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Preface to DG Edition
The De Gruyter (DG) edition is based on my previous monograph Topological Theory
on Graphs, published by the University of Science and Technology of China (USTC)
Press in 2008, with updates and improvements from two main sources.

One is that the new developments of four ways, with five pairs of theorems, enable
us to get criteria, for determining the embeddability of a graph, on a surface (orient-
able and non-orientable) of genus arbitrarily given, as shown in Liu [229, 231, 232, 236].
Before them, only few results were known for surfaces of small genera ( ̸= 0), such as
Abrams and Slilaty [1], Archdeacon [11], Archdeacon and Huneke [12], Archdeacon
and Siran [14], Glover and Huneke [100], Glover et al. [101].

Notably, for the specific case of genus zero, one of the five pairs leads to the cri-
teria for planarity, as given in the pair of Theorems 4.2.5 and 4.3.2 relating to a pair
of homology and cohomology. They have a number of corollaries, including the three
theorems obtained by Lefschetz [171], MacLane [261] andWhitney [392] for the planar-
ity of a graph at a time. This causes item 4.5.10, in the Notes Section 4.5 of Chapter 4.
Subsequently, item 4.5.9 is completed in the core theoretical stage of the three stages:
theoretization, efficientization and intelligentization, involving with my research.

The other is the progresses in applications and usages of joint tree model de-
scribed in Section 9.1.

Each Notes section in chapters is accompanied by at least one new item. I would
like to mention the following:

Notes Section 1.5 in Chapter 1. Item 1.5.5 was provided for reminding readers of
the universality of vector space, sketched in Section 1.4 as an abstract linear space,
motivated from the background in Liu [237]. Item 1.5.6 is for accessing the efficiency of
theoretical results in this book, or polynomial complexity as shown in Cook [54] and
Karp [159].

Notes Section 2.6 in Chapter 2. Item 2.6.6 was presented for perspective develop-
ments available in the theory of polyhedra, shown in Liu [230, 233, 234, 238], with
relevant references as complimentary for the reader.

Notes Section 3.7 in Chapter 3. Formula (3.7.1) was put into item 3.7.3 to show that
the topological classification of surfaces can be done, via only the three types of trans-
formations. Item 3.7.9 was provided to enhance readers’ understanding, intrinsically
from topology.

Notes Section 4.5 in Chapter 4. Further to item 4.5.10 mentioned earlier, item 4.5.11
illustrates one of the new approaches, to investigate the structure of cycle spaces in a
graph, via an example.

Notes Section 5.6 in Chapter 5. Item 5.6.7 was suggested to generalize the polyhed-
ral form, from Jordan curve axiom to the surface closed curve axiom, for recognizing
whether, or not, a graph can be embedded onto a surface of given genus not zero.

Notes Section 6.5 in Chapter 6. Item 6.5.12 shows that the relationship among
graphs, polyhedra, embedding and maps can be clarified via symmetries.
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Notes Section 7.5 in Chapter 7. Item 7.5.6 enables us to go in a new way, for classi-
fying knots, or links, by observing the relationship between embeddings of general
networks with binary weight of edges on surfaces and knots, or links, via the cor-
respondence between a 4-regular graph and a pair of two general graphs mutually
dual.

Notes Section 8.6 in Chapter 8. Item 8.6.10 presents a theoretical framework, in-
spired from the pair of homology and cohomology in Sections 4.2 and 4.3, to detect
a type of homology on a graph, as the dual of cohomology in Theorem 8.2.1, and to
establish a new pair of criteria for the embeddability of a graph, on a surface of genus
arbitrarily given, via the polyhedral theory, described in Liu [227].

Notes Section 9.5 in Chapter 9. Items 9.5.5–9.5.10 reflect a series of progresses,
for determining the up-embeddability on surfaces, handle (orientable genus) and
crosscap (momorientable genus) polynomials, maximum genus, genus (minimum!),
average genus, etc., of graphs, or digraphs, based on the joint tree model described in
Section 9.1.

Notes Section 10.5 in Chapter 10. Recent result on the planarity of a graph, by a
single forbidden configuration, was mentioned in item 10.5.5, as shown in Ref. [238].

Notes Sections 11.5 and 12.5 in, respectively, in Chapters 11 and 12. Both items
11.4.9 and 12.5.8 indicate the reason why the minors are not available as a forbidden
configuration, for the properties considered with the inheritness.

Notes Section 13.8 in Chapter 13. Both items 13.8.8 and 13.8.9 reflect new pro-
gresses on minimality and maximality on graphs with surfaces, based on joint tree
model.

Notes Section 14.6 in Chapter 14. Item 14.6.6 shows a new approach, hopefully to
recognize whether, or not, a regular matroid is graphic, or cographic, to strengthen
and expand Theorems 14.4.1 and 14.5.1.

In Notes Section 15.6 in Chapter 15. Item 15.6.8 provides a theoretical framework
to characterize whether, or not, two knots, or two links, are in the same class of pan-
polynomial equivalence on the basis of Section 15.3.

In addition, Theorem 13.5.1 was improved and revised. Proofs of certain con-
clusions are completed and concise, or more accurate, such as in Lemma 3.1.2,
Theorem 5.4.1, Lemma 5.5.1, Theorem 13.5.1, etc.

Last but not least, I would like to take this opportunity to express my sincere
thanks to Rongxia Hao, Erling Wei and Liangxia Wan for their careful reading of
the manuscript with corrections on grammar. Some of researches were partially
supported by NNSFC under Grant No. 11371052.

Y. P. Liu
Beijing
September 2016



Preface to USTC Edition
The subject of this book reflects new developments established mainly by the author
himself in companywith a few cooperators, most of thembeing his former and present
graduate students in the foundation, as mentioned in Liu [216, 217]. The central idea is
to extract suitable parts of a topological object such as a graph which is not necessar-
ily to be with symmetry, as linear spaces which are all with symmetry for exploiting
global properties in construction of the objects. This is a way of combinatorizations
and further algebraications of an object via relationship among their subspaces.

Graphs are dealt with three vector spaces over GF(2) generated by 0 (dimensional)-
cells, 1 (dimensional)-cells and 2 (dimensional)-cells, with the finite field of order 2.
The first two spaces were known from, e.g., Lefschetz [172] by taking 0-cells and 1-cells
as, respectively, vertices and edges. Of course, a graph is only a 1-complex without two
cells.

Since the 1950s, in Wu [402] and Tutte [335, 346], the chain groups generated by
0-cells and 1-cells over, respectively, GF(2) and the real field were independently used
for describing a graph. And they both, after ten years, adopted non-adjacent pair of
edges as a 2-cell for which the cohomology on a graph was allowed to be established.

Their results especially in Wu [402–406] enabled the author to create a number of
types of planarity auxiliary graphs induced from the graph considered for the study
of the efficiency of theorems in Liu [192, 193, 202, 205, 225] as one approach. Another
approach can be seen in Liu [206–208, 226].

More interestingly, two decades after Liu [192], in Archdeacon and Siran [14], a
theta graph (network) was used for characterizing the planarity of a given graph. The
theta graph can be seen to be a type of planarity auxiliary graph (network) because
planarity auxiliary graphs are subgraphs of the theta graph. However, in virtue of the
order of theta network upper bounded by a exponential function of the size of given
graph and that of planarity auxiliary network by a quadratic polynomial of the size of
given graph, theorems deduced from a theta network are all without efficiency while
those from planarity auxiliary graphs are all with efficiency.

The effects of planarity auxiliary graphs are reflected in Chapters 8, 10, 11, 12 and
13 with a number of extensions.

On the other hand, in Liu [214] a graph was dealt with a set of polyhedra via
double covering the edge set by travels under certain condition so that travels were
treated as 2-cells. These enable us to discover homology and another type of cohomo-
logy for showing the sufficiency of Eulerian necessary condition in this circumstance.
Further, all the results for the planarity of a graph in Whitney [392] on the duality,
MacLane [261, 262] on a circuit basis and Lefschetz [171] on a circuit double cover-
ing have a universal view in this way. In fact, our polyhedra are all on such surfaces,
i.e., 2-dimensional compact manifolds without boundary. If a boundary is allowed on
a surface, the Eulerian necessary condition is not always sufficient in general. Some
people used to miss the boundary condition.

The effects of this theoretical thinking are reflected in Chapters 4, 5, 7 and 14.



VIII Preface to USTC Edition

Because of the clarification of the joint tree model of a polyhedron in Liu [218, 219]
by the present author recently on the basis of Liu [195, 196], we are allowed to write
a brief description on the theories of surfaces and polyhedra in Chapters 2 and 3 and
related topics in Chapters 6, 9 and 15.

Although quotient embeddings (current graph and its dual, voltage graph) were
quite active in constructing an embedding of a graph on a surface with its genus min-
imum in a period of decades, this book has no space for them. One reason is that
some writers such as White [382], Ringel [288] and Liu [216, 217], etc., have already
mentioned them. Another reason is that only graphs with higher symmetry are suit-
able for quotient embeddings, or for employing the covering space method, whence
this book is for general graphs without such a limitation of symmetry.

In spite of refinements and simplifications for known results, this book still con-
tains a number of new results, for example Section 5.2, the sufficiency in the proof
of Theorem 5.2.1, Sections 9.4, 11.3 and 11.4, 13.1 and 13.2, 13.4 and 13.5 etc., only to
name a few. Researches were partially supported by the NNSF in China under Grant
No. 60373030 and No. 10571013.

Y. P. Liu
Beijing
December 2007
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1 Preliminaries

Throughout, for the sake of brevity, the usual logical conventions are adopted: dis-
junction, conjunction, negation, implication, equivalence, universal quantification
and existential quantification denoted, respectively, by the familiar symbols:∨, ∧, ¬,⇒,⇔, ∀ and ∃. And, x.y is for the section y in Chapter x.

In the context, (i.j.k) refers to item k of section j in Chapter i.

1.1 Sets and relations

A set is a collection of objects with some common property, which might be numbers,
points, symbols, letters or whatever even sets except itself to avoid paradoxes. The
objects are said to be elements of the set. We always denote elements by italic lower
case letters and sets by upper case letter. The statement “x is (is not) an element ofM”
is written as x ∈ M(x ∉ M). A set is often characterized by a property. For example,

M = {x | x ≤ 4, positive integer} = {1, 2, 3, 4}.
The cardinality of a setM (or the number of elements ofM if finite) is denoted by | M |.

Let A,B be two sets. If (∀a) (a ∈ A ⇒ a ∈ B), then A is said to be a subset of B
which is denoted by A ⊆ B. Further, we may define the three main operations: union,
intersection and subtraction, respectively, as A ∪ B = {x | (x ∈ A) ∨ (x ∈ B)}, A ∩ B = {x |
(x ∈ A) ∧ (x ∈ B)} and A \B = {x | (x ∈ A) ∧ (x ∉ B)}.

If B ⊆ A, then A \B = A – B is denoted by B(A), which is said to be the complement
of B in A. If all the sets are considered as subsets of K, then the complement of A in
K is simply denoted byA. The empty denoted by 0 is the set without element. For those
operations on subsets of Kmentioned above, we have the following laws:
Idempotent law ∀A ⊆ K, A ∩ A = A ∪ A = A.
Commutative law ∀A,B ⊆ K, A ∪ B = B ∪ A;A ∩ B = B ∩ A.
Associative law ∀A,B,C ⊆ K, A ∪ (B ∪ C) = (A ∪ B) ∪ C; A ∩ (B ∩ C) = (A ∩ B) ∩ C.
Absorption law ∀A,B ⊆ K, A ∩ (A ∪ B) = A ∪ (A ∩ B) = A.
Distributive law ∀A,B,C ⊆ K,A∪(B∩C) = (A∪B)∩(A∪C);A∩(B∪C) = (A∩B)∪(A∩C).
Universal bound law ∀A ⊆ K, 0 ∩ A = 0, 0 ∪ A = A;K ∩ A = A,K ∪ A = K.
Unary complement law ∀A ⊆ K, A ∩ A = 0; A ∪ A = K.

The unary complement law is also called the excluded middle law in logic.
From the laws described earlier, we may obtain a large number of important

results. Here, only a few are listed for usage in this context.

DOI 10.1515/9783110479492-001



2 1 Preliminaries

Theorem 1.1.1. ∀A ⊆ K,
{{{{{{{{{{{{{{{

(∀X ⊆ K)((A ∩ X = A) ∨ (A ∪ X = X))⇒ A = 0;
(∀X ⊆ K)((A ∩ X = X) ∨ (A ∪ X = A))⇒ A = K.

(1.1.1)

Theorem 1.1.2. ∀A,B ⊆ K,
A ∩ B = A⇔ A ∪ B = B. (1.1.2)

Theorem 1.1.3. ∀A,B,C ⊆ K,
(A ∩ B = A ∩ C) ∧ (A ∪ B = A ∪ C)⇔ B = C. (1.1.3)

Theorem 1.1.4. ∀A ⊆ K,
A = A. (1.1.4)

Theorem 1.1.5. ∀A,B ⊆ K,
A ∪ B = A ∩ B;A ∩ B = A ∪ B. (1.1.5)

From those described above, it is seen that 0 = K and K = 0. Further, the symmetry (or
duality) that any proposition related to ∪,∩, 0,K can be transformed into another by
interchanging ∪ and ∩, 0 and K.

For A,B ⊆ K, an injection (or 1-to-1 correspondence) between A and B is a mapping
! : A → B, such that ∀a, b ∈ A, a ̸= b ⇒ !(a) ̸= !(b). A surjection between A and
B is a mapping " : A → B, such that (∀b ∈ B)(∃a ∈ A)("(a) = b). If a mapping is
both an injection and a surjection, then it is called a bijection. Two sets are said to be
isomorphic if there is a bijection between them. Two isomorphic sets A and B, or write
A ∼ B, are always treated as the same. Of course, for finite sets, it is trivial to justify if
two sets are isomorphic by the fact: ∀A,B ⊆ K, A ∼ B⇔| A |=| B |.

For a set M, let M × M = {≺ x, y ≻| ∀x, y ∈ M} which is said to be the Cartesian
product ofM. Here, ≺ x, y ≻ ̸=≺ y, x ≻ in general.

A binary relation R onM is a subset ofM×M. The adjective “binary” of the relation
will often be omitted in the context. If the relation R holds for x, y ∈ M, then we write≺ x, y ≻∈ R, or xRy. An order, denoted by ⪯, is a relation Rwhich satisfies the following
three laws:
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Reflective law ∀x ∈ M, xRx.
Antisymmetry law ∀x, y ∈ M, xRy ∧ yRx ⇒ x = y.
Transitive law ∀x, y, z ∈ M, xRy ∧ yRz ⇒ xRz.

The set M with the order ⪯ is said to be a poset (or partial order set) denoted
by (M,⪯).
Theorem 1.1.6. In a poset (M,⪯), ∀x1, x2, . . . , xn ∈ M,

x1 ⪯ x2 ⪯ ⋅ ⋅ ⋅ ⪯ xn ⪯ x1 ⇒ x1 = x2 = ⋅ ⋅ ⋅ = xn. (1.1.6)

The theorem is sometimes called the anti-circularity law. If a relation only satisfies
Reflective law and Transitive law but not Anti-symmetry law, then it is called the quasi-
order, which is denoted by ∙ ≺. A set M with ∙ ≺ is said to be a quoset denoted by
(M, ∙ ≺).
Theorem 1.1.7. Any subset S of a quoset (M, ∙ ≺) is itself a quoset with the restriction of
the quasi-order to S.

If a quasi-order R onM satisfies the symmetry law described below, then it is called an
equivalent relation, or simply an equivalence denoted by ∼.
Symmetry law ∀x, y ∈ M, xRy⇒ yRx.

For the equivalence ∼ onM, we are allowed to define the set x(M) = {y | ∀y ∈ M, y ∼ x},
which is said to be the equivalent class for x ∈ M. The set that consists of all the equi-
valent classes is called the quotient set of (M,∼) denoted byM/ ∼. In a quoset (M, ∙≺),
let ∼∙≺ be defined by

∀x, y ∈ M, x ∼∙≺ y⇔ (x∙ ≺ y) ∧ (y∙ ≺ x). (1.1.7)

Then, it is seen that ∼∙≺ is an equivalence onM and that (M/ ∼∙≺, ∙ ≺) is also a quoset.
Theorem 1.1.8. A quoset (M,∙ ≺) is a poset if, and only if, M/ ∼∙≺= M, or say, it satisfies
the anti-circularity law.

In a poset (M,⪯), we define the strict inclusion , denoted by ≺, of the order by the anti-
reflective law: ¬x ∈ M, x ≺ x and the transitive law: (x ≺ y) ∧ (y ≺ z) ⇒ x ≺ z while
noticing that x ⪯ y ⇔ (x ≺ y) ∨ (x = y). If an order ⪯ onM satisfies the alternative law
described below, then it is called a total order, or a linear order.
Alternative law ∀x, y ∈ M, x ̸⪯ y⇒ y ⪯ x.
A set with a total order is said to be a chain. The length of a chain with n elements is
defined to be n – 1. From Theorem 1.1.7 and the definitions, we may have
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Theorem 1.1.9. Any subset of a poset is a poset and any subset of a chain is a chain.

The converse of a relation R onM is, by definition, the relation R∗ : ∀x, y ∈ M, xR∗y⇔
yRx. It is obvious from inspection of the three laws for order to have

Theorem 1.1.10 (Duality principle). The converse of any order is itself an order.

In a poset (M,⪯), there may have an element a : ∀x ∈ M, a ⪯ x. Because of Anti-
symmetry law, such an element, if it exists, is a unique one which is called the least
element denoted by O. In a dual case, the greatest element, if it exists, is denoted by I.
The elements O and I, when they exist, are called universal bounds of the poset.

Theorem 1.1.11. A chain has the universal bounds if it is finite.

In a poset (M,⪯), an element a ∈ M : ∀x ∈ M, x ⪯ a ⇒ x = a is called a minimal
element. Dually, amaximal element is defined as a ∈ M : ∀x ∈ M, a ⪯ x ⇒ a = x.

Theorem 1.1.12. Any finite non-empty poset (M,⪯) has minimal and maximal elements.
A mapping 4 : M → N from a poset (M,⪯) to a poset (N,⪯) is called order preserving,
or isotone if it satisfies

∀x, y ∈ M, x ⪯ y⇔ 4(x) ⪯ 4(y). (1.1.8)

Further, if an isotone 4 : M → N satisfies

∀x, y ∈ M, 4(x) ⪯ 4(y)⇒ x ⪯ y, (1.1.9)

then it is called an isomorphism. Two posets (M,⪯) and (N,⪯) are said to be isomorphic,
that is (M,⪯) ≅ (N,⪯), if there is an isomorphism between them. All isomorphic posets
are treated as the same. However, it is not trivial as for sets to justify if two posets are
isomorphic in general.

An upper bound of a subset X of a poset (M,⪯) is an element a : ∀x ∈ X, x ⪯ a.
The least upper bound (or l.u.b.) is an upper bound b : a ⪯ b ⇒ a = b, where a is
another upper bound of X. Dually, a lower bound and the greatest lower bound (g.l.b.).
The length of a poset is the l.u.b. of the lengths of chains in the poset. A lattice is a
poset if any two x and y of whose elements has a g.l.b. ormeet denoted by x∧ y and an
l.u.b. or join denoted by x ∨ y. A lattice L = (M,⪯;∨,∧) is complete if each of its subset
X has an l.u.b. and a g.l.b.. Moreover, we have known that all finite-length lattices are
complete.
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Let 2K be the set that consists of all subsets ofK. From Section 1.1, we may see that
(2K,⊆;∪,∩) is a lattice. In fact, we have
Theorem 1.1.13. A poset is a lattice if, and only if, it satisfies the idempotent, commutat-
ive, associative and absorption laws.

Two lattices (M,⪯;∨,∧) and (N,⪯;∨,∧) are isomorphic if there is an isomorphism 4
between (M,⪯) and (M,⪯) such that ∀x, y ∈ M,

(4(x ∨ y) = 4(x) ∨ 4(y)) ∧ (4(x ∧ y) = 4(x) ∧ 4(y)). (1.1.10)

Of course, it is non-trivial as well to justify if two lattices are isomorphic in general.

1.2 Partitions and permutations

A partition of a set X is such a set of subsets of X that any two subsets are without
common element and the union of all the subsets is X.

Theorem 1.2.1. A partition P(X) of a set X determines an equivalence on X such that the
subsets in P(X) are the equivalent classes.

Let P(X) = {p1, p2, . . . , pk1 } and Q(X) = {q1, q2, . . . , qk2 } be two partitions of X. If for any
qj, 1 ≤ j ≤ k1, there exists a pi, 1 ≤ i ≤ k2 such that qj ⊂ pi, then Q(X) is called a
refinement of P(X) and P(X), an enlargement of Q(X) except only for P(X) = Q(X). The
partition of X with each subset of a single element, or only one subset which is X in its
own right is, respectively, called the 0-partition, or 1-partition and denoted by 0(X),
or 1(X).

Theorem 1.2.2. For a set X and its partition P(X), the 0-partition 0(X) (or 1-partition
1(X)) can be obtained by refinements (or enlargements) for at most O(log |X|) times in
the worst case.

Proof. In the worst case, it suffices to consider P(X) = 1(X)(or 0(X)) and only one more
subset produced in a refinement. Because of

1 + 2 + 22 + ⋅ ⋅ ⋅ + 2log |X| = 21+log |X| – 1
2 – 1

= O(|X|), (1.2.1)

the times of refinements (or enlargements) needed for getting 0(X) (or 1(X)) is
O(log |X|). The theorem is obtained. ◻
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For two partitions P = {p1, p2, . . . , ps} and Q = {q1, q2, . . . , qt} of a set X, the family
intersection of P and Q is defined to be

P ∩ Q =
s⋃
i=1
{pi ∩ q1, pi ∩ q2, . . . , pi ∩ qt}. (1.2.2)

Actually, {pi ∩ q1, pi ∩ q2, . . . , pi ∩ qt} for i = 1, 2, . . . , l are partitions of pi.
Theorem 1.2.3. The family intersection satisfies the commutative and associate laws.
And further, P ∩ Q is a refinement of both P and Q.

A permutation of a set X is a bijection of X to itself. Because elements in a set are no dis-
tinction, they are allowed to be distinguished by natural numbers as X = {x1, x2, . . .},
or simply X = {1, 2, . . .}. So, a permutation of set L = {1, 2, . . . , l} can be expressed as

( 1 2 3 . . . l
i1 i2 i3 . . . il ) . (1.2.3)

If ij = j for all 1 ≤ j ≤ l, the permutation is called the identity. From Theorem 1.1.4, the
identity is unique.

Theorem 1.2.4. Let 0 be a permutation of set L = {1, 2, . . . , l}, then for any i ∈ L there is
an integer n ≥ 0 such that pni = i.

Proof. By contradiction. If there is no such an integer, by the 1–to–1 property it is a
contradiction to the finiteness of l. ◻
On the basis of this theorem, the set Xi = {i,0i,02i, . . . , 0n–1i} is called the orbit of i.
Because any element in Xi has the same orbit as i, it can also be called an orbit of 0,
denoted by Orb0{i}, or simply {i}0. Because any two orbits of a permutation are either
same or disjoint, all orbits form a partition of L.

An orbit with the order in its own right is called a cyclic permutation, or in brief,
a cycle. The cycle corresponding to Orb0{i} is denoted by Orb0(i), or simply (i)0. Be-
cause of the disjointness among orbits, by considering that the composite of disjoint
cycles satisfies the commutative law and the associate law, a permutation can always
be expressed as a product of cycles. The order of a cycle is one greater than its length,
i.e., the number of elements in the cycle. A cycle of order 1 is called a fixed point of
the permutation. All the fixed points in a permutation are always omitted in its cyclic
expression.
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As an example,

( 1 2 3 4 5 6 7
2 5 1 6 3 4 7

) = (1, 2, 5, 3)(4, 6)(7)

= (1, 2, 5, 3)(4, 6).

However, the product of two cycles with a common element is not commutative in
general. For example, P1 = (1, 3, 2) and P2 = (1, 2, 4),

P1P2 = (2, 4, 3) ̸= (1, 3, 4) = P2P1.

Because Csk = 1 on the order k of a cycle C and any positive integer s, it can be seen
from Theorem 1.2.4 that if permutation 0 = C1C2 ⋅ ⋅ ⋅ Cn, where Ci, 1 ≤ i ≤ n, are all the
disjoint cycles of order ni, then 0 has its order [l1, l2, . . . , ln], the least commonmultiple
(lcm{l1, l2, . . . , ln} = [l1, l2, . . . , ln]) of l1, l2, . . ., and ln.
Theorem 1.2.5. The unique inverse of a cycle C = (c1, c2, . . . , cn) is the cycle C–1 =
(cn, cn–1, . . . , c1). ◼
Let G|L| be the set of all permutations on L. The cardinality of L is also called the degree
of permutations. For two permutations 0 and 3 in G|L|, if there is a permutation 1 ∈ G|L|
such that 0 = 131–1, then 0 and 3 are conjugates for 1.

Let 𝛾 = (x1, x2, . . . , xr) be a cycle and 4, another permutation in G|L|. For y ∈ L, if
x = 4–1y is not in 𝛾, then 4𝛾4–1y = 4x = 4(4–1y) = y. Otherwise, if x = 4–1y = xi(1 ≤ i ≤ r),
then 4𝛾4–1y = 4xi = xi+1. This implies that

4𝛾4–1 = 4(x1, x2, . . . , xr)4–1
= (4x1, 4x2, . . . , 4xr). (1.2.4)

For 0 ∈ G|L|, let c(0) be the number of cycles in its cyclic partition and li, the number
of cycles of length i, 1 ≤ i ≤ c(0). The cyclic type of permutation 0 is defined to be the
decreased sequence of li, 1 ≤ i ≤ c(0).
Theorem 1.2.6. Two permutations are conjugate if, and only if, they have a same cyclic
type.

Proof. The necessity is obvious because of eq. (1.2.4) for cyclic partition repres-
entation of permutations. Conversely, for any two permutations with a same cyclic
type, assume with one cycle each without generality as 0 = (x1, x2, . . . , xr) and 3 =
(y1, y2, . . . , yr), it is seen from eq. (1.2.4) that let

4 = ( x1 x2 . . . xr
y1 y2 . . . yr ) ,

then 404–1 = 3. Therefore, 0 and 3 are conjugates. ◻
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Two particular cases should be mentioned for conjugate pair {0, 3} of permutations.
One is for 0 = 3 and the other, 0 = 3–1. The former is called self-conjugate and the later,
inverse conjugate. If 0 = (x1, x2, . . . , xr) and 3 = (y1, y2, . . . , yr), then the self-conjugate
is only for 4 = 1r, the identity of degree r and the inverse conjugate is for

4 = (x1, xr)(x2, xr–1) . . . (x⌊r/2⌋, x⌊r/2⌋+1).
Let D = ⟨a1, a2, . . . , ad⟩ be a set with linear order a1 < a2 < ⋅ ⋅ ⋅ < ad. An ordered pair⟨ai, aj⟩ is called an inversion if 1 ≤ j < i ≤ d. Let sgn(0) denote the total number of
inversions in the sequence ≺ x1, x2, . . . , xd ≻ with linear order x1 ≺ x2 ≺ . . . ≺ xd for

0 = (d1 d2 . . . dr
x1 x2 . . . xr ) .

The permutation 0 is said to be even or odd accordingly as sin(0) is even or odd. The
mapping (–1)sgn(0) from a permutation 0 to {1, –1} is called the parity of 0. A cycle of
length 2 is called transposition. A transposition (xi, xj), assume xi < xj and i < jwithout
loss of generality, is always an odd permutation because of odd number of inversions
as ⟨xj, xi⟩ with pairs (xj, xk) and (xk, xi) for i < k < j.

By observing that a cycle

(a1, a2, . . . , al) = (a1, al)(a1, al–1) ⋅ ⋅ ⋅
(a1, a3)(a1, a2),

(1.2.5)

any permutation can be represented by a composite of transpositions.
Because for 1 ≤ j < k < l,

(aj, ak+1) = (ak, ak+1)(aj, ak)(ak, ak+1), (1.2.6)

the transposition representations of a permutation may have different numbers of
transpositions. A transposition in form as ai, ai+1, 1 ≤ i < l, is said to be adjacent.
Theorem 1.2.7. Any permutation 0 of degree at least 2 has an adjacent transposition
representation of the same congruent number of transpositions modulo 2 as sgn(0).

Proof. First, we show the existence of such a representation. By virtue of eqs. (1.2.5)
and (1.2.6), an adjacent transposition representation can be found. Then, by consid-
ering that a transposition and the two sides of eq. (1.2.6) have all an odd number of
inversions, such a representation has its total number of inversions the congruent
number of transpositions as sgn(0). ◻
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Theorem 1.2.8. For any two permutations 0 and 3,

sgn(03) = sgn(0) + sgn(3) (mod 2). (1.2.7)

Proof. Since each transposition involves odd number of inversions, from
Theorem 1.2.7, expression (1.2.7) holds. ◻
By virtue of eq. (1.2.6), we have

(–1)sgn(03) = (–1)sgn(0)(–1)sgn(3). (1.2.8)

i.e., the parity of composite of two permutations is the product of their parities.

Theorem 1.2.9. All transposition representations of a permutation have the same parity
of the permutation.

Proof. A direct conclusion of Theorem 1.2.8 in the case that one of 0 and 3 is the
identity. ◻
1.3 Graphs and networks

A graph denoted by G = (V,E) is a set V, the vertex set whose elements are called
vertices, with a binary relation E ⊆ V ∗ V = {(u, v) | ∀u, v ∈ V, u ̸= v}. Here, (u, v) =
(v, u). E is said to be an edge set whose elements are called edges. Occasionally, (u, u)
and repetition of an element in E are allowed to be called a loop and a multi-edge,
respectively. |V| is the order ofG , which is denoted by -, and | E |, the size denoted by :.
Of course, only finite graphs, which are those of finite order, are considered without
specific explanation in this book. The graphwhose edge set isV∗V is called a complete
graph denoted by K-, or simply K when without confusion. If a graphH = (V(H),E(H))
satisfies V(H) ⊆ V and E(H) ⊆ E, then it is called a subgraph of G denoted by H ⊆ G.
It is easily seen that all graphs are subgraphs of a complete graph and that the empty
graph denoted by 0 as well is a subgraph of any graph. A graph without an edge is an
isolated graph and the graph with a single vertex, trivial graph.

Theorem 1.3.1. ∀V1 ⊆ V2,E1 ⊆ E2,
(V1,E1) = G1 ⊆ G2 = (V2,E2)⇔ E1 ⊆ V1 ∗ V1. (1.3.1)
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Similarly to the case for sets in Section 1.1, we can define the operations: union and
intersection as follows: ∀G1 = (V1,E1),G2 = (V1,E2) ⊆ K,

G1 ∪ G2 = (V1 ∪ V2,E1 ∪ E2); (1.3.2)
G1 ∩ G2 = (V1 ∩ V2,E1 ∩ E2). (1.3.3)

It is easily shown that (2K,⊆), 2K is the set of all subgraphs of K, is a poset with the
idempotent, commutative, associative and absorption laws for ∪ and ∩ defined earlier.
Therefore, from Theorem 1.1.13, (2K,⊆;∪,∩) is a lattice.
For an edge e = (u, v) ∈ E, u and v are said to be adjacent, or simply write “u adj v”, and
e is said to be incident with u or v, or write “e ind u” or “e ind v”. Conversely, u or v is
said to be incident to e, or write “u ind e” or “v ind e” aswell. An edge can be considered
to consist of two semi-edges: [u, v) and (u, v]. The valency of vertex v, denoted by 1(v), is
the number of semi-edges incidentwith v. A vertex is odd if 1(v) = 1 (mod 2); otherwise,
even. A vertex of valency k is said to be k-valent for k ≥ 0. A 0-valent vertex is called
an isolated vertex. An articulate vertex is 1-valent.

Theorem 1.3.2. In a graph, the number of odd vertices is even.

A subgraph H of G is called a vertex-induced subgraph denoted by H = G[V(H)] if
E(H) = {(u, v) | ∀u, v ∈ V(H), (u, v) ∈ E}. If a subgraph H of G satisfies that V(H) = {v |∃e ∈ E(H), v ind e}, then it is called an edge-induced subgraph denoted byH = G[E(H)].
We may see that ∀H ⊆ G,

H = G[V(H)]⇔ ∀u, v ∈ V(H), ¬e = (u, v) ∈ E \E(H)
and

H = G[E(H)]⇔ ¬v ∈ V(H), 1H(v) = 0.

Let 2[G;v] and 2[G;e] be the sets of all vertex- and edge-induced subgraphs of G, respect-
ively. It is easily shown from inspection of the three laws for partial order in Section 1.1
that both (2[G;v],⊆) and (2[G;e],⊆) are posets. Further, both (2[G;v],⊆) and (2[G;e],⊆) are
lattices, although the union and the intersection of induced subgraphs are not closed
on them in general.

A trail between two vertices u and v in G denoted by Trl(u, v) is a sequence of edges
e1, e2, . . . , el, such that ei = (vi, vi+1), i = 1, 2, . . . , l, u = v1, v = vl+1. Here, l is called the
length. When u = v, the trail Trl(u, v) is called a travel denoted by Trl(u), or simply Trl. If
all the edges in Trl(u, v) are distinct, then the trail is called a walk, denoted by Tr(u, v).
When u = v, thewalk Tr(u, v) is called a tour, denoted by Tr(u), or simply Tr. If the edge-
induced subgraph H = G[E(Tr(u, v))] satisfies that (1H(u) = 1H(v) = 1) ∧ (1H(vi) = 2, i =
1, 2, . . . , l – 1), then the walk is called a path, denoted by P(u, v). When u = v, the path
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P(u, v) is a circuit denoted by C(u), or C. Of course, walks and paths can be both seen
as edge-induced subgraphs. Two vertices are said to be connected if there is a path
between them. If all pairs of vertices in G are connected, then G is a connected graph.
It is easy to check by the reflective, symmetry and transitive laws in Section 1.1 that
the connectedness between two vertices is an equivalence on the vertex set, which is
denoted by ∼c.
Theorem 1.3.3. A graph G = (V,E) is connected if, and only if, | V/∼c|= 1.

Let 3 =| V/ ∼c|, which is called the number of components of G. For a vertex v, we
define G – v = (V \ {v},E \Ev), where Ev = {e | ∀e ∈ E, e ind v }. A vertex v is called a
cut-vertex if 3(G – v) > 3. Similarly, a cut-edge e : 3(G – e) > 3, G – e = (V,E \ {e}). A
tree is such a graph that it is connected and is of least size. We may show that all trees
of order - are of the same size, which is - – 1. A graph whose components are all trees
is called a forest.

Theorem 1.3.4. A graph of order - is a tree if, and only if, its size is - – 1 and all its edges
are cut edges.

A graph that has neither isolated vertex nor cut vertex is called a block, or a non-
separable one. It is obvious from inspection of O1, Õ2 and O3 in Section 1.2 that the
statement “two edges are on the same circuit” defines an equivalence denoted by ∼b
on the edge set of a graph.

Theorem 1.3.5. A graph without isolated vertex is non-separable if, and only if,|E/∼b|= 1.

A subgraph H of G is said to be of spanning if V(H) = V. A spanning circuit is called
a Hamiltonian circuit and a spanning tour on which each edge of the graph occurs,
a Eulerian tour in the graph. If a graph has a Hamiltonian circuit, or a Eulerian tour,
then it is a Hamiltonian, or a Eulerian graph, respectively.

Theorem 1.3.6. A connected graph is Eulerian if, and only if, all the valencies of its
vertices are even.

For a graph G, if V = A + B (i.e., A ∪ B provided A ∩ B = 0) and both G[A] and G[B]
are isolated graphs, then G is called a bipartite graph denoted by G = (A,B;E). If E ={e = (u, v) | ∀(u ∈ A)(v ∈ B)}, then the bipartite graph (A,B;E) is called a complete one
denoted by K!,", where ! =| A | and " =| B |.
Theorem 1.3.7. A graph is bipartite if, and only if, it is without a circuit of odd length.

If any pair of elements in a subset of V or E is not adjacent, then the subset is said
to be independent. An independent subset of E for a graph G = (V,E) is also called a
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matching. If a matching induces a spanning subgraph of G, then it is said to be perfect.
For a ∈ V, let Na = {v | ∀v ∈ V, v adj a} and for A ⊆ V, let

N(A) = ⋃
a∈A

Na\A.
Theorem 1.3.8. A bipartite graph G = (X,Y;E) has a perfect matching if, and only if,∀A ⊆ X and ∀A ⊆ Y, | N(A) |≥| A |.
It is known that any graph can be realized as a subset of 3-Euclidean space such that
the edges are represented by sections of curves (in fact, straight segments here) any of
whose pairs is without common point except only for the end points of the sections,
which represent the common end of the corresponding edges. Such a representation
of a graph is called an embedding in the space. However, not all graphs have an em-
bedding in the plane, or 2-Euclidean space. If a graph has an embedding in the plane,
then it is said to be planar.

A bisection is an operation of transforming G = (V,E) into a graph (V +{w}, (E \ {(u, v)}) + {(u,w), (w, v)}). If a graph can be obtained from another one by a
series of bisections and/or the inverses, then the two graphs are said to be homeo-
morphic.

Theorem 1.3.9. A graph is planar if, and only if, it has no subgraph homeomorphic to K5
or K3,3.

Two graphs G1 = (V1,E1) and G2 = (V2,E2) are said to be isomorphic if there is a
bijection 4 : V1 → V2 such that

∀u, v ∈ V1, (u, v) ∈ E1 ⇔ (4(u), 4(v)) ∈ E2. (1.3.4)

The bijection 4 defined by eq. (1.3.4) is called an isomorphism between G1 and G2. An
automorphism of G is an isomorphism between G and itself. It would be the most dif-
ficult problem among those are mentioned to justify if two graphs are isomorphic in
general.

Similarly, a digraph (or a directed graph) denoted by D = (V,A) is a set V, which is
also called the vertex set, with a binary relation A ⊆ V ×V = {≺ u, v ≻| ∀u ∈ V,∀v ∈ V},
which is called the arc set. All the above discussions have analogues in the directed
case. Particularly, a poset P = (M;⪯) can be represented by a digraph Dos = (M,Aos),
where ≺ x, y ≻∈ Aos⇔ (x ⪯ y) ∧ (¬z, x ≺ z ≺ y), or say x is covered by y for x, y ∈ M. If a
graph of order - is associated with an injection (almost in any case, a bijection) from
its vertex set to (onto) the integer set ({1, 2, . . . , -}), then it is said to be labelled. The
injection is called the labelling. The image of a vertex under the labelling is called
its label. Of course, an isomorphism between labelled (directed) graphs has to be
considered with the labels on vertices (directions on edges).
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A network N is such a graph G = (V,E) with a real function w(e) ∈ R, e ∈ E on E,
and hence write N = (G;w). Usually, a network N is denoted by the graph G itself if no
confusion occurs.
Finite recursion principle On a finite set A, choose a0 ∈ A as the initial element at
the 0th step. Assume ai is chosen at the ith, i ≥ 0, step with a given rule. If not all
elements available from ai are already chosen, choose one of them as ai+1 at the i + 1st
step by the rule, then a chosen element will be encountered in finite steps unless all
available elements of A have been chosen.

Finite restrict recursion principle On a finite set A, choose a0 ∈ A as the initial
element at the 0th step. Assume ai is chosen at the ith, i ≥ 0, step with a given rule.
If a0 is not available from ai, choose one of elements available from ai as ai+1 at the
i + 1st step by the rule, then a0 will be encountered in finite steps unless all available
elements of A are chosen.

The two principles above are very useful in finite sets, graphs and networks, even in a
wide range of combinatorial optimizations.

Let N = (G;w) be a network where G = (V,E) and w(e) = –w(e) ∈ Zn = {0, 1, . . . ,
n – 1}, i.e., mod n, n ≥ 1, integer group. For example, Z1 = {0}, Z2 = B = {0, 1}, and
so on. Suppose xv = –xv ∈ Zn, v ∈ V, are variables. Let us discuss the system of
equations

xu + xv = w(e) (mod n), e = (u, v) ∈ E (1.3.5)

on Zn.

Theorem 1.3.10. System of equations (1.3.5) has a solution on Zn if, and only if, there is
no circuit C such that

∑
e∈C

w(e) ̸= 0 (mod n) (1.3.6)

on N.

Proof. Necessity. Assume C is a circuit satisfying eq. (1.3.6) onN. Because the restricted
part of eq. (1.3.5) on C has no solution, the whole system of equations (1.3.5) has to
have no solution either. Therefore, N has no such circuit. This is a contradiction to the
assumption

Sufficiency. Let x0 = a ∈ Zn, start from v0 ∈ V. Assume vi ∈ V and xi = ai at step
i. Choose one of ei = (vi, vi+1) ∈ E without used (otherwise, backward 1 step as the
step i). Choose vi+1 with ai+1 = ai + w(ei) at step i + 1. If a circuit such as {e0, e1, . . . , el},
ej = (vj, vj+1), 0 ≤ j ≤ l, vl+1 = v0, occurs within a permutation of indices, then from
eq. (1.3.6)
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al+1 = al + w(el)
= al–1 + w(el–1) + w(el). . .
= a0 +

l∑
j=0

w(ej) = a0.

Because the system of equations obtained by deleting all the equations for all the
edges on the circuit from eq. (1.3.5) is equivalent to the original system of equations
(1.3.5). By virtue of the finite recursion principle a solution of eq. (1.3.5) can always be
extracted. ◻
When n = 2, this theorem has a variety of applications. In Ref. [194], where The-
orem 1.3.7 is a special case, some applications can be seen. Further, its extension on a
non-Abelian group can also be done while the system of equations are not yet linear
but quadratic.

A graph is said to be even if the valency of each vertex is even.

Theorem 1.3.11. A graph is even if, and only if, its edges set has a cycle partition.

Proof. Since what is obtained from an even graph by deleting all the edges on a cycle
is still an even graph, based on the finite recursion principle, the theorem is done. ◻
Let G = (V,E) be a graph where V = ¶(X), and E = {Bx|x ∈ X} where ¶(X) is a
partition on

B(X) = ⋃
x∈X

Bx

and Bx = {x(0), x(1)} for a set X. Two graphs G1 = (V1,E1) and G2 = (V2,E2) are
isomorphic if, and only if, there exists a bijection ): X1 → X2 such that the diagrams

X1
)󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ X2

31

↑↑↑↑↑↑↑↑↓
↑↑↑↑↑↑↑↑↓32

X1 󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→) X2

(1.3.7)

for 3i = Bi, ¶i, i = 1, 2, are commutative. Let Aut(G) be the automorphism group of G.
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On the other hand, a semi-arc isomorphism between two graphs G1 = (V1,E1) and
G2 = (V2,E2) is defined to be such a bijection 4: B1(X1)→ B2(X2) that

B1(X1)
4󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ B2(X2)

31

↑↑↑↑↑↑↑↑↓
↑↑↑↑↑↑↑↑↓32

B1(X1) 󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→4 B2(X2)

(1.3.8)

for 3i = Bi, ¶i, i = 1, 2, are commutative. Let Aut1/2(G) be the semi-arc automorphism
group of G.

Theorem 1.3.12. If Aut(G) and Aut1/2(G) are, respectively, the automorphism and semi-
arc automorphism groups of graph G, then

Aut1/2(G) = Aut(G) × Sl2, (1.3.9)

where l is the number of self-loops on G and S2 is the symmetric group of degree 2.

Proof. Since each automorphism of G just induces two semi-arc isomorphisms of G for
a self-loop, the theorem is true. ◻
1.4 Groups and spaces

If a group denoted by A = (X, ◊) is a set X with a binary operation 𝛾:X ×X → X, it would
be better to write x◊y for ≺ x, y ≻ 𝛾 referring to “◊” as the operation, such that the laws
A1, A2 and A3 described below are satisfied.
AAA1 (Associative law) ∀x, y, z ∈ X, (x◊y)◊z = x◊(y◊z).
AAA2 (Identity law) (∃1A (or simply 1) ∈ X)(∀x ∈ X, x◊1A = x).
AAA3 (Inverse law) (∀x ∈ X)(∃y ∈ X, x◊y = 1A).

The element 1 in A2 is called a right identity and the element y in A3 a right inverse of x.
We may also define a left identity and a left inverse of an element. However, it is easily
shown that they are all unique and the left one equals to the right. So we are allowed
to call 1 the identity and x–1 the inverse of x.

The order of a group A = (X, ◊) is defined to be | A |= |X|. We can see that (1, ◊) is
a group, which is called the trivial group or the identity group. In this book, a group
A = (X, ◊) is always written as A = X without specific indication. If a group A satisfies
the condition A4 below, then it is said to be Abelian.

A4 (Commutative law) ∀x, y ∈ A, x◊y = y◊x.
There are two commonly used ways of writing the group operation of A. One is the
additive notation by writing x◊y as a “sum” x + y with the identity 0A ( or 0 ) and the
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inverse –x of x especially for Abelian groups. The other is the multiplicative notation
by using a “product” x ∙ y ( or xy), 1A ( or 1 ) and x–1 as x◊y, the identity and the inverse
of x, respectively, for general groups.

Let A = (X, ∙) be a group and let Y ⊆ X. If D = (Y, ∙) is a group, then D is called
a subgroup of A, denoted by D ⊆ A. Of course, the identity group is a subgroup of any
group and a group is a subgroup of itself.

Theorem 1.4.1. ∀Y, 0 ̸= Y ⊆ X,D = (Y, ∙) ⊆ A = (X, ∙)⇔ (∀x, y ∈ Y)(xy–1 ∈ Y).
Let Ai = (Xi, ∙) ⊆ A = (X, ∙), i ∈ I. It is easily seen that ∩i∈IAi = (∩i∈IXi, ∙) ⊆ A, which is
called the intersection. For an S ⊆ X, the intersection, denoted by ⟨S⟩, of all subgroups
that contains S is called the subgroup generated by S in A. The subgroup ⟨∪i∈IXi⟩ de-
noted by ∪i∈IAi is called the join of subgroups Ai, i ∈ I. Let AAA be the set that consists of
all subgroups of A. Then, it is obvious from inspection of the laws O1–O3 in Section 1.1
and Theorem 1.1.13 that (AAA,⊆;∪,∩) is a lattice, more precisely, a complete lattice be-
cause any subset of AAA has the l.u.b., which is the intersection, and the g.l.b., which is
the join, in AAA.

A subgroup D of a group A is said to be normal, or write D ⊲ A, if it satisfies one of
the following three equivalent conditions:

∀x ∈ A, xD = Dx ⇔ ∀x ∈ A, x–1Dx = D⇔ ∀x ∈ A,∀y ∈ D, x–1yx ∈ D. (1.4.1)

It is easily seen that any subgroup of an Abelian group is normal. However, in gen-
eral, there exist subgroups that are not normal for a non-Abelian group. One may also
see that the set of all normal subgroups of a group forms a complete lattice with the
inclusion as the order and with the intersection and the join as the two operations.

Because it can be shown that the relation, denoted by ∼N :
x ∼N y ⇔ ∃h ∈ N, x = hy, (1.4.2)

provides an equivalence on the set X of the group A(X, ∙) for N ⊲ A. We are allowed to
define the quotient (or factor) group of N in A to be

A/N = (X/∼N , ∙), (1.4.3)

where (Nx)(Ny) = N(xy). The order of A/N is called the index of N in A.
Let A and D be two groups. A function ! : A→ D is called a homomorphism from A

to D if

∀x, y ∈ A, !(xy) = !(x)!(y). (1.4.4)
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Because o : A → 1D is a homomorphism, which is called zero homomorphism, the set
Hom (A,D) of all homomorphisms from A to D is always non-empty. A homomorphism
from A to A itself is said to be an endomorphism of A. The identity function ) : A→ A is
an endomorphism of A.

For a homomorphism ! from A to D, let

{{{{{
Im ! = !(A) = {!(x) | ∀x ∈ X};
Ker ! = {x | ∀x ∈ X, !(x) = 1D}, (1.4.5)

which is said to be the image, the kernel of !, respectively. It is easy to check by The-
orem 1.4.1 that Im ! ⊆ D and Ker ! ⊲ A. If a homomorphism ! from A to D satisfies
Ker ! = 1A, then ! is called a monomorphism. If a homomorphism ! from A to D has
Im ! = D, then ! is called an epimorphism. A homomorphism that is both a mono-
morphism and an epimorphism is said to be an isomorphism. Two groups A and D are
said to be isomorphic, or written as A ≅ D, when there is an isomorphism between
them. An isomorphism from A to A itself is called an automorphism of A. It can be eas-
ily shown from inspection of the laws A1–A3 that the set of all automorphisms of A is a
group, which is called the automorphism group of A, denoted by Aut A.

Theorem 1.4.2 (First isomorphism law). ∀! ∈ Hom(A,D),

A/Ker ! ≅ Im !.

Based on Theorem 1.4.2, we are allowed to call A/Ker ! the coimage of !. If N ⊲ A, then
the mapping 6 : x 󳨃→ Nx is an epimorphism from A to A/N with Ker 6 = N. We call 6
the canonical homomorphism.

For two groups D = (Y, ∙) ⊆ (X, ∙) = A, let AD = (XY, ∙), where XY = {xy |∀x ∈ X,∀y ∈ Y}. One may see that ∀D ⊆ A,N ⊲ A⇒ D ∩ N ⊲ D.
Theorem 1.4.3 (Second isomorphism law). ∀D ⊆ A,∀N ⊲ A,

D/N ∩ D ≅ ND/N.
Let N and Q be two normal subgroups of a group A and let N ⊆ Q. Then, it is known
that Q/N ⊲ A/N.

Theorem 1.4.4 (Third isomorphism law). ∀N,Q ⊲ A,
N ⊆ Q⇒ (A/N)/(Q/N) ≅ A/Q.

Let I be a group, S a non-empty set and 3 : S → I, a function. Then, I, or precisely
(I, 3), is said to be free on S if for each function ! : S → A, there is a unique homo-
morphism " : I → A such that ! = "3. A group which is free on some set is called a
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free group. From the definition it can be derived that 3 is injective and that Im 3 gen-
erates I. In fact, it can be shown that for any non-empty set S there exists a group I
and a function 3 : S→ I such thatI is free on S andI = ⟨Im 3⟩.
Theorem 1.4.5. IfI1 is free on S1 andI2 is free on S2, thenI1 ≅ I2 ⇔| S1 | = | S2 |.
This theorem allows us to define the rank of a free group as the cardinality of any set
on which it is free. Further, we have known that any group is an image of a free group.
Such an image is called a presentation of the group. More precisely, a free presenta-
tion of a group A is an epimorphism 0 : I → A,I is a free group. From Theorem 1.4.2,
we have I/Ker 0 ≅ A. The elements of Ker0 are called relators of the presentation.
Therefore, any group can be characterized by generators and relaters. Although a
presentation of a group is known, to justify if two groups are isomorphic in general
is still not easy because a group may have different kinds of presentations.

A space (or precisely a vector space or linear space ) over FFF denoted by (X ,FFF; +, ∙)
(or simply write X ) is an Abelian group (X , +), or X as well, associated with a
field (FFF, +, ∙), or simply FFF, and two binary operations: “+”, called the sum and “∙”,
the scalar product, satisfying the following four axioms: Vects.1–4. The sum is with
the same symbol as the addition on the group X and the addition on the field FFF. The
scalar product a ∙ A, or simply aA, is defined for a ∈ FFF and A ∈X and is with the same
symbol as the multiplication on FFF. Members of X are called vectors, and those of FFF,
scalars.
Vect.1 ∀a ∈ FFF, ∀A,B ∈X , a(A + B) = aA + aB.
Vect.2 ∀a, b ∈ FFF, ∀A ∈X , (a + b)A = aA + bA.
Vect.3 ∀a, b ∈ FFF, ∀A ∈X , (ab)A = a(bA).
Vect.4 ∀A ∈X , 1A = A.

It seems that the only notational distinction we have to make between vectors and
scalars is to denote the zero elements ofX andFFF by 0X and 0FFF, respectively. However,
since it is easily shown, from the axioms Vects.1–4, that ∀A ∈ X , 0FFFA = 0X and that∀a ∈ FFF, a0X = 0X , the distinction will almost always be dropped and 0FFF, 0X be
written simply 0.

A subsetY ⊆X of a spaceX overFFF is said to be a subspace , denoted byY ⊆vect
X (or simplyY ⊆X without confusion), ofX ifY is a space overFFF in its own right,
but with respect to the same operations as X . The zero vector 0 belongs to any space
and itself is a space called the zero space or trivial space denoted by 0 as well. Any
non-zero vector of order 2 with 0 here forms a subspace, which is denoted by J .

Theorem 1.4.6. ∀Y ⊆X , Y ⊆vect X ⇔
(∀A,B ∈ Y ,A + B ∈ Y ) ∧ (∀a ∈ FFF, ∀A ∈ Y , aA ∈ Y ).
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Proof. The necessity is straight forward. Conversely, because Y ⊆ X , from the
last statement, Vects.2–4 hold and from the first statement, Vect.1 holds for Y . The
sufficiency is obtained. ◻
Apparently, for spaces we are also allowed to introduce the two operations: ∩, the
intersection, and ∪, the join, as described before for groups and find that (2X ,⊆;∪,∩)
forms a lattice, of course, a complete one.

In what follows, we are only concerned with the field FFF = GF(2), the finite field
of two elements for spaces. In this case, the space is called a binary space. For any
A ∈ X , we always have A + A = 0, the zero vector. That is of characteristic 2. Suppose
X = 2X is the free Abelian group ⟨x| ∀x ∈ X⟩ generated by all the elements of X. Then,
a vector is also a subset of X. We always employ the same symbol to denote a vector of
X and a subset in X. Let A ∈X , then

A = ∑
x∈X

Axx = ∑
x∈A

x, (1.4.6)

where Ax is said to be the coefficient, or component of A on x. Of course, Ax = 1, if
x ∈ A; 0, otherwise.

On the space X , we define an inner product denoted by (A,B) for A,B ∈X as

(A,B) = ∑
x∈X

AxBx. (1.4.7)

By this notation, we have the relation:

Ax = (A, x),∀x ∈ X. (1.4.8)

If for A,B ∈ X , (A,B) = 0, then A and B are said to be orthogonal denoted by A⊥B or
B⊥A from the symmetry: (A,B) = (B,A). Here, one may see

∀A,B ∈X , (A,B) = 0⇔ |A ∩ B| = 0 (mod 2). (1.4.9)

If (A,A) = 0, then vector A is said to be even. Let A (X ) be the set of all even vectors
in X . It can be seen from inspection of axioms Vects.1–4 that A (X ) is a subspace of
X and is called the alternating (or symplectic) space on X.

Further, we may also see that for A ∈X given,

A = 0⇔ ∀B ∈X , (A,B) = 0. (1.4.10)

Or, in other words, the inner product is non-degenerate.
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If a vector A satisfies that ∀B ∈ B, (A,B) = 0, then it is said to be orthogonal to B

and denoted by A⊥B.
Let A and B be two subspaces of X . If

A = {A| ∀A ∈X ,A⊥B}, (1.4.11)

then A is said to be the orthogonal space of B in X and is denoted by A = B⊥.
Moreover, from the symmetry of the inner product, we have

(B⊥)⊥ = B. (1.4.12)

In Chapters 4 and 8, we shall see a number of spaces related to graphs. Almost all
results for them can be extended to general spaces over GF(2), the finite field of two
elements.

1.5 Notes

1.5.1 This book is in principle designed to be self-contained in the background
presented in this chapter. One might still like to read more materials related
to topology. References can be chosen such as Alexandroff [5], Giblin [97],
Greenberg [107], Massey [269], Stillwell [321], Agoston [2], or Lefschetz [173],
Williams [398].
1.5.2 Permutations are established from partitions on a set. Such an idea enables us
to observe embeddings, or super maps of a graph as permutations, from the graph
as a partition. A description in a certain detail can be seen in Liu [218, 219, 224, 234].
Most books on basic algebra involve permutations such as Jacobson [157], Gilbert
[98], particularly Dixon and Mortimer [73].
1.5.3 A graph turns out a partition of the ground set from a set by a binary group
sticking on from Liu [218]. Although a great number of books on graphs have ap-
peared in literature as Bellman et al. [24], Berge [25], Biggs [31], Bondy and Murty
[35], Capobianco and Molluzzo [39], Chan [41], Chen [43], Fiorini and Wilson [86],
Golumbic [105], Harary [122], Iri [156], Kaufman [162], Kuo [165], Lovasz [252], Tutte
[347, 350], Zykov [427], et al. Only a few, more or less, directly related to this book are
listed as Ore [273], Tutte [349], Ringel [286], White [382], Lefschetz [172], Wu [404] and
Liu [216, 217], particularly more popular book: Gross and Tucker [108].
1.5.4 Those mentioned in Section 1.4 are all extracted from Liu [216]. One might also
like to read more about general groups such as MacLane and Birkhoff [263], and
Robinson [292].
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1.5.5 One might see that the vector space can be generalized to an abstract linear
space from, for an example, Theorem 1.2.1 in Liu [237]. To read more about linear
space (advanced) is referred to Roman [293].
1.5.6 By considering theoretical efficiency, basic knowledge of data structure, al-
gorithm and complexity should be known. The reader is suggested to read from Aho
et al. [3], Pralts [277], Garey and Johnson [95] if necessary.



2 Polyhedra

2.1 Polygon double covers

A polygon, denoted by (a, b, c, . . .), is a finite set of letters in a cyclic order. In general,
such a polygon can be represented by the infinite face of a connected plane graph
conformed with convex polygons and articulate edges, or the inner face of a regular
polygon. Hence, the letters in a polygon are allowed with repetition of each letter at
most twice (with the same power or different powers: 1 always omitted and –1) in the
first case. For a letter a, a–1 is called the inverse of a. The inverse satisfies the following
two rules:
Inverse rule 1 For a letter a, (a–1)–1 = a.
Inverse rule 2 For two letters a and b, (ab)–1 = b–1a–1, or (a, b)–1 = (b–1, a–1).

Two polygons A1 and A2 are dealt with the same if one becomes the other by one of the
following alternatives:
No.diff.gon1 For a ∈ A1, A2 is different from A1 only in interchanging the positions of
the two occurrences of a, if any.
No.diff.gon2 For a, b ∈ A1, A2 is different from A1 only in interchange between a
and b.

Let polygon A = (a1, a2, . . . , al), then polygons (a2, a3, . . . , a1), . . . , (al, a1 , . . . , al–1) are,
respectively, called cyclic left shift of A in 1, 2, . . . , l – 1 bits.
No.diff.gon3 A2 is any of all the cyclic left shifts of A1.

The polygon (al, . . . , a2, a1) is called a reversion, denoted by (a1, a2, . . . , al)rv, of polygon
(a1, a2, . . . , al).
No.diff.gon4 A2 = (A1)rv.

The polygon (a–11 , a
–1
2 , . . . , a–1l ) is called a conversion, denoted by (a1, a2, . . . , al)cv, of

polygon (a1, a2, . . . , al).
No.diff.gon5 A2 = (A1)cv.

An inversion of polygon A = (a1, a2, . . . , al) is defined to be Aiv = (a–1l , . . . , a–12 , a–11 ).
Proposition 2.1.1. For any polygon A,

Aiv = (Arv)cv = (Acv)rv. (2.1.1)

Proof. Easy to check by the definitions. ◻
On the basis of this proposition, it is from the inverse rule 2 seen that Aiv = A–1.
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If a set of polygons has each letter occuring exactly twice, then it is called a double
cover on the set of all letters in the polygons.

A polyhedron P is a set C = {Ci|1 ≤ i ≤ k}, k ≥ 1, of polygons which forms a double
cover on a set A of letters, where Ci is called a face of P such that no proper subset of
C is a double cover of a subset of A.

This is the combinatorial representation of Heffter’s in Heffter [133] (1891, and
more than half a century later, Edmonds’ in Edmonds [83] as dual case) for a
polyhedron.

Let P = {Ci|1 ≤ i ≤ k} be a polyhedron and X = XP, the set of all letters in P. An
element (or letter) in X is called an edge of P. The property that the two occurrences
of a letter with the same or different directions in a polyhedron is called the status
of the edge. By sticking the group B of two elements on X, each edge consists of two
semi-edges as {x+, x–}, or written as {+x, –x}, {x, x–1}, or {x, x̄} for certain convenience.
Each semi-edge +x, or –x, is compounded with its copy marked by a prime, i.e. +x󸀠 or
–x󸀠 (x󸀠, or x–1

󸀠

) respectively. Then, an edge is further considered as

{+x, +x󸀠, –x, –x󸀠} or simply, {x, x󸀠, x–1, x–1󸀠 }
and hence {+x, +x󸀠} or {–x, –x󸀠} as well is now a semi-edge. The set

X (P) = ∑
x∈P

({x+, x–1} + {x+, x–1}󸀠) (2.1.2)

is called a ground set of P. An element of the ground set is also called a quarter (of an
edge).

Attention 2.1.1.

(1) For x ∈ X and x ∈ XP, x has different meanings. The former is a letter and the
latter, a quarter of an edge.

(2) For x ∈XP, both 󸀠 and –1 are seen as permutations on the ground set, i.e.,

󸀠 = ∏
x∈X+X–1

(x, x󸀠) and –1 = ∏
x∈X+X󸀠

(x, x–1), (2.1.3)

where X󸀠 = {x󸀠|∀x ∈ X} and X–1 = {x–1|∀x ∈ X} for X ⊆XP.
(3) For x, y ∈XP, (xy)󸀠 = y󸀠x󸀠, (xy)–1 = y–1x–1, and x󸀠–1 = x–1󸀠.

A face A in polyhedron P is seen in companion with A–1 on its ground set.

Proposition 2.1.2. Let P be a polyhedron with its face set A . Then, P is determined by
the permutation 0P on its ground set as

0P = ∏
A∈A

(A)(A–1), (2.1.4)

in which two occurrences of a letter with the same power are distinguished by one with
a prime.
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Proof. By observing that all cycles appearing in eq. (2.1.4) form a partition, in view of
Section 1.2 the conclusion is seen. ◻
Let 3 = 󸀠 and $ = –1 be the permutations shown in eq. (2.1.3) on the ground set XP, i.e.
for x ∈XP,

3(x) =
{{{
y󸀠, when x = y;
y, when x = y󸀠

(2.1.5)

and for x ∈XP,

$(x) =
{{{
y–1, when x = y;
y, when x = y–1

(2.1.6)

Then, 0∗P = 0P3$ is a permutation on XP as well.

Lemma 2.1.1. On XP, $0P = 0–1P $.

Proof. By virtue of 0P$x = 0Px–1 = (0–1P x)–1 = $(0–1P x) = ($0P)x, by the arbitrariness of
x ∈XP the lemma is obtained. ◻
Lemma 2.1.2. On XP, 30∗P = 0∗P

–13.

Proof. By considering that

30∗P = 30P3$ = 3(0P$)3 (by Lemma 2.1.1)

= 3($0–1P )3 = (3–1$–10–1P )3 = 0∗P
–13,

the lemma is done. ◻
Lemma 2.1.3. For x ∈XP, two orbits (x)0∗P and (x

󸀠)0∗P are disjoint and conjugate.

Proof. By virtue of Lemma 2.1.2, the two orbits have the same type. From Theorem
1.2.6, they are conjugate. ◻
Theorem 2.1.1. Permutation 0∗P on XP determines a polyhedron.

Proof. On the basis of Lemma 2.1.3, each pair of the conjugate orbits determine
a polygon when the prime is omitted. Then, the set of all such polygons form a
polyhedron. ◻
The polyhedron P∗ obtained by omitting the power –1 and then replacing the prime
by –1 from the permutation 0∗P shown in this theorem is called a dual of P. A face of
the dual P∗ is defined to be a vertex of P.
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For a polyhedron P determined by permutation 0P on the ground set XP, the
transposition

(x–1,0Px) = ($x,0Px)

is called an angle. Two semi-edges incident with the same angle is said to be V-
adjacent. Then, an equivalence called V-adjacence by appending the transitive law
on the V-adjacent relation is obtained on the set of all semi-edges.

Theorem 2.1.2. A set of semi-edges of a polyhedron forms a vertex if, and only if, it is an
equivalent class under V-equivalence.

Proof. In fact, a conjugate pair of cycles on 0∗P determines a equivalent class under
V-equivalence. This is the theorem. ◻
Example 2.1.1. Only one polygon (ae–1b–1cdefdb–1afc–1) forms a polyhedron named
by P. The permutation that determines P is

0P = (ae–1b–1cde󸀠fdb󸀠–1a󸀠f 󸀠c󸀠–1)

(a–1c󸀠f 󸀠–1a󸀠–1b󸀠d–1f–1e󸀠–1d–1c–1be).

Then,

0∗P = (ab󸀠c)(a󸀠c󸀠b)(df–1c󸀠–1)(d󸀠c–1f 󸀠–1)

(a–1f 󸀠e󸀠–1)(a󸀠–1e–1f )(b–1d󸀠–1e󸀠)(b󸀠–1e󸀠d–1).

By omitting the power –1 and then replacing the prime by –1 on 0∗P , we have

P∗ = (ab–1c)(dfc–1)(af –1e–1)(bd–1e–1).

Theorem 2.1.3. For two polyhedra P and Q, P is a dual of Q if, and only if, Q is a dual of
P. Or in other words, P∗∗ = P.

Proof. By observing that

0∗P
∗ = (0P3$)$3 = 0P(3$$3) = 0P(33) = P,

the theorem is done from Theorem 2.1.1. ◻
2.2 Supports and skeletons

A support of polyhedron P = {Ci|1 ≤ i ≤ k} is the network formed by graphU = (VU ,EU)
with a weight w on EU where VU = {Ci|1 ≤ i ≤ k}, (Ci,Cj) ∈ EU if, and only if, Ci and Cj,
1 ≤ i, j ≤ k, have a common letter, and


