the beam position Γ(t), i.e., we
want the optimal triangulation edges to approximate Γ(t). For this purpose, we intro-
duce the following auxiliary tools:
– a “tubular box” around the structure of width δ, denoted by Ωδf (t) ⊂ Ωf(t), within

which mesh optimization with alignment will be performed, see Figure 1.2a;
– a continuous level set functionϕ : [0, T]×Ωδf (t) → ℝwhose zero level set includes

the structure position x:

Ωδ,1f (t) = {y ∈ Ωδf (t) : ϕ(t, y) > 0} ,
Ωδ,2f (t) = {y ∈ Ωδf (t) : ϕ(t, y) < 0} ,
Γδ(t) = {y ∈ Ωδf (t) : ϕ(t, y) = 0} ,

(1.16)

where Γδ(t) denotes a “natural” extension of Γ(t) to the boundary of Ωδf (t), and
Ωδ,1f (t) and Ωδ,2f (t) denote the fluid subdomains located on the “left” and “right”
side of Γδ(t), respectively. See Figure 1.2a. Notice that n1 (resp., n2) is the outward
unit normal on Γδ(t) of Ωδ,1f (t) (resp., Ωδ,2f (t)).

(a) (b)

Fig. 1.2: (a) Tubular box Ωδ
f (t) around the structure position x, zoomed in view of Figure 1.1, and

(b) Γ(t) intersecting elements of the fluid mesh.
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Within Ωδf (t) we perform the following procedure. Let e be an arbitrary edge of the
triangulation T intersected by Γδ(t) as shown in Figure 1.2b, and let xe,1 and xe,2 be
its endpoints. Because of continuity of ϕ and assumption (1.16), we observe that

ϕ(xe,1)ϕ(xe,2) < 0

if and only if e is intersected by Γδ(t), provided that the mesh size h is sufficiently
small to resolve the shape of Γδ(t). We therefore define the triangulation to be linearly
aligned with Γ(t) if

ϕ(xe,1)ϕ(xe,2) ≥ 0 for all e ∈ T .

We introduce a scalar constraint c : D → ℝ+0, defined on D given by (1.13), such
that:

c(χ) = ∑
e∈χ(T)

H(ϕ(xe,1)ϕ(xe,2)) where H(z) = {{{> 0 if z < 0 ,= 0 otherwise.

Only deformations χ for which c(χ) = 0 will give aligned triangulations. Thus, a
linearly aligned triangulation of optimal quality is obtained from the following con-
strained minimization problem:

min
χ∈D

F(χ) such that c(χ) = 0 .

Given an aligned triangulation T, we may define a linear approximation of the
interface as

Γh = {edges e ∈ T : ϕ(xe,i) = 0 and xe,i ∈ Γ for i = 1, 2} .

Note that condition xe,i ∈ Γ is necessary to avoid considering points on the extension
Γδ that do not belong to Γ.

In order to obtain amoreaccurate representationof the structure,wealso consider
piecewise quadratic approximations of Γ(t) and make use of quadratic isoparametric
finite elements. We denote by K̂ = {x̂ ∈ ℝ2 : ∑2

i=1 x̂(i) ≤ 1, x̂(i) ≥ 0} the reference sim-
plex, and by GK : K̂ → K the quadratic isoparametric mapping:

GK(x̂) = 6∑
i=1

xiφi(x̂) , (1.17)

where φi , i = 1, . . . , 6 are the quadratic Lagrange basis functions defined on K̂. Once
a linearly aligned triangulation and the corresponding discrete interface are obtained,
in order to achieve quadratic alignment we move each quadratic node (e.g., x6 in Fig-
ure 1.3) along the linear normal to the zero level set. Details on the numerical imple-
mentation together with an evaluation of the mesh, approximation quality, and com-
putational costs can be found in [8, 11, 72].
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x3

x4

x5

x6

Fig. 1.3: Linearly aligned triangulation with isoparametric elements without (left) and with (right)
quadratic alignment of the additional quadratic degree of freedom x6.

In the following, for a given structure position Γ(t), we will denote the optimal in-
terface aligned triangulation obtained from the strategy outlined above by Topt(Γ(t)).
The resulting computational domain is given by:

Ωf,opt(t) = ⋃
K∈Topt(Γ(t))

K .

1.4 Partitioned methods for the fluid-structure interaction
problem

TheFSI problemsdescribed inSection 1.2will be solvedusing twodifferent partitioned
strategies based on Domain Decomposition methods [62]: the Dirichlet–Neumann
(DN) and the Robin–Neumann (RN) algorithms. Partitioned methods are appeal-
ing for solving multiphysics problems such as those discussed in this manuscript,
because they allow the reuse of existing fluid and structure solvers with minimal
modifications. Because of the modularity of DN and RN algorithms, each physics sub-
problem is solved separately, with the coupling conditions enforced in an iterative
fashion. In the DN algorithm the coupling boundary condition (1.10) is imposed at the
interface as a Dirichlet boundary condition for the fluid subproblem, whereas in the
RN algorithm the fluid subproblem is endowed with a Robin interface condition (1.12).
In both algorithms, the structure subproblem is supplemented with the Neumann
“boundary condition” (1.11). Equation (1.11) is a proper Neumann boundary condition
when the structure is thick; for thin structures Equation (1.11) prescribes the load on
the structure.

To describe the DN and RN algorithms, we introduce the time-discretization step
∆t > 0 and set tn = n∆t, for n = 1, . . . , N, with N = T/∆t. At every time tn, the DN
and RN algorithms iterate over the fluid and structure subproblems until convergence.
These are Richardson (also called fixed point) iterations for the position of Γ(tn). Let
k be the index for these subiterations.
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1.4.1 The Dirichlet–Neumann method

At time tn+1, subiteration k + 1, assuming that Ωnf , uk , pk, and xk are known, the fol-
lowing steps are performed:
– Step 1: Solve the fluid subproblem for the flow variables uk+1, pk+1 defined onΩnf ,

with Dirichlet boundary condition

uk+1 = ẋk on Γn . (1.18)

– Step 2: Solve the structure subproblem for the structure position xk+1, driven by
the just calculated hydrodynamic force f Γ,k+1, i.e., f k+1 = f Γ,k+1 on Γn.

– Step 3: Check the stopping criterion, e.g.,‖xk+1 − xk‖‖xk‖ < ϵFS , (1.19)

where ϵFS is a given stopping tolerance. If violated, repeat Steps 1–3. If satisfied,
set xn+1 = xk+1 and pn+1 = pk+1.

– Step 4: Check the mesh quality of Ωnf . A mesh is considered to be “bad” if the
maximumangle of the elements exceeds a certain value, for instance 130 degrees.
– If the mesh is good: Accept and set ũn+1 = uk+1 and Ω̃n+1f = Ωnf .
– If the mesh is bad: Apply mesh optimization to get Ωnf,opt, set Ω̃

n+1
f = Ωnf,opt.

Project data onto new mesh, i.e.,

ũn+1 = IΩnf→Ω̃n+1f
(uk+1) . (1.20)

– Step 5: Standard ALE update: From the new structure position xn+1 obtain Γn+1,
and from the intermediate fluid domain Ω̃n+1f obtain:

Ωn+1f = E (Γn+1, Ω̃n+1f )
using an extension operator E (see below). Set un+1 = ũn+1 and move to the next
time step.

Notice that if the quality of the mesh is good, that is if the second item at Step 4 never
applies, the method reduces to a standard ALE approach. We do not use a “standard”
extension operator E (such as harmonic extension, or operators stemming from linear
elasticity), but use the variational approach based on (1.14), (1.15). In our experience,
this approach is superior to linear extension operators in terms of mesh quality.

In the “inner” loop, which corresponds to Steps 1–3 in the above iteration algo-
rithm, thefluiddomain is “frozen”,whichprovides important savingof computational
time. Concerning Step 4, the angle-based criterion used to detect “bad” meshes is
purely heuristic and may be replaced by other meaningful mesh quality criteria. The
criterion should be sufficiently mild in order to prevent the reparametrization at every
time step. Notice that themesh optimization procedure presented in Subsec. 1.3.1 aims
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at generating triangulations made of equilateral triangles, therefore the angles after
optimization are usually bounded away from, e.g., 130 degrees.

A crucial point in the above algorithm is the choice of the mesh transfer operator
IΩnf→Ω̃n+1f

appearing in Equation (1.20) at Step 4, neededwhenever reparametrization is
performed. In our case, this operator is the Lagrange interpolation operatorwhichwas
also proposed in [35]. However, it is known that dynamically changing meshes may
lead to spurious oscillations of the pressure for small time-step sizes [15, 17]. Indeed,
we will observe those oscillations in our numerical results, as shown in Section 1.6.3.
The use of special elements (e.g., divergence-free) or special variational formulations
of the Navier–Stokes equations (see for instance [51]) might cure this problem which
seems to be an open question.

It is well known that the convergence properties of the DN algorithmdepend heav-
ily on the added-mass effect [21]. In fact, when the structure constitutes a part of the
fluid domain boundary, the number of DN iterations required to satisfy the stopping
criterion (1.19) increases as the structure density approaches the fluid density. More-
over, below a certain density ratio ρs/ρf, which depends on the domain geometry, re-
laxation is needed for the DN algorithm to converge [21, 54, 55]. This is whywe adopt a
simple Aitken’s acceleration technique, which is based on a relaxation approach, and
is known to reduce the number of DN iterations. This strategy, introduced in [49], was
proposed for a setting similar to ours in [2].

Let x̃k+1 be the unrelaxed structure position predicted by Step 2 of the algorithm
above. Then after Step 2, we introduce a relaxation parameter ωk+1, which is com-
puted via

ωk+1 = (xk − xk−1) · (xk − x̃k+1 − xk−1 + x̃k)|xk − x̃k+1 − xk−1 + x̃k|2 .

The position of the interface is then corrected via the relaxation algorithm:

xk+1 = ωk+1x̃k+1 + (1 − ωk+1) xk .
The results in [2] indicate that only a few accelerated DN subiterations are to be ex-
pected for FSI problems with an immersed structure and large added-mass effect.

It was shown in [4] that when the structure constitutes a part of the fluid domain
boundary for a suitable choice of parameter αf the RNmethod features excellent con-
vergence properties: it always converges without any relaxation and its convergence
is insensitive to the added-mass effect. In the next section, we present the RNmethod.

1.4.2 The Robin–Neumann method

At time tn+1, subiteration k + 1, the following steps are performed:
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– Step 1: Solve the fluid subproblem for the flow variables uk+1, pk+1 defined onΩnf ,
with Robin boundary condition

αfuk+1 − f Γ,k+1 = αf ẋk − f k on Γn . (1.21)

– Step 2, 3, 4 and 5 as in Section 1.4.1

Recall that f Γ denotes the jump in the normal stress across the structure, as defined in
(1.9), and f stands for the right-hand side of the structure equation (1.5). Notice that the
DN algorithm can be interpreted as a particular case of the RN algorithm for αf → ∞.

In [4], αf is estimated by considering a simplified structuremodel. Here, we follow
the same approach and set the constant αf in (1.21):

αf = ρs∆t . (1.22)

1.5 The fully discrete problem

We present the fully discrete problem for the case of the fluid problem (1.3),(1.4) with
Robin boundary condition (1.21), and recall that a similar approach can be taken for
the DN algorithm, since it is a particular case of the RN algorithm. We will state the
problem in weak form by including only the boundary condition on Γ(t), since those
on ∂Ω are understood and do not affect the presented methodology.

1.5.1 The discrete fluid subproblem

For any given t ∈ [0, T), we define the following spaces:
V(t) = {υ : Ωf(t) → ℝ2, υ = υ̂ ∘ (A)−1, υ̂ ∈ (H1(Ω̂f))2} ,

Q(t) = {q : Ωf(t) → ℝ, q = q̂ ∘ (A)−1, q̂ ∈ L2(Ω̂f)} .

In the following, we will use the notation Vn := V(tn) and Qn := Q(tn) to denote the
finite element spaces at the time instant tn .

We introduce the following linear forms:

m(Ω; u, υ) = ∫
Ω

(u · υ) dΩ , a(Ω; u, υ) = ∫
Ω

μ (ϵ(u) : ϵ(υ)) dΩ ,

c(Ω;w; u, υ) = ∫
Ω

((w ·∇) u · υ) dΩ , b(Ω; p, υ) = −∫
Ω

p∇ · υ dΩ .

The variational formulation of the fluid problem (1.3), (1.4) with boundary condi-
tion (1.12) reads: given t ∈ (0, T], find (u, p) ∈ V(t)×Q(t) such that∀(υ, q) ∈ V(t)×Q(t)
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the following holds:

ρfm(Ωf(t); ∂u∂t x̂, υ) + ρfc(Ωf(t); u −w; u, υ) + a(Ωf(t); u, υ) + b(Ωf(t); p, υ)+m(Γ(t); αfu, υ) = m(Γ(t); αf ẋ − f , υ),
b(Ωf(t); q, u) = 0.

Time and space discretization. For simplicity, the implicit Euler scheme is used to
discretize the above weak formulation in time. The convective term is linearized by
a first-order extrapolation formula. Notice that higher order discretization schemes
and extrapolation formulas are also possible. At time tn+1, and at the (k + 1)-st RN
subiteration, the time discrete linearized fluid subproblem reads as follows: Find(uk+1, pk+1) ∈ Vn × Qn such that

ρfm(Ωnf ; uk+1 − un
∆t

, υ) + ρfc(Ωnf ; uk −wn; uk+1, υ) + a(Ωnf ; uk+1, υ)+b(Ωnf ; pk+1, υ) + m(Γn; αfuk+1, υ) = m(Γn; αfẋk − f k , υ) , (1.23)
b(Ωnf ; q, uk+1) = 0 , (1.24)

for all (υ, q) ∈ Vn × Qn .
For the space discretization of problems (1.23)–(1.24), we choose the inf-sup sta-

ble Taylor–Hood finite element pair ℙ2 − ℙ1. However, while the velocity field is con-
tinuous at Γn, the pressure space should be able to capture discontinuities across Γn,
which are needed also for the correct evaluation of the hydrodynamic force (1.9). In or-
der to deal with pressure discontinuities that occur at Γn, we introduce the following
spaces which consist of piecewise continuous functions that may be discontinuous
across the interface:

Ṽnh = {υ ∈ (H1(Ωnf \Γn)2 : υ|K ∘ GK ∈ ℙ2(K̂), υ|Ωnf \Γn ∈ (C0(Ωnf \Γn))2} ,

Q̃nh = {q ∈ L2(Ωnf \Γn), q|K ∘ GK ∈ ℙ1(K̂), q|Ωnf \Γn ∈ C0(Ωnf \Γn)} ,

where K̂ is the reference simplex, and GK is given by (1.17). The respective spaces with
globally continuous functions will be denoted by Vnh and Q

n
h. The appropriate finite

element space for the unknowns in problems (1.23)–(1.24) is given by Vnh × Q̃nh. For the
numerical implementation of our approach, we adopt a strategy called the Subspace
Projection method [12, 13, 61]: we will work with spaces Ṽnh and Q̃

n
h, and then use an

additional discrete projection to enforce continuity of the velocity on Γn. Note that Vnh
is a vector subspace of space Ṽnh .

Let us briefly summarize how the Subspace Projectionmethod works. We first no-
tice that the Oseen problem (1.23) can be formally expressed as: Find (uk+1, pk+1) ∈
Vn × Qn such that

s((uk+1, pk+1), (υ, q)) = g(υ, q) , ∀(υ, q) ∈ Vn × Qn , (1.25)
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where s : (Vn × Qn) × (Vn × Qn) → ℝ is the bilinear form containing all the terms with
index k + 1, and g : (Vn × Qn) → ℝ is a linear form containing all the terms involving
known quantities. Next, we define a projection operator:

P : Ṽnh → Vnh ,

where Vnh is a vector subspace of space Ṽ
n
h . By the Subspace Projectionmethod, a dis-

crete counterpart of problem (1.25) reads: Find (ũh,k+1, p̃h,k+1) ∈ Ṽnh × Q̃nh such that
s((Pũh,k+1, p̃h,k+1), (Pυ̃h , q̃h)) = g(Pυ̃h , q̃h) , ∀(υ̃h , q̃h) ∈ Ṽnh × Q̃nh ,

and then set uh,k+1 = Pũh,k+1 and ph,k+1 = p̃h,k+1. See [12, 13, 61] for a detailed de-
scription of these techniques.

The linear system resulting from linearization and discretization is solved with
the direct solver PARDISO [50, 66, 67].

1.5.2 The discrete structure problem

For the time discretization of problem (1.5), we will consider a generalized Crank–
Nicolson scheme [41]. At time tn+1, Dirichlet–Neumann iteration k+1, the timediscrete
structure problem (1.5) is as follows: Find xk+1 ∈ K such that:

L∫
0

ρs
xk+1 − 2xn + xn−1

∆t2
· yds + EI L∫

0

(αxk+1 + (1 − 2α)xn + αxn−1) · yds
= L∫

0

(αf k+1 + (1 − 2α)f n + αf n−1) · yds , ∀y ∈ dK(xk+1), (1.26)

where K and dK are defined in (1.6) and (1.7), respectively. This scheme is known to
be second-order accurate for linear problems. For the numerical results in Section 1.6,
we will set α = 1/4 since in linear cases this choice leads to an unconditionally sta-
ble scheme, which possesses a very small numerical dissipation compared to other
schemes, e.g., the Houbolt method [9, 16].

Time discretization approximates problem (1.5) by a sequence of quasistatic prob-
lems that can be written as an equivalent nonconvex constrained problem:

xk+1 = argmin
y∈K

J(y), J(y) = 1
2

L∫
0

( ρs
∆t2

|y|2 + EIα y2) ds − L∫
0

b · y ds , (1.27)

where b accounts for all the terms involving known quantities.
To treat the inextensibility condition |y| = 1, which is a quadratic constraint,

we use an augmented Lagrangian method (e.g., [16, 33, 38, 41]). Let us introduce the
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following space and sets:

V = {y ∈ (H2(0, L))2, y(0) = a, y(0) = b} ,
V0 = {y ∈ (H2(0, L))2, y(0) = 0, y(0) = 0} ,
Q = {q ∈ (L2(0, L))2, |q| = 1 a.e. on (0, L)} .

Problem (1.27) is equivalent to{xk+1, xk+1} = argmin
{y,q}∈W

J(y) , with W = {y ∈ V, q ∈ Q, y − q = 0}.
With r > 0, we introduce the following augmented Lagrangian functional:

Lr(y, q; μ) = J(y) + r2 L∫
0

|y − q|2 ds + L∫
0

μ · (y − q) ds . (1.28)

Let {x, p; λ} be a saddle point of Lr over (V ×Q) × (L2(0, L))2. Then a solution of prob-
lem (1.27) (and thus problem (1.26)) is xk+1 = x and p = xk+1. In order to solve the
above saddle-point problem, we employ the algorithm called ALG2 in, e.g., [33, 41].
As shown in, e.g., [33], this Uzawa-type algorithm is in fact a “disguised” Douglas–
Rachford operator-splitting scheme:
– Step 0: The initial guess {x−1, λ0} ∈ V × (L2(0, L))2 is given.
Then, for j ≥ 0, {xj−1, λj , } being known, proceed with:
– Step 1: Find p j ∈ Q such that:

Lr(x j−1, p j; λj) ≤ Lr(x j−1, q; λj) , ∀q ∈ Q.

– Step 2: Find xj ∈ V such that:

Lr(x j , p j; λj) ≤ Lr(y, pj; λj) , ∀y ∈ V0 . (1.29)

– Step 3: Update the Lagrange multipliers by:

λj+1 = λj + r((x j) − pj).
To obtain pj at step 1, we have to solve the minimization problem:

min
|q|=1

Lr(x j−1, q; λj), with the solution pj = r(x j−1) + λj|r(x j−1) + λj| . (1.30)

Problem (1.29) can be stated as the equivalent problem: Find x j ∈ V such that for
all y ∈ V0:

L∫
0

ρs
xj
∆t2

· yds+ L∫
0

EIαxj · yds + r L∫
0

xj · yds

= L∫
0

b · yds + L∫
0

(rp j − λj) · yds.
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For the space discretization of problem (1.29) we use a third-order Hermite finite el-
ement method (e.g., [16]). For details about the discretization of p j ∈ Q (1.30) and
λj ∈ (L2(0, L))2 we refer to [41].

Steps 1, 2, and 3 are repeated until the following stopping criterion

( L∫
0

 ∂∂s xi − p i
2 ds)1/2 ≤ ϵ (1.31)

is satisfied for a given tolerance ϵ > 0, or the number of iterations exceeds a given
number.

Once (1.31) is satisfied, we set x̃k+1 = xi, which defines the new structure position
before relaxation.

Remark 1.1. It is known that parameter r plays a fundamental role for the convergence
of algorithm ALG2, as was pointed out in [26]. We adopt the same adaptive strategy
presented in [26], i.e., we start with an initial guess r = r0, where r0 is a fixed number
(for instance in the range of the flexural stiffness EI). Once the Augmented Lagrangian
algorithm terminates, we check if termination criterion (1.31) is met. In case (1.31) is
violated, the value of r is increased (e.g., by a factor of 10) and ALG2 is repeated with
the new value of r.

1.5.3 Enforcement of the coupling conditions

To describe the enforcement of the coupling conditions reported in Section 1.2.3, we
first recall that at every time step the fluid mesh is aligned with the structure posi-
tion. However, in general the fluid and structure meshes do not coincide, since they
are made up of different elements: cubic Hermite elements on the structure side, and
quadratic isoparametric edges on the fluid side. Because of the alignment, the fluid
nodes that approximate the interface are always located on the structure mesh, as
shown in Figure 1.4. In Figure 1.4, we denote by Γf,nh the approximation of the location
of Γn given by the fluid mesh, and by Γs,nh the approximation of Γn by the structure
mesh.

Fig. 1.4: Fluid triangulation (black) aligned with the structure mesh
Γ s,n
h (blue). The fluid nodes are marked with dots, while the structure

nodes are marked with squares. Γ f,nh (red) is the approximation of the
interface given by an edge of the fluid mesh.
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Since Robin boundary condition (1.21) is a linear combination of the kinematic
coupling condition and the dynamic coupling condition, we will only discuss the en-
forcement of the latter two conditions.

Enforcement of the kinematic coupling condition, i.e., the Dirichlet condition
(1.18). Denote by UΓ,k and Ẋk the arrays of the nodal values of the corresponding fluid
and structure velocities at the interface. Let Bnfs be the interpolationmatrix of the struc-
ture mesh at the fluid interface nodes. To impose Dirichlet condition (1.18), we set

UΓ,k+1 = BnfsẊk . (1.32)

Enforcement of the dynamic coupling condition. The fluid load onto the structure
is given by the hydrodynamic force (1.9). The computation of the hydrodynamic force
(1.9) is crucial for the numerical stability and accuracy of Domain Decomposition FSI
solvers [30]. In the setting considered in this paper (an immersed beam), the qual-
ity of approximation of the pressure jump across the beam is of great importance, as
demonstrated by the results in Section 1.6.2.

The load exerted by the fluid onto the structure f Γ can be computed as the vari-
ational residual R of the momentum conservation equation for the fluid, tested with
test functions υ that are different from zero on Γ(t):∫

Γ(t)
f Γ · υ dΓ = −ρfm(Ωf(t); ∂u∂t x̂, υ) − ρfc(Ωf(t); u −w; u, υ)− a(Ωf(t); u, υ) − b(Ωf(t); p, υ)= R(Ωf(t); u, p, υ) . (1.33)

Let f fΓ,k+1 denote the discrete hydrodynamic force at Γf,nh and subiteration k + 1. After
time and space discretization of (1.33), f fΓ,k+1 is calculated from:∫

Γf,nh

f fΓ,k+1 · υh dΓ = R(Ωnf ; uh,k+1, ph,k+1, υh) . (1.34)

By using matrix notation, Equation (1.34) can be written as follows:

Mn,fΓ F
f
Γ,k+1 = Rk+1, , (1.35)

where FfΓ,k+1 is the array of nodal values of f
f
Γ,k+1,M

n,f
Γ is the mass matrix at Γf,nh , and

Rk+1 corresponds to the known values of the combined residuals appearing on the
right-hand side of Equation (1.34). This defines the hydrodynamic force, calculated at
the fluid mesh nodes along the beam.

To enforce the dynamic coupling condition (1.11), this hydrodynamic force needs
to be set equal to the structural load f exerted onto the fluid. For this purpose, we need
to assign the values of the hydrodynamic force to the structure mesh nodes Γs,nh which
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do not necessarily lie on the structure discretization defined by the fluid mesh, see
Figure 1.4. To do that, we first project the structure mesh nodes of Γs,nh onto the fluid
mesh interface Γf,nh . At the fluid mesh, the fluid loading onto the structure f fΓ,k+1 is
defined by the process described above. We take those values of f fΓ,k+1 and interpolate
them first along the edges of the fluidmesh at the projected structural nodes, and then
we assign those values back to the original structure nodes. More precisely, whenever
the structural load f k+1(x) needs to be evaluated for some x ∈ Γs,nh (for instance at the
quadrature nodes needed to evaluate the right-hand side of Equation (1.26)), we first
define the projected structure node

x̃ := argmin
y∈Γf,nh

‖x − y‖
and then let f k+1(x) = f fΓ,k+1(x̃). We use the following notation to summarize this
procedure:

FsΓ,k+1 = BnsfFfΓ,k+1 , (1.36)

whereweusedBnsf to denote the extrapolationof the values of thehydrodynamic quan-
tities at the fluid nodes onto the structure nodes. This defines the hydrodynamic force
at the structure mesh nodes, and enforces the dynamic coupling condition (1.11).

It is important to notice that in this numerical implementation of the dynamic cou-
pling condition, the power exchanged between the fluid and structure is not perfectly
balanced, i.e., at the discrete level, the energy imparted by the fluid onto the structure
is not perfectly converted into the total energy of the structure, and vice versa. This is
due to the nonmatching fluid and structure meshes. In the case of the DN algorithm,
this mismatch can be precisely quantified as follows.

At the time tn+1, after the convergence of the DN subiterations, the discrete power
exchanged at the interface from the fluid side is

Pf,n+1 = ∫
Γf,n+1h

f f,n+1Γ · un+1h dΓ = (Un+1Γ )TMf,n+1Γ Ff,n+1Γ

= (Ẋn+1)T(Bn+1fs )TMf,n+1Γ Ff,n+1Γ , (1.37)

where for the last equation we used (1.32). Similarly, the discrete power exchanged at
the interface from the structure side is

Ps,n+1 = ∫
Γs,n+1h

f s,n+1Γ · ẋn+1h dΓ = (Ẋn+1)TMs,n+1Γ Fs,n+1Γ

= (Ẋn+1)TMs,n+1Γ Bn+1sf F
f,n+1
Γ , (1.38)

where for the last equation we used (1.36). Thus, the power exchanged at the interface
is balanced if (Bn+1fs )TMf,n+1Γ = Ms,n+1Γ Bn+1sf .
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Since Γf,n+1h and Γs,n+1h are aligned but do not coincide (Γs,n+1h is a piecewise cubic
globally C1 function, and Γf,n+1h is a piecewise quadratic interpolation) and the fluid
and structure discretizations are based on different elements, the balance equation is
not necessarily fulfilled exactly. However, in Section 1.6.3 we will show that the differ-
ence between Pf,n+1 and Ps,n+1 is very small (0.01% of the power value) in our com-
putations.

1.6 Numerical results

A series of numerical tests is presented that showcase the main features and perfor-
mance of our approach. In all the tests, the fluid density of ρf = 1g/cm3 is considered,
the structuremesh always consists of 45 nodes (with cubicHermite elements), and the
stopping tolerance in (1.19) for the partitioned schemes (either DN or RN) is always set
to ϵFS = 10−8. We use the SI unit system, and present all the quantities in the centime-
ter-gram-second (CGS) units. If the units of a certain quantity are omitted for the sake
of simplicity, it is implied that they are in the CGS system.

1.6.1 Validation of the structure solver

The purpose of this section is to validate the structure solver by a benchmark with an
exact solution.

We consider s ∈ [0, π/2] and t ∈ [0, 1], and a family of exact solutions which is
given by:

xex(s, t) = (ϕ(t))−1 [cos(sϕ(t)), sin(sϕ(t))]T . (1.39)

Notice that solution (1.39) satisfies the inextensibility condition |x| = 1 point-
wise for every function ϕ(t). We chose ϕ(t) = et, for which the solution is a quarter
of a circle of initial radius 1 that coils over time as its radius decreases (Figure 1.5). At
s = 0 and s = π/2,we impose the values of x and x. The forcing term f ex needed to re-
cover solution (1.39) is found by plugging xex into the governing differential equations
(strong form):

ρsẍex + EIxex = f ex . (1.40)

For simplicity, we set ρs = 1Kg/m3 and EI = 1Kgm3/s2. The forcing term f ex is made
up of two contributions: an external body force f b and an internal force due to inex-
tensibility f in. To find f in, we notice that problem (1.5) is equivalent to minimization
problem x = argmin

y∈K
J(y), where the total energy of the beam can be written as:

J(y) = 1
2

L∫
0

ρs|ÿ|2ds + 1
2

L∫
0

EI y2 ds + 1
2

L∫
0

λ(|y|2 − 1)ds − L∫
0

f · yds,
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Fig. 1.5: Comparison between analytical and numerical solution at t = 0 s (left), t = 0.5 s (center),
t = 1 s (right) for two values of stopping tolerance: ϵ = 10−1 (top) and ϵ = 10−5 (bottom). The legend
in the subfigures on the left is common to all the subfigures.

and λ is a scalar function that depends on time only. If the above functional attains its
minimumat x, it follows that its Gâteaux derivativemust be vanishing at x, leading to

L∫
0

ρsẍ · yds + L∫
0

EI x · yds = L∫
0

f · yds + L∫
0

(λx) · yds,
for all y ∈ dK(x). The second integral on the right-hand side (equal to zero if y ∈ dK(x),
which is not the case for the test functions used in the computations) gives the explicit
contribution of f in.

We are going to check the convergence rates in time for the generalized Crank–
Nicolson scheme in Section 1.5.2 with α = 1/4 in two cases:
– linear case: when the forcing term is f ex the inextensibility condition becomes

inactive due to the fact that f ex is given by (1.40) and the problem reduces to the
linear beam equation;

– nonlinear case: when then forcing term is f ex + (λx), with, e.g., λ = 1, the prob-
lem becomes nonlinear and the inextensibility is treated via the augmented La-
grangian method described in Section 1.5.2.

The space resolution ∆s is taken to be π/240. In the nonlinear case, for ALG2 we set
stopping tolerance ϵ = 10−5 (1.31) and r = 102. In Figure 1.6, we plot the L2 norm of
the difference between the exact solution xex and the numerical solution xh at t = 1
against time step (∆t = 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625) for the linear and non-
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Fig. 1.6: Convergence rate in time for the generalized Crank–Nicolson scheme in the linear (left) and
nonlinear/inextensible (right) case.

linear cases. The rate predicted by the theory (second order) is achieved in the linear
case. In the nonlinear case, the order of convergence is even larger than 2 provided
that ∆t is less than a critical value for which the error reaches the stopping tolerance
ϵ. If ∆t is greater than that critical value, the error remains unchanged or even slightly
increases.

To illustrate that the error depends on the choice of ϵ, in Figure 1.5, we compare
analytical solution (1.39) with the numerical solution at t = 0, 0.5, 1 s and for two
values of the stopping tolerance: ϵ = 10−1 (top) and ϵ = 10−5 (bottom), every other
discretization parameter being the same. For ϵ = 10−1 the difference between analyt-
ical and numerical solution is clearly visible, while for ϵ = 10−5 the two solutions are
almost superimposed.

Finally, in order to evaluate the dependence of the error on ϵ, we report in Fig-
ure 1.7 the convergence rates in time in the nonlinear case for different values of the
stopping tolerance ϵ = 10−2, 10−3, 10−4, 10−5, 10−6, 10−7. The values for ∆t and ∆s
are the same as those used for the results in Figure 1.6. We see that at the critical value
of ∆t the curves reach a plateau for all the values of ϵ, indicating that for a given value
of ϵ it does not make sense to choose a time-step size that is too small. Our computa-
tions seem to indicate that ∆t should be larger than√ϵ.

In the following sections, for the Augmented Lagrangian method in Section 1.5.2,
we take ϵ = 10−4 in (1.31), and at the beginning of the simulation we set r0 = 10−4;
see Remark 1.1.


