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Preface

The idea of writing this book was born in 2015 during the International Conference
“Mathematics in (Bio)Chemical Kinetics and Engineering” (MACKiE-2015), held in
Ghent (Belgium). Professors Valeriy Bykov and Grigoriy (Gregory) Yablonsky were
colleagues who worked closely at the Boreskov Institute of Catalysis (Novosibirsk,
Russia) for more than a decade in the 1970s to 1980s. They established the Siberian
chemico-mathematical team– together withAlexander Gorban andVladimirElokhin.
They co-authored many books and articles related to the area of the mathematical
modeling of chemical processes. Dr Svetlana Tsybenova joined this activity later in
the 1990s, enhancing its computational and applied aspects.

After graduating from Novosibirsk State University in 1968, Valeriy Bykov started
his scientific career in the Department of Mathematical Modeling at the Boreskov In-
stitute of Catalysis. Professor Mikhail Slin’ko and Dr Albert Fedotov were his scientific
supervisors. In 1985, Valeriy Bykov received his degree of Doctor of Physics andMathe-
matics (Physical Chemistry) from the Institute of Chemical Physics in Chernogolovka.

Gregory Yablonsky also worked in the same Department of Mathematical Model-
ing at the Boreskov Institute of Catalysis (Novosibirsk), first as a post-graduate student
and then as a researcher. Professor Mikhail Slin’ko was also his supervisor. In 1989,
Gregory Yablonsky received his degree of Doctor of Science (Physical Chemistry) from
the Boreskov Institute.

Svetlana Tsybenova graduated from Krasnoyarsk State Technical University in
1996 and received her PhD in Technical Sciences from the same university in 1999. In
2011, she received the degree of Doctor of Physics and Mathematics (Physical Chem-
istry) from Bashkir State University, Ufa; her being adviser was Professor Semyon Spi-
vak.

In 1978, there was a remarkable moment in this story when a scientific delegation
from the USA, the three prominent professors Rutherford Aris, Dan Luss, and Har-
mon Ray, visited the Boreskov Institute in Novosibirsk. This was a starting point for
Soviet–American cooperation in mathematical chemistry. Unfortunately, this cooper-
ation met many political obstacles. Nonetheless, it became a significant stimulus for
a fruitful exchange of information and ideas.

Over the last 50 years, the main directions and approaches have been determined
in mathematical chemistry, both theoretical and applied. Discoveries of new experi-
mental facts, i.e., the rate of hysteresis, chemical oscillations, chaos, etc, created new
challenges in decoding the complexity of chemical reactions. Batteries of mathemat-
ical models distinguished by the level of complexity and assumed factors have been
developed for imitating complex chemical behavior.

“Battery of models”, “zoo of models”, or “market of models” – different meta-
phors can be used. Nevertheless, the real alternative in contemporary modeling is be-
tween themodel taken from the “market” and thatproducedby the individual “tailor”.

https://doi.org/10.1515/9783110464948-201



VI | Preface

Certainly, a suit from the tailor is more elegant; however, it is much cheaper and faster
to buy a suit in a supermarket and adapt it if necessary.

An optimal strategy of modeling can be formulated as follows:
1. to develop typical (“simple”) models for describing the phenomena of our inter-

est;
2. to adapt them to concrete phenomena or processes.

A special question arose: what is the simplestmodel to describe newly discovered crit-
ical phenomena? This book is devoted to basic models, which can be used as building
blocks for constructing the mathematical models of complex chemical processes. We
call the methodology of selecting and analyzing these models “modelics”. Our book is
focused on simple nonlinear models.

Generally, the concepts of “simplicity” and the “simple model” are complex. Ein-
stein’s advice was: “Make everything as simple as possible but not simple.” On the
other hand, Leonardo da Vinci said: “Simplicity is the ultimate sophistication.” So,
whenworkingwith simplicity, wemove through the “gray zone” between science, art,
and philosophy, and the inscription on the gates is: “Less is more!”

The authors express their gratitude to the colleagues who provided them with
help at various times and in different situations: Professors Sergey Varfolomeev,
Bair Bal’zhinimaev, Alexander Gorban’, Semyon Spivak, Aizek Volpert, Konstantin
Shkadinskii, Sergey Reshetnikov, Georgij Malinetskii, and Zulhair Mansurov.

Finally,wewould like to thankour belovedones for their support andunderstand-
ing.

Valeriy Bykov, Moscow, 2017
Svetlana Tsybenova, Moscow, 2017
Gregory Yablonsky, St. Louis, 2017
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1 Introduction. How to describe complex processes
using simple models: Modelics

In contemporary scientific folklore, there is a legend which is transferred from one
book to another one. At the end of the 1950s there was a meeting organized on an
important and highly secret project, say on the possible constructing of military
bases on the Moon. One intellectual from the Rand Corporation (“highbrow” or even
“egghead”) presented an invited talk involving many formulas and numbers. A gen-
eral from the Pentagon interrupted him: “Excuse me, sir! What is a source of your
information?” – “What do you mean, sir?” “How do you know all these estimates,
equations, numbers etc.” – The scientist replied immediately: “Sir,we have amodel!”,
and the general was completely satisfied by this statement.

1.1 Model. . .modeling. . .

Today, on August 30, 2017, Google presented these numbers

Model 5,600,000,000
Modeling 553,000,000
Energy 1,690,000,000
Force 1,600,000,000
Physical model 650,000,000
Physical energy 819,000,000
Physical force 41,700,000
Mathematical modeling 4,870,000
Mathematical model 10,100,000

Clearly “modeling” and “model” are terms extremely popular in science and engineer-
ing.

It is easy to define modeling as the study of processes using models. However,
what is amodel in “hard sciences”?

There are many definitions of this term which pretend to be rigorous to some ex-
tent. We prefer the following one:

ObjectM is a model of object A with respect to a certain group of characteristics
(properties), if M is constructed (or chosen) to simulate A in accordance with these
characteristics.

In physics, chemistry, and biology (“hard sciences”) and psychology and sociol-
ogy (“soft sciences”), mathematical models are symbolic descriptions which repre-
sent the different dependencies of process characteristics or/and material properties
in terms of controlled parameters (temperature, pressure, composition, electrical con-

https://doi.org/10.1515/9783110464948-001



4 | 1 Introduction

ductivity, etc.). A mathematical model can be a number, a geometrical image, a func-
tion, a set of equations, etc.

What should we know before “constructing” anymodel? First, its basic elements,
secondly, its main principles and laws, and thirdly, the algorithm for the model con-
struction.

“Complex” and “simple” are key words in the development of models. The word
“complex” comes from the Latin complexus, past participle of complecti (to entwine,
encircle, compass, infold), from com (together) and plectere (to weave, braid). This
concept reflects the multilevel and multicomponent structure of the world. The con-
cept of “simplicity” is deep as well. There are different meanings of this term, positive
and negative. St. Augustine said “Ignorance and stupidity are given the names of sim-
plicity and innocence”. Etymologically, “simple” originated in the medical science of
the Dark Ages as related to amedicinemade fromone constituent, especially from one
plant.

In contemporary science, “simplicity” is about the ability to understand or ex-
plain in an easy way with a minimum of assumed concepts, and, finally, about el-
egancy and parsimony. When we are talking about simplicity, we always remember
“Occam’s razor”, the principle of simplicity: “the simpler explanation is usually bet-
ter” (William of Ockham was a Franciscan friar, a philosopher of the 14th century). It
is not true in general, however it is a good starting point of reasoning.

In real science and modeling, the “Holy Grail” is the model which represents an
efficient compromise between “complexity” and “simplicity”: Simple, but not too sim-
ple; complex, but not too complex. This compromise is determined by two primary
characteristics of the model, i.e., its goal and its number of assumed variables.

1.2 Top-down and bottom-up

In modeling, two different strategies can be distinguished, top-down and bottom-up.
The top-down approach became possible and popular since the start of the com-

puter era. In this approach a “large” complex model constructed, say via combinato-
rial methods, is decomposed into “small” simple submodels in accordancewith some
hierarchy. In chemistry and chemical engineering, the kinetic model is a foundation
of the mathematical modelling of chemical reactions, reactors, and processes [1–3].
There exists a hierarchy of models of complex catalytic process: kinetic model, cata-
lyst pellet model, catalyst bed model, contact reactor model, aggregate model, and,
finally, model of the chemical plant. In this hierarchy of models, the kinetic model is
the first level. None of the calculations that are of interest for chemical technology are
carried out without kinetic models. For dynamic (kinetic) models of physicochemical
processes, the basic elements are chemical substances and elementary acts; the main
laws are the mass-action-law and surface-action-law; one of the algorithms for model
construction is the quasi-steady-state method. Later we’ll explain it in more detail.
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The bottom-up approach is opposite to the top-down one. It starts from a “seed”
simple submodel, combining it with another simple model “model-by-model”), and,
finally, developing the model of a complex multilevel material or process.

Summing up, in the top-down modeling, simple models are obtained by the de-
compositionof a complexmodel. Suchmodels approximate complexbehavior in a cer-
tain parametric or temporal domain. The bottom-up methods take simple submodels
as the initial ones. In any case, in both approaches, top-down or bottom-up, the simple
models are unavoidable elements of modeling. Moreover, it is obvious that the simple
models are more reliable for wide application in the “modeling industry” than the
complex ones because of the amount and quality of information. In some situations,
simple models exhibit very complex properties. However, knowing the properties of
simple models we will be able to achieve an understanding which is a final goal of
modeling, not just a calculated number.

Simple nonlinear models are the center of our interest. These models must reflect
the main features of the chemical system studied, with the goal “not numbers, but
understanding”. For example, if the rate hysteresis is experimentally observed, the
corresponding simplest kinetic model must be nonlinear and have a dimension of 2
including the special nonlinear term of “xy” type.

If the chemical self-oscillations of the chemical rate are found, the simplest math-
ematical model must be nonlinear as well and have a dimension of 3. If complex spa-
tiotemporal structures occur, it is necessary to use a “reaction–diffusion”model with
mass-action-law nonlinearity.

Our experience shows that with a well-developed system of basic models, it is
much easier to construct and understand the specific mathematical model of the real
process.

That is why this book is focused on the analysis of typical simple models using a
special term,modelics, for modeling via simple models.

Bibliography

[1] Aris R. Introduction to the analysis of chemical reactors. Englewood Cliffs, NJ, USA, Prentice-
Hall, 1965.

[2] Yablonskii GS, Bykov VI, Gorban AN, Elokhin VI. Kinetic models of catalytic reactions. Amster-
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VCH, 2011.



2 Categorization of models

2.1 Physical framework of model design

Models of closed, open and semiopen systems.
Local and global models.
Time in modeling. Steady-state and non-steady-state models

Models differ by the factors and processes which they reflect. In fact, the goal of a
model is a description of the specific processes based on reasonable assumptions and
considering certain factors.

Inmodel design, the keywords are: open and closed; local and global; steady state
and non-steady-state. As known from thermodynamics, systems can be classified as
either open or closed, depending on whether there is exchange of matter with the sur-
roundings. Closed systems can exchange energy with the surroundings, but they can-
not exchange matter, while open systems can exchange either matter and energy or
only matter. Semiopen (or semiclosed) systems also exist, in which only some type
of material is exchanged with the surroundings. In chemical kinetics and engineer-
ing, the closed reactor is better known as the batch reactor and the open reactor as the
continuous-flow reactor. In the pulse reactor, a small quantity of a chemical substance
is injected into the reactor.

The general equation, which reflects the material balance for any component in
any system, open or closed, can be represented qualitatively as follows:

temporal change of
amount of component

= transport
change + change due to

reaction
(2.1)

in which the temporal change of the amount of component, often termed accumu-
lation, is its change with respect to time at a fixed position, the transport change is
the change caused bymotion of the component and the reaction change is the change
caused by chemical reaction. It is themodel of a non-steady-state process (non-steady-
state model), dci/dt ̸= 0, where ci is the concentration of i-th component, t is time.

If the temporal change is assumed to be zero, dci/dt = 0, the differential (2.1)
is transformed to an algebraic equation. It becomes the steady-state model, i.e., the
model of the steady-state process.

Rigorously speaking, (2.1) is the so-called continuity equation (see the classical
monograph by Bird, Stewart, and Lightfoot [1]) with two terms, which are the “trans-
port term” and “chemical term”, respectively. All isothermal models represent differ-
ent cases of this continuity equation. The chemical term is local, reflecting the changes
at thegivenplaceof space. The transport term is global, corresponding to the exchange
between different places of space. Equation (2.1) can be used for the classification and

https://doi.org/10.1515/9783110464948-002
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Fig. 2.1: Reactors for kinetic experiments. (a) batch reactor; (b) continuous stirred-tank reactor;
(c) continuous-flow reactor with recirculation; (d) plug-flow reactor; (e) differential plug-flow reactor;
(f) convectional pulse reactor; (g) diffusional pulse reactor or TAP reactor; (h) thin-zone TAP reactor

qualitative description of different types of systems and reactors [2–5]. All isothermal
models represent different cases of this continuity equation.

Figure 2.1 shows schematic representations of several reactor types which are
widely used for purposes of chemical engineering. These reactors are supplied by
typical simple models with corresponding names, and these models are models of
applied kinetics

2.1.1 Models of transport

Typically, transport processes are quite complicated, including at least two types of
processes: convection and diffusion.

For convection, the molar flow rate Fi (mol ⋅ s−1) of a component i is determined
as the product of the total volumetric flow rate qV (m3 ⋅ s−1) and the concentration of
the component ci (mol ⋅m−3):

Fi = qVci . (2.2)
For diffusion, in the simplest case the molar flow rate of a component is determined
in accordance with Fick’s first law:

Fi = −DiA
dci
dz , (2.3)

where Di is a diffusion coefficient (m2 ⋅ s−1), A is the cross-sectional area of the reactor
available for fluid flow (m2), and z is the axial reactor coordinate (m).

Pure convection or pure diffusion are examples of well-defined regimes. These
hydrodynamic regimes with their corresponding mathematical descriptions are used
as “measuring sticks” for extracting the intrinsic kinetic dependencies of chemically
active materials, adsorbents, catalysts, membranes, etc.

In the model describing a batch reactor, the transport change term is completely
absent. In perfectly mixed convectional systems and reactors, the “transport change”
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can be represented as the difference of convectional molar flow rates, qV0ci0 − qVci,
where qV0 and qV are the inlet and outlet volumetric flow rates and ci0 and ci are the
inlet and outlet concentrations, or qV (ci0 − ci) if qV = qV0.

In purely diffusional systems and reactors, the “transport change” in the simplest
case can be represented as the difference between diffusional flow rates in and out,
Fi0 and Fi. Both flow rates are written in accordance with Fick’s first law:

Fi0 = −DiA
dci
dz

z , Fi = −DiA
dci
dz

z+∆z . (2.4)

Then,

Fi0 − Fi = ( − DiA
dci
dz

z) − ( − DiA
dci
dz

z+∆z) = DiA
d2ci
dz2

∆z . (2.5)

2.1.2 The batch reactor

In an ideal batch reactor, i.e., a non-steady-state closed reactor with perfect mixing,
(2.1) becomes

temporal change of
amount of component

= change due to
reaction

(2.6)

The simplest mathematical model for the temporal change of any component in a
batch reactor of constant reaction volume is

dci
dt = Ri = νir , (2.7)

where Ri is the net rate of production of the component per unit reaction volume
(molm−3s−1), νi is the so-called stoichiometric coefficient, and r is the reaction rate
(molm−3s−1).

For a reversible reaction, the reaction rate is a combination of the rates of the for-
ward and reverse reactions:

r = r+ − r− . (2.8)

The state in which dc/dt = 0 is called equilibrium. In this state r = r+ − r− and r+ = r−.

2.1.3 The continuous stirred-tank reactor

A continuous stirred-tank reactor (CSTR) is an open reactor with perfect mixing (gra-
dientless reactor) and only convective flow. This mixing can be achieved not only by
internal but also by external recirculation. The material balance for any component
in a non-steady-state CSTR can be written as

dci
dt = Ri + qV0ci0 − qVci

V (2.9)
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with V the reaction volume (m3). At steady state, the net rate of production of compo-
nent i can be determined from

Ri = −qV0ci0 − qVciV . (2.10)

If qV = qV0, (2.10) can be expressed as

Ri = −qV0(ci0 − ci)V
= − ci0 − ci

τ
, (2.11)

where τ = V/qV0 is the space time (s). It is denoted as space time because its definition
involves a spatial variable, V, which distinguishes it from the “astronomic” time. It
corresponds to the average residence time in an isothermal CSTR.

2.1.4 The plug-flow reactor

In an ideal plug-flow reactor (PFR), it is assumed that perfect uniformity is achieved
in the direction perpendicular to that of the flow, i.e., in the radial direction. Axial
diffusion effects are also neglected. The composition of the fluid phase varies along
the reactor, so the material balance for any component must bemade for a differential
element:

dV dci
dt

= RidV − qVdci . (2.12)

In a more rigorous form, (2.12) can be written as a partial differential equation:

dV ∂ci
∂t

= RidV − qV ∂ci∂z
dz . (2.13)

Using qV = uA and dV = Adz, where u is the superficial fluid velocity (m s−1), (2.13)
can be written as

∂ci
∂t

= Ri − u ∂ci∂z
. (2.14)

or
∂ci
∂t + ∂ci

∂τ = Ri (2.15)

with τ = z/u.
For the steady-state case, ∂ci/∂t = 0 and the model equation for an ideal PFR can

be expressed by the ordinary differential equation

dci
dτ = Ri , (2.16)

which remarkably is identical to the expression for a batch reactor, (2.7). The only dif-
ference is the meaning of the term time used. In the model for the batch reactor, the
time is the time of the experimental observation or “astronomic time”, whereas the
time in the model for the plug-flow reactor is the space time, τ.
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2.1.5 The pulse reactor

The pulse reactor is, by definition, the non-steady-state system. In a pulse reactor,
which typically contains a fixed active zone, e.g., catalytic material, a small amount
of a component is injected into the reactor during a small interval. In a conventional
pulse reactor, the component is pulsed into an inert steady carrier-gas stream. The
relaxation of the outlet composition following the perturbation by this pulse provides
information about the mechanism of complex chemical process.

In the TAP reactor, created by John Gleaves in the 1980s [5], no carrier gas stream
is used and the component is pulsed directly into the reactor. Transport only occurs
by Knudsen diffusion, in which gas molecules collide with the wall, not with other
molecules. In a thin-zone temporal-analysis-of-products reactor (TZTR) [6], the active
material (catalyst) is located only within a narrow zone. The net rate of production in
the catalyst zone of the TZTR is the difference between two diffusional flow rates at
the boundaries of the thin active zone divided by the mass of catalyst in the reactor:

RW,i = Fi(t) − Fi0(t)
Wcat

. (2.17)

This is analogous to the case of the steady-state CSTR, in which the reaction rate is
given by the difference between convectional flow rates.

2.2 How to simplify complex models? Principles of simplification

This section is devoted to approachesof simplificationof chemico-mathematicalmod-
els.Manyof themhavebeencategorized in the recentmonographbyConstales et al. [7]
Most of this activity is performed for models of detailed kinetics (microkinetics), i.e.,
models based on a detailed chemical mechanism.

In science and engineering, simplification is not only a method for the easy and
efficient analysis of processes, but it also is a necessary step in understanding their be-
havior. In many cases, “to understand” means “to simplify”. Now the main question
is: “Which separate process or set of processes are responsible for the observed char-
acteristics?” Frequently, simplification is defined as a reduction of the “original” set
of system factors (processes, variables, parameters) to the “essential” set for revealing
the behavior of the system, observed through real or virtual (computer) experiments.
Every simplification must be correct. In physical science and chemical engineering,
the answer to this question very much depends on the details of the reaction mecha-
nism and on the temporal domain that we are interested in.

As a basis of simplification,many physicochemical andmathematical principles/
methods/approaches or their efficient combination are used, such as fundamental
laws of mass conservation and energy conservation, the dissipation principle, the
principle of the detailed equilibrium, etc. Based on these concepts, many advanced
methods of simplification of complex chemical models have been developed [3, 4].
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In the mathematical sense, simplification can be defined as “model reduction”,
that is, the rigorous or approximate representation of complex models by simpler
ones. For example, in a certain domain of parameters or times, a model of partial
differential equations (“diffusion-reaction”model) is approximated by a model of dif-
ferential equations, or a model of differential equations is approximated by a model
of algebraic equations, etc. See also [8–11].

2.2.1 Physicochemical assumptions of simplification of chemico-mathematical
models

Typically, assumptions are made on substances, on reactions and their parameters,
on transport-reaction characteristicsand experimental procedures aswell. Presenting
these assumptions, we follow the monograph by Constales et al. [7].

2.2.1.1 Assumptions on substances
1. Abundance of some substances in comparison with others, so their amount/

concentration can be assumed to be constant during the process, either steady
state or non-steady state. For example, in aqueous-phase reactions, the water
concentration is often taken as a parameter in kinetic reaction models.

2. Insignificant change of some substance amount/concentration in comparison
with its initial amount/concentration during a non-steady-state process. For
example, in pulse-response experiments under high vacuum conditions in a
temporal-analysis-of-products (TAP) reactor the total number of catalytic active
sites is much larger than the amount of gas molecules injected in one pulse.
Therefore, the concentration of active catalyst sites may be assumed to remain
approximately equal during a pulse-response experiment.

3. Dramatic increase of the concentration/temperature at the very beginning of a
process in a batch reactor or at the inlet of a continuous-flow reactor, typically is
presented by a delta function or step function.

4. Complete conversion of some substances in time during the process or at the very
end (the final section) of the chemical reactor.

5. Gaussian distribution of the chemical composition regarding some physicochem-
ical properties, e.g., the molecular weight of polymers.

6. Assumptions on intermediates of complex chemical reactions:
(a) Abundance of some intermediates. Frequently, the concentrations of many

intermediates are very small compared to the concentrations of others. At the
limit, only one intermediate dominates. For heterogeneous catalysis, the term
“most abundant reaction intermediate” (MARI is used. This term introduced
by Boudart means the only important surface intermediate on the catalyst
surface under reaction conditions.
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(b) Quasi-steady state (QSS) for some intermediates. Some intermediates can be
in a quasi-steady state, or pseudo-steady state (PSS). In the literature, the
meanings of the terms “pseudo” and “quasi” are a bit different. “Pseudo” is
from Greek, meaning “false” or “not real(ly)” and is typically used for situa-
tionswhere deception is deliberate. “Quasi” is from Latin, meaning “almost”,
“as if” or “as it were”. It is often used to describe something that for the most
part behaves like something else, but not completely. Hence, we prefer to use
“quasi” to describe this type of (non)steady state.

A quasi-steady-state assumption relates to reaction intermediates whose rate of
change follows the time evolution of the concentrations of other species. Per the
quasi-steady-state assumption the rates of production and consumption of interme-
diates are approximately equal, so their net rate of production is approximately equal
to zero.

Two typical uses of the quasi-steady-state assumption are in:
1. Gas-phase chain reactions (e.g., oxidation reactions) are propagated by free radi-

cals, that is, species having an unpaired electron (H, O, OH, etc.). The kinetic pa-
rameters of reactions in which these short-lived, highly reactive free radicals par-
ticipate are much larger than the kinetic parameters of reactions involving other
species. Their concentration in the quasi-steady state is necessarily small.

2. Gas-solid catalytic reactions occur through catalytic surface intermediates. These
are not necessarily short-lived, but their concentrations aremuch smaller than the
concentrations of reactants and products of the overall reaction. Therefore, the
kinetic dependencies of the surface intermediates are governed by the concen-
trations of the gaseous species. A similar reasoning holds for enzyme-catalyzed
biochemical reactions, in which the number of active enzyme sites is small com-
pared to the number of substrate and product molecules.

2.2.1.2 Assumptions on (processes) reactions and their parameters
Assumption on irreversibility of processes (reaction steps):
1. All Processes (reaction steps) are irreversible, i.e., strong irreversibility or
2. Some processes (reaction steps) are irreversible, i.e., weak reversibility.

Rigorously speaking, all reaction steps are reversible. If the rate of the forward reaction
is much larger than that of the reverse reaction, we consider the reaction step to be
irreversible. If in a sequence of steps, say in a heterogeneous catalytic cycle, at least
one step is irreversible, the overall reaction can be irreversible.
Assumption on “rate-limiting or rate-determining step”:
In a sequence of reaction steps there usually are “fast” steps and “slow” steps. The
kinetic parameters of the slow steps are much smaller than those of the fast steps,
reversible or irreversible, and kinetic dependencies are governed by these small pa-
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rameters. If there is only a single slow step, this is called the rate-limiting or rate-
determining step. However, this is not a rigorous definition of the “rate-limiting-step”
concept, which remains a subject of permanent fierce discussions [8, 10, 12]. In their
paper [12], Kozuch, and Martin express a provocative opinion on this subject.
Assumption of “quasi equilibrium” or “fast equilibrium”:
If in a sequence of steps both the forward and reverse reactions of some reversible
steps are much faster than other reaction steps, the assumption can be made that the
forward and reverse reactions of such fast steps occur at approximately equal rates,
i.e., are at equilibrium. Typically, this assumption is justified by the fact that the ki-
netic parameters of these fast steps aremuch larger than the kinetic parameters of the
other, slow steps. For many chemical systems, the assumption of quasi equilibrium is
complimentary to the assumption of a rate-limiting step; if one step is considered to
be rate limiting, other, reversible, steps can be assumed to be at equilibrium.
Assumption of equality or similarity of chemical activity:
Basedonapreliminary analysis somegroupsof specieswith identical or similar chem-
ical functions or activities can be distinguished, e.g., a family of hydrocarbons of sim-
ilar activity can be represented by just one hydrocarbon. This is the so-called lumping
procedure.
Additional assumptions on parameters:
1. Assumption of equality of parameters of some steps, e.g., kinetic parameters of

some adsorption steps or even coefficients of all irreversible reactions are equal.
2. Assumption of “fast step”, that is, the kinetic parameter of a certain step is as-

sumed to be much larger than the kinetic parameters of other steps.
3. Assumption regarding the hierarchy of kinetic parameters, e.g., in catalytic reac-

tions adsorption coefficients are usually much larger than the kinetic parameters
of reactions between different surface intermediates.

Principle of critical simplification:
In accordance with this principle (Yablonsky et al., [13]), the behavior near critical
points, for instance ignition or extinction points in catalytic combustion reactions, is
governed by the kinetic parameters of only one reaction – adsorption for ignition and
desorption for extinction – which is not necessarily the rate-limiting one.

2.2.1.3 Assumptions on transport-reaction characteristics
1. Assumption of continuity of flow. When a fluid is in motion, it must move in such

a way that mass is conserved.
2. Assumption of uniformity of chemical composition, and/or temperature, and/or

gas pressure in a chemical reactor.
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3. Assumption of transport limitation, i.e., an assumption underwhich amodel only
comprising transport can be used (fast reaction and slow transport, in particular
diffusion limitation).

4. Assumption of kinetic limitation, i.e., an assumption under which a model only
including reaction can be used (fast advection or fast diffusion and slow reaction,
kinetic limitation).

2.2.1.4 Assumptions on experimental procedures
1. Assumption of insignificant change of the system characteristics during an exper-

iment involving a small perturbation of the system, i.e., a state-defining experi-
ment.

2. Assumption of controlled change of the system characteristics during an experi-
ment, i.e., a state-altering experiment.

3. Assumption of instantaneous change, i.e., instantaneous injection of a reactant
into a chemical reactor.

4. Assumption of linear change of the controlled parameter, e.g., a linear tempera-
ture increase during thermodesorption.

2.2.1.5 Combining assumptions
It should be noted that some physicochemical assumptions are overlapping and some
are complimentary. For example, if some steps are fast, we automatically assume that
other steps are slow. In the simplest case – the two-step mechanism– the assumption
of a fast first step is identical to the assumption of a rate-limiting second step. As-
sumptions on the abundance of species and rate-limiting steps can be made both for
reversible and irreversible reaction steps. In contrast, the quasi-equilibrium assump-
tion cannotbeapplied to a set of reaction steps that are all reversible. Sometimesmany
assumptions, not just one or two, are used for the development of a model. An exam-
ple is the Michaelis–Menten model that is well known in biocatalysis. In this model,
1. The total amount of active enzyme sites is much smaller than the amounts of

liquid-phase substrate (S) and product (P). Because of that quasi-steady-state be-
havior of the enzyme species (free enzyme E and substrate-bound enzyme ES) is
observed.

2. The first step (E+S = ES) is assumed to be reversible, while the second step (ES→
P + E) is assumed to be irreversible.

3. The kinetic parameters of the first step are assumed to be much larger than those
of the second step, i.e., the first step is fast and the second step is slow.

Therefore, there are two simultaneous assumptions, i.e., the assumption of quasi-
equilibrium of the first step and the assumption that the second step is rate-limiting.



2.3 Mathematical concepts of simplification in chemical kinetics | 15

2.3 Mathematical concepts of simplification in chemical kinetics

A primary analysis of different types of mathematical simplifications was done in the
monograph by Constales et al. [7] In modeling, it is not enough to represent assump-
tions or simplifications expressed in a verbal way. Physicochemical assumptions have
to be translated into the language of mathematics. In 1963, Kruskal [14] introduced
a special term for this activity, “asymptotology”. See Gorban et al. [8] for a detailed
analysis. Mathematical models should be developed based on assumptions with a
clear physicochemical basis. Every physicochemical assumption has a domain of its
correct application, and this domain must be validated. Typically, this is done using
the “full” model that includes the “partial” model, the validity of which is tested.
The partial model is generated asymptotically from the full model and the correct-
ness of this asymptotic procedure must be proven [10]. As stressed by Gorban et al. [8]
“. . .oftenwe do not know the rate constants for complex networks, and kinetics that is
ruled by orderings rather than by exact values of rate constants may be very useful in
practically frequent situations when the values of the various reaction constants are
unknown or poorly known”.

A mathematical analysis founded on the basic laws of physics, e.g., laws of ther-
modynamics, may provide us with an understanding of “tricks” of which the physic-
ochemical meaning was previously unclear or even with a formulation of new funda-
mental concepts. The lumping procedure, a commonly-used approach to reduce the
number of chemical species and reactions to be handled by grouping together species
having similar chemical functions or activities into one pseudo-component or lump,
was theoretically grounded and realized by Wei and Prater [15] and Wei and Kuo [16].
Complex chemical behavior that was discovered in chemical systems in the 1950s–
1970s, such as bistability, oscillations, chaotic behavior, etc. has been understood only
by transferring and adapting the concepts of the mathematical dynamic theory (sta-
bility, bifurcation, catastrophes, chaos, etc.). Maas and Pope [11] efficiently used the
mathematical technique of manifolds for understanding combustion processes. At
the same time, many mathematical tools applied to chemical problems still remain
“purely mathematical”, not having a special chemical content, e.g., manymethods of
statistical analysis, sensitivity analysis, etc.

2.3.1 Mathematical status of the quasi-steady-state (QSS) approximation

In chemico-mathematicalmodeling, revealing the rigorousmathematical status of the
quasi-steady-state approximation was one of the most challenging problems. This as-
sumption was introduced into chemistry at the very beginning of the twentieth cen-
tury. However, it was clarified only about fifty years later via the mathematical theory
of singular perturbations, and even now this knowledge is not sufficiently widespread
within the chemical and chemical engineering community. One can say that this ap-
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proximation is the most applied and the least understood. It can be called “the most
complicated simplification”.

First, the quasi-steady state is not a steady state; it is a special type of non-steady
state. The popular version of the quasi-steady-state approximation can be formulated
as follows. During a chemical process, the concentrations of both species present in
large amounts, usually the controllable and observed species, and species present in
small amounts (intermediates such as radicals and surface intermediates), usually
the uncontrollable and unobserved species, change in time. In the quasi-steady-state
approximation, the concentrations of the intermediates become functions of the con-
centrations of the observed abundant species; they “adapt” to the concentrations of
the observed species as if they were steady-state concentrations.

Within the traditional mathematical QSS-procedure, three steps can be distin-
guished:
1. Write the non-steady-state model, that is, a set of ordinary differential equations

for both the observed species and the unobserved intermediates;
2. Then replace the differential equations for the intermediates with the correspond-

ing algebraic equations by setting their rates of production equal to their rates of
consumption, so that the net rate of production is zero, which in the case of cat-
alytic surface intermediates translates into putting:

dθj
dt

= 0 ,

where θj is the normalized concentration of surface intermediate j, and then solv-
ing these equations, such that the concentrations of intermediates are expressed
as a function of the concentrations of the observed species and temperature. In
fact, solving this set of equations is quite easy for linearmodels, but for nonlinear
models this may not be so simple;

3. Finally, expressions for the reaction rates of the observed species can be construc-
ted terms of the reactant and product concentrations of the overall reaction only.

The rigorous mathematical theory of quasi-steady-state approximation is the follow-
ing. A complex reactionmechanism consisting of a combination of subsystems related
to the observed variables x and unobserved variables y can be described by the gen-
eral model:

dx
dt

= f(x, y) ,
dy
dt

= g(x, y) .
The subsystems are called subsystems of “slow” and “fast” motion, respectively. The
mathematical validity of the quasi-steady-state approximation can be illustrated by
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scaling the original set of equations and writing it in dimensionless form as

dx̄
dt

= f(x̄, ȳ) ,
ε dȳdt = g(x̄, ȳ) ,

in which ε is the so-called “small parameter” (ε ≪ 1). At the limit ε → 0, this system
transforms into the so-called “degenerated” set of equations

dx̄
dt

= f(x̄, ȳ) ,
0 = g( ̄x, ȳ) .

Different actual systems generate the small parameter ε in different ways, and Yablon-
skii et al. [3] have indicateddifferent scenarios for reachingquasi-steady-state regimes.
For example, in homogeneous chain reactions, the small parameter is a ratio of rate
coefficients. It arises because the reactions inwhich unstable and thus short-lived free
radicals participate are much faster than the other reactions.

In heterogeneous gas-solid catalytic systems, the small parameter is the ratio of
the total amount of surface intermediates nt,int to the total amount of reacting gas
molecules nt,g which are present in the reactor. Summing up the theoretical analysis
of the quasi-steady-state problem, we can distinguish two types of behavior:
1. a quasi-steady state caused by a difference in kinetic parameters (rate-parametric

QSS);
2. a quasi-steady state caused by a difference in mass balances of species (mass-

balance QSS).

2.3.2 Limits of simplification: optimal model

Every simplification has a limit. Please remember: Simple, but not too simple; com-
plex, but not too complex. Obviously, the level of minimal complexity depends on the
amount of available information. In the literature, the correspondingmodel is termed
a “minimal”, or “optimal”, or “rational”, or “skeleton” model. See the concept of the
minimal mechanism described by Marin and Yablonsky [4]. The question answered
was: “What is the minimum number of steps of the detailed mechanism?”. Certainly,
this number is not smaller than two because otherwise there would not be a catalytic
cycle,which should includenot smaller than two steps. E.g., for theMichaelis–Menten
mechanism with one substrate (S) and one product (P), the minimal mechanism has
two steps, not more. Then the properties of the minimal mechanism are summarized
in a very simple way, depending on whether the number of reactant molecules in the
overall reaction is larger or smaller than or equal to the number of product molecules.
If the number of reactant molecules is bigger than the number of product molecules,
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the number of steps is equal to the number of reactant molecules. Similarly, if the
number of product molecules is bigger than the number of reactant molecules, the
number of steps is equal to the number of product molecules. Based on the minimal
mechanism, the minimal kinetic model will be constructed.

There is no a general theory how to determine the “optimal model”. In every con-
crete case, such a model is generated via special systematic studies.

Bibliography

[1] Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena. New York, USA, John Wiley Sons,
1960.

[2] Aris R. Introduction to the analysis of chemical reactors. Englewood Cliffs, NJ, USA, Prentice-
Hall, 1965.

[3] Yablonskii GS, Bykov VI, Gorban AN, Elokhin VI. Kinetic models of catalytic reactions. Amster-
dam, Oxford, New York, Tokyo, Elsevier, 1991.

[4] Marin GB, Yablonsky GS. Kinetics of chemical reactions. Decoding complexity. NJ, USA, Wiley-
VCH, 2011.

[5] Gleaves JT, Ebner JR, Kuechler TC. Temporal analysis of products (TAP) a unique catalyst evalua-
tion system with submillisecond time resolution. Catal Rev-Chem Eng 1988, 30, 49–116.

[6] Shekhtman SO, Yablonsky GS, Chen S, Gleaves JT. Thin-zone TAP-reactor – theory and applica-
tion. Chem Eng Sci 1999, 54, 4371–4378.

[7] Constales D, Yablonsky GS, Thybaut JW, D’hooge DR, Marin GB. Advanced data analysis and
modeling in chemical engineering. Amsterdam, Netherlands, Elsevier, 2017.

[8] Gorban AN, Radulescu O, Zinovyev AY. Asymptotology of chemical reaction networks. Chem
Eng Sci 2010, 65(7), 2310–2334.

[9] Gorban AN, Karlin IV. Invariant manifolds for physical and chemical kinetics, Vol. 660 of Lect
Notes Phys Springer, Berlin, Heidelberg. 2005.

[10] Gorban AN, Radulescu O. Dynamic and static limitation in multiscale reaction networks, revis-
ited. Adv Chem Eng 2008, 34, 103–176.

[11] Maas U, Pope SB. Simplifying chemical kinetics: intrinsic low-dimensional manifolds in com-
position space. Combust and Flame 1992, 88(3), 239–303.

[12] Kozuch S, Martin JM. The rate-determining step is dead. Long live the rate-determining state!
Chem Phys Chem 2011, 12(8),1413–1421.

[13] Yablonsky GS, Mareels IM, Lazman M. The principle of critical simplification in chemical kinet-
ics. Chem Eng Sci 2003, 58(21), 4833–4875.

[14] Kruskal JB. The number of simplices in a complex. In: Bellman R, ed, Mathematical optimiza-
tion techniques. Berkeley and Los Angeles, CA, USA, 1963, 251–329.

[15] Wei J, Prater CD. The structure and analysis of complex reaction systems. Adv Catal 1962,13,
203–392.

[16] Wei J, Kuo JC. Lumping analysis in monomolecular reaction systems. Analysis of the exactly
lumpable system. Ind Eng Chem Fundam 1969, 8(1), 114–137.



|
Part II: Chemical modelics





3 Basic models of chemical kinetics

This chapter is devoted to a gallery of mathematical models which describe the crit-
ical phenomena of a pure chemical, nonthermal nature. Nonlinearity of systems is
caused by reaction mechanisms, which are nonlinear. In typical cases, these systems
are systems of ordinary differential equations with right parts which contain nonlin-
earities of type XmYn. As shown in [1, 2], the presence of interaction steps of various
substances (e.g., X + Y →) is a necessary condition for multiplicity of steady states.
Sufficient conditions of their occurrence can be determined by different factors: the
presence of competition in the different stages (their different kinetic order), the pres-
ence of so-called buffer steps, the nonideality of elementary processes, the ratio of
special parameters, etc. One of the most important kinetic characteristics is the pres-
ence of autocatalytic stages of type A+ Z → 2Z in a reactionmechanism.Wemust say
that such stages are present in the abstractmechanisms of chemical reactions studied
in the works of I. Prigogine and his school [3–5]. These are all sorts of “oregonator”,
“brusselator”, etc. The formal model of O. Rossler [6] also contains members which
can be interpreted as the autocatalysis.

Themodels with the autocatalysis are the simplest models in sense of their degree
of nonlinearity and the number of phase variables. Catalytic schemes of transforma-
tions which do not contain autocatalytic stages are more realistic, but they lead to
systems of larger numbers of variables. Themain complicating factors as a flow of the
system, the presence of two or more types of active centers (multifunctional cataly-
sis), and chemical nonideality are studied here. Main results of the analytical study
are accompanied by graphical pictures. In particular, each model is characterized by
its parametric portrait, where bifurcation curves divide the all parameter region into
subregions of parameters with different number and type of stability of steady states.

3.1 Equations of chemical kinetics and a scheme of parametric
analysis

3.1.1 Experimental background

Recently the research area of critical phenomena in kinetics has increased consider-
ably. The discovery and study of such effects have a long history [7]. The beginning
of a modern step is considered to be the detection by B.P. Belousov and the study by
A.M. Zhabotinsky of oscillations in the oxidation reaction of malonic acid by bromine
(catalysis – ions of the cerium) [8, 9]. It should be noted that publications on exper-
imental studies of oscillation modes of chemical reactions appear in the beginning
of the last century [7]. However, only this reaction (now called the B.Z.-reaction) has

https://doi.org/10.1515/9783110464948-003
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caused a surge of attention among chemists, physicists, biologists and mathemati-
cians.

Homogeneous systems are more simple than heterogeneous ones. Therefore, a
study of homogeneous models will facilitate the understanding of the character of
chemical oscillations [10]. Overviews of the main part of the experimental works
on the Belousov–Zhabotinsky reaction and its modifications are presented in the
book [8]. However, a single comprehensive mathematical model is not built. There
is a significant number of kinetic models describing individual properties of these
systems with varying degrees of detail. It seems to us that in this case there is a cer-
tain contradiction between the “want to know all” and “select the most important
factors”.

Lately, oscillatory reactions occurring in the gas phase have been investigated [11,
12] intensively. One of the most studied isothermal systems is the reaction of oscilla-
tory oxidation of carbonmonoxide. Gas-phase oscillators can be divided into isother-
mal and thermokinetic types. The first of them are characterized by nonlinearities of a
nonthermal nature, which correspond to the presence of nonlinear stages in the reac-
tion mechanism. The nonlinear nature of thermokinetic oscillations due to nonlinear
dependence (in the simplest case the Arrhenius equation) of the reaction rate on tem-
perature.

I. Prigogine’s scientific school introduced a significant contribution to the devel-
opment of understanding and interpretation of complex dynamic behavior of open
chemical systems far from thermodynamic equilibrium [3–5]. A brief review of rele-
vant models is given in [6].

Critical phenomena were discovered in many heterogeneous catalytic reactions,
some of which have important application value to chemical technology. G.K. Bores-
kov, M.G. Slinko and employees studied a hydrogen oxidation reaction on nickel, pal-
ladium and platinum. They found that different values of the stationary reaction rate
correspond to the same composition of the gas phase in definite region of parame-
ters [13–25]. Since the early 70s there has been a new wave of intensive experimental
and theoretical studies of critical effects in heterogeneous catalysis. It was the first
cycle of works by M.G. Slinko and his disciples [26–34].

Critical phenomena in oxidation reactions of COover Pt/Al2O3 andplatinumwires
are described in the works of E. Wicke (see, e.g., [27]). In these works, the authors
showed that the multiplicity of steady states is due to the nonlinearity of the rate of
formation and spending of intermediates on the catalyst surface. An important con-
clusion of E. Wicke and coauthors is that the cause of a complex dynamic behavior
of a reaction lies in the complex chemistry of the processes on the catalyst surface.
E. Wicke’s line was continued by G. Eigenberger. To describe auto-oscillations of the
rate of a catalytic reaction, he used the “buffer” step. Reversible stages of the forma-
tion of nonreactive able forms of oxygen or inert substance were added to E. Wicke’s
scheme. The “buffer” step performs the role of “feedback”, but this step has allowed
G. Eigenberger to describe the oscillations of rates obtained in experiments. [35]
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The existence of kinetic auto-oscillations in heterogeneous reactions has been
shown in the works of M.G. Slinko, V.D. Belyaev, and others [36–38]. Themain nonlin-
ear factor was accepted as the dependence of the activation energy on the degree of
coverage of the catalyst surface by one of the intermediates. Themathematicalmodels
were built using this.

In the works of V.V. Barelko and A.S. Zhukov isothermal effects were investigated
in a number of heterogeneous catalytic reactions with the help of a device they cre-
ated, allowing them to exclude the influence of the thermal factor [39–42].

Thenumber of works devoted to nonstationary processes in catalysis is constantly
growing. To represent time a great deal of experimental data on the phenomena of
self-organization in heterogeneous catalysis has been accumulated. Critical phenom-
ena were observed for many heterogeneous oxidation reactions of hydrogen, carbon
monoxide, carbon monoxide, nitrogen, and sulfur dioxide [27]. Such metals as plat-
inum, palladium, iridium, and nickel are used in all works as a catalyst. Authors
mainly consider the multiplicity of steady states and auto-oscillations [45–68].

In our book the central theme is a theme associated with the building and analy-
sis of so-called basicmathematicalmodels of critical phenomena of both thermal and
nonthermal nature. In a sense they are the simplest models describing the multiplic-
ity of steady states (triggers) and auto-oscillations (oscillators). The concept of basic
models, developed by us, primarily supposes an understanding of the studied phe-
nomenon. Then, a detailed description is created. The basic models are the kinds of
blocks which must be put in the foundation of each detailed model. At this step we
achieve not only a qualitative but also a quantitative description of the complex non-
linear and dynamic properties of the studied processes.

3.1.2 Equations of chemical kinetics

The equations of chemical kinetics are written as follows [1]. First, the list of sub-
stances is set as

X1, X2, . . . , Xn , (3.1)

and the list of reactions becomes

α1sX1 + ⋅ ⋅ ⋅ + αnsXn → β1sX1 + ⋅ ⋅ ⋅ + βnsXn s = 1, 2, . . . ,m , (3.2)

where α1s, β1s are stoichiometric coefficients.
Further, the rates of stages in scheme (3.2) are defined:

ws = ws(T, x) , s = 1, 2, . . . ,m , (3.3)

where T is temperature and x = (x1, x2, . . . , xn) is a vector of the concentrations of
the substances (3.1).
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The most simple kinetic functions (3.3) satisfy the law of mass action:

ws(T, x) = ks(T)xα1s1 ⋅ ⋅ ⋅ xαnsn . (3.4)

The temperature dependencies are defined by Arrhenius:

ks(T) = k0s exp(− E
RT ) , s = 1, 2, . . . ,m .

The law of conservation of mass in a nonstationary case at T = const takes the
form

dxi
dt = m∑

i=1
γisws , i = 1, 2, . . . n , (3.5)

where γis = βis − αis.
The equation of chemical kinetics (3.5) can be written down in compact vector

form:
dx
dt

= Γw(T, x) , (3.6)

where w = (w1, w2, . . . , ws) is a vector of the rates of the stages. The stoichiometric
matrix Γ = ((γis)) is such that the law of conservation of mass is performed for (3.5):

Bj :
n∑
i=1

mijxi = bj , j = 1, 2, . . . , l ,
where bj are the quantities of balances andmij are quantities proportional to the num-
ber of atoms of the j-th type contained in the i-th substance Xi.

The system (3.6) is defined in the polyhedron of the reaction in which the condi-
tions of nonnegativity and balances are set Bj:

M = {x : x ≥ 0, x ∈ Bj} .
The model (3.6) represents a system in which no exchange of substances occurs

with the environment. It can be a chemically reacting closed system or an open system
far from equilibrium due to the persistence of some part of the reagent.

Thus, the basic model of chemical kinetics is a system of nonlinear differential
equations (3.6) in the general case, in which the right-hand sides are formed accord-
ing to the mechanism of transformations. General analysis of models of type (3.6) is
given in [1]. Here we only note that a necessary condition for the multiplicity of steady
states is the presence in the mechanismof the reaction stages of interaction of various
substances. If there are no such stages, the behavior of (3.6) will be quasithermody-
namic. For all initial conditions from the polyhedron reactions all solutions of the dy-
namicmodel (3.6) for t →∞ will approach a single stationary state. The equations of
chemical kinetics (3.6) are a special case of dynamical systems of the general type. In
the simplest case, the right-hand sides of equations (3.6) are polynomials in the phase
variables x1, . . . , xn.
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However, they have sufficient commonality. Multitudes of equations of chemical
kinetics are everywhere dense in the set of dynamical systems. The probability of this
assertion is very high because on any finite time interval, any sufficiently smooth dy-
namical system can be approximated with any prescribed accuracy by a dynamical
system whose right-hand sides represent finite Taylor series. After that you can use
E.M. Korzukhin’s theorem [8] on the possibility of approximating a dynamical system
with polynomial right-hand sides by a system of equations of chemical kinetics.

3.1.3 Scheme of parametric analysis

Here, we briefly describe a scheme of parametric analysis of a dynamical system. The
investigated real process usually occurs under certain external conditions, which can
be characterized by some parameter values. These parameters are included in the ap-
propriate kinetic model, which is a system of ordinary differential equations of the
form

ẋi = fi(x1, . . . , xn , p1, . . . , pm) , i = 1, . . . , n , (3.7)

where xi are phase variables (temperature and concentration of substances) and pj,
j = 1, . . . ,m, are parameterswhich canbe variedwithin certain limits. Parameters are
usually chosen as thermal, physical and geometrical characteristics of a real process,
such as temperature and concentrations of substances at the inlet to the reactor, their
initial values, the volume of the reactor, and so on.

Thefirst step in the parametric analysis of system (3.7) is the definition of its steady
states. For model (3.7) the steady states are solutions of the system of equations

fi(x1, . . . , xn , p1, . . . , pm) = 0 , i = 1, . . . , n , (3.8)

in the unknown variables x1, . . . , xn. If system (3.8) can be solved in explicit form

xi = φi(p1, . . . , pm) , i = 1, . . . , n ,
weobtain the requiredparameter dependencies of steady states onparameters. Gener-
ally, if we cannot solve (3.8) in explicit form, the steady states and their dependencies
on parameters should be found by rather hard computational procedures. However,
the system of stationarity equations often can be reduced to one equation by elemen-
tary transformations

F(x, p1, . . . , pm) = 0 , (3.9)

where x is one of the phase coordinates xi. The nonlinear equation (3.9) may have
multiple solutions, which leads to a multiplicity of steady states. Variation of pj, j =
1, . . . ,m, in this case leads to the hysteresis of stationary dependencies on parameter.

The second step of the procedure of parametric analysis of system (3.7) is the in-
vestigation of the stability of steady states. It is necessary to form the Jacobianmatrix
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with elements:
aij = ∂fi

∂xj
(x∗) , i, j = 1, . . . , n ,

where the value x∗ is responsible for a steady state. The stability of steady states is
determined by the eigenvalues λi, i = 1, . . . , n, of the Jacobian matrix. If all λi have
nonzero real part, the steady state will be rude. Its stability is determined by the sign
of Re λi.

An important step of parametric analysis is the construction of the parametric
dependencies of φi(p1, . . . , pm). In the general case this task is related to the solution
of nonlinear systemswith parameters. Computing and software tools for their solution
are presented in [69–79]. In the study of specific systems it is sometimes possible to
significantly simplify the procedure of constructing the parametric dependencies. Our
experience shows that the parameters in the stationary equation (3.9) are generally
such that you can write the parametric dependencies from (3.9) in explicit form.

pj = ηj(x) , j = 1, . . . ,m ,

where x is varied. Thus, it is possible to obtain the function which is the reverse of the
required parametric dependence x = φ(integer), j = 1, . . . ,m. If, for example, the
functions ηj(x) are given in graphical form, the function φ(integer) will be obtained
simply by inverting the coordinates x and pj.

If one of the parameters, for example, p1, is changed, there exist its special (bifur-
cation) values for which the number and stability of steady states is changed. Chang-
ing the second parameter p2 leads to the result that in the (p1, p2) plane the bifur-
cation values of p1 describe some curves which are bifurcation curves. In the simple
case of dynamical systems (n = 2) there are two basic bifurcation curves on the plane:
the curve of multiplicity of steady states L∆ and the neutrality curve Lσ. The stability
of steady states is determined by the roots of the second order characteristic equation

λ2 − σλ + ∆ = 0 ,
where σ = a11 + a22 and ∆ = a11a22 − a12a21. Let’s take the two parameters p1, p2,
and plot L∆, Lσ in the plane of these parameters. The boundaries of the region of the
multiplicity of steady states is defined as a solution of the system

F(x, p1, p2) = 0 ,
∆(x, p1, p2) = 0 ,

which can be represented in the form

p2 = ξ2(x) ,
p1 = ξ1(x, ξ2(x)) ,

where x is the changed value.
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To plot the curve of neutrality Lσ, the stationarity equation must be added by the
condition

σ(x, p1, p2) = 0 .
From this condition the equation for the curve of neutrality can be often written in
explicit form

p2 = ξ2(x) ,
p1 = ξ3(x, ξ2(x)) .

Analysis of mutual location of curves L∆, Lσ in the plane (p1, p2) allows us to define
the parametric portrait of the system. Curves L∆, Lσ allow for any values of the selected
parameters to determine the number and stability of the steady states.

Useful information about the possible dynamic behavior of solutions of model
(3.7) gives the plotting of phase portraits. The plotting of the phase portrait of sys-
tem (3.7) for each given set of parameters from the selected region on the parametric
portrait is performed by using numerical integration of (3.7) with different initial data.
Each region of the parametricportraitmatches its own type of phase portrait. The enu-
meration of all possible types of phase portraits is a rather time-consuming task [78].
However, in some specific cases, such a complete study is possible [79–83].

Complete representation of the dynamics of system (3.7) is given by time depen-
dencies xi = xi(t, p1, . . . , pm). The solutions xi(t) are usually found by numerical
integration of differential equations (3.7) for a fixed set of parameters pj. Technical
difficulties are present, and here they are connected first of all with the “rigidity” of
the system of ordinary differential equations (3.7).

Consider a system of nonlinear equations with a parameter:

f(x, α) = 0 , (3.10)

where x is a vector of unknowns, α is a parameter, and f is a vector function. The
system (3.10) implicitly specifies the dependence:

x = x(α) . (3.11)

Plotting this dependence is the main goal of a parametric analysis of the solutions of
system (3.10). The general scheme of the method of parameter continuation [73, 78]
is as follows. Using the substitution (3.11) in (3.10) and differentiating the resulting
identities we have

Jdxdα + ∂f
∂α ≡ 0 , (3.12)

where J is the Jacobianmatrix of system (3.10):

J = ∂f
∂x (x, α) . (3.13)

Weconsider the identity (3.12) as a systemof linear equations for dx/dα. The equations
of motion for the parameter can be gotten from the identity (3.12).

dx
dα

= −J−1 ∂f
∂α

. (3.14)
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The required parametric dependence ofx(α) is the solution of a systemof ordinary
differential equations (3.14) for some given initial data

x(α0) = x0 .
The specificity of system (3.14) is that at the bifurcation points of solutions of (3.10)

the Jacobian matrix J is special. Therefore, for the numerical integration of (3.14) we
proceed to the parameterization by the arc length of the curve x(α) in the appropriate
space of dimension dim x + 1. Note that for the integration of system (3.14) special
methods should be applied, including those based on the calculation of the Jacobian
matrix [78]. In this case, you must have the partial derivatives ∂

∂x (J−1 ∂f
∂x), and that

leads to additional technical difficulties. System (3.14) is often written on the basis
of the solution of (3.12), for example by the Gauss method relative to dx/dα. When
solving (3.14) a problem of getting sufficient accuracy initial data appears. All of this
suggests that the numerical implementation of the method of parameter continuation
is a rather time-consuming computational task. The degree of its complexity depends
essentially on the dimension of system (3.10). The computational cost is significantly
reduced by lowering, if possible, the number of equations in (3.10)due to the exclusion
of some variables.

Consider the special case when the original system (3.10) can be reduced to one
equation

g(x, α) = 0 ,
where g is a scalar function of one argument x andparameter α. Similarly to (3.12) from
differentiating the identity g(x(α), α) ≡ 0 we have

dx
dα = − ∂g∂α/∂g

∂x (3.15)

or
dα
dx = −∂g∂x/ ∂g

∂α . (3.16)

The required parametric dependence x(α)or the inverse dependence α(x) is found
bynumerical integrationof oneof the equations (3.15) or (3.16). Equation (3.15) or (3.16)
is integrated (at moving on a curve x(α)) depending on a value of the right side of the
equation. At the turning points (∂g/∂x) or (∂g/∂α) is zero. Therefore, the following
inequality can be accepted by the selection condition of motion on α or on x ∂g∂α/∂g

∂x

 < 1 . (3.17)

In the numerical integration of the equations (3.15) or (3.16), there must be an “inver-
sion” of the system, i.e., the transition from equation (3.15) to equation (3.16) or on the
contrary depending on the implementation of (3.17). The integrator must include veri-
fication of the value of the right side of (3.15) or (3.16) and implement this inversion for


