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Notation

ℵ0 Cardinality of the set of integers
c,C Generic constants which differ from line to line
a ≲ b a ≤ cb
Bc Complement of a set B
𝒪 A domain – an open connected subset of ℝN

|𝒪| Lebesgue measure of the domain 𝒪
𝔏 1-dimensional Lebesgue measure
𝔏N N-dimensional Lebesgue measure
𝔅 Borel σ-algebra
𝕋N N-dimensional flat torus ([−1, 1]|{−1,1})N

𝕋N+1L Space-time (N + 1)-dimensional torus ([−L,L]|{−L,L}) ×𝕋N

ℝn×N Space of n ×N matrices over ℝ
𝔸 ∶𝔹 Scalar product ∑ij AijBij between two matrices 𝔸, 𝔹
𝕀 Identity matrix (δij)Ni,j=1 in ℝN×N

Bb Bounded Borel measurable functions
C Continuous functions
Cc Continuous functions with compact support
C0 Continuous functions vanishing at infinity
Cb Bounded continuous functions
Cα α-Hölder continuous functions
Ck k-times continuously differentiable functions
Ckc Ck -functions with compact support
Ck,α k-times continuously differentiable functions with α-Hölder con-

tinuous derivatives
C∞ ∞-times continuously differentiable functions
C∞c /𝒟 C∞-functions with compact support
𝒟′ Dual of C∞c
C∞div C∞-functions with vanishing divergence
𝒟′div Dual of C∞div
Lp Lebesgue space of p-integrable functions
Lploc Lebesgue space of locally p-integrable functions
Lpdiv Lp-functions with vanishing divergence
p′ Dual exponent of p: p′ = p/ (p − 1)
Wk,p Sobolev functions with differentiability k and integrability p
Wk,p

div Wk,p-functions with vanishing divergence
W−k,p Dual space ofWk,p′

(em)m∈ℤN Trigonometric polynomials on 𝕋N

ℳb Bounded signed measures
ℳ+b Non-negative bounded measures
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VIII | Notation

ℳ+R Non-negative Radon measures
Δ−1 Solution operator to the Laplace equation
𝒫Hv Helmholtz projection v − ∇Δ−1 divv of a function v ∶ ℝN → ℝN

(𝕋N →𝕋N )
𝒬v Gradient part ∇Δ−1 divv of a function v ∶ℝN →ℝN (𝕋N →𝕋N )
X∗ Dual space of X
‖ ⋅ ‖X Norm on X
⟨⋅, ⋅⟩X Inner product on X
⟨⋅, ⋅⟩X∗,X Duality pairing between X∗ and X
⇀ Weak convergence
∗
⇀ Weak-∗ convergence
d
→ Convergence in law
Lp(0,T ;X) Bochner space of X-valued p-integrable functions
Lploc(0,∞;X) Bochner space of X-valued locally p-integrable functions
C([0,T];X) Continuous functions with values in X
Cloc([0,∞);X) Locally continuous functions with values in X
Cα([0,T];X) α-Hölder continuous functions with values in X
Cw([0,T];X) Weakly continuous functions with values in X
Wk,p(0,T ;X) k-times weakly differentiable functions with values in X and in-

tegrability p
(Ω,𝔉,ℙ) Probability space with sample space Ω, σ-algebra 𝔉, and proba-

bility measure ℙ
(𝔉t)t≥0 Filtration
(σt[U])t≥0 Canonical filtration/history of a stochastic process/random dis-

tribution U
(Ω,𝔉, (𝔉t)t≥0,ℙ) Filtered probability space with filtration (𝔉t)t≥0
([0, 1],𝔅([0, 1]),𝔏) Standard probability space
𝔼 Expectation
𝔼[⋅|𝔉] Conditional expectation given 𝔉
ℒ[⋅] Law of a random variable
ℒX [⋅] Law of a random variable on the space X
d∼ Equality in law
Lpprog(Ω × [0,T];X) Lp-integrable progressively measurable X-valued random vari-

able
L(𝔘,H) Continuous linear operators from 𝔘→H
L2(𝔘,H) Hilbert–Schmidt operators from 𝔘→H
(ek)k∈ℕ Complete orthonormal system in 𝔘
W = ∑∞k=1 ekWk Cylindrical Wiener process in 𝔘
⟨⟨U⟩⟩ Quadratic variation of the stochastic process U
⟨⟨U,V⟩⟩ Cross variation of stochastic processes U and V
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Part I: Preliminary results





1 Elements of functional analysis

We will exclusively use functions v = v(t,x) with the time t ∈ I and the space variable
x ∈𝒪 ⊂ℝN , where I is an interval and 𝒪 denotes a domain – an open connected sub-
set of ℝN . Sometimes, it will be convenient to separate the time and space variables
and consider v = v(t, ⋅) as a mapping ranging in a suitable topological space X of func-
tions depending on the x-variable. To avoid problems related to the presence of a kine-
matic boundary in the equation of fluidmechanics, wemostly focus on functions that
are space periodic, meaning the spatial domain 𝒪 is identified with the flat torus 𝕋N ,
given by

𝕋N = ([−1, 1]|{−1,1})
N .

The length of period 2 is taken only for the sake of convenience. All results stated in
this book have been obtained for a general torus given by

ΠNi=1[ai ,bi]|{ai ,bi}.

If not otherwise stated, all functions (or vector-valued functions) are real-valued.

1.1 Continuous functions, measures

For a topological space X, the symbol C(X) denotes the space of continuous functions
on X, Cc(X) is the space of all continuous functions compactly supported in X, and
Cb(X) is the space of all bounded continuous functions on X.

If K is compact, C(K) is a Banach space with the norm

‖v‖C(K) = sup
y∈K
|v(y)|, v ∈ C(K).

For X ⊂ℝN or X ⊂ℝwe simply write ‖ ⋅ ‖Cx and ‖ ⋅ ‖Ct . Similarly, for functions v ∶ K→ Y
ranging in a metric space Y with metric dY , we define a metric on C(K;Y) as

dC(K;Y)[v,w] = sup
y∈K

dY [v(y),w(y)], v,w ∈ C(K;Y).

If there is no danger of confusion, we write C(K) instead of C(K;ℝM ).
The following result is known as the Arzelà–Ascoli theorem; see Kelley [Kel55,

Chapter 7, Theorem 17].

Theorem 1.1.1. Let K ⊂ℝN be compact and Y a compact topological metric space en-
dowed with a metric dY . Let (vn)n∈ℕ be a sequence of functions in C(K;Y) that is equi-

https://doi.org/10.1515/9783110492552-001



4 | 1 Elements of functional analysis

continuous, meaning that, for any ε > 0, there is a δ > 0 such that

dY [vn(y), vn(z)] ≤ ε provided |y − z| < δ independently of n ∈ℕ.

Then (vn)n∈ℕ is precompact in C(K;Y), that is, there exist a subsequence (not relabeled)
and a function v ∈ C(K;Y) such that

sup
y∈K

dY [vn(y), v(y)] → 0 as n→∞.

Next we recall the Stone–Weierstrass theorem; see Cullen [Cul68].

Theorem 1.1.2. Suppose K is a compact Hausdorff space and 𝒜 is a subalgebra of
C(K;ℝ) which contains a non-zero constant function. Then 𝒜 is dense in C(K;ℝ) if and
only if it separates points.

Remark 1.1.3. A set of continuous functions 𝒜 on K separates points if, for x,y ∈ K,
x ≠ y, there is f ∈𝒜 such that f (x) ≠ f (y). Note that a topological space is Hausdorff
if, for any two points x ≠ y, there are open sets Ux , Uy , x ∈ Ux , y ∈ Uy , Ux ∩ Uy = ∅. In
particular, any topological space in which C(X;ℝ) separates points is Hausdorff and
the “if” part of Theorem 1.1.2 holds without the explicit requirement K to be Haus-
dorff.

A function vanishes at infinity if, for any ε > 0, there is a compact Kε ⊂ X such that
|f (x)| < ε for x ∉ Kε . The space of continuous functions vanishing at infinity is denoted
as C0(X;ℝ). There is an extension of the Stone–Weierstrass theorem to locally compact
spaces; see de Branges [dB59].

Theorem 1.1.4. Suppose K is a locally compact topological space and 𝒜 is a subalge-
bra of C0(K;ℝ) that separates points such that, for any x ∈ X, there is f ∈𝒜 such that
f (x) ≠ 0. Then 𝒜 is dense in C0(X;ℝ).

Let ℳ+(X) denote the set of all non-negative measures on X, meaning all non-
negative σ-additive set-functions defined on a σ-field of measurable subsets of X. The
following is the Riesz representation theorem; see Rudin [Rud87, Chapter 2, Theo-
rem 2.14].

Theorem 1.1.5. Let X be a locally compact Hausdorff metric space. Let f be a non-
negative linear functional defined on the space Cc(X).

Then there exists a σ-algebra of measurable sets containing all Borel sets and a
unique non-negative measure μf ∈ℳ+(X) such that

⟨f ,g⟩ = ∫
X
g dμf for any g ∈ Cc(X).
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Moreover, the measure μf enjoys the following properties:
– We have μf [K] <∞ for any compact K ⊂ X.
– We have

μf [E] = sup{μf [K] | K ⊂ E, K compact}

for any open set E ⊂ X.
– We have

μf [V] = inf{μ(E) | V ⊂ E, E open}

for any Borel set V.
– If E is μf -measurable, μf (E) = 0, and A ⊂ E, then A is μf -measurable.

1.2 Topological spaces

The topological spaces we deal with, besides admitting a σ-field of Borel sets, will
satisfy certain separation properties. Possibly the weakest assumption in this sense
is that a topological space X is completely regular (Tikhonov space), X is Hausdorff,
and C(X) separates points from closed sets: for any x ∈ X and a closed set F ⊂ X with
x ∉ F, there is f ∈ C(X) such that f (x) = 1, f |F = 0. The topology on a completely regular
space is the coarsest topology making all functions from C(X) or Cb(X) continuous.
Every subspace of a completely regular space is completely regular. In particular, if Y
is completely regular and X ↪ Y is a continuous injection, then X is completely reg-
ular. Any metric space is completely regular. In this book we deal almost exclusively
with topological vector spaces, where the algebraic operations of addition and multi-
plication by a scalar are continuous. In particular, any Hausdorff topological vector
space is Tikhonov. Topological vector spaces admit a uniform structure. Specifically,
anyneighborhood𝒰(x) of a point x canbewritten as x+𝒰, where𝒰 is a neighborhood
of zero. The uniform structure is necessary for a proper definition of some stochastic
concepts like convergence in probability.

Most statements in the theory of stochastic PDEs use Polish spaces.

Definition 1.2.1. A topological space is Polish if the topology on X is separable and
completely metrizable.

Later (see Definition 2.1.3) we introduce a larger class of sub-Polish spaces. These
are, roughly speaking, topological spaces that admit a continuous injection into a Pol-
ish space.

The symbol ℳ+R(X) denotes the set of non-negative Radonmeasures on X, mean-
ing non-negative Borel measures μ such that

μ[E] = sup{μ[K] | K ⊂ E,K compact} for any open set E ⊂ X.
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Proposition 1.2.2. If X is Polish, then every finite Borel measure is a Radon measure.

For the proof see, e.g., Bogachev [Bog07].

1.3 Differentiable functions, distributions

The symbol

𝜕yig(y) ∶=
𝜕g
𝜕yi
, y = [y1,… ,yN ]

stands for the partial derivative of a function g defined on an open neighborhood of a
point y ∈ℝN .

The space of functions having k continuous derivatives are denoted Ck . If K is a
compact set, then Ck(K) is the space of functions from Ck(ℝN ) restricted to K. Ck,ν(𝒪),
ν ∈ (0, 1), is the subspace of Ck(𝒪)-functions having their kth derivatives ν-Hölder con-
tinuous in 𝒪 ⊂ ℝN . Ck,1(𝒪) is a subspace of Ck(𝒪) of functions whose kth derivatives
are Lipschitz on 𝒪. For a bounded domain 𝒪, the spaces Ck(𝒪) and Ck,ν(𝒪), ν ∈ (0, 1],
are Banach spaces with norms

‖u‖Ckx =max
|α|≤k

sup
x∈𝒪
|𝜕αu(x)|

and

‖u‖Ck,νx = ‖u‖Ckx +max
|α|=k

sup
(x,y)∈𝒪2,x≠y

|𝜕αu(x) − 𝜕αu(y)|
|x − y|ν

,

where 𝜕αu stands for the partial derivative 𝜕α1x1 …𝜕
αNxN u of order |α| = ∑

N
i=1 αi . The spaces

Ck,ν(𝒪;ℝM ) are defined in a similar way. However, for notational simplicity the target
space ℝM will not be explicitly mentioned. Finally, we set C∞ = ⋂∞k=0 C

k .
The symbol Ckc (𝒪), k ∈ {0, 1,… ,∞}, denotes the vector space of functions belong-

ing to Ck(𝒪) and having compact support in 𝒪. If 𝒪 ⊂ ℝN is an open set, the symbol
𝒟(𝒪) will be used alternatively for the space C∞c (𝒪) endowed with the topology in-
duced by the convergence

φn→ φ in 𝒟(𝒪),

if there is K ⊂𝒪, a compact such that supp[φn] ⊂ K for any k = 0, 1,… and

φn→ φ in Ck(K). (1.1)

The dual space 𝒟′(𝒪) is the space of distributions on 𝒪. Similarly, we define
𝒟′(𝒪;ℝM ). Continuity of a linear form belonging to 𝒟′(𝒪) is understood with re-
spect to the convergence introduced in (1.1). We also consider the space of periodic
distributions 𝒟′(𝕋N ) defined on the flat torus 𝕋N .
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A differential operator 𝜕α of order |α| can be identified with a distribution

⟨𝜕αv,φ⟩ = (−1)|α|⟨v, 𝜕αφ⟩ = (−1)|α| ∫
𝒪
v𝜕αφdy, φ ∈𝒟(𝒪),

where themost right identity makes sense whenever v is a locally integrable function.

1.4 Integrable functions

Let 𝒪 be a measurable subset of ℝN and X a separable Banach space with norm ‖ ⋅ ‖X .
The Lebesgue space Lp(𝒪;X) is the space of Bochner measurable functions v ranging
in the Banach space X such that the norm

‖v‖pLpxX = ∫𝒪
‖v(y)‖pX dy is finite, 1 ≤ p <∞.

Similarly, v ∈ L∞(𝒪;X) if v is Bochner measurable and

‖v‖L∞x X = ess sup
y∈𝒪
‖v(y)‖X <∞.

The symbol Lploc(𝒪;X) denotes the vector space of locally Lp-integrable functions,
meaning

v ∈ Lploc(𝒪;X) if v ∈ Lp(K;X) for any compact set K in 𝒪.

We will omit the target space and write Lp(𝒪) instead of Lp(𝒪;X) whenever no confu-
sion arises.

The dual spaces to the Lp spaces are characterized in the following theorem; see
Gajewski et al. [GGZ75, Chapter IV, Theorem 1.14, Remark 1.9], Edwards [Edw94], and
Pedregal [Ped97, Chapter 6, Theorem 6.14].

Theorem 1.4.1. (1) Let 𝒪 ⊂ ℝN be a measurable set, X a Banach space that is reflex-
ive and separable, and 1 ≤ p <∞. Then any continuous linear form ξ ∈ [Lp(𝒪;X)]∗

admits a unique representation wξ ∈ Lp
′
(𝒪;X∗),

⟨ξ , v⟩Lp′ (𝒪;X∗);Lp(𝒪;X) = ∫
𝒪
⟨wξ (y), v(y)⟩X∗;X dy for all v ∈ Lp(𝒪;X),

where

1
p
+ 1
p′
= 1.

Moreover, the norm on the dual space is given by

‖ξ ‖[LpxX]∗ = ‖wξ ‖Lp′x X∗ .
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Accordingly, the spaces Lp(𝒪;X) are reflexive for 1 < p <∞ as soon as X is reflexive
and separable. Identifying ξ with wξ , we obtain the Riesz representation theorem

[Lp(𝒪;X)]∗ = Lp′(𝒪;X∗), ‖ξ ‖[LpxX]∗ = ‖ξ ‖Lp′x X∗ , 1 ≤ p <∞.

(2) If the Banach space X is merely separable, we have

[Lp(𝒪;X)]∗ = Lp
′

w∗(𝒪;X∗) for 1 ≤ p <∞,

where

Lp
′

w∗(𝒪;X∗) ∶= {ξ ∶𝒪→ X∗ | y ∈𝒪↦⟨ξ (y), v⟩X∗;X measurable ∀v ∈ X,

y↦ ‖ξ (y)‖X∗ ∈ L
p′ (𝒪)}.

For Lp-spaces we also report Hölder’s inequality

‖uv‖Lrx ≤ ‖u‖Lpx ‖v‖Lqx ,
1
r
= 1
p
+ 1
q
,

for any u ∈ Lp(𝒪), v ∈ Lq(𝒪), 𝒪 ⊂ℝN , and the interpolation inequality

‖v‖Lrx ≤ ‖v‖
λ
Lpx ‖v‖
(1−λ)
Lqx ,

1
r
= λ
p
+ 1 − λ

q
, p < r < q, λ ∈ (0, 1),

for any v ∈ Lp ∩ Lq(𝒪), 𝒪 ⊂ℝN ; see Adams [Ada75, Chapter 2].
Finally, we recall the celebrated and frequently used Gronwall’s lemma; see Car-

roll [Car13].

Lemma 1.4.2. Let a ∈ L1(0,T), a ≥ 0, β ∈ L1(0,T), b0 ∈ℝ, and

b(τ) = b0 + ∫
τ

0
β(t)dt

be given. Let r ∈ L∞(0,T) satisfy

r(τ) ≤ b(τ) + ∫
τ

0
a(t)r(t)dt for a.a. τ ∈ [0,T].

Then

r(τ) ≤ b0 exp(∫
τ

0
a(t)dt) +∫

τ

0
β(t)exp(∫

τ

t
a(s)ds)dt

for a.a. τ ∈ [0,T].
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1.5 Compactness and convergence of integrable functions

Let X be a Banach space, BX the closed unit ball in X, and BX∗ the closed unit ball in
the dual space X∗. Then we have:
(1) BX is weakly compact only if X is reflexive. This is Kakutani’s theorem; see Theo-

rem III.6 in Brezis [Bre83].
(2) BX∗ is weakly-∗-compact. This is the Banach–Alaoglu theorem; see Theorem III.15

in Brezis [Bre83].
(3) If X is separable, then BX∗ is sequentially weakly-∗-compact; see Theorem III.25

in Brezis [Bre83].
(4) A non-empty subset of a Banach space X is weakly relatively compact only if

it is sequentially weakly relatively compact. This is the Eberlein–Shmuliyan–
Grothendieck theorem; see Paragraph 24 in Kothe [KK83].

In view of the above results we get:
– Any bounded sequence in Lp(𝒪), where 1 < p < ∞ and 𝒪 ⊂ ℝN is a domain, is

relatively weakly compact.
– Anybounded sequence in L∞(𝒪),where𝒪 ⊂ℝN is adomain, is relativelyweakly-∗

compact.

The situation for L1, which is neither reflexive nor dual of a Banach space, is clarified
in the following theorem; see Ekeland–Temam [ET99, Chapter 8, Theorem 1.3] and
Pedregal [Ped97, Lemma 6.4].

Theorem 1.5.1. Let 𝒱 ⊂ L1(𝒪), where 𝒪 ⊂ℝN is a bounded measurable set.
Then the following statements are equivalent:

– any sequence (vn)n∈ℕ ⊂𝒱 contains a subsequence weakly converging in L1(𝒪);
– for any ε > 0, there exists k > 0 such that

∫
{|v|≥k}
|v(y)|dy ≤ ε for all v ∈𝒱;

– for any ε > 0, there exists δ > 0 such that, for all v ∈𝒱,

∫
M
|v(y)|dy < ε,

for any measurable set M ⊂𝒪, such that

|M| < δ;

– there exists a non-negative function Φ ∈ C([0,∞))

lim
z→∞

Φ(z)
z
=∞,

such that

sup
v∈𝒱
∫

𝒪
Φ(|v(y)|)dy ≤ c.
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1.6 Sobolev spaces

There is a vast amount of literature devoted to the study of Sobolev spaces. We restrict
ourselves to listing some standard results. The reader may consult the monographs
by Adams [Ada75], Kufner et al. [KJF77], Maz’ya [Maz13], or Ziemer [Zie89] for more
information.

The Sobolev spaces Wk,p(𝒪), 1 ≤ p ≤ ∞, with k being a positive integer, are the
spaces of functions having all distributional derivatives up to order k in Lp(𝒪). The
norm inWk,p(𝒪) is defined as

‖v‖Wk,p
x
= {
(∑|α|≤k ‖𝜕

αv‖pLpx )
1/p if 1 ≤ p <∞,

max|α|≤k{‖𝜕αv‖L∞x } if p =∞,

where the symbol 𝜕α stands for any partial derivative of order |α|.
If 1 ≤ p <∞, thenWk,p(𝒪) is separable and the space Ck(𝒪) is its dense subspace

(if 𝒪 has a Lipschitz boundary).
The spaceW 1,∞(𝒪), where 𝒪 is a bounded Lipschitz domain, is isometrically iso-

morphic to the space C0,1(𝒪) of Lipschitz functions on 𝒪.
The symbol Wk,p

0 (𝒪) denotes the completion of C∞c (𝒪) with respect to the norm
‖ ⋅ ‖Wk,p

x
. In what follows, we identifyW0,p(𝒪) =W0,p

0 (𝒪) with Lp(𝒪).
The differentiability of a composition of a Sobolev function with a Lipschitz func-

tion is clarified in the following result; see Ziemer [Zie89, Section 2.1].

Lemma 1.6.1. If f ∶ℝ→ℝ is a Lipschitz function and f ∘v ∈ Lp(𝒪) for some v ∈W 1,p(𝒪),
then f ∘ v ∈W 1,p(𝒪) and

𝜕xj [f ∘ v](x) = f
′(v(x))𝜕xjv(x) for a.a. x ∈𝒪.

Duals to Sobolev spaces are characterized in the following theorem; see Adams
[Ada75, Theorem 3.8] and Maz’ya [Maz13, Section 1.1.14].

Theorem 1.6.2. Let 𝒪 ⊂ ℝN be a domain and let 1 ≤ p < ∞. Then the dual space
[Wk,p

0 (𝒪)]∗ is a proper subspace of the space of distributions 𝒟′(𝒪). Moreover, any
linear form f ∈ [Wk,p

0 (𝒪)]∗ admits a representation

⟨f , v⟩[Wk,p
0 ]∗;W

k,p
0
= ∑
|α|≤k
∫

𝒪
(−1)|α|wα𝜕αvdx,

where wα ∈ Lp
′
(𝒪), 1

p
+ 1
p′
= 1. (1.2)

The norm of f in the dual space is given by

‖f ‖[Wk,p
0 (Q)]∗
=
{
{
{

inf{(∑|α|≤k ‖wα‖
p′

Lp
′
x
)1/p
′
∣wα satisfy (1.2)} if 1 < p <∞,

inf{max|α|≤k{‖wα‖L∞x } ∣wα satisfy (1.2)} if p = 1.

The infimum is attained in both cases.
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The dual space of the Sobolev space Wk,p
0 (𝒪) is denoted as W−k,p′ (𝒪). The dual

space of the Sobolev spaceWk,p(𝒪) admits formally the same representation equation
(1.2). However, it cannot be identified as a space of distributions on 𝒪.

The important result is the Rellich–Kondrachov embedding theorem for Sobolev
spaces; see Ziemer [Zie89, Theorem 2.5.1, Remark 2.5.2].

Theorem 1.6.3. Let 𝒪 ⊂ℝN be a bounded Lipschitz domain.
(i) Then, if kp < N and p ≥ 1, the space Wk,p(𝒪) is continuously embedded in Lq(𝒪) for

any

1 ≤ q ≤ p∗ = Np
N − kp
.

Moreover, the embedding is compact if k > 0 and q < p∗ .
(ii) If kp = N, the space Wk,p(𝒪) is compactly embedded in Lq(𝒪) for any q ∈ [1,∞).
(iii) If kp > N, then Wk,p(𝒪) is continuously embedded in Ck−[N/p]−1,ν(𝒪), where [⋅] de-

notes the integer part and

ν =
{
{
{

[Np ] + 1 −
N
p if N

p ∉ Z,
arbitrary positive number in (0, 1) if N

p ∈ Z.

Moreover, the embedding is compact if 0 < ν < [Np ] + 1 −
N
p .

As a straightforward corollary, we get the following dual result.

Theorem 1.6.4. Let 𝒪 ⊂ℝN be a bounded domain. Let k > 0 and q <∞ satisfy

q > p∗

p∗ − 1
, where p∗ = Np

N − kp
if kp < N ,

q > 1 for kp = N ,

or

q ≥ 1 if kp > N .

Then the space Lq(𝒪) is compactly embedded into the space W−k,p′ (𝒪), 1/p +
1/p′ = 1.

Remark 1.6.5. We have formulated this section on real-valued functions for the ease
of presentation. However, all results extend in a straightforward manner to the case
of vectorial functions ranging in ℝM withM ≥ 2.
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1.7 Sobolev spaces of periodic functions

We focus on space periodic functions defined on the flat torus𝕋N . Although all spaces
we shall deal with are real, it is convenient to introduce the complex trigonometric
polynomials

em(x) = exp(im ⋅ πx), m = [m1,… ,mN ] ∈ℤN .

The space 𝒟′(𝕋N ) is defined as the space of continuous linear forms on 𝒟(𝕋N ) =
C∞c (𝕋N ) = C∞(𝕋N ). The vector-valued form 𝒟′(𝕋N ;ℝM )may be defined analogously.
Each distribution v ∈𝒟′(𝕋N ) can be identifiedwith the infinite sequence of its Fourier
coefficients, as described by

am[v] =
1
(2π)N
⟨v,em⟩, formally v ≈ ∑

m∈ℤN
am[v]em,

where em is the complex conjugate.

1.7.1 Hilbertian structure

The Sobolev spaces Wk,2(𝕋N ) of periodic functions having derivatives up to the order
k in L2(𝕋N ) can be characterized as v ∈𝒟′(𝕋N ) such that

‖v‖2Wk,2(𝕋N ) = ∑
m∈ℤN
(|m| + 1)2ka2m[v] <∞. (1.3)

The definition can be used even for a general exponent k ∈ ℝ. In particular, we have
(Wk,2(𝕋N ))∗ =W−k,2(𝕋N ) for any k ∈ℝ. This identification corresponds to the Gelfand
triple

Wk,2(𝕋N ) ↪ L2(𝕋N ) ≈ (L2(𝕋N ))∗↪W−k,2(𝕋N ), k ≥ 0,

where L2 has been identified with its dual via Riesz isometry.
The spaces Wk,2 are separable Hilbert spaces endowed with the scalar product.

We have

⟨v,w⟩ = ∑
m∈ℤN
(|m| + 1)2kam[v]am[w].

In accordance with Theorem 1.6.3 and Theorem 1.6.4, we have the compact em-
bedding

Wk,2(𝕋N )
c
↪ C(𝕋N ) whenever k > N

2
,
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whence we have

L1(𝕋N )
c
↪W−k,2(𝕋N ), k > N

2
. (1.4)

Wemayalso consider time-dependent (periodic) functionsdefinedon the (N + 1)-di-
mensional torus

𝕋N+1L = [−L,L]|{−L,L} ×𝕋N .

We summarize:
– The spacesWk,2(𝕋N ),Wk,2(𝕋N+1L ) are separableHilbert spaces, inparticular Polish

spaces.
– If X↪Wk,2(𝕋N ) or X↪Wk,2(𝕋N+1L )with continuous embedding, then X is a com-

pletely regularHausdorff space (Tikhonov space).Moreover,X admits a countable
family of continuous functions separating points, namely

fm[v] = am[v], m ∈ℤN .

1.7.2 Lp-structure

Westartwith the presentation of a combination of DeLeeuw’s theoremonFouriermul-
tipliers on𝕋N (see Stein [Ste70, Chapter 7, Theorem 3.8]) and the Hörmander–Mikhlin
theorem (see Stein [Ste70, Chapter 4, Theorem 3]).

Theorem 1.7.1. Let M ∈ L∞(ℝN ) possess classical derivatives up to order [N/2] + 1 in
ℝN ⧵ {0} such that

|𝜕αM(ξ )| ≤ cα|ξ |−|α|, |ξ | ≠ 0, |α| ≤ [N/2] + 1.

Then the operator ℒ, since we know

ℒ[v] = ∑
|m|∈ℤN

M(m)am[v]em,

is bounded on Lp(𝕋N ), 1 < p <∞.

Consider the projection operator

ΠM ∶Wk,2(𝕋N ) → L2(𝕋N ) defined as ΠM[v] = ∑
|mi|≤Mi , i=1,…,N

am[v]em.

In accordance with Theorem 1.7.1,ΠM is bounded as an operator on Lp(𝕋N ), 1 < p <∞.
Moreover (see Weisz [Wei12, Theorem 4.1]), we have

‖ΠM[v]‖Lpx ≤ cp‖v‖Lpx , and ΠM[v] → v in Lp(𝕋N ) as min
i
{Mi} →∞. (1.5)
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1.7.3 Regularization by convolution kernels

Let θxδ ∈ C∞(𝕋N ) be a family of regularizing kernels. More specifically,

θxδ(x) =
1
δN

θ(x
δ
), θ ∈ C∞c ((−1, 1)N ), θ(x) = θ(|x|), ∫

𝕋N
θ(x) = 1. (1.6)

For v ∈𝒟′(𝕋N ), we define its regularization [v]x,δ as the convolution

[v]x,δ(x) = v ∗ θxδ ≡ ⟨v,θxδ(x − ⋅)⟩.

The following results can be found in Amann [Ama95, Chapter III.4] or Brezis
[Bre83, Chapter IV.4]:
– If v ∈ L1(𝕋N ), then we have [v]x,δ ∈ C∞(𝕋N ).
– If v ∈ Lp(𝕋N ), 1 ≤ p <∞, then

‖[v]x,δ‖Lpx ≤ ‖v‖Lpx

and

[v]x,δ→ v in Lp(𝕋N ) as δ→ 0.

– If v ∈ L∞(𝕋N ), then

‖[v]x,δ‖L∞x ≤ ‖v‖L∞x .

– If v ∈ L1(𝕋N ), then

[v]x,δ(x) → v(x) whenever x is a Lebesgue point of v.

In particular,

[v]x,δ→ v a.e. in 𝕋N .

We recall that, for v ∈ L1(𝒪;X), the Lebesgue points x ∈ 𝒪 are characterized by the
property

1
|Br(x)|
∫
Br(x)
‖v(y) − v(x)‖X dy→ 0 as r→ 0,

where Br(x) ⊂𝒪 is a ball with radius r, centered at x.
The above concept may be extended to a larger class of generalized functions as

long as the operation of convolution with a smooth kernel is well-defined, notably to
the space of distributions; see Section 2.2.2.
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1.8 Bochner spaces

In this section we present supplementary material for Bochner spaces. They can be
seen as particular cases of the vector-valued functions introduced in Sections 1.1
and 1.4, where 𝒪 = (0,T). These spaces are of crucial importance for time-dependent
PDEs. Sometimes, it will be convenient to consider functions from Bochner spaces
(depending on space and time) as space-time distributions in 𝒟′(ℝ × 𝕋N ) or even
𝒟′([−L,L]|{−L,L} ×𝕋N ), defined on the space-time torus

𝕋N+1L = [−L,L]|{−L,L} ×𝕋N ,

extending them conveniently outside the interval I . Similarly to (1.3) we have the em-
bedding

L1(0,T ;L1(𝕋N ))
c
↪W−k,2(𝕋N+1L ), k > N + 1

2
, L ≥ T . (1.7)

1.8.1 Time regularity

Let X be a separable Banach space. For u ∈ L1(0,T ;X) we consider the distribution

C∞c ((0,T)) → X, ϕ↦∫
T

0
u(t)ϕ′(t)dt.

Let Y be a Banach space with X↪ Y continuously. If there is v ∈ L1(0,T ;Y) such that

∫
T

0
u(t)ϕ′(t)dt = −∫

T

0
v(t)ϕ(t)dt for all ϕ ∈ C∞c ((0,T)),

then we say that v is the weak derivative of u in Y and write v = 𝜕tu. The space
W 1,p(0,T ;X) consists of those functions from Lp(0,T ;X) having weak derivatives in
Lp(0,T ;X). It is a Banach space with the norm

‖u‖pW 1,p(0,T ;X) ∶= ‖u‖
p
Lp(0,T ;X) + ‖𝜕tu‖

p
Lp(0,T ;X).

Obviously this can be iterated to define the spacesWk,p(0,T ;X), k ∈ℕ.
In order to study the time regularity of functions from Bochner spaces, we recall

the concept of continuity introduced in Section 1.1.

Definition 1.8.1. Let X be a Banach space with norm ‖ ⋅ ‖X , T > 0 and α ∈ (0, 1]. Then:
– C([0,T];X) denotes the set of functions u ∶ [0,T] → X being continuous with re-

spect to the norm topology, i.e.,

u(tk) → u(t0) in X,

for any sequence (tk)k∈ℕ ⊂ [0,T] with tk → t0.
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– Cw([0,T];X) denotes the set of functions u ∶ [0,T] → X being continuous with re-
spect to the weak topology, i.e.,

u(tk) ⇀ u(t0) in X,

for any sequence (tk)k∈ℕ ⊂ [0,T] with tk → t0. Equivalently, we may say that u
belongs to Cw([0,T];X) if the scalar functions t↦ ⟨x∗,u(t, ⋅)⟩ belong to C([0,T]),
for any x∗ ∈ X∗.

– Cα([0,T];X) denotes the set of functions u ∶ [0,T] → X being α-Hölder continuous
with respect to the norm topology, i.e.,

sup
t,s∈[0,T];t≠s

‖u(t) − u(s)‖X
|t − s|α

<∞.

Obviously, we have the inclusions

Cα([0,T];X) ⊂ C([0,T];X) ⊂ Cw([0,T];X),

for any α ∈ (0, 1].
We introduce convergence in Cw([0,T];X) by stating

vn→ v in Cw([0,T];X) if sup
t∈[0,T]
|⟨x∗, vn − v⟩X∗,X | → 0 ∀x∗ ∈ X∗.

If the space X is separable and reflexive, then the unit ball BX ⊂ X is a metrizable com-
pact set and the above convergence generates a metric topology on Cw([0,T];BX ) in
the sense specified in Section 1.1.

1.8.2 Compact embeddings

The following theorem shows how to obtain compactness in Bochner spaces. The orig-
inal version was developed by Aubin and Lions (see Aubin [Aub63], Lions [Lio69, Sec-
tion 1.5], or the survey paper by Simon [Sim86]).

Theorem 1.8.2. Let (V ,X,Y) be a triple of separable and reflexive Banach spaces such
that the embedding V ↪ X is compact and the embedding X ↪ Y is continuous. Then
the embedding

{u ∈ Lp(0,T ;V) ∶ 𝜕tu ∈ Lp(0,T ;Y)} ↪ Lp(0,T ;X)

is compact for 1 < p <∞.
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In the context of stochastic PDEswewill be confrontedwith functions having only
fractional derivatives in time. We define for p ∈ (1,∞) and α ∈ (0, 1) the norm

‖u‖pWα,p(0,T ;X) ∶= ‖u‖
p
Lp(0,T ;X) + ∫

T

0
∫
T

0

‖u(σ1) − u(σ2)‖
p
X

|σ1 − σ2|1+αp
dσ1 dσ2.

The spaceWα,p(0,T ;X) is nowdefinedas the subspace of Lp(0,T ;X) consisting of those
functions having finite Wα,p(0,T ;X)-norm. It can be shown that this is a complete
space and we have W 1,p(0,T ;X) ⊂Wα,p(0,T ;X) ⊂ Lp(0,T ;X). The following variant of
Theorem 1.8.2 holds (see Flandoli–Ga̧tarek [FG95, Theorem 2.1]).

Theorem 1.8.3. Let (V ,X,Y) be a triple of separable and reflexive Banach spaces such
that the embedding V ↪ X is compact and the embedding X ↪ Y is continuous. Then
the embedding

Lp(0,T ;V) ∩Wα,p(0,T ;Y) ↪ Lp(0,T ;X)

is compact for 1 < p <∞ and 0 < α < 1.

Using the continuous embedding Cα([0,T],Y) ↪Wα,p(0,T ;Y), we obtain the fol-
lowing.

Corollary 1.8.4. Let (V ,X,Y) be a triple of separable and reflexive Banach spaces such
that the embedding V ↪ X is compact and the embedding X ↪ Y is continuous. Then
the embedding

Lp(0,T ;V) ∩ Cα([0,T];Y) ↪ Lp(0,T ;X)

is compact for 1 < p <∞ and 0 < α < 1.

We will use Corollary 1.8.4 at various occasions in order to obtain compactness
for stochastic PDEs. Typically, solutions are Hölder continuous in a negative Sobolev
space, so we have Y =W−ℓ,2(𝕋N ) for some ℓ ∈ℕ. On the other hand, these functions
also belong to Lp(0,T ;Lp(𝕋N )) (or Lp(0,T ;W 1,p(𝕋N ))) for some p ∈ (1,∞). This means
we have V = Lp(𝕋N ) (or V =W 1,p(𝕋N )). Corollary 1.8.4 applies with X =W−1,p(𝕋N ) (or
X = Lp(𝕋N )).

In view of the applications to compressible Navier–Stokes equations, we have to
deal with weakly continuous functions. The following result is appropriate to handle
this situation.

Theorem 1.8.5. Let α ≥ 0, 1 < p <∞, and ℓ ∈ℝ. Then

L∞(0,T ;Lp(𝕋N )) ∩ Cα([0,T];W ℓ,2(𝕋N )) ↪ Cw([0,T];Lp(𝕋N )).
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If α > 0, then the embedding is sequentially compact, meaning any sequence

(vn)n∈ℕ bounded in L∞(0,T ;Lp(𝕋N )) ∩ Cα([0,T];W ℓ,2(𝕋N ))

contains a subsequence (vnk )k∈ℕ such that

vnk → v in Cw([0,T];Lp(𝕋N )).

Proof. First we have to show that

⟨x∗, v(t, ⋅)⟩ ∈ C([0,T]) for any x∗ ∈ Lp′(𝕋N ),

whenever v ∈ L∞(0,T ;Lp(𝕋N )) ∩Cα([0,T];W ℓ,2(𝕋N )) and p′ is the conjugate exponent
of p. As the norm in Lp is weakly lower semi-continuous, we deduce v(t, ⋅) ∈ B(r) for
any t, where B(r) is a ball in Lp(𝕋N ) of suitable radius r > 0. The collection of trigono-
metric polynomials (em)m∈ℤN defined in Section 1.7 generates a basis inW ℓ,2(𝕋N ) for
any ℓ, and their finite linear combinations are dense in Lq(𝕋N ) for any 1 ≤ q < ∞, in
particular, in Lp′ (𝕋N ). Consequently,

|⟨x∗, v(t, ⋅)⟩ − ⟨x∗, v(s, ⋅)⟩|

≤ |⟨ ∑
|m|≤M

βmem, v(t, ⋅) − v(s, ⋅)⟩| + |⟨x∗ − ∑
|m|≤M

βmem, v(t, ⋅) − v(s, ⋅)⟩|

≤ |⟨ ∑
|m|≤M

βmem, v(t, ⋅) − v(s, ⋅)⟩| + r‖x∗ − ∑
|m|≤M

βmem‖
Lp
′
x

≤ c(M, ℓ)‖v‖Cαt W ℓ,2x |t − s|
α + r‖x∗ − ∑

|m|≤M
βmem‖

Lp
′
x

, (1.8)

where the last term can be made small uniformly for all s, t ∈ [0,T] by taking suitable
βm andM large enough.

If α > 0 wemay apply the abstract Arzelà–Ascoli theorem (Theorem 1.1.1). The ball
B(r) is indeed weakly sequentially compact and the desired equi-continuity of the se-
quence (vn)n∈ℕ follows easily from (1.8).

1.8.3 Regularization by convolution kernels

This section is dedicated to the regularization of time-dependent functions. In order
to avoid problems related to progressive measurability (which typically arise in our
applications to stochastic PDEs) we regularize functions backwards in time. Conse-
quently, it is convenient to extend them appropriately for t ≤ 0. For v ∈ L1(−1,T ;X),
where X is a Banach space, we consider the time regularization

[v]t,δ(t) = v ∗ θtδ(⋅ − δ) = ∫
∞

−∞
θtδ(t − δ − s)v(s)ds.

Here, the regularizing kernel is a function of t satisfying (1.6) for N = 1.
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Referring again to Amann [Ama95, Chapter III.4] and Brezis [Bre83, Chapter IV.4],
we have:
– If v ∈ L1(−1,T ;X), then we have [v]t,δ ∈ C∞((−1,T);X).
– If v ∈ Lp(−1,T ;X), 1 ≤ p <∞, then

‖[v]t,δ‖Lpt X ≤ ‖v‖Lpt X

and

[v]t,δ→ v in Lp(0,T ;X) as δ→ 0.

– If v ∈ L∞(−1,T ;X), then

‖[v]t,δ‖L∞t X ≤ ‖v‖L∞t X .

– If v ∈ L1(−1,T ;X), then

[v]t,δ(t) → v(t) in X whenever t is a Lebesgue point of v.

In particular,

[v]t,δ→ v in X as δ→ 0 a.e. in (0,T).





2 Elements of stochastic analysis
We introduce the basic stochastic framework used in this book. We present only a
selection of the principal concepts and ideas of stochastic analysis, as the reader is
expected to be familiar with the basic notions of probability theory. Part of the re-
sults presented in this chapter can be found in the literature. The classical and widely
usedmonographs include for instance Karatzas–Shreve [KS91] and Da Prato–Zabczyk
[DPZ92] andwe invite the reader to consult these textbooks for further details. In addi-
tion, we include a number of original results needed for the study of the compressible
Navier–Stokes system later on.

To bemore precise, in Section 2.2 we introduce the notion of randomdistributions
(see Definition 2.2.1). It is a generalization of stochastic processes which allows one to
treat random elements in the weakest possible topology, namely, the weak-∗ topol-
ogy of the space of space-time distributions 𝒟′(I × 𝕋N ), where I ⊂ ℝ. For the sake
of simplicity, the results will be stated only for I =ℝ, with obvious modifications for a
general interval I . In the subsequent sectionswe showhow the classical theory of Itô’s
stochastic integration and its applications to stochastic PDEs can be formulated in the
context of random distributions. We believe that this new perspective is interesting in
its own right and will prove useful also for researchers working on other models in
fluid dynamics or other fields.

2.1 Random variables and stochastic processes

Throughout the book (Ω,𝔉,ℙ) denotes a complete probability space with a σ-field 𝔉
and a probability measure ℙ. The probability space ([0, 1],𝔅([0, 1]),𝔏), where 𝔏 de-
notes the Lebesgue measure, is called standard. Here, 𝔅 denotes the completion
𝔅 and 𝔏 denotes the one-dimenisonal Lebesgues measure. A filtration is a non-
decreasing family of sub-σ-fields of 𝔉, that is, 𝔉t ⊂𝔉 for all t ≥ 0 and 𝔉s ⊂𝔉t when-
ever s ≤ t. We say that the filtration (𝔉t)t≥0 satisfies the usual conditions, provided it
is complete and right-continuous. In other words,

{N ∈𝔉; ℙ(N) = 0} ⊂𝔉0, 𝔉t =𝔉t+ ∶=⋂
s>t

𝔉s for all t ≥ 0.

The multiple (Ω,𝔉, (𝔉t)t≥0,ℙ) is then called a stochastic basis or a filtered probability
space.

We proceed with basic definitions concerning random variables.

Definition 2.1.1. Let (X,𝒜) be a measurable space. An X-valued random variable is a
measurable mapping U ∶ (Ω,𝔉) → (X,𝒜).We denote by σ(U) the smallest σ-field with
respect to which U is measurable. More precisely,

σ(U) ∶= {{ω ∈ Ω; U(ω) ∈ A}; A ∈𝒜}
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and σ(U) ⊂𝔉. In addition, we denote by ℒ[U] or also ℒX [U] the law of U on X, that is,
ℒ[U] is the pushforward probability measure on (X,𝒜) given by

ℒ[U](A) = ℙ(U ∈ A), A ∈𝒜.

Definition 2.1.2. Let (X,𝒜) be ameasurable space.We say that two X-valued random
variables U and V are equal in law, if ℒ[U] and ℒ[V] coincide.

We stress that the assumptions on the state space X will vary in the sequel. Most of
the notions presented below require a topology onX and thereforewe assume thatX is
a topological space equippedwith a Borel σ-field. In addition, it is convenient that the
topology on X is completely determined by the family of continuous functions. Specif-
ically, we consider Tikhonov spaces, meaning completely regular and Hausdorff. As a
matter of fact, we deal almost exclusively with topological vector spaces, in particu-
lar with the class of locally convex topological vector spaces. These are vector spaces
equipped with a topology that renders the vector addition as well as the scalar multi-
plication continuous and, in addition, the topology is generated by a family of semi-
norms (pγ)γ∈Γ.

Many concepts in the theory of stochastic processes require a certain uniformity
of the topology. Simplifications occur in the case of Polish spaces, that is, separable
spaces that are completely metrizable. This is also the common setting found in the
literature. However, the delicate structure of the compressible Navier–Stokes system
studied in the main body of this book naturally leads to spaces which are generally
not metrizable, such as Banach spaces equipped with weak topology. Hence we will
formulate the basic notions on probability theory in a wider generality. In particular,
all spaces we shall deal with will admit a countable family of bounded continuous
functions that separates points. Given such a family of continuous functions (gn)n∈ℕ
on X, we define an embedding

𝚥 ∶ X→ [−1, 1]ℵ0 , 𝚥(x) = (gn(x))n∈ℕ.

Here, we have tacitly assumed that all functions gn range in (−1, 1). Note that [−1, 1]ℵ0
is a compact Polish space. This motivates the following definition.

Definition 2.1.3 (sub-Polish space). Let (X,τ) be a topological space such that there
exists a countable family

{gn ∶ X→ (−1, 1); n ∈ℕ}

of continuous functions that separate points of X. Then (X,τ) is called a sub-Polish
space.

The following characterization of equality in law will be frequently used in the
sequel.
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Lemma 2.1.4. Let X be a Tikhonov topological space equipped with the Borel σ-field.
Let U and V be X-valued random variables. Then ℒ[U] =ℒ[V], provided

⟨ℒ[U], f ⟩ = ⟨ℒ[V], f ⟩,

or, equivalently,

𝔼[f (U)] = 𝔼[f (V)]

holds true for all f ∈ Cb(X).

Although several function spaces we use in the book, notably the space of distri-
butions, are not first countable, the convergence results are usually stated in terms
of sequences rather than nets. The sequential language seems more adequate for de-
scribing the asymptotic behavior of stochastic processes and several results are simply
only true for sequences. We proceed with various notions on the convergence of ran-
dom variables. First, we introduce the almost sure convergence which corresponds to
the almost everywhere convergence known from measure theory.

Definition 2.1.5. Let X be a topological space equipped with the Borel σ-field and let
U andUn, n ∈ℕ, be X-valued random variables on (Ω,𝔉,ℙ). We say thatUn converges
to U almost surely, provided

ℙ(ω ∈ Ω; lim
n→∞

Un(ω) = U(ω)) = 1.

In other words, there exists a set of full probabilityΩ∗ ⊂ Ω such that, for everyω ∈ Ω∗,
the following statement holds: if 𝒰 ⊂ X is an open neighborhood of U(ω), then there
exists n0 ∈ℕ such that, for every n ≥ n0, we have Un(ω) ∈𝒰.

Next,we define the probabilistic analogue of convergence inmeasure. To this end,
we restrict ourselves to the case of topological vector spaces. Recall that, if X is a topo-
logical vector space, the topology on X is uniform. This means that any neighborhood
𝒰(x) of a point x takes the form x +𝒰 = {x + y; y ∈𝒰}, where 𝒰 is a neighborhood of 0.

Definition 2.1.6. LetX be a topological vector space. Assume thatU andUn, n ∈ℕ, are
X-valued random variables on (Ω,𝔉,ℙ). We say that Un converges to U in probability
if, for every 𝒰 ⊂ X which is an open neighborhood of 0, we have

lim
n→∞
ℙ(ω ∈ Ω; Un(ω) ∉ U(ω) +𝒰) = 0. (2.1)

Remark 2.1.7. As pointed out, the definition extends easily to uniform spaces but we
do not need this generality here.


