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Preface

Theoretical physics, as a science, began with Newton. His ideas were based on par-
ticles – corpuscles,1 and the first realistic model of interactions was the Newtonian
theory of gravity, in which the planets and the Sun were attracted to each other by
instantaneous forces at a distance.

Newton himself was very unhappy about this model. He wrote [61]

That Gravity should be innate, inherent and essential to Matter, so that one body may act upon
another at a distance thro’ a Vacuum, without the Mediation of any thing else, by and through
which their Action and Forcemay be conveyed from one to another, is tome so great an Absurdity
that I believe no Man who has in philosophical Matters a competent Faculty of thinking can ever
fall into it.

Indeed, over time, the idea of Newtonian corpuscles began to lose its appeal. The first
blow was caused by the wave theory of light by Young and Fresnel. The second blow
was Maxwell’s theory of electromagnetic phenomena. The culmination of these mis-
fortunes was Einstein’s theory of relativity. By 1905, a harmonious system of views
had developed, which denied the Newtonian action-at-a-distance. The theory of rel-
ativity forbade the superluminal transmission of any signals and interactions. The
Maxwell–Liénard–Wiechert theory explained that the carrier of the retarded interac-
tion between charges is the electromagnetic field propagating at the speed of light.
Energy and momentum flowing between charges are temporarily stored in the field,
so that conservation laws are not violated even in the case of such a retarded trans-
mission of forces.

For a short period of time this field picture was shaken by the arrival of quan-
tum mechanics. In particular, to explain the photoelectric effect, Einstein revived the
Newtonian corpuscles of light – photons [4]. It turned out that these corpuscles (their
wave functions) can also interfere, and to explain the structure of the atom itwas suffi-
cient to solve the Schrödinger equation for particles interacting via the instantaneous
Coulomb potential.

However, early quantum theory was soon criticized for its alleged incompati-
bility with the principle of relativity and replaced with quantum field theory (QFT).
The fantastic agreement of this theory with experiments, it would seem, has forever
discouraged the return to the corpuscular past. It is enough to go over titles of some
articles in respected journals,2 to understand that in today’s physics particles are in
deep disgrace.

1 Even light was understood by Newton as a stream of a huge number of microscopic particles.
2 “No place for particles in relativistic quantum theories?” [35], “There are no particles, there are only
fields” [37], “Why there cannot be a relativistic quantummechanics of (localizable) particles” [53].
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In its mature form, the idea of quantum field theory is that quantum fields are the basic ingre-
dients of the universe and particles are just bundles of energy and momentum of the fields –
S. Weinberg [96].

However, the “particles vs. fields” argument is still far from a happy resolution. Mod-
ern field theories face two difficult problems.

The first problem is ultraviolet divergences. All realistic quantum field theories
suffer fromdivergent loop integrals occurring in calculations of scattering amplitudes.
These divergent theories are “renormalized” by adding infinite counterterms to their
Hamiltonians. In fact, the renormalization sweeps the problem of ultraviolet diver-
gences “under the carpet,” because it results in a poorly defined formally infinite en-
ergy operator, which is not suitable for describing the time-dependent dynamics of
states. On closer examination, it turns out that the problem of divergences is related
to the self-interaction of particles in QFT. In this theory, the electron interacts with it-
self, which is often depicted by diagrams inwhich an electron absorbs its own emitted
virtual photons.

In the third volume of our book, we shall see that the problems of self-interaction
and renormalization can be solved by introducing the so-called dressed interaction
theory. This will bring us back to Newton’s corpuscles, interacting with each other
through instantaneous potentials. But how can one reconcile this action-at-a-distance
with the theory of relativity, which prohibits superluminal propagation of interac-
tions?

To answer this question, we turn to the second important problem of theoretical
physics. It is sometimes formulated as the problem of quantum gravity, although, in
fact, quantum mechanics is poorly compatible even with Einstein’s special relativity
theory. In special relativity, positions and time are treated on an equal basis as co-
ordinates in the four-dimensional Minkowski space–time. However, in quantum me-
chanics these two quantities play quite different roles. The spatial coordinate (like any
other physical observable) is described by anHermitian operator, whereas time is sim-
ply a numerical parameter that cannot be converted into an operator without contra-
dictions.

Our main goal is to understand the essence of contradictions between quantum
mechanics and the special theory of relativity. For this, we will have to return to the
very foundations of theoretical physics. We begin with indisputable postulates of
quantum mechanics and the principle of relativity. Strict adherence to these postu-
lates will lead us to the idea of unitary representations of the Poincaré group in a
Hilbert space of states as the basis of the entire mathematical apparatus of our theory.
Although applications of this approach to interacting systems are well known since
the fundamental work of Dirac [23], it was not recognized that Dirac’s interacting gen-
erators of boosts3 imply that Lorentz transformations cannot be exact and universal,

3 The generators of boosts are interaction-dependent in the instant form of Dirac dynamics. In Vol-
ume 3, we will argue that only this form should be used to describe nature.
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as required by special relativity. Boost transformations of observables must depend
on the particular physical system and forces acting therein. This important observa-
tion will enable us to lift the prohibition on superluminal propagation of interactions
and formulate a theory of particles acting on each other by means of instantaneous
potentials. At the same time, we will be able to avoid conflicts with the unshakable
principles of relativity and causality.

In the third volume,wewill analyze in detail the recent experiment [21] conducted
by the team of professor Pizzella at the Frascati Research Center.With this experiment
they discovered the superluminal propagation of Coulomb forces, which, in our opin-
ion, is the most convincing validation of the theory presented in this book. In some
sense, the ultimate goal of the entire book is to demonstrate that Pizzella’s unusual
results are naturally expected in a rigorous approach to quantum relativistic physics.

In this book, we will focus on systems of charged particles and photons as well as
on electromagnetic forces acting in such systems. Traditionally, these phenomena are
described by quantum electrodynamics (QED). Our approach will lead us to another
theory, which we call relativistic quantum dynamics, or RQD. This theory is exactly
equivalent to the renormalized QED as long as one is interested in properties related
to the S-matrix (scattering cross sections, lifetimes, energies of bound states, etc.).
However, unlike QED, our approach can also describe the time evolution and boost
transformations in interacting systems.

This book is divided into three volumes.4 This is Volume 1, where we will try to
avoid contradictory issues and will, basically, adhere to the generally accepted views
on relativistic quantum theory. We will define our basic assumptions, notation, and
terminology and also try to trace a logical path starting from the postulates of relativ-
ity and probability and leading to relativistic quantum theory of interacting systems.
In this volume, we confine ourselves to interactions that do not change the number
of particles in the system, which is an acceptable approximation for low-energy pro-
cesses within the framework of elementary quantum mechanics.

Volume 1 consists of seven chapters.
In Chapter 1,Quantum logic, we derive the basic laws of quantum theory from sim-

ple axioms of measurements and probability (= quantum logic). We turn to the old,
but not yet very popular idea that in order to understand quantum laws it is necessary
to replace some of the postulates of classical logic. Despite the apparent radicalism of
this approach, it leads to thewell-knownquantum formalismwithwave functions and
Hermitian operators in theHilbert space. For us it will be important to emphasize that,
being rooted in logic, the foundations of quantum mechanics are solid and unshak-

4 This work is based partially on our earlier publications [82, 83], which were rewritten, updated and
improved in significant ways.
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able. Therefore, we do not expect anymodification of the laws of quantummechanics5

in the foreseeable future.
In Chapter 2, Poincaré group, we introduce the Poincaré group as a set of trans-

formations connecting different (but equivalent) inertial reference frames. This chap-
ter is central to understanding the principle of relativity. In our approach, the group
properties of inertial transformations are at the core of the relativistic description of
nature.

Chapter 3, Quantum mechanics and relativity, will combine the two theories pre-
sented above and establish unitary representations of the Poincaré group as the most
general and complete mathematical description of any isolated physical system. This
is the most adequate language for a relativistic quantum description of nature. One
can even say that the rest of this book is simply an exercise in constructing and ana-
lyzing various unitary representations of the Poincaré group.

In Chapter 4,Observables, we examine the correspondence between known phys-
ical quantities (such as mass, energy, momentum, spin, position, etc.) and specific
Hermitian operators in the Hilbert space of states. The most important point is the
connection between physical observables and generators of the Poincaré group repre-
sentation. From this connection we derive the commutation relations of observables
and how these operators change with respect to inertial transformations of the ob-
servers.

Chapter 5, Elementary particles, is devoted to the Wigner theory of unitary irre-
ducible representations of the Poincaré group. This theory fully describes the basic
properties and dynamics of isolated stable elementary particles. For us, the special
importance of this chapter is that Wigner’s elementary particles are the most funda-
mental ingredients in our model of the world. As we explain in Volume 3, quantum
fields are just formal technical constructions, and real physical systems are composed
of elementary particles that interact directly with each other.

In Chapter 6, Interaction, we discuss relativistically invariant interactions in
many-particle systems. Here we emphasize the most important conclusion of Dirac
[23], that relativistically invariant interactions require modification not only of the
Hamiltonian (as in the familiar non-relativistic theory) but also of other generators of
the Poincaré group. We will base our theories on the Dirac instant form of dynamics,
where interaction is present in both the Hamiltonian and the boost generators. In
Volume 3 this will lead us to the conclusion that Lorentz transformations of special
relativity are, strictly speaking, inapplicable to interacting systems.

Chapter 7, Scattering, is devoted to the quantum-mechanical description of par-
ticle collisions. Scattering is important first because it is the most informative experi-
mentalmethod for studying subatomic phenomenaand secondbecause the scattering

5 Suchmodifications are sometimes contemplated in attempts to develop a quantum theory of gravity.
See, for example, [47] and references therein.
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matrix is the main target of QFT (see Volume 2). In this book, we will build our theory
(RQD) by modifying QFT, so for us the scattering matrix is of central importance. We
will pay special attention to the notion of scattering equivalence, when two different
Hamiltonians lead to the same S-operator. This property will play an important role in
the derivation of the “dressed” Hamiltonian in Volume 3.

Some useful mathematical facts and technical calculations are collected in Ap-
pendix.

In Volume 2 [84], we will formulate the foundations of the most successful quan-
tum field theory – QED, explain the causes of ultraviolet divergences and demonstrate
the renormalizationof the S-matrix by introducing counterterms into theHamiltonian.
There is no new physics introduced in Volumes 1 and 2. They present textbook quan-
tum mechanics and QFT, perhaps sometimes viewed from unusual angles, but still
rather orthodox. The main goal of the first two volumes is to prepare the ground for
the formulation of our unconventional approach, based on the notion of physical par-
ticles and “dynamical” relativity, in Volume 3 [85] of this book.

We use the Heaviside–Lorentz system of units,6 in which the potential energy of
the electron–proton interaction has the form V = −e2/(4πr), and the proton charge is
e = 2√π×4.803×10−10 statcoulomb. The speed of light is c = 2.998×1010 cm/s, and the
Planck constant is ℏ = 1.055 × 10−27 erg⋅s = 6.582 ⋅ 10−16 eV⋅s, so that the fine structure
constant is equal to α ≡ e2/(4πℏc) ≈ 1/137.

I would like to express my sincere gratitude to Peter Enders, Rainer Grobe, Theo
Ruijgrok,Alexander Shebeko andBoris Zapol,who read thedraft of this book andgave
me many priceless comments and much advice, which I tried to take into account in
the final manuscript. I also thank Harvey R. Brown, William Klink, Vladimir Korda,
Chris Oakley, Federico Piazza, Guido Pizzella, Wayne Polyzou, Mikhail Shirokov and
Charles Su for enlightening discussions at various stages of this work. I enjoyed on-
line communications with Juan Bernard Chaverondier, Wolfgang Engelhardt, Juan R.
González-Álvarez, Bill Hobba, Igor Khavkine, Mike Mowbray, Arnold Neumaier and
Dan Solomon. All these contacts and exchanges of ideas have formedmy understand-
ing of relativistic quantum physics and, ultimately, led to the writing of this book.
However, this does not at all mean that the mentioned researchers share or approve
my views. For all the misconceptions and errors contained in this book, the author
bears full responsibility.

6 See Appendix in [39].
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As a result, it was almost three o’clock in the morning before the final result of my computations lay
beforeme. The energy principle held for all the terms, and I could no longer doubt themathematical
consistency and coherence of the kind of quantum mechanics to which my calculations pointed. At
first, I was deeply alarmed. I had the feeling that, through the surface of atomic phenomena, I was
looking at a strangely beautiful interior, and felt almost giddy at the thought that I now had to probe
this wealth of mathematical structures nature had so generously spread out before me.
Werner Heisenberg

In this Introduction, wewill try to formulatemore precisely what is the goal of theoret-
ical physics, what are the fundamental concepts of this science and the relationship
between them. Some of our statements may look self-evident or even trivial. However,
it seems important to us to spell out these definitions and clarify our positions here
and now, in order to avoid misunderstandings in further parts of the book.

Figure 1: Schematic representation of the preparation/measurement act.

We get all information about the physical world through results ofmeasurements, and
the fundamental goal of theoretical physics is to describe and predict these results.
Any act of measurement requires the presence of at least three objects (see Figure 1):
the preparation device, the physical system and the measuring apparatus. The prepa-
ration device arranges the physical system in a specific state. This state has certain
attributes or properties. If the state’s attribute can be associated with a numerical
value, it will be called a physical quantity or observable F. Observables are measured
by bringing the system into contact with the measuring apparatus. The result of the
measurement is a numerical value of the observable, i. e., a real number f . We assume
that each measurement of the observable F always produces some result f , i. e., the
measuring apparatus never misfires.

This is just a short list of important concepts. Let us now dwell on each of them in
more detail.
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