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Preface

This book deals with mathematical constructions that are foundational in such an
important area ofdatamining aspattern recognition. A closer look is taken at infeasible
systems of linear inequalities, whose generalized solutions act as building blocks of
geometric decision rules for recognition.

Infeasible systems of linear inequalities proved to be a key object in pattern recog-
nition problems described in geometrical terms thanks to the committee method.

Infeasible systemsof inequalities represent an important special subclass of infea-
sible systems of constraints with monotonicity property – systems whose multi-indices
of feasible subsystems form abstract simplicial complexes (independence systems),
fundamental objects of combinatorial topology. In discrete mathematics, the faces of
such complexes are interpreted as zeros of monotone Boolean functions. Chapter 1 of
the book deals with simplicial complexes and monotone Boolean functions related
to common infeasible systems of constraints. The graph-theoretic methods represent
a very productive way to study combinatorial and structural properties of infeasible
systems of constraints. From the applied point of view, the most important property
is the connectedness of a specific graph assigned to a family of maximal feasible sub-
systems. For instance, the set of solutions taken one by one for each of the maximal
feasible subsystems of an infeasible system, which constitute an odd cycle in such a
graph, represents a committee for an infeasible system of linear inequalities over ℝn
formally describing a pattern recognition problem. Thus, graph-theoretic methods
that help us to solve one of the main tasks of committee theory – searching for a
committee with the minimal number of elements can be taken as a basis for efficient
algorithms of constructing decision rules for pattern recognition. The connectedness
of graphs discussed is actually determined by the connectedness of the space ℝn;
moreover, the connectedness of similar graphs in the context of common topological
spaces is also determined by the connectedness of these spaces. The subject matter of
Chapter 2 is (hyper)graphs corresponding to facets of common simplicial complexes
and to maximal feasible subsystems of infeasible systems of linear inequalities.

Equally interesting results are obtained from an analysis of infeasible systems of
linear inequalities by methods of combinatorial geometry. In Chapter 3, the notion of
diagonal of a polytope, which is traditional for plane geometry, is generalized tomulti-
dimensional convex polytopes. A dual correspondence between diagonals and facets
of polytopes, on the one hand, and multi-indices of maximal feasible and minimal
infeasible subsystems of inequalities, on the other hand, is described. This duality is
used, in particular, to obtain different estimates of the number of subsystems.

In Chapter 4, the correspondence between infeasible systems of inequalities and
monotone Boolean functions motivates us to construct algorithms for optimal infer-
ence of functions. Several criteria for optimality of algorithms of inference are consid-
ered, and algorithms satisfying these criteria are constructed.
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In Chapter 5, the algorithmic approach to constructing an optimal committee of
an infeasible system of linear inequalities is considered; it is based on such principal
features of graphs as the connectedness and the existence of odd cycles. A brief review
of alternative covers in the second half of this chapter provides a new look at collective
solutions to infeasible systems of constraints.

The aim of this book is to present a mathematical toolset finding an application to
the construction of pattern recognition complexes that solve the recognition problem
in its geometric setting.

Such complexes of pattern recognition start their work with preprocessing of a
training sample, that is, a massive collection of vectors from a high-dimensional fea-
ture space. Because the vectors of the training sample are preliminarily divided into
groups that partially represent logically uniform classes or categories, they reflect a
certain knowledge domain in the boundaries of which every new unclassified vector
entering into the complexmust be referred to one of the classes. At consecutive stages
of preprocessing, the groups from the training sample are aggregated, with the use
of hierarchical tree-like structures, into two extended groups that partially represent
the corresponding generalized classes. The task of the recognition complex consists
in the search for a geometric object that has a relatively simple formal description
and, at the same time, strictly separates the vectors from distinct extended groups
of the training sample. In the context of the book, the above-mentioned task can be
interpreted, for example, as the search for a separating hyperplane in an Euclidean
feature space. In practice, information contained in almost any training sample leads
to a situation where a unique separating hyperplane cannot be found, because the
linear inequality system underlying the problem of the discrimination of the two ex-
tended groups turns out to be infeasible. By means of some dimensional increase of
the input data, the inequalities become homogeneous; their strictness is motivated
by the stability demands that must be satisfied by the decision rules generated by the
pattern recognition complex. This is how the infeasible system of homogeneous strict
linear inequalities comes to the stage in the contradictory two-class pattern recogni-
tion problem, which has to be solved by the complex. The system as a whole has no
solution, but any of its feasible subsystems can be solved by the software of the recog-
nition complex that implements modern powerful techniques of linear optimization.
The smart committee strategy of the recognition complex consists in the finding of
solutions to a fewmaximal feasible subsystems and in their combining into a commit-
tee decision rule which operates with arrangements of separating hyperplanes. On
the one hand, such a rule always allows the complex to correctly discriminate the vec-
tors from the two extended groups of the training sample and, on the other hand, it
makes it possible to apply the procedure of committee voting to a new vector enter-
ing into the complex; the majority decision rule, governed by the committee, refers
the new vector to a generalized class. The recognition complex implements various
effective techniques for constructing the separating committees, by exploiting spe-
cific properties of the (hyper)graphs of the maximal feasible subsystems of infeasible
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systems of linear inequalities. With the help of these techniques, the complex repeat-
edly solves the two-class pattern recognition problem for each higher level extended
group of vectors from the training sample, adding at every step some committee de-
cision rule to a resulting hierarchical tree-like structure. This structure represents the
machine for recognition of new vectors, and it correctly recognizes any vector of the
training sample.

This edition is the extended translation of the book Combinatorial Geometry and
Graphs in an Analysis of Infeasible Systems and Pattern Recognition published by
Nauka, Moscow, in 2014.

Moscow and Ekaterinburg Damir N. Gainanov
October 2016
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Pattern recognition, infeasible systems of linear
inequalities, and graphs

Full-function complexes of pattern recognition allow a human or technological user
to mine relevant feature data in two main directions that can be considered intercon-
nected, depending on the goals that must be achieved by the complexes.

One direction of data mining in pattern recognition is most often referred to as
unsupervised learning. The complex deals with a massive collection of vectors whose
components represent qualitative or quantitative descriptions of various parameters
that are specific for the problem domain of the user. Although some categorical labels
couldhavepreliminarily beenassigned to those vectors, in order to reflect a knowledge
of the domain, the complex treats the data without using any earlier classifying infor-
mation. Instead, the task consists in an exploratory analysis of the massive amount
of high-dimensional vectors from the feature space, which aims at the elucidation of
the inner structure of the data cloud. Typically, one is interested in how many rela-
tively dense and isolated subclouds, called clusters, can be discovered in the whole
data cloud, and how each of them can be given a concise characterization in working
terms of the problem domain.

Various strong mathematical mechanisms, as well as heuristics, are involved for
preprocessing the input sample of vectors and obtaining a resulting hierarchical pic-
ture of the data cloud. Let usmention just two questions thatmust be answered by the
designers of a complex of pattern recognition. How incomplete ormissing information
on the components of vectors from the feature space should be dealt with? Is there any
possibility to artificially decrease the complexity of the data sample by means of an
information-preserving map of the sample into a derived feature space of much lower
dimension? It is clear that for obtaining concise descriptions of relatively isolated data
subclouds, outermost vectors, say the vectors lying on the boundaries of the convex
hulls of the subclouds, are most relevant; for this reason certain methods of thinning
irrelevant vectors may be provided.

The essential topics in unsupervised learning are the choice ofmetrics that allow
the recognition complex to measure the similarity or distance between vectors and be-
tween clusters of vectors, and the choice of the presentation format for the cluster hi-
erarchy revealed to the user. It is convenient to visualize the hierarchywith the help of
interactively scaled tree-like graphical structures that make it possible to easily reveal
information on the cluster membership and on metric intercluster dissimilarities.

Although the exploratory cluster analysis surely plays an important role in data
mining, the result of unsupervised learning of the recognition complex should con-
sist in the generation of decision rules, which would allow the complex to refer any
new vector of the feature space to a large isolated cluster, thus recognizing the new
vector as a representative of a certain category. Such a recognition rule is based on the
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procedure of comparison of the similarities or distances between the new unclassified
vector and the large isolated clusters.

The aim of this book is to present a mathematical toolset finding an application to
the construction of pattern recognition complexes that solve the recognition problem,
in its geometric setting, in the supervised learning mode.

Such complexes of pattern recognition begin their work with preprocessing of a
training sample, that is, a massive collection of vectors from a high-dimensional fea-
ture space that are preliminarily divided into groups that partially represent logically
uniform classes or categories. These groups reflect a certain knowledge domain in the
boundaries of which every new unclassified vector entering into the complex must be
referred to one of the classes.

The variety of approaches to supervised recognition learning includes such uni-
versally accepted methodologies as nearest-neighbor classifiers, neural networks, and
support vector machines.

At consecutive stages of preprocessing, the groups from the training sample are
aggregated, with the use of hierarchical tree-like structures, into two extended groups
that partially represent the corresponding generalized classes.

Given an odd integer k, a k-nearest-neighbor classifier finds, for a new unclassi-
fied vector from the feature space, its k distinct nearest neighbors from the training
sample; a majority of these neighbors belongs to one of the extended groups and, as
a consequence, that group votes for the referring of the vector to the generalized class
represented by the group. A hierarchically organized procedure of making similar k-
nearest-neighbor decisions, that is applied to each of the extended subgroups of the
training sample, allows the complex to recognize the new vector as a representative
of the class partially described by a group from the training sample.

Dealing with an extended subgroup of vectors from the training sample, which is,
in turn, divided into two subgroups at some stage of a hierarchical learning process,
a neural network represents a collection of interconnected layers of neurons. Neurons
are elementary computational operators that reflect vectors of the feature space to
weighted values of a sigmoid function taken at certain weighted sums of the compo-
nents of those vectors. As the result of supervised training, the neural network com-
bines the responses of individual neurons into a decision, based on a mechanism of
thresholds, which refers a new unclassified vector to some generalized subclass.

A support vectormachine tries to find, at a step of a hierarchically organized proce-
dure, three parallel hyperplanes of the feature space, namely themaximal-margin hy-
perplanewhich separates the vectors of two subgroups from the training sample and,
at the same time, maximizes the distance between two margin hyperplanes contain-
ing the nearest vectors of the training sample that belong to different subgroups. The
quadratic optimization techniqueallows the recognition complex tofind themaximal-
margin hyperplanes (when training subgroups are affinely separable) or to motivate
the search for nonlinear separating surfaces (when the subgroups cannot be sepa-
rated by hyperplanes). The hierarchical collection of the separating hyperplanes and
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surfaces makes it possible to refer new unclassified vectors from the feature space to
some classes partially represented by the vectors of the training sample.

Thus, the task of the recognition complex that implements a supervised learning
methodology often consists in the search for a geometric object that has a relatively
simple formal description and, at the same time, strictly separates the vectors from
distinct extended groups of the training sample.

In the context of the book, the above-mentioned task can be seen as the search
for a separating hyperplane in an Euclidean feature space. In practice, information
contained in almost any training sample leads to a situation where a unique separat-
ing hyperplane cannot be found, because the linear inequality system underlying the
problem of the discrimination of the two extended groups turns out to be infeasible.
Indeed, let B̃ and C̃ be the two extended groups of vectors from the training sample,
processed at some step of the hierarchical supervised learning procedure. These are
just two finite sets of vectors of the feature space ℝn−1. Let us augment every vector
from the sets B̃ and C̃ by a new nth component which is equal to 1.We thus obtain two
sets B, C ⊂ ℝn, for which the recognition complex tries to find a vector x ∈ ℝn such
that {{{

⟨b, x⟩ > 0, b ∈ B ,⟨c, x⟩ < 0, c ∈ C ,
(1)

where ⟨b, x⟩denotes the standard scalar product∑k∈[n] bikxk, and [n] := {1, 2, . . . , n}.
The strictness of these homogeneous inequalities ismotivated by the stability demands
that must be satisfied by the decision rules generated by the pattern recognition com-
plex.

If x is a solution to system (1), then classification of a new vector g ∈ ℝn (i.e., the
referring of g to one of the extended classes partially represented by the sets B and C)
is performed on the basis of the sign of the scalar product ⟨x, g⟩. However, the system
under consideration can turn out to be infeasible, and thismost frequent case requires
the development of special methods of problem-solving.

Even if system (1) as a whole has no solution, any of its feasible subsystems can
be solved by the software of the recognition complex that implements techniques of
linear optimization.

By means of the passage from system (1) to the infeasible system

{{{
⟨b, x⟩ > 0, b ∈ B ,⟨−c, x⟩ > 0, c ∈ C ,

which we will briefly describe here as the system

{⟨a, x⟩ > 0: a ∈ A} , (2)

the recognition complex deals with the mathematical construction that has the prin-
cipal feature: if any subsystem, with two inequalities, of system (2) is feasible, then
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this simple condition guarantees that the recognition complex can involve in its com-
putational arsenal a powerful technique for constructing certain collective solutions to
infeasible system (2), and further use them as the components of hierarchicaldecision
rules for recognition.

Recall that a committee of infeasible system (2) is defined as a finite subset of vec-
torsK ⊂ ℝn satisfying the relation

|{x ∈ K : ⟨a, x⟩ > 0}| > 1
2 |K| ,

for each vector a ∈ A.
Suppose that a committee K of system (2) is found by the recognition complex.

Then an unclassified vector of the feature space ℝn−1, lifted to the working (n − 1)-
dimensional affine subspace of the spaceℝn with the help of the additional nth com-
ponent 1, can be recognized as an element of the classes, partially represented by the
sets B̃ and C̃, according to the result of the majority voting procedure performed by
the members of the committeeK.

The smart committee strategy of the recognition complex consists in the finding of
solutions to a fewmaximal feasible subsystems (MFSs) of system (2), and in their com-
bining into the committee decision rule, which operates with arrangements of sepa-
rating hyperplanes.

A feasible subsystem of infeasible system (2) is called maximal if any additional
inequality from the system turns the resulting collection of inequalities into an infea-
sible subsystem.

If [m] is the set of indices with which the inequalities from infeasible system (2)
are marked, then a multi-index T ⊆ [m] corresponds to the subsystem composed of
the inequalities with the indices from the set T.

If we let Jdenote the family of themulti-indices of allmaximal feasible subsystems
of system (2), then the graph of MFSs of system (2) is defined as the graph with the
vertex set J; an unordered pair {J, J} ⊂ J is an edge of this graph if and only if the
multi-indices J and J cover the index set of system (2), that is, J ∪ J = [m].

The high efficiency of supervised learning algorithms implemented by the recog-
nition complex, which uses the graph of MFSs, is explained by the following three
basic facts:
– The graph of MFSs is connected.
– The graph of MFSs is not bipartite.
– The complement [m] − J of the multi-index J ∈ J of any MFS of system (2) is the

multi-index of a feasible subsystem.

Since the graph of MFSs is not bipartite, it contains at least one cycle of odd length.
A fundamental result in the committee theory is formulated as follows: if the

multi-indices of some MFSs represent the vertex set of a cycle of odd length in the
graph of MFSs, then in order to construct a committee, it suffices to take one vector
from the open cone of solutions to each MFS from the vertex set of the cycle.
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Thus, the problem of constructing a committee with a small number of members
can be reduced to the problem of finding a cycle of short odd length in the graph
of MFSs. This derived problem is solved by the software of the recognition complex
with the help of various strong and heuristic methods.

On the one hand, the obtained committee decision rule always allows the recog-
nition complex to correctly discriminate the vectors from the two extended groups of
the training sample and, on the other hand, itmakes it possible to apply the procedure
of committee voting to a new vector entering into the complex; the majority decision
rule, governed by the committee, refers the new vector to a generalized class.

The complex repeatedly solves the two-class pattern recognition problem for each
higher level extended group of vectors from the training sample, adding at every step
some committee decision rule to a resulting hierarchical tree-like structure.

This structure represents the machine for recognition of new vectors, and it cor-
rectly recognizes any vector of the training sample.




