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Foreword

The enigmatic problem of “perpetuummobile” has attracted a lot of attention over the
years, starting already in the Middle Ages. Indeed, perpetual motion implies a lack
of energy dissipation which is a very unusual situation in science. Two key cases of
nondissipating motion on a macroscopic scale are well known:
– the flow of electrical current in superconductors and
– the propagation of light (and other electromagnetic waves as well) in vacuum.

If a current is induced in a superconducting ring that is meters or kilometers in size,
it circulates there forever. When we enjoy the romantic glimmer of a distant star in
the night, the light from it has arrived after traveling for billions of years, a nice ex-
perimental proof of dissipation-free propagation. An important difference here is that
the first system deals with current in condensed matter, the second one with the prop-
agation of electromagnetic fields in vacuum. In the first case, the energy dissipation
is forbidden by the existence of the coherent quantum state of the condensate of the
charged Cooper pairs carrying the current, while in the second case there is not too
much to interact with for the light propagating in vacuum, as prescribed by the clas-
sicalMaxwell’s equations.

Whereas propagating light interacts with matter or gravitational waves and rep-
resents the basis for optical devices and experiments, the frictionless flow of supercur-
rent interferes with nanosize objects in the superconductor such as tunnel barriers,
surfaces, interfaces, or the so-called fluxons or vortices, quantized magnetic flux of
extremely small magnitude Φ0 = h/2e ≈ 2.06 × 10−15 Wb, that are induced by an
applied current, a magnetic field, or thermal fluctuations. On the one hand, an ap-
propriate nanotechnology is required tomaster fluxon behavior – for instance through
designing appropriate pinning potentials to localize the fluxons (vortices) – and re-
tain the frictionless supercurrent that is necessary for a number of superconducting
applications. This forms one of the main objectives of fluxonics. On the other hand,
it offers a wide range of options for improved or even novel fluxonic concepts, espe-
cially since the necessary tools for “nanoengineering” superconducting materials are
readily available nowadays.

Generally, the superconducting condensate is described by the “order parameter”
that obeys the Ginzburg–Landau (GL) equations (Nobel Prize in Physics, 2003). The
boundary conditions for these, strongly influencing the solutions, are imposed at the
physical sample boundaries, thus implying that the properties of confined fluxons can
be tailored by applying specific surface configurations. This creates a unique oppor-
tunity for the “quantum design” of the physical properties of the confined condensates
and fluxons through the application of specially defined nanomodulated boundary
conditions, which can be additionally tuned using, for instance, magnetic templates,
electrical fields, or even optical signals. The imposed nanomodulation can therefore
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lead to the practical implementation of the confined fluxon patterns possessing the
specific properties needed for applications in fluxonics ranging from passive and ac-
tive elements to qubits for quantum computing.

It is the intention of this book to highlight and discuss the state-of-the-art and
recent progress in this field, as well as to highlight current problems with “Supercon-
ductors at the Nanoscale”. This includes:
– the visualization and understanding of fluxons (vortices) and their interaction on

the nanoscale, in nanostructured superconductors, as well as in novel types of
superconductors;

– progress in controlling static fluxon configurations as well as the dynamic proper-
ties (up to THz frequencies) of fluxons in nanoscale superconductors;

– the behavior of different types of fluxons (Abrikosov vortices, kinematic vortices,
and Josephsonvortices) inmesoscopic, nanostructured, and/or layered supercon-
ductors;

– the impact of the combination of superconductors with other materials, like fer-
romagnetic layers, on the nanoscale, and;

– progress in nanoscale superconducting electronics such as SQUIDs, THz emitters,
or photonic detectors.

For a better general understanding, the topic of superconductivity is introduced in an
extended Tutorial that provides a brief history and a scientific overview of the physics
of superconductivity.

Victor V. Moshchalkov Roger Wördenweber

Acknowledgment: This book is based upon work from COST Action “Nanoscale Su-
perconductivity:Novel Functionalities throughOptimizedConfinementof Condensate
and Fields” (NanoSC – COST Action MP1201), supported by COST (European Cooper-
ation in Science and Technology).

COST (European Cooperation in Science and Technology) is a pan-
European intergovernmental framework. Its mission is to enable
break-through scientific and technological developments leading to
new concepts and products and thereby contribute to strengthening

Europe’s research and innovation capacities. It allows researchers, engineers, and scholars to jointly
develop their own ideas and take new initiatives across all fields of science and technology, while
promoting multi- and interdisciplinary approaches. COST aims at fostering a better integration of less
research intensive countries to the knowledge hubs of the European Research Area. The COST As-
sociation, an International not-for-profit Association under Belgian Law, integrates all management,
governing, and administrative functions necessary for the operation of the framework. The COST As-
sociation has currently 36 Member Countries. www.cost.eu



Roger Wördenweber and Johan Vanacken
Tutorial on nanostructured superconductors

1 Introduction
Superconductivity represents an extraordinary phenomenon. In the superconducting
state the material not only exhibits no electric resistance to an applied DC current, it
shows also unique properties in magnetic fields that can be used for a large variety
of applications ranging from energy production and management, medical diagnos-
tics, to sensor and information technology. For a long time the application of super-
conductivity was hampered by its low transition temperature Tc that required cooling
down to liquid He temperature at 4.2K. As a consequence, superconductive solutions
were considered and developed in the past only if classical solutions were not feasi-
ble. This was (and still is) the case for medical applications like magnetic resonance
imaging (MRI) or electroencephalography, particle accelerators, and special detectors
(e.g., bolometers or highly sensitive magnetic field detectors).

With the discovery of the so-called high-Tc materials with Tc values of 90K and
higher (see Figure 1), this situation has changed. Now it was possible to attain the su-
perconducting state with much cheaper cooling by liquid nitrogen. However, it soon
turned out that the new superconductors (i) have a very complex crystallographic
structure, (ii) are highly anisotropic (2D superconductivity), and (iii) possess super-
conducting parameters that allow even smallest inhomogeneities to reduce or even
destroy the superconductivity locally.

As a result, it is essential to analyze, understand and, if possible, optimize su-
perconductors at the nanoscale. This includes among others a detailed study of the
nanostructure of these superconductors, the resulting ‘nanophysics’, and the impact
of nanostructures introduced by nanopatterning on the superconducting properties.
This book represents a detailed report on this activity that was performed in the
framework of a European project, the COST Action MP1201 ‘Nanoscale Superconduc-
tivity (NanoSC), Novel Functionalities through Optimized Confinement of Condensate
and Fields’.

2 A brief history of superconductivity
In 1908, Kamerlingh Onnes [1] succeeded in the liquefaction of helium with a boil-
ing point of 4.2K at atmospheric pressure. Since the boiling point can be reduced by
pressure reduction, he was now able to extend the experimentally available tempera-

DOI 10.1515/9783110456806-001, © 2017 Roger Wördenweber, published by De Gruyter. This work
is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.
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ture range towards absolute zero. Using this opportunity, he started an investigation
of the electric resistance of metals. At that time, it was known that electrons are re-
sponsible for charge transport. However, different ideas about the mechanism of the
electric conduction and the resulting temperature dependence of the resistance were
discussed:
1. At low temperature the crystal lattice ‘freezes’ and the electrons are not scattered

any longer. As a consequence the resistance of all metals would approach zero
with decreasing temperature (Dewar, 1904).

2. Similar to option 1, however due to impurities in the lattice, the resistance would
approach a finite limiting value (Matthiesen, 1864).

3. In contrast to option 1 and 2, the electrons could be ‘frozen’ (i.e., bound to their
respective atoms) at low temperature. Consequently, the resistance would pass
through aminimum and approach infinity at very low temperatures (Lord Kelvin,
1902).

Initially, Kamerlingh Onnes studied platinum and gold samples, which he could ob-
tain already with high purity. He found that the experiment agreed with the second
option. At zero temperature the electric resistance of these samples saturated at a fi-
nite limiting value, the so-called residual resistance, that depended upon the purity
of the samples. The purer the samples, the smaller the residual resistance. However,
Kamerlingh Onnes expected that, ideally, pure platinum or gold should have a van-
ishingly small resistance (first option).

In order to test this hypothesis, Kamerlingh Onnes decided to study mercury, the
onlymetal that at that time could behighly purified viamultiple distillation processes.
He expected that the resistance of pure mercury would hardly be measurable at 4.2K
and that it would gradually approach zero resistance at even lower temperatures. The
initial experiments seemed to confirm these concepts, i.e., below 4.2K the resistance
of mercury became immeasurably small (see Figure 1). However, he soon recognized
that the observed effect could not be identified with the expected decrease of resis-
tance. The resistance change resembled more a resistance jump within a few hun-
dredths of a Kelvin than a continuous decrease (see Figure 1). Therefore, Kamerlingh
Onnes stated that ‘At this point (slightly below 4.2K) . . . Mercury had passed into a
new state, which on account of its extraordinary electrical properties may be called the
superconductive state’ [2]. The new phenomenon was discovered and named super-
conductivity.

Meanwhile we know that superconductivity represents a widespread phenom-
enon. Many elements of the periodic system are superconductors (with Nb represent-
ing the element with the highest Tc of about 9.2K) and thousands of superconducting
compounds have been discovered in the meantime ranging frommetallic compounds
and oxides, to organic molecules (see Figure 1).

For the first 75 years, superconductivity represented a low-temperature phe-
nomenon with the highest Tc of about 23.2K in the A15 compound Nb3Ge. In 1986
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Fig. 1: Superconductivity of mercury (copy of the original figure from Kamerlingh Onnes [image in the
figure]) and the evolution of the superconducting transition temperature Tc with time.

this changed, when Bednorz and Müller discovered superconductivity with a Tc in
the range of 30K in the copper-oxide system Ba-La-Cu-O [3]. This immediately started
a ‘rush’ for new superconductors with even higher Tc‘s. Already in 1987, transition
temperatures above 80Kwere observed in the Y-Ba-Cu-O system [4]. During this time,
new results more often were reported in press conferences than in scientific jour-
nals, the media carefully reported on these developments since superconductivity at
temperatures above the boiling point of liquid nitrogen (T = 77K) suggested many
possible technical applications for this phenomenon.

Today, a large number of different Cu-O based (cuprate) superconductors with
high transition temperatures are known, the so called ‘high-Tc superconductors’.
The most studied high-Tc cuprates are YBa2Cu3O7 (YBCO), their rare earth counter-
parts ReBa2Cu3O7 (with Re = Sc, Ce, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu), and
Bi2Sr2CaCu2O8 (BSCCO or Bi2212) with transition temperatures slightly above 90K.
The record Tc value is presently that of HgBa2Ca2Cu3O8, with a Tc of 135K or 164K
at atmospheric pressure or a pressure of 30GPa, respectively.

Surprisingly, only in 2000 superconductivity with a Tc of 39K was detected in
MgB2, even though this compound represents a ‘classical’ metallic superconductor
and had already been commercially available for a long time [5]. In 2008 supercon-
ductivity was detected in quite exotic compounds, the so-called iron pnictides [6]. In
analogy to the copper oxide layers in the cuprates, in these material FeAs layers form
the basic building block for the superconductivity. Compositions like LaFeAsO1−xFx,
Ba1−xKxFe2As2, or ReFeAsO1−x (with Re = Sm, Nd, Pr, Ce, La) show impressive Tc‘s
up to 55K. Finally, a large number of organicmolecules also become superconducting
at low temperature. Already in 1979 K. Bechgaard synthesized the first organic super-
conductor, (TMTSF)2PF6, with a Tc of 1.1K at a pressure of 6.5 kbar. The correspond-
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ingmaterial classwas later named after him.Nowadays, transition temperatures of up
to 33K (2007, alkali-doped fullerene RbCs2C60) have been achieved. Organic super-
conductors are of special interest since they can form quasi-2D or even quasi-1D struc-
tures like Fabre or Bechgaard salts (e.g., κ-BEDT-TTF2X or λ-BETS2X compounds), or
graphite intercalation compounds.

This brief survey of superconductivity demonstrates that there has been a tremen-
dous improvement of the transition temperature in the past years, which, however, is
accompanied by a higher complexity and anisotropy of thematerial. The analysis, un-
derstanding, and optimization of the superconductivity in these materials clearly has
to happen at the nanoscale.

3 Specific properties of superconductors

Themost prominent property of the superconducting state is definitely the disappear-
ance of the DC electric resistance (see Figure 1). The superconductor becomes an ideal
conductor.

However, just as important is the behavior of the superconductor in magnetic
fields. In 1933 Meissner and Ochsenfeld discovered that an externally applied mag-
netic field can be expelled from the interior of a superconductor (Figure 2), i.e., the
superconductor can also act as an ideal diamagnet [28]. This can nicely be demon-
strated in levitation experiments and represents the basis for levitation applications
of superconductivity like levitation trains or magnetic bearings (Figure 2). Generally,
the Meissner–Ochsenfeld effect is very surprising, since according to the induction
law an ideal conductor is expected to preserve an interior constant magnetic field but
not expel it. As will be shown later in this tutorial (Section 4.3), the behavior of a su-
perconductor in a magnetic field is far more complex. It represents one of the major
themes of this book.

4 Theoretical understanding

4.1 Microscopic approach of Bardeen, Cooper, and Schrieffer

The explanation for the unusual behavior of superconductors came with the BCS the-
ory that was introduced by Bardeen, Cooper, and Schrieffer in 1957 [7]. They recog-
nized that at the transition to the superconducting state, electrons (fermions) pairwise
condense to a bosonic state, in which they form a coherent matter wave with a well-
defined quantum-mechanic phase, the so-called Bose–Einstein condensate (the lat-
ter explains the Josephson effect that is introduced in the next section). They assumed
that the interaction of the electrons ismediated by vibrations of the crystal lattice, i.e.,
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Fig. 2: (a) H-T phase diagram showing how a magnetic field interacts with a superconductor. In the
normal state at high temperatures, a magnetic field simply penetrates the material. In the super-
conducting state below Tc, the perfect diamagnetism (blue arrows) will assure that the magnetic
induction B = 0 inside the superconductor. However, even if the material is cooled in an applied
magnetic field (red arrows), the superconductor expels the applied field. Both effects are manifes-
tations of the Meissner–Ochsenfeld effect, that, among others, can be used for the levitation of a
superconductor in a magnetic field. The latter is illustrated by: (b) laboratory demonstration using
a liquid nitrogen cooled high-Tc superconductor and a magnet, (c) a ‘toy train’ of the IFW Dresden
equipped with a superconducting pellet, hovering above a magnetic track, and (d) Toyota/Lexus us-
ing the same technology to make “back-to-the-future” real. (e) Because of pinning (see later), it is
even possible to make a tram “levitate” along a building or upside down as shown by this model at
the KU Leuven.

phonons. The resulting electron pairs are called Cooper pairs. In most cases, the spins
of the two electrons align antiparallel (spin singlets) and the angular momentum of
the pair is zero (s-wave).

The Cooper pairs behave differently from single electrons which are fermions and
have to obey the Pauli exclusion principle. In contrast, Cooper pairs are bosons. They
condense into a single energy level which is slightly lower (a few meV, see Table 1)
than the energy level of the normal state. Therefore an energy gap 2∆ separates the
unpaired electrons (the so-called quasiparticles) from the Cooper pairs (Figure 3a).
The energy gap automatically explains (i) the DC zero-resistance of the superconduc-
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Table 1: Critical temperature Tc and zero temperature values of the energy gap ∆, Ginzburg–Landau
coherence length ξGL, and critical fields Bc (for type-I superconductors) and Bc2 (for type-II su-
perconductors). Since the values vary in the literature, they should be taken as a guide only. For
anisotropic superconductors, the subscripts (ab) and (c) refer to in-plane and out-of-plane proper-
ties, respectively. The subscript ‘max’ indicates the maximum reported value.

Material Tc (K) ∆ (meV) ξGL (nm) λL (nm) Bc, Bc2 (T)

Al 1.2 0.17 1600 34 0.01 (Bc)
Pb 7.2 1.38 51–83 32–39 0.08 (Bc)
Nb 9.2 1.45 40 32–44 0.2 (Bc)
NbN 13–16 2.4–3.2 4 250 16
Nb3Sn 18 3.3 4 80 24
Nb3Ge 23.2 3.9–4.2 3–4 80 38
NbTi 9.6 1.1–1.4 4 60 16
YBa2Cu3O7 92 15–25

(max, ab)
1.6 (ab)
0.3 (c)

150 (ab)
800 (c)

240 (ab)
110 (c)

Bi2Sr2CaCu2O8 94 15–25
(max, ab)

2 (ab)
0.1 (c)

200–300 (ab)
> 15000 (c)

> 60 (ab)
> 250 (c)

Bi2Sr2Ca2Cu3O10 110 25–35
(max, ab)

2.9 (ab)
0.1 (c)

150 (ab)
> 1000 (c)

40 (ab)
> 250 (c)

MgB2 40 1.8–7.5 10 (ab)
2 (c)

110 (ab)
280 (c)

15–20 (ab)
3 (c)

Ba0.6K0.4Fe2As3 38 4–12 1.5 (ab)
c > 5 (c)

190 (ab)
0.9 (c)

70–235 (ab)
100–140 (c)

NdO0.82F0.18FeAs 50 37 3.7 (ab)
0.9 (c)

190 (ab)c
> 6000 (c)

62–70 (ab)
300 (c)

tor and (ii) the transition temperature, criticalfield, and other phenomena that restrict
the superconducting regime, since it always requires an energy (thermal energy, mag-
netic field, current, or irradiation) of at least 2∆ to break a Cooper pair.

The BCS theory provides a number of valuable predictions. For instance, these
include the temperature dependence of the energy gap (Figure 3c), the value of the
energy gap at zero-temperature [9]:

∆ (0K) = 1.764kBTc , (1)

and thedependenceof the superconducting transition temperature Tc on the electron-
phonon interaction V and the Debye frequency ωD which, in the simplest form, is
given by [7]

kBT = 1.13ℎωDe−1/N(EF)V , (2)

with kB representing theBoltzmannconstant andN(EF ) the electronic density of states
at the Fermi level. In the past, the latter equation suggested a possibility to optimize
the transition temperature.
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Fig. 3: (a) Schematic of the density of states at the superconducting energy gap, the shaded regime
indicates the occupied states; (b) experimental verification obtained via scanning tunneling mi-
croscopy on various superconductors (see also Chapter 1), and (c) energy gap as function of re-
duced temperature according to the BCS theory (solid line) and for BCS-type superconductors (data
from [8]). In (b) the data are normalized with respect to the energy gap ∆ and, for better visibility,
they are shifted with respect to the ordinate (gray dotted line represents zero conductance). Al and
NbSe2 show the ‘classic’ BCS behavior (for Al a BCS fit is added, dashed line), whereas MgB2 repre-
sents a more complex superconductor with among others two energy gaps. For details of the tunnel
spectroscopy and related topics refer to Chapter 1.

Many superconductors represent BCS-type superconductors (see Figure 3c) and even
for the ‘non-BCS-type superconductors’ the general principles of the BCS theory are
still valid. Nevertheless, we know now that the superconducting state can be much
more complicated. This is especially the case for the much more complex new super-
conductors, like the high-Tc cuprates, MgB2 (see Figure 3), pnictides, or even organic
superconductors. Not only does Cooper pairing not really involve individual electrons
pairing to form ‘quasibosons’, holes can also condensate to Cooper pairs, and d-wave
superconductivity, p-wave superconductivity, multiband superconductivity, and cou-
pling mechanisms other than phonon-mediated electron-electron interaction have to
be taken into consideration to explain superconductivity in themore andmore ‘exotic’
compounds. The careful analysis of the band structure of these materials is therefore
a vital tool to understand these superconductors. A detailed discussion of this topic is
given in Chapter 1.

4.2 Thermodynamic approach of Ginzburg and Landau

In contrast to the microscopic approach of the BCS theory, Ginzburg and Landau
proposed a macroscopic description of superconductivity using universal thermody-
namic arguments [10]. Their phenomenological theory was essentially correct when
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they presented it in 1950 (i.e., prior to the BCS theory), however they assumed a charge
q = e of the superconducting charge carrier. With the appearance of the BCS theory,
this charge was then replaced by the charge of the Cooper pair, q = 2e. Later, in 1959,
Gor’kov demonstrated that the Ginsburg–Landau theory can be derived from the BCS
theory [11].

Based on Landau’s previously thermodynamic description of 2nd order phase
transitions, Ginzburg and Landau argued that the free energy F of a superconductor
near the superconducting transition can be expressed in terms of a complex order
parameter ψ, which is zero in the normal state and nonzero in the superconduct-
ing state. Furthermore, ψ is related to the density of the superconducting charge ns.
Assuming that |ψ| is small, the free energy can be expressed by

F − Fn = α|ψ|2 + β
2
|ψ|4 + 1

2m

(ℎ
i
∇ − 2eA)ψ

2 + |B|2
2μo

, (3)

with the parameters Fn representing the free energy in the normal phase, the phe-
nomenological parameters α and β, m and 2e the effective mass and charge of the
Cooper pair, and A and B the magnetic vector potential and magnetic field, respec-
tively. Minimizing the free energy with respect to variations in the order parameter
and the vector potential yields the important Ginzburg–Landau equations

αψ + β|ψ|2ψ + 1
2m

(ℎ
i
∇ − 2eA)2

ψ = 0 ,

j = 1
μo

(∇ × B) = 2e
m Re{ψ ∗ (ℎ

i ∇ + 2eA)ψ} ,
(4)

where j denotes the electric current density and Re the real part. The first equation
resembles the time-independent Schrödinger equation except for the nonlinear term.
It determines the order parameter ψ, whereas the second equation provides the su-
perconducting current.

The Ginzburg–Landau equations predict two important characteristic lengths in a
superconductor, the coherence length ξGL and the penetration depth λ. The coherence
length

ξGL = √ ℎ
2m|α| (5)

characterizes the thermodynamic fluctuations in the superconducting phase. It is for
instance manifested at a superconductor surface where the density ns of Cooper pairs
vanishes exponentially with a length scale of ξGL (Figure 4). Obviously, this parameter
is temperature dependent. Moreover, it is correlated to the so-called BCS coherence
length ξo = ℎvF/kBTc which characterizes the distance over which the two electrons
forming a Cooper pair are correlated. Here vF denotes the Fermi velocity.

The second parameter, the London penetration length λ, was already introduced
by theLondonbrothers in 1935 [29]. Expressed in termsof theGinzburg–Landaumodel
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Fig. 4: Exponential decrease of the magnetic field and
increase of the Cooper pair density at the surface of a su-
perconductor define the London penetration depth λ and
the Ginzburg–Landau coherence length ξGL.

it is given by

λ = √ m
4μoe2ψ2

o
, (6)

where ψo is the equilibrium value of the order parameter in the absence of an elec-
tromagnetic field. The penetration depth sets the length scale according to which an
external magnetic field decays exponentially inside the superconductor.

Finally, Ginzburg and Landau defined another parameter, the Ginzburg–Landau
parameter κ = λ/ξGL, which plays an important role in the classification of supercon-
ductors with respect to their behavior in an applied magnetic field.

4.3 Type-I and type-II superconductors

The behavior of a superconductor in a magnetic field depends on two energy contri-
butions: (i) the energy EB that is necessary to expel the magnetic field from the su-
perconductor and (ii) the energy EC that is gained by the condensation of the Cooper
pairs. Inside the superconductor both energies compensate each other, i.e., −EB =
EC = B2c,th/2μo with the thermodynamic critical field Bc,th. However, at a S/N inter-
face (superconductor to normal conductor interface) both energies are modified (see
Figure 4), the magnetic field is not completely expelled and the Cooper-pair density
is reduced. Therefore, the modification of these energies at a S/N interface with an
area A is given by ∆EB = AλB2c,th/2μo and ∆EC = AξGLB2c,th/2μo, respectively. As a
consequence we obtain an energy contribution of a S/N interface of

∆EC − ∆EB = (ξGL − λ) AB2c,th/2μo , (7)

which is positive for ξGL > λ or negative for ξGL < λ. These different possibilities auto-
matically give rise to different behaviors of the superconductor in an applied field. In
one case S/N interfaces are energetically favored, in the other case not.

Exact calculations by Abrikosov in 1957 [12] predicted this behavior. He classified
two types of superconductors according to their Ginzburg–Landau parameter. These
superconductors are:
– Type-I for κ < 1/√2: Because of the positive energy necessary for the formation of

S/N interfaces, these superconductors expel an applied magnetic field (except for
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Fig. 5: Schematic sketches of the behavior of type-I and type-II superconductors in an applied mag-
netic field (top), magnetization in the superconducting state below Tc starting with ideal diamag-
netism (Meissner phase with the magnetic susceptibility χ = −1) followed by different types of field
penetration (middle), and the resulting phase diagram with the Meissner state (B = 0), mixed state,
and normal state separated by the different critical fields (bottom).

a thin layer at the surface) up to the critical field Hc = Hc,th. This is the Meissner–
Ochsenfeld effect.

– Type-II for κ > 1/√2: These superconductors show a more complex behavior in
an applied magnetic field. Only up to a first critical field Hc1 is magnetic flux ex-
pelled. Above Hc1 flux penetrates the superconductor since the formation of S/N
interfaces are energetically favored. This phase is called the mixed state or Shub-
nikov phase. Nevertheless, superconductivity persists up to an upper critical field
Hc2.

These different behaviors are shown in Figure 5.
In type-I superconductors the Meissner–Ochsenfeld effect takes place for fields

below the critical field Hc. Above Hc thematerial becomes normal conducting (similar
to the transition at Tc) and the magnetic field completely penetrates the superconduc-
tor, i.e.,M = 0.

In contrast, type-II superconductors show a quite different behavior in amagnetic
field:
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(i) The Meissner–Ochsenfeld effect (B = 0) is only present below the lower critical
field Hc1.

(ii) For higher fields, flux starts to penetrate the superconductor. However, supercon-
ductivity persists up the upper critical fieldHc2 and themagnetization is still finite
(M < 0). The upper critical field is typically much larger than the critical field Hc
or Hc,th (see Table 1). This is one of the reasons why type-II superconductors are
more suitable for technical applications.

(iii) Moreover, since (∆EC − ∆EB) < 0 the superconductor tries to form as many N/S
surfaces as possible. Therefore, the flux penetrates in the form of magnetic flux
lines that contain the smallest possible amount of magnetic flux, the magnetic
flux quantum Φo = h/2e = 2.07 ⋅ 10−15 Wb. These flux lines (or fluxons) are
quantum mechanical objects. They possess a normal conducting core of the size
2ξGL, the magnetic field penetrating this normal core is surrounded by a super-
conducting current (see Figure 6). Because of this screening current these objects
are also called vortices or Abrikosov vortices, taking into account their discoverer
Abrikosov [12].

(iv) Finally, the arrangement, shape,mobility, andmotion of these vortices are all eas-
ily affected by a large number of interactions and energies. The major contribu-
tions to be considered are:
a. Vortices-vortex interaction: This interaction is repulsive. This can easily be un-

derstood by considering the interaction of the screening current of a vortex
with the magnetic field of adjacent vortices. Already in 1957 Abrikosov pre-
dicted that the flux-lines would form a regular lattice. In an isotropic super-
conductor, thiswouldbe the closest 2Dpacking, i.e., a hexagonal or triangular
lattice [12].
The first experimental proof of a periodic structure of themagnetic field in the
mixed phase was obtained in 1964 using neutron diffraction which demon-
strated the basic periodic structure of the magnetic field [13]. Real images
of the Abrikosov vortex lattice were first observed in 1966 by Essmann and
Trauble using a magnetic decoration technique [14].
However, small deviations and inhomogeneities, like anisotropic structural
or superconductingproperties or geometrical restrictions of the superconduc-
tor, can easily modify the structure of the (hexagonal) vortex lattice.

b. Driving forces: There are a number of forces and energies that can act as a
driving force for the motion of vortices in a superconductor. Major candidates
are the Lorentz force FL = J × Φo caused by any applied current, thermal
energy, and gradients in temperature ormagnetic field. Themotion of vortices
causes dissipation in the superconductor.

c. Pinning force: Fortunately, vortices can be ‘immobilized’ at defects in the ma-
terial. This is called flux pinning or pinning.
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Fig. 6: Sketches of (left) a flux line with the radial distribution of the magnetic field H, the Cooper
pair density ns, and the circulating supercurrent Js, and (right) the hexagonal flux line lattice with
lattice parameter ao and arrows indicating the impact of an applied current on a flux line lattice
leading to the Lorentz force FL.

The complex interplay of the different interactions leads to the volume pinning force
and, finally, to the critical current density that defines the dissipation-free current
regime for type-II superconductors. Since its understanding, especially in the novel,
highly complex superconductors aswell as in nanostructured and artificiallymodified
systems, represents a major topic of this book, we will briefly sketch the main aspects
of this part of vortex matter.

4.4 Flux pinning and summation theory

In order to retain a dissipation-free DC current flow or reduce the voltage noise due
to vortex motion, the flux lines have to be pinned by defects. The pinning force of the
defects compensates the driving force up to a critical value. In the case of the Lorentz
force FL this defines the maximum dissipation-free current density, i.e., the critical
current density Jc given by

Fc = −FL = B × Jc , (8)

where Fc represents the volume pinning force which is obtained via summation of the
elementary pinning forces fp [15]. The elementary pinning force describes the individ-
ual interaction between a single vortex and a single inhomogeneity or defect in the
superconducting material. It arises from the local modification of the superconductor
by the defect that results in a local reduction of the energy associated with the vortex.

Possible defects can be classified according to their:
– Elementary coupling mechanism, such as magnetic interaction or core interac-

tion: The magnetic interaction is essentially determined by the field gradient in
the superconductor (i.e., the penetration length λ), whereas the core interaction
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arises from the interaction of locally perturbed superconducting properties with
the variation of the superconducting order parameter (i.e., the coherence length
ξ ). Since in technical type-II superconductors with large Ginzburg–Landau pa-
rameters κ the penetration length is much larger than the coherence length, core
interactions are usuallymore effective pinning sides. There exist twopredominant
mechanisms of core pinning, which are δTc and δκ pinning.Whereas δTc pinning
is, for instance, caused by spatial variations in the Cooper-pair density, elasticity,
or pairing interaction, δκ pinning is predominantly caused by variations of the
electronic mean free path.

– Sizeor shape: In order to contribute to the summationof individual pinning forces,
the effective pinning site should be of the order of the local gradient. This implies
that the pinning site should be smaller than ξ or λ for core pinning or magnetic
interaction, respectively. Extended defects like surfaces, extended holes (e.g., so
called antidots) or cones typically trap flux lines or evenmultiple flux quanta, i.e.,
quantized magnetic flux Φ = nΦo.

– Origin: Real superconductor materials always contain natural defects such as va-
cancies, precipitates, dislocation loops, stacking faults, or grain boundaries that
contribute to the volume pinning. In most cases, several different types of natu-
ral pinning defects exist. However, one can also introduce artificial pinning de-
fects. Typical candidates for thin film applications are irradiation defects or spe-
cially patterned defects like moats or channels [16] or small holes (so-called an-
tidots) [17, 18]. Artificial pinning sites, their preparation and impact on various
superconducting properties represents an important topic of this book (see Chap-
ters 6 and 7).

As indicated above, the mechanism of flux pinning and, thus, the critical current den-
sity in real type-II superconductors is determined by (i) the interaction between indi-
vidual vortices (VV interaction), (ii) the interaction between individual pinning centers
and vortices fp, (iii) the driving force (e.g., Lorentz force caused by an applied current,
a field or temperature gradient or even a finite temperature), and (iv) the homogeneity
of the superconductingmaterial in terms of the amplitude and length scale of the vari-
ation of the superconducting properties. Therefore, a number of problems have to be
solved in order to understand the range of effects caused by vortex motion in type-II
superconductors [15]:
– First, the dominant class or classes of defects, which are responsible for the pin-

ning, have to be determined and their elementary pinning forces fp have to be
computed.

– Second, the ‘response’ of the vortex lattice to the individual pin-vortex interac-
tions has to be determined. For a small driving force (static vortex lattice) and
small pinning forces, this can be for instance an elastic response described by the
elastic matrix [19], plastic deformations, or instabilities [20]. The different mech-
anisms are comparable to the reaction of solids upon internal stresses. As long
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as the strain is small the vortex lattice can reach its equilibrium position with re-
spect to the pin distribution without plastic shear taking place in the lattice. In
the case of larger strains plastic shear will create a significant number of defects
in the vortex lattice. The deformation of the vortex lattice can be described by the
displacement field. It can be two-dimensional (transversal displacement) [20] or
three-dimensional [21].

– Third, the summation of the effects of many pins, usually at random position,
leads to the prediction of the volume pinning force Fp that takes into account the
elementary vortex interaction, the distribution and density of pinning sites, and
the kind of deformation in the vortex lattice. Note that Fp is not automatically
identical to the force Fc = JcB, which is defined by the onset of vortex motion.
The summationproblem canbe solved in some ideal ormodel systems. In the eas-
iest case every pinning center is able to exert its maximumpinning force fp on the
vortex lattice, and the net volume pinning force Fp would be given by the direct
summation, i.e., Fc = Fp = ∑ (fp/V). This case is usually only observed in systems
where individual flux lines are trapped by pinning sites, which is for instance the
case for extremely small fields or superconductors with artificial defects. In all
other cases the evaluation of the volume pinning force is more complex and re-
quires summation in the formalism of the collective pinning theory [22].

– Finally, it is themechanismof fluxmotion that determines the onset of dissipation
and, therefore, the technically relevant critical current density Jc × B = Fc with
Fc ≤ Fp, which is determined in the experiment. The volume critical force Fc can
differ strongly from the volume pinning force Fp, which is evaluated for the case
of elastic deformations. It depends upon (a) the relation between vortex-vortex
and vortex-pin interactions and (b) the homogeneity of the superconductor on a
length scale larger than the coherence length [23–26]. This automatically leads to
two different mechanisms of vortex dynamics.
Pin breaking: If the differences between depinning forces of neighboring vortices
are small compared to the vortex-vortex interaction, the complete vortex lattice
will be pinned or depinned. This situation is referred to as pin breaking. The vol-
ume pinning is given by the statistical summation of the elementary interactions
in the correlation volume Vc = LcR2c according to the collective pinning theory
introduced by Larkin and Ovchinnikov [22]

Fc = Fp = √n ⋅ ⟨f 2p⟩
Vc

= √W (0)
Vc

, (9)

with n denoting the density of pinning sites, W(0) representing the pinning pa-
rameter, and Lc and Rc the correlation lengths perpendicular and parallel to the
magnetic field direction, respectively. The resulting field dependence is given in
Figure 7. Up to a givenfield the elastic deformation of the vortex lattice is sustained
and the field dependence of the volume pinning force is nicely described by the
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Fig. 7: The critical current is typically determined via resistive measurements (a) using a voltage cri-
terion (typically 1 μV/cm) or magnetic measurements (b) for which the pinning manifests itself by
a hysteretic behavior. According to the Bean critical state model the difference ∆M in the magnetic
measurement is proportional to the critical current density [27]. The resulting field dependence of
the normalized volume pinning force is shown in (c) for a weak pinning amorphous Nb4Ge thin film
(FP(b = 0.7) typically of the order of 105–106 N/m3 at 2.2 K) [20] and a strong-pinning NbN thin
film (Fc(b = 0.7) typically of the order of 108–109 N/m3 at 4.2 K) [24] demonstrating pin-breaking
according to the 2D collective pinning theory (dashed line) and the flux line shear mechanism (solid
line), respectively. Finally, tunneling and thermal activation leads to the phase diagram (d) with a
Meissner state (no vortices), a vortex solid with flux creep, and a vortex liquid with thermally acti-
vated flux flow (TAFF). The latter regime is more prominent for high-Tc materials.

equation above. At high fields close to Bc2, plastic deformations in the flux-line
lattice set in leading to an increase of the pinning force with respect to the pre-
dictions of the collective pinning theory. The so-called peak effect at high fields
(see Figure 7) is a characteristic feature of the collective pinning behavior in weak
pinning materials.
Flux-line shear mechanisms: When the local pinning force strongly varies over
length scales comparable to or larger than the vortex-vortex distance, vortices or
bunches of vortices will start to move independently as soon as the driving force
exceeds the flow stress of the vortex lattice. In this so-called flux-line shear mech-
anism, Fc is determined by the vortex-vortex interaction, it is not given by the
volume pinning force Fp of the weak or strong pinning areas, respectively. Gener-
ally Fc should range between these two quantities, i.e., Fp,strong > Fc > Fp,weak. As
a result, the volume pinning force is determined by the plastic shear properties
of the vortex lattice, since areas that are weakly pinned shear away from strongly
pinned regimes. The resulting volume pinning force is given by [23–26]

Fc = G ⋅ c66 ∝ B2c2
w b (1 − b)2 , (10)
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with c66 representing the shear modulus of the vortex lattice, G a geometrical fac-
tor that accounts for the orientation of the flux-flow channels with respect to the
driving force, and b = B/Bc2 the reduced applied magnetic field. The typical field
dependence obtained for strong pinning superconductors is shown in Figure 7.
It is characterized by a broad peak at low field around B ≈ Bc2/3. The flux-line
shearmechanism is usually encountered in strong-pinning systems, whereas only
weak-pinning superconductors show collective pinning behavior.
The field dependencies for pin breaking and flux-line shear given in Equa-
tions (9)–(10) and in Figure 7 refer to the ideal case of very homogeneous systems
and low temperatures. Samples with a distribution of pinning properties or su-
perconducting properties show deviations from these ideal behaviors. Moreover,
up to now we did not take into account the impact of other energies on the vortex
motion. Especially for the high-Tc superconductors the impact of thermal energy
has to be considered.

4.5 Flux creep and thermally assisted flux low

Although it was already discussed before, with the discovery of superconductivity it
became evident that vortex motion for current densities J < Jc = Fc/B has to be con-
sidered. Invoking a washboard-like pinning potential, individual vortices can tunnel
(even at T = 0) or hop (e.g., thermally activated) from one potential well to the next
one. This leads to twodifferent behaviorswhichare, for instance, visible in the current-
voltage characteristic (Figure 7a) and the phase diagram (Figure 7d).

FluxCreep:Tunnelingof vorticeswasalreadypredicted in 1962anddescribed later
in the Kim-Anderson model for flux creep [30]. In this model, the tunneling rate of
vortices is given by R = ν0 exp (−U/kT) where ν0 is the attempt frequency (10−8–
10−11 s−1) and U the effective pinning potential (typically 10–1000K). As a conse-
quence an electric field is present already for J < Jc:

E = Blν0 exp(− U
kT (1 − J

Jc
)) , (11)

with l representing the average hopping distance. The resulting current-voltage char-
acteristic shows a shallow increase of the electric field below Jc (Figure 7a), the techni-
cally relevant critical current is therefore smaller than Jc. Nevertheless, the flux creep
regime in the mixed state represents a vortex solid state (Figure 7d).

Thermally Assisted Flux Flow: At elevated temperatures the impact of the thermal
energy kT cannot be neglected. As a result, vortices cannot only tunnel, they can also
hop from one well in the pinning potential to the next one. This hopping can occur
in or even against the direction of the Lorentzian force. The resulting electric field is
larger than the field generated by the tunneling of vortices, it is described in the so-
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called thermally assisted flux flow model (TAFF) by [31]

E = 2Blν0 exp(− U
kT) sinh(( U

kT)(1 − J
Jc

)) , and

E (J → 0) = J ⋅ (2Blν0 U
JckT

) ≡ J ⋅ ρTAFF . (12)

As a result, flux motion leads to dissipation starting at zero current (Figure 7a) in the
‘TAFF’ regime of the mixed state, which therefore is called a vortex liquid state (Fig-
ure 7d). The vortex liquid state is separated from the vortex solid state by the so-called
irreversibility line.

4.6 Josephson effects

Finally, we introduce one of the most intriguing effects in superconductivity, the
Josephson effects named after their discoverer [32]. They are not only ideal manifes-
tations of the macroscopic quantum-phenomenon of superconductivity, they also
provide the basis for extremely sensitive devices that have revolutionized electromag-
netic measurements. In general, the behavior of a tunneling junction (NIN, NIS, or
SIS with N, I, and S denoting a normal metal, insulator, and superconductor, respec-
tively) represent quantum-mechanical objects. Depending on the charge carriers, two
different tunnel processes can be distinguished:
(i) Tunneling of so-called quasiparticles (electrons or holes) was discovered by Gi-

aever in 1960 [33]. In the case of superconductor tunnel junctions (SIS or NIS), the
quasiparticle tunneling represents an ideal tool to determine the energy gap (see
Figure 8, and Chapter 1).

(ii) For the case of SIS junctions, additionally Cooper pairs can tunnel from one su-
perconductor to the other. In contrast to the quasiparticle tunneling, where the
tunneling is driven by a voltage difference between both conductors, the Cooper-
pair tunneling is driven by the phase difference between the two superconductors.
Since the phase difference can be constant (e.g., due to an appliedmagnetic field)
or varying in time (due to a voltage difference between the superconductors) there
exist two different effects, i.e., the DC Josephson effect and the AC Josephson ef-
fect, respectively [32].

Since the Josephson effects describe the behavior of superconductor tunnel junctions,
wewill briefly sketch thephysics of tunneling ingeneral before introducing the special
effect of the tunneling of Cooper pairs.
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4.6.1 Quasiparticle Tunneling

Tunneling through a barrier is only possible for quantum-mechanical particles, i.e.,
light particles like electrons. It can be described by the Schrödinger equation using
the appropriate boundary conditions.

NIN tunnel junction: In NIN junctions, the tunneling current of the charge carriers
(fermions) at a given voltage V and temperature is simply proportional to the tunnel-
ing probability Tn, the number of occupied states D(E) ⋅ f(E) of the normal conduc-
tor N1, and the number of unoccupied states D(E + eV) ⋅ (1 − f(E + eV)) of the second
normal conductor N2, into which the charge carriers tunnel. Here D and f represent
the density of states and the Fermi–Dirac distribution, respectively. Via integration
over the complete energy range and considering tunneling events in both directions,
we obtain the resulting total tunneling current

IN1IN2 = 2πeℎ |Tn|2 ∞∫
−∞

DN1 (E)DN2 (E + eV) (f (E) − f (E + eV))dE
≈ 2πeℎ |Tn|2DN1 (EF)DN2 (EF) eV ≡ GN1IN2V ≡ 1

RN1IN2

V . (13)

For the NIN junction the resulting current-voltage characteristic is simply ohmic (Fig-
ure 8a), i.e., I ∝ V with a proportionality factor given by the conductance GNIN or the
inverse resistance 1/RNIN.

NIS tunnel junction: Because of the energy gap 2∆ of the superconductor, the case
of the NIS junction is a bit more complex (Figure 8b). Around the energy gap, the den-
sity of states of the normal charge carriers (fermions which due to their particle-like
behavior are called quasiparticles) in a superconductor is given by:

DS (E) = DN (EF) E√E2 − ∆2
for |E| ≥ ∆

= 0 for |E| < ∆ ,
(14)

with EF := 0. In analogy to the NIN junction the NIS tunnel current is given by:

INIS = 2πeℎ |Tn|2 +∞∫
−∞; for |E|>∆

DN (E)DS (E + eV) (f (E) − f (E + eV))dE
≈ GNIN

e

∞∫
−∞

|E|√|E2 − ∆2| (f (E) − f (E + eV)) dE . (15)

For zero temperature and assuming a constant (i.e., energy independent) density of
states around the Fermi level, this simplifies to:

INIS = 0 for |eV| < ∆ ≪ EF

= GNIN
e

√| (eV)2 − ∆2| for |eV| ≥ ∆ ≪ EF .
(16)
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Fig. 8: Schematic diagrams of the current voltage characteristic (top) and density of states at the
Fermi level (bottom) of a NIN (a), NIS (b), SIS (c) junction showing the tunneling events of the differ-
ent contributions of the Fermi current (NIN), quasiparticles (NIS and SIS), and Cooper pairs (SIS). The
insets show close-ups of the different tunnel events.

The resulting current voltage characteristics are shown in Figure 8b. For zero temper-
ature, the onset of current occurs at eV = ∆(T = 0), at higher voltages the charac-
teristic asymptotically approaches a linear behavior defined by the conductivity GNIN.
With increasing temperature the energy gap decreases (see also Figure 3a) and ther-
mal activation leads to tunneling of the quasiparticles also for voltages eV < ∆(T). As
a result the characteristics recorded at finite temperature are smeared out as indicated
in Figure 8b. Nevertheless, the highly nonlinear behavior allows one to determine the
energy gap ∆(T) as discussed in Chapter 1.

SIS tunnel junction: In principle, the SIS junction can be treated in an analogous
way. The quasiparticle tunneling is given by:

IS1 IS2 = 2πeℎ |Tn|2 +∞∫
−∞;for|E|>max{∆1 ,∆2}

DS1 (E)DS2 (E + eV) (f (E) − f (E + eV))dE
≈ GN1IN2

e

∞∫
−∞

|E|√|E2 − ∆21|
|E|√| (E + eV)2 − ∆22| (f (E) − f (E + eV))dE . (17)

However, the evaluation is quite complex, even for T = 0K. Nevertheless, the current
voltage characteristic can be obtained by considering a simple graphical representa-
tion of the density of states as sketched in Figure 8c.
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4.6.2 Cooper Pair Tunneling

Up to now,weonly considered the tunneling of the quasiparticles. However, already in
1962 Josephson predicted [32] that (i) Cooper pairsmight also participate in the tunnel-
ing process and (ii) that due to the macroscopic quantum state of the superconductor
this might result in some spectacular effects. Only one year later in 1963, the predic-
tions were experimentally verified [34].

Since the tunneling of Cooper pairs is driven by the phase difference between the
two superconductors and not by a voltage difference as in the case of quasiparticle
tunneling, it is already present for V = 0. In general, Cooper pairs in a superconduc-
tor are quantum mechanical objects. They can be described by the time-dependent
Schrödinger equation iℎ∂Ψ/∂t = EΨ with the wave function Ψ = |Ψ|eiϕ, the phase φ,
and the superconducting condensate density ns = |Ψ|2. With a tunneling frequency T
of the Cooper pairs, an applied voltage V between the two superconductors S1 and S2,
the charge of the Cooper pairs q = 2e, and a definition of the zero-energy reference
EF := 0, the basic set of equations which describe the tunneling of the Cooper pairs is
given by

iℎ∂Ψ1
∂t = ℎTΨ2 − eVΨ1

iℎ∂Ψ2
∂t = ℎTΨ1 + eVΨ2 .

(18)

Equation (18) shows that the condensate density ns = |Ψ|2 in S1 is increased by the
tunneling of Cooper pairs from S2, and vice-versa. Furthermore, the difference in
energy between S1 and S2 is given by (2e)V, which for mathematical reasons is sym-
metrized over the two superconductors. Assuming identical superconductors (i.e.,
ns ≈ ns(S1) ≈ ns(S2)), Equation (18) leads to expressions for the phase difference
between the two superconductors and the superconducting tunneling current J

∂ (ϕ2 − ϕ1)
∂t

= −2eℎ V or: ∆ϕ = ϕ2 − ϕ1 = −2eℎ Vt + const. , (19)

with 2 eV/ℎ = ω representing an angular frequency, and

J (t) = ∂ns (S1)
∂t

= −∂ns (S2)
∂t

= Tns sin (∆ϕ) = J0 sin (γ0 − ωt) . (20)

These two expressions automatically lead to the two different Josephson effects.
DC Josephson effect: For zero-voltage, the tunneling current is simply determined

by the phase difference between the two superconductors:

J = J0 sin (∆ϕ) . (21)

Since V = 0, this phase difference is constant in time. However, it can be modified by
an applied magnetic flux in the junction. As a result, the tunneling current varies in
a sinusoidal way upon the applied magnetic field. This effect is, for instance, used
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in extremely sensitive magnetic field sensors, superconducting quantum interference
devices (SQUID). A detailed report on recent developments on NanoSQUIDs is given
in Chapter 11.

AC Josephson effect: For voltages V ̸= 0, the phase varies in time and we automat-
ically obtain an AC tunneling current with a voltage-dependent frequency:

fJ = 2e
h V . (22)

The maximum voltage that can be applied to the tunnel junction is given by Vmax =
∆/(2e). Therefore, the maximum frequency that can be generated by the Josephson
junctions is fJ,max = ∆/h. For Al, Nb, and BSCCO, with gaps of 0.17meV, 1.45meV,
and ∼ 25meV (see Table 1), the maximum frequencies are 82GHz, 700GHz, and
12THz, respectively. This demonstrates that the AC Josephson effect represents a rela-
tively easy way to generate or detect GHz and even THz frequencies. In the latter case,
an AC signal would directly be converted to a voltage signal.

This principle became even more attractive with the discovery of the intrinsic
Josephson effect in the highly anisotropic high-Tc superconductors in 1992 [35]. Be-
cause of the high anisotropy and short coherence length compared to the lattice spac-
ing between the superconductingCuOplanes inBi2Sr2CaCu2O8, the 2D superconduct-
ing layers are seemingly intrinsically separated by an ‘insulating layer’. In this way
they form stacks of natural (i.e., intrinsic) SIS junctions. In the meantime, the intrin-
sic Josephson effect has been observed in a number of other systems. Since these SIS
stacks form naturally and since the AC Josephson current density is potentially very
high, these systems are very promising candidates for various GHz to THz applica-
tions. Recent developments in this field are reviewed in Chapter 12.

5 Application of superconductivity

In the previous sections, we introduced the basic aspects of the quantummechanical
phenomenon called superconductivity. We demonstrated that the macroscopic quan-
tum state of the Cooper pairs results in:
(i) perfect conductivity resulting in zero-resistance ρ = 0 at dc current and a very

small microwave surface resistance at high frequencies;
(ii) perfect diamagnetism (Meissner–Ochsenfeld effect);
(iii) quantization of magnetic flux resulting in the formation of single-quanta (or mul-

tiquanta) vortices that interact with each other and with defects in the supercon-
ductor, and;

(iv) phase correlation of the charge-carrier wave function which in weak-link struc-
tures leads to the Josephson effects.
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Fig. 9: ‘Tomorrows Superconducting World’ shows where we already benefit from superconductivity
or could benefit from it in the future.

These extraordinary properties mean that superconductivity offers a high potential
for improvement of existing applications or even novel applications in various fields.
Existing, relatively well-established applications are (Figure 9):
– Medical care: A number of diagnostic superconductor applications are well es-

tablished in medical care. Magnetic resonance imaging (MRI) is widely used for
visualizing organs and structures inside the human body. Similarly, magnetoen-
cephalography (MEG) is used for analysis of the brain and brain activities. Other
applications are feasible, e.g., magnetocardiography (MCG) measuring the mag-
netic activity of the heart could become the counterpart to electrocardiography
(ECG).

– Information technology, electronics, and sensors: Superconductivity bears the
potential to improve quite a number of technologies. For instance, supercon-
ducting filters, antennas, and mixers can improve the performance of the data
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transmission and data handling of base stations for cell phones. Even complex
ultrafast electronics, the so-called ‘software radio’ is being considered for the
improvement of data handling in devices like base stations.
The extrememagnetic field sensitivity of the so-called Superconducting Quantum
Interference Device (SQUIDs) is used for various kinds of highly sensitive sensors
(e.g., magnetometers, amplifiers, current meters, and particle detectors). Super-
conducting bolometers are well established in radio astronomy. They could also
become attractive for other bolometric applications.
Finally, complex circuits basedon Josephsonarrays couldbeused for various elec-
tronic applications ranging from standards (e.g., voltage standards) and logic de-
vices, to quantum computing (e.g., Rapid Single Flux Quantum Logic, RSFQ).

– Environment, energy, industrial use, and transportation: Themajority of applica-
tions in this field is based on the use of superconducting cables. On the one hand,
superconducting cables can be used in power lines leading to a significant re-
duction of the losses. On the other hand, wound into coils they can be used in
high-field magnets or electric motors and generators. The superconducting billet
heater represents an example for the use of superconducting magnets for indus-
trial application. Superconducting motors or generators benefit from their large
power density, which could be used to enhance the power or reduce the volume
and mass of the device. This would be very attractive for larger engines or gener-
ators, like ship’s engines, hydro or wind turbines.

– Research: Last but not least, superconductor applications are well established in
various fields of contemporary research. Outstanding examples are particle accel-
erators and fusion reactors. However, high-field magnets, imaging technologies
(e.g., nuclear resonance imaging), or superconducting sensors (e.g., SQUIDs or
bolometers) are also successfully used in many laboratories.

6 Superconductors at the nanoscale
The list above (see also Figure 9) demonstrates that there are quite a number of
well-established applications of superconductivity. However, there are even more
less-established or potential applications that either benefit from the use of super-
conductivity or are only feasible due to superconductivity. In order to develop the full
potential of superconductors, it is essential to analyze, understand, engineer, and
optimize them at the nanoscale. There are a number of very important questions and
problems that are worth examining in this context (see also Figure 10):
– Improvement of superconductors, critical parameters: The critical parameters

Tc, Bc2, and Jc define the operating regime. The enhancement of these critical
parameters is one aim of superconductor research. The search for systems with
higher transition temperatures, if possible even ‘room temperature superconduc-
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tivity’, is definitely the research that attracts the most publicity. Nevertheless, it
depends on the kind of application and which of the critical parameters repre-
sents a restriction and should be increased (typically, Jc and Bc2 for high-field ap-
plications, Jc for low-field applications). Whereas Tc and Bc2 represent material-
specific parameters, Jc depends on the defects (type, density, arrangement) in
the superconductor. Thus, in the first case, research on new superconductors is
required. In the latter case, the role of pinning sites (i.e., type of defect, defect
density and distribution) has to be analyzed, understood, and optimized. The
introduction of pinning sites can be affected by the preparation process of the
superconductor. However, they can also be introduced artificially after or during
growth. In both cases this requires manipulation of the material on the scale of
the coherence length, i.e., at the nanoscale.

– Vortex matter and fluxonics: The vortices and vortex lattice are not only quan-
tum mechanical objects, they are also ideal nano-objects. Vortices possess a nor-
mal core of ∼ 2ξ . As indicated above, pinning sites of nanometer size are re-
quired for optimized pinning of these vortices. However, the lattice parameter is
also of nanometer size. Moreover, it can be varied over a large range by varying
the applied field. An undistorted hexagonal vortex lattice has a lattice parameter
ao = 1.15(Φo/B)1/2, i.e., ao varies from166nmto53nm to17nm for 100mT, 1 T,
and 10T, respectively. Regular arrays of pinning sites (natural or artificial) can be
used to achieve commensurability or matching between the vortex lattice and the
pinning array. Moreover, subtle arrangements of pinning defects can be used for
novel fluxonic concepts (e.g., flux guidance, vortex ratchets, vortex transistors)
or improvement of existing device concepts (e.g., noise reduction in SQUIDs, fre-
quency tuning of filters and antennae).

– Josephson physics: The secondobviousnano-objects are tunnel junctions leading
to the Josephson effects. The fabrication of the nanosized barrier between the two
superconductors is highly demanding, especially if several (two junctions per dc
SQUID, thousands for complex electronic circuits like voltage standards or RSFQ)
identical tunnel junctions are required. Moreover, due to the miniaturization of
electronics and sensors the fabrication of the individual device components re-
quire a reliable and reproducible preparation at the nanoscale.

– Anisotropy, 2D structure of high-Tc materials: Most applications still operate at
4K, which requires liquid-He cooling or quite expensive cryocooling. The dis-
covery of the high-Tc superconductors opened the temperature window for less-
expensive operation using liquid nitrogen at 77K or simpler cryocoolers. How-
ever, the enhancement of Tc has been achieved by a higher complexity of the
superconductor, a 2D layered structure, and an extremely small coherence length
(e.g., YBa2Cu3O7 with ξab ≈ 1.6 nm and ξc ≈ 0.3). Thus, the 2D nature and the
small coherence length generally require additional engineering of these complex
materials at the nanoscale.
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Fig. 10: Some of the strategies in the research on ‘Superconductors at the Nanoscale’ that are dis-
cussed in this book. (a) Chemical deposition of high-Tc films as an example for the development
of improved or novel preparation technologies, for instance, for HTS coated conductors (see Chap-
ter 6), (b) improvement of critical properties of existing superconductors and search and under-
standing of novel superconductors, (c) analysis and visualization of nanophysics in superconduc-
tors (here: microscopy on a single vortex) (see Chapter 1), (d) analysis of interactions and collective
phenomena on the nanoscale, (here: coexistence of single and multiquanta vortices) (see Chap-
ters 4 and 5), (e) development of novel concepts to manipulate superconducting properties at the
nanoscale (here: fluxonic concept for vortex manipulation via nanoscale patterning) (see Chapter 7),
(f) examination of the physics in superconductors at extremely small scales (here: granularity, su-
perconductivity, Josephson behavior in nanosize superconducting islands) (see Chapter 3), (g) novel
nanosize applications (here: NanoSQUID on a tip) (see Chapters 9–15), and (h) complex devices
composed of nanosize components (here: SQUID-based microsusceptometer) (see Chapters 11–15).

– Combination of superconductors and nonsuperconductors: In the end, the su-
perconductor has to be connected to the ‘outer world’, i.e., to nonsuperconduct-
ing materials. Moreover, the combination with nonsuperconducting material
might provide novel and interesting properties. This is, for instance, the case for
superconductor-ferromagnetic hybrid systems. In all cases, the small supercon-
ductor coherence length requires an understanding and optimization of the inter-
face between the superconductor and the nonsuperconductor at the nanometer
scale.

It is the aim of this book to provide an overview of the state of research and novel
approaches for the questions and problems that are addressed above. It comprises an
up-to-date view on the research and a contemporary perspective on ‘Superconductors
at the Nanoscale’.
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Hermann Suderow
1 Imaging vortices in superconductors: from the
atomic scale to macroscopic distances

Abstract: The Scanning Tunneling Microscope (STM) was used at cryogenic temper-
atures soon after its invention in the early 1980s. However, it has only been a few
years since its full potential for studying superconductors has been developed. Here
we provide an introduction to cryogenic STM applied to superconductors and the su-
perconducting vortex lattice. We review STM basics, explaining how we measure the
superconducting density of states by atomic-scale tunneling.We also discussAndreev
and Josephson features in tunneling conductance and the direct visualization of ther-
mally inducedvortexdepinning, vortexmotionandvortexmelting. Finally,wediscuss
how to analyze large-scale vortex images, explaining calculations of angular and po-
sitional correlation functions and the displacement correlator, and show how these
characterize the degree of disorder in the vortex lattice.

Keywords: Scanning probe microscopy, Tunneling spectroscopy, vortex physics, su-
perconductivity.

1.1 Introduction

Tunneling spectroscopy is useful to the study of superconductors because it directly
provides the superconducting density of states. In junctions formed by two supercon-
ductors, Tunneling spectroscopy also shows the coupling of the Cooper pair wave-
functions through the Josephson effect. During the 1960s and 1970s, many Tunneling
spectroscopy experiments were performed. These used layers of an insulating mate-
rial to form a tunnel barrier for electron transport between the two electrodes. The
experiments were often quite conclusive, providing strong experimental support for
the Bardeen Cooper and Schrieffer (BCS) theory through the measurement of the su-
perconducting gap and of the electron-phonon pairing interaction in many different
materials (see for example [1]).

The invention of the ScanningTunnelingMicroscope (STM)by [2] opened the door
to tunneling experiments at atomic level, having vacuumas the tunnel barrier. The su-
perconducting tunneling conductance was first measured using an STM by [3] in the
technologically important material Nb3Sn. Subsequent tunneling conductance mea-
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surements using STMwere done in the cuprates by [4] and [5]. With an STM, one can
also perform scanning tunneling spectroscopy and obtainmaps of the tunneling con-
ductance as a function of the position with atomic resolution. This makes the STM
at low temperatures the only instrument able to map the superconducting density of
stateswith a spatial resolution far below the superconducting coherence length ξ . The
Abrikosov vortex lattice was first observed using an STM by [6], with a spatial resolu-
tion that exceeded considerably all other vortex visualization techniques.

The key constructive element of the STM is the piezoelectric ceramic, which lit-
erally plays the role of a finger touching the nanoworld. In fact, when the STM was
invented, people immediately realized the potential of the idea behind it, developing
a whole set of new methods to probe matter at the nanoscale by tracing other probes
as a function of the position, as for example the force between a tip and the sample.
Very soon after the invention of the STM, [7] developed the atomic force microscope,
which is todaywidelyused inphysics, chemistry andbiology.Differentprobesmeasur-
ing magnetic fields at the surface were also developed, in particular with more recent
advances in nanometric fabrication. Detailed images of vortex lattices have been ob-
tained using magnetic force microscopy, scanning SQUID microscopy, and scanning
Hall microscopy. These efforts are reviewed in [8, 9] and [10].

Fig. 1.1: Superconducting vortex in 2H-NbSe2 imaged using STM at length scales of the order of
several hundred nm (bottom) and at atomic scale (top). The figures show maps of the zero bias con-
ductance acquired at 0.1 K and 0.03 T. There is a strong spatial variation of the superconducting
density of states at all length scales, including at atomic distances. Figure adapted from Ref.[11].
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As so often, opening a new window into smaller length scales provides informa-
tion that could not have been anticipated previously. For example, the features in the
superconducting density of states at length scales well below the superconducting
coherence length ξ shown in Figure 1.1. This does not conform with the conventional
view of superconductivity being homogeneous below ξ .

In this tutorial we explain the main concepts needed to design and understand
this and other STM experiments in superconductors. We start by introducing the dif-
ferences between macroscopic and atomic size tunneling and the role of the distance
between tip and sample in normal and superconducting phases. We then discuss the
results obtained frommaps of the superconducting properties as a function of the po-
sition at different length scales, ranging from subnanometer to micrometer scales.

We focus mostly on work performed by our group.We also mention work by other
groups whenever needed to explain concepts. But we do not aim at providing a com-
plete reference list. For this, we refer to the reviews by [12, 13] and [14].

1.1.1 Formalisms to treat atomic size tunneling

One of the reasons for the success of STM is that the requirements to obtain atomic res-
olution on a surface are not as stringent as onemay think a priori. One needs of course
an atomically flat surface. But the tip can be totally blunt at nm length scales, mostly
because the tunneling current depends exponentially as a function of the distance be-
tween both tunneling elements. Thus, the tunneling current decreases exponentially
and only the outermost tip’s atom provides a sizeable tunneling current.

Furthermore, the vacuum tunneling problem can be understood in simple terms
for most purposes. Tunneling experiments are based on the quantum mechanical
overlap between tip and sample’s electronicwavefunctions, which is in general nearly
impossible to calculate accurately. The nature of the tip’s atom involved in tunneling
is not known, it may be an atom of the tip’s material (often Pt or Au) but it might well
also be an atom picked up from the surface during the scanning process. Even less
is known about what kind of electronic orbitals couple together. It turns out that, for
most practical processes, the details of the quantum mechanical overlap between tip
and sample’s electronic wavefunctions do not matter. [15] found that the resulting
tunneling current at zero bias voltage and zero temperature is simply proportional to
the Fermi level local density of states of the sample at the position of the tip. They
used a perturbative treatment of the tunneling current, valid when the overlap be-
tween wavefunctions is small, or, for practical purposes, when the tip is sufficiently
far apart. Their treatment is based on Bardeen’s transfer Hamiltonian formalism and
requires knowing the shape of the tip and sample wavefunctions. [16] and [17] assume
an s-wave tip wavefunction and find that the STM experiment provides a spatial map
of the electronic density of states at an energy fixed by the bias voltage. The current
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versus bias voltage can be written as

I(V) ∝ ∫NS(E)NT(E − eV) (f(E) − f(E − eV)) dE (1.1)

where NS(E) is the sample’s density of states, NT(E) is the tip’s density of states and
f(E) the Fermi function. The derivative of I(V) is the convolution of NT(E)NS(E) with
the derivative of the Fermi function. The tunnelingmatrix elements are part of the pro-
portionality factor. Their energy and spatial dependence are oftenneglected, although
generally this is not true. The energy scale for the superconducting gap is typically
far below the energy scales of localized states within the junction and of the energy
rangewhere the density of states of the tip NT(E) varies. Therefore, for most purposes,
the tunneling conductance maps NS(E) of superconductors with enough accuracy at
atomic scale.

1.1.2 Electronic scattering and Fermi wavelength

Most superconductors are good metals. Tunneling into an atomically flat metal can
also be understood as tunneling into a Fermi sea of free electrons, or a Fermi liquid in
the presence of interactions. Actually, this is a classical problem of STM. In practically
all discussions about STM imaging, there is a dichotomybetween tunneling into local-
ized atomic orbitals and tunneling into the Fermi sea of free (or interacting) electrons.
Both points of view lead to radically different images (Figure 1.2a,b and c). Tunneling
into atomic orbitals provides the atomic positions at the surface. Tunneling into the
Fermi sea, by contrast, provides flat images often with no atomic resolution. In ex-
change, disturbances to the Fermi sea in the form of defects, step edges or impurities
appear as wave-like patterns, whose periodicity is given by the Fermi wavelength λF.
The STMcanbe used to trace these patterns as a function of the energy and tomeasure
the dispersion relation for occupied and empty electronic states.

An isolated charge in a free electron system is screened away by changes in the
local electron density. This is described in the simplest waywithin the Thomas–Fermi
approximation. Taking into account Blochwavefunctions leads to Friedel oscillations,
which quite often provide the actual answer of a free electron system to an impurity
(see for example the book of [18]). Ideally, scanning over a free electron gas with a
metallic tip provides flat and featureless images, because the electronic density of the
sample is independent of the position. Close to a scattering center, such as an impurity
or a step edge, Friedel oscillations produce variations in the local electronic density
at the surface. These oscillations are detected in an STMand their energy dependence
provides the corresponding dispersion relation. Surfaces of simple metals such as Au
or Ag have been extensively studied for example by [19], [20] and [21]. Defects having
a preferred orientation, such as step edges or structured impurities (e.g., dimers or
chains), provide patterns with higher densities of states along certain directions. The
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Fig. 1.2: In (a) and (b) we show a schematic view of different tip wavefunctions, eventually leading
to different corrugations in the STM images. The sample is represented by the light gray rectangle
and the outgoing atomic wavefunctions by the dark orbital-like features. The tip is represented by
the dark gray triangle. The wavefunction of the atom at the tip apex is shown in black. The dashed
line gives the signal sent to the feedback loop that maintains a constant current between tip and
sample. The corresponding periodicity provides the atomic lattice. In (c) we schematically discuss
the situation found in metals with strongly delocalized electron wavefunctions. The bulk electron
wavefunctions are scattered at the surface at step edges, leading to oscillations in the density of
states (dark structures on top of the sample’s surface) with a wavelength of λF. Scanning the tip over
the surface then provides periodic structures with wavelength λF.

energydependence thengives the electronic dispersion relationalong thesedirections
only. If impurities or defects are point-like, the conductance images provide directly
the reciprocal state shape of the electronic dispersion relation (see for example [22]).

In Figure 1.3a we present cartoon pictures of possible patterns observed at the
surface. On the top left panel of Figure 1.3a we show a circular pattern created by a
point-like impurity in a system with a circular Fermi surface. In the top right panel we
show the pattern formed by a step edge located in the middle of the panel (x = 0) in
a system with a spherical Fermi surface. In the bottom left panel we show patterns by
two perpendicular step edges. In the bottom right panel we show the pattern obtained
by a point-like impurity in a system with a square Fermi surface with sides along the
x- and y-axis of the figure. In Figure 1.3b we represent the dispersion relation of a
hole band. The energy dependence of the surface patterns for the case of a spherical
Fermi surface are shown in the bottom panels in reciprocal space. There are circular
features with higher intensity at the wavevectors given by the dispersion relation at
E = eV, where e is the electron charge and V the applied bias voltage. The size of the
k-space feature decreaseswith increasing energy in a hole band, and the opposite can
be expected for an electron band.
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Fig. 1.3: In (a) we represent schematically the expected local density of states in real space at the
surface of metals with a defect or impurity in 2D color maps. The value of the density of states is
given by the color scale (white being the highest). We show four different cases in (a), a point-like
impurity (upper left panel), a linear defect (upper right panel), two perpendicular linear defects
(lower left panel) and a strongly anisotropic, square fold, Fermi surface (lower right panel). In (b) we
represent (thicker line) schematically a dispersion relation in the top panel and the reciprocal space
patterns expected for varying energies in the bottom panels.

The intensity of the observed modulations is given by the imaginary part of the Green
function, which in turn includes the bare electron dispersion relationmodified by cor-
relations. Kinks in the band structure, van Hove singularities or places with strong
electron-phonon scattering provide modified intensities at the relevant energies. This
can be dramatic in some systems, such as the cuprate superconductors, where most
of the scattering comes from a set of wavevectors connecting parts of the Fermi sur-
face with an enhanced electronic density of states (see for example [23] or [12]), or in
the pnictide superconductors, where the nematic electronic properties provide pre-
ferred scattering along certain directions (see for a review [13]). Conversely, knowing
in advance the band structure and character of the impurity can be useful to locate an
impurity embedded in the material, as shown by [24].

1.1.3 Tunneling with multiple conductance channels

A magnetic impurity embedded in a metal often produces a Kondo effect at low tem-
peratures. The Kondo mechanism quenches the spin of the impurity by producing a
singlet state with an electronic cloud surrounding the impurity (see for example the
book of [18]). Therefore, tunneling into a Kondo impurity occurs in two channels in
parallel, one into the free electron cloud and another one into the localized magnetic
state of the impurity. The two tunneling conductance channels interfere. The result is
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a tunneling density of states that can be described by a Fano lineshape (see [25]). The
density of states is a dip in the case of dominant tunneling into the bound state, or a
peak in the case of dominant tunneling into the free electron cloud, as schematically
shown in Figure 1.4. The Fano anomaly occurs around single magnetic impurities. It
has been studied by [26] andmore recently in experiments with isolated molecules on
metal surfaces by [27]. The Fano anomaly has been also observed in electronic systems
having multiple bands crossing the Fermi level with very different effective masses,
such as heavy fermions (see for example [28–30] or [31]).

Fig. 1.4: In (a) we show a cartoon picture of the density of states of a band structure consisting of
heavy (black) and light (light gray) bands in the sample (left side of the junction). Tunneling occurs
from the tip (right side of the junction) which has a simple one band density of states. Eventually,
tunneling can occur into each of the bands separately, in which case, there will be interference be-
tween tunneling into localized states and into the continuum. The result is a Fano anomaly, shown in
(b). For this scheme, we use an energy width of the localized states of Γ = 5 meV and E0 = 0 meV.
The relative strength of tunneling into the resonant state is given by q. For large q, tunneling is into
the resonant state, providing a near-Lorentzian shaped tunneling conductance. For low q, the phase
shift due to tunneling into the resonant state produces destructive interference and a dip.

1.1.4 From tunneling into contact: Normal phase

When a normal metal tip is moved from tunneling distance to the sample, the wave-
functions overlap. Upon increasing the connection among both electrodes, there
comes a point where the wavelike nature of transport is totally lost. Then, the conduc-
tance is given by Sharvin’s formula which provides the tunneling conductance when
transport is in the ballistic regime. Transport is classical, but the contact radius a is
far below the electronic mean free path. In between, there is an interesting regime,
where the conductance occurs just through a single atom. [32] showed that the chem-
ical nature of the contacting atom determines the precise value of the conductance,
which is amultiple of the quantum of conductance σ0 = 2e2

h , with e being the electron
charge and h Planck’s constant (see for example [33] or [34]).
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1.1.5 From tunneling into contact: Superconducting phase

Let us consider the situation where two electrodes made of the same superconduct-
ingmaterial are slowly moved into contact at zero temperature. When both electrodes
are separated in the tunneling regime, single quasiparticle tunneling is possible only
for applied voltages larger than two times the superconducting gap of the electrodes
(i.e., eV > 2∆, see Figure 1.5a). For voltages below 2∆, Andreev reflection provides a
conduction mechanism. It involves multiple crossings of the tunneling barrier, as we
discuss below. Thus, the Andreev current is further exponentially suppressed with re-
spect to the usual quasiparticle tunneling. The Andreev current is found using Bogoli-
ubov equations, which are the equivalent of the Schrödinger equation for electrons in
normal metals for superconductors (see for example the book by [35]).

In an S-S junction, the Andreev conduction mechanism implies multiple reflec-
tions through the junction. For eV < 2∆, electron-like excitations of electrode 1 cannot
enter into thegap regionof electrode 2 as a single quasiparticle. However,we canfinda
hole-like quasiparticle with opposite wavevector and spin in the same electrode. This
produces a Cooper pair in electrode 2 and a current with 2e flows through the junc-
tion (Figure 1.5b). The hole-like quasiparticle is reflected into electrode 1 within the
region of occupied electron-like states of electrode 1. This was first discussed by Blon-
der, Tinkham and Klapwijk (BTK) in experiments in macroscopic N-S junctions ([36]).
The appendix of that paper shows the procedure needed to obtain the current-voltage

Fig. 1.5: In this image we show the behavior of a typical superconductor-superconductor junction
when tip and sample are sufficiently close to show in-gap conductance. In (a) we show a single
particle tunneling process for bias voltages above 2∆. In (b) we show in-gap conductance due to a
process crossing the tunneling barrier twice through Andreev reflection. In (c) we show the process
crossing the tunneling barrier three times.
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characteristics of N-S junctions for any tunneling barrier. An extension of the BTK for-
malism to superconductor-superconductor (S-S) junctions was later made by [37].

A more detailed analysis of the S-S situation takes into account all quasiparticle
bound states. The formalism developed by [38, 39] leads to results that reproduce
exactly the experimental observations in junctions involving a controlled amount of
conduction channels. In Figure 1.5c we show schematically an example of multiple
Andreev reflection processes. For eV < 2∆ multiple Andreev reflections occur in
both electrodes 1 and 2. The smaller eV is compared to ∆, the larger is the number of
Andreev reflections needed to obtain an Andreev current. For example, in the cases
shown in Figure 1.5 we obtain one single quasiparticle transmitted in case (a), two
in (b) – in the form of a Cooper pair, and three in (c) – in the form of a Cooper pair
and an excited quasiparticle. For a current to flow from one junction to the other, the
transmission probability must be multiplied at each barrier crossing. For a junction
with transmission τ, the processes shown in Figure 1.5(b) and (c) have transmissions
τ2 and τ3, respectively. Thus, unless τ is close to one, the contribution of Andreev
reflection processes to the tunneling current is small. For a typical STMmeasurement
in tunneling regime, with tunneling resistance of 10MΩ, the transmission is about
10−3 (τ = (1/σ0×10MΩ)−1). It is thus difficult to observe Andreev reflection processes
in the tunneling limit, although it is not impossible by measuring carefully enough
and at short tip-sample distances, as discussed by [40].

With the STMwe can control tip to sample distance, from high resistance tunnel-
ing conditions down to atomic contact between the electrodes (tip and sample). As
the tip is moved towards the sample, the transmission through the tunnel barrier τ
increases. In Figure 1.6 we present a series of current-voltage and conductance curves
(I − V and dI/dV − V) obtained when a Pb tip is moved towards a Pb sample. Similar
results have been discussed by [34, 41]. We observe features in the curves for V < 2∆
when the resistance of the junction is decreased towards contact. Atomic contact is
reached when the transmission equals a single quantum channel with spin degen-
eracy, τ = 1, that is, when the resistance approaches the inverse of the quantum of
conductance 1/σ0 = RQ = h/2e2 = 12.9 kΩ.

For a single quantumchannel, eachvalue of the transmission τ is uniquely locked
to a single current versus bias voltage curve. Thus, from the experimental curves we
can obtain, with high precision, the number of quantum channels and their transmis-
sion τi, as first shown by [32].

The conductance curves shown in Figure 1.6 also present a feature at zero bias.
This feature is the signature of the Josephson effect due to Cooper pair tunneling be-
tween both electrodes. [42] calculated the critical current of the Josephson junction
IC in a short constriction at zero temperature and found IC = (πσN∆)/2e, where σN is
the conductance of the junction in the normal state. Its value for quantum contacts
with a small number of conducting channels was calculated by [43]. Available exper-
iments provide TC values smaller than expected in calculations that usually do not
take into account the actual properties of the junction, namely thermal broadening,


