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Preface
Impedance spectroscopy is awidely used and powerfulmeasurementmethod applied
in many fields of science and technology such as electrochemistry, material science,
biology and medicine. In spite of the apparently different scientific and application
background in these fields, applications share the same measurement method in
a system identification approach and profit from the possibility to use complex
impedance over a wide frequency range and giving interesting opportunities for
separating effects, for accurate measurements and for simultaneous measurements
of different and even non-accessible quantities.

For electrochemical impedance spectroscopy (EIS) competency from several
fields of science and technology is indispensable. Understanding electrochemical
and physical phenomena is necessary for developing suitable models. Suitable
measurement procedures should be developed taking specific requirements of the
considered application into account. Signal processing methods are very important
for extracting target information by suitable mathematical methods and algorithms.
New trends are emerging rapidly involving special techniques for realizing fully
automatic embedded solutions at low costs and requiring a deep overview of modern
information technology.

The scientific dialogue between specialists of impedance spectroscopy, dealing
with different fields of science, technology and application, is therefore particularly
important to promote the adequate use of this powerful measurement method in both
laboratory and in embedded solutions.

Since 2008, the International Workshop on Impedance Spectroscopy (IWIS) has
been launched as a platform for promoting experience exchange and networking
in the scientific and industrial field. Its aim is to serve for encouraging the sharing
of experiences between scientists and to support new comers aiming to specialize
in impedance spectroscopy. Since many years, the workshop has been gaining
increasingly more acceptance in both scientific and industrial fields and addressing
increasingly more fundamentals, but also diverse application fields of impedance
spectroscopy. Many renowned scientists are contributing yearly to it and sharing their
experience with scientists all around the world. By means of tutorials and special
sessions, young scientists get a good overview of different fundamental sciences and
technologies helping them to get expertise even in fields, which are still not in the
focus of their background.

In 2013 the Circle of Experts of Impedance Spectroscopy (CEIS) was founded to
promote exchange between experts and together with industry as interest group for
promoting impedance spectroscopy all over the subfields related to fundamental and
applications of impedance spectroscopy. The CEIS is the steering committee of the
IWISworkshop supporting it and deciding about the yearly best paper and best poster
award to recognize best contributions.
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This peer reviewed book is the first edition in the series Progress Reports on
Impedance Spectroscopy which has the aims to widen knowledge of scientists in
this field by presenting selected and extended contributions from the International
Workshopon Impedance Spectroscopy (IWIS’14 and IWIS’15). The series reports about
new advances and different approaches in dealing with impedance spectroscopy,
including theory, methods and applications. The book is therefore interesting for
researcher and developers in the field of impedance spectroscopy.

I thank all contributors for the interesting contributions and the reviewers who
supported by the decision about publication with their valuable comments.

Prof. Dr.-Ing. Olfa Kanoun
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Florina Cuibus, Svetlozar Ivanov, Ulf Schwalbe, Marco Schilling and
Andreas Bund
State-of-Charge and State-of-Health
Estimation of Commercial LiFePO4 Batteries by
means of Impedance Spectroscopy

Abstract: Commercial LiFePO4-type cells were characterized by electrochemical
impedance spectroscopy to identify sensitive and reliable parameters suitable to
diagnose the state of charge and state of health. On the basis of the proposed
equivalent circuit, electrochemical parameters were extracted, and physical and
chemical ageingphenomenawere categorized and selected. Itwas observed that, after
2,000 cycles the charge transfer resistance increased approximately with 50% from
the initial value, which indicates a decreasing of the exchange current density. The
Warburg element showedadecrease of diffusion coefficient and lithiumconcentration
due to the formation of solid electrolyte interface layer. The charge transfer resistance
demonstrates more significant trend with ageing cycles and the results are consistent
with experiment-based observations from the literature, which seems to be indicating
the potential of the proposed model for battery age estimation.

Keywords: LiFePO4 batteries, state of charge, state of health, electrochemical
impedance spectroscopy

1 Introduction
The improvement of the storage system is one of the primary challenges for the
development of modern electric vehicles. To fulfil the requirements for extended driv-
ing range, the storage systems need reliable high-energy batteries and an advanced
batterymanagement system (BMS) for efficient energy consumption optimization. The
implementation of an efficient battery state-of-charge (SoC) and state-of-health (SoH)
estimation is a central aspect for the development of BMS.

Battery ageing responsible for the cell impedance increase and power decay and
energy decay origins frommultiple and complex mechanisms [1]. Material properties,
as well as storage and cycling conditions, have an impact on battery lifetime per-
formance SoC and SoH. Therefore, prompt and reliable SoC and SoH determination,
independent on the cycling current and operational history, is highly favourable. The
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SoC, battery instability and ageing phenomena can be investigated non-destructively
bymeansof electrochemical impedance spectroscopy (EIS) [2–4]. EIS is an established
method for analysis of electrochemical systems and is considered a valuable tool
to detect changes in mass transport properties, double-layer capacitance, ohmic
resistance and reaction kinetics during battery operation and ageing. Furthermore,
to the extensive use of this method add the properties of the cell (capacity, voltage),
although the advantages of EIS method, the determination of electrical parameters of
the individual electrode materials in commercial batteries, remain challenging. The
implementation of EIS method (quick and online) or the determination of SoC and
SoH for the BMS becomes as well challenging. The advantages of the EIS technique
are that, the method does not have a pre-history and is sensitive enough for electrical
parameter extraction. Therefore, an efficient estimation of SoC and SoH will improve
the performance of the battery, developing better BMS. However, the SoC and SoH
estimation is generally limited, as for example by other conventional methods like
coulomb counting, which is not able to give the resistance, a crucial parameter for
ageing diagnosis. In order to have an online and broad diagnosis, the resistance of
material and electrolyte can be determined via EIS by an appropriatemodel extracted.
Furthermore, EIS remains the most promising non-destructive method even if less
practical application for battery characterization was employed. The capability of EIS
measurements was already studied by Mingant et al. [5] by developing a diagnosis
tool for SoC and SoH characterization. A lifetime model proposed by Omar et al. [6]
provides a clear view regarding the change of the internal resistance and capacity fade
at different conditions. On the basis of the parameters’ evolution, a cycle life model
was developed, which was proposed for the development of an accurate estimation of
SoH. A series of EIS measurements performed in galvanostatic mode showed that the
SoC and SoH have an influence on EIS. Good reviews of the available methods for SoC
estimation are presented in [7, 8]. A large number of different types of Li-ion batteries
(LiBs) existing on the market have advantages and disadvantages related to cost,
performance, safety and cycle life. Considering safety and production cost, one of
the suitable cell types is the LiFePO4/graphite cell [9, 10]. The LiFePO4 (LFP) cathode
material received attention because of its long cycle and calendar life, low price and
good thermal stability. Further advantages like fast kinetics (high power), low thermal
heat exchange, stable structure, lowprice andnon-toxicity, used for electrical cars, are
the reasons why the LFP battery was chosen for this study.

The primary aim of this study is to characterize commercial LFP-type cells using
EIS. Key aspects are SoH and SoC analysis by interpretation of the EIS spectral data,
targeting identification of sensitive and reliable parameters, suitable for expressing
SoC and SoH battery diagnostics. To perform specific ageing tests, physical and
chemical ageing phenomena were categorized and selected. Further aim is to find
appropriate scalable electrical parameters for simultaneous evaluation of SoC and
SoH.
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2 Experimental Set-up
Commercial 18650 cells (A123 Systems cylindrical) with a nominal capacity of 1.1 Ah
and an LFP-based positive electrode were employed for all the measurements. The
nominal voltage is 3.3 V and voltage limits are 3.6 and 2 V. The measurements were
carried out using a BioLogic Potentiostat/Galvanostat (type VSP, France). To test the
influence of various factors on the ageing of a commercial LFP cell, a test procedure
shown in Fig. 1 was chosen. Concomitantly the SoC and SoH parameters based on
EIS measurements were extracted and further modelled to predict the ageing of the
battery.

Full charge

after 50/100/200 cycles

15 min
rest

15 min
rest

Charge/Discharge with
current profile to desired
DOD

15 min
rest

Measure EIS 15 min
rest

Discharge to
desired SOC

Fig. 1. Test procedure employed for SoC and SoH determination by means of EIS.

The first row describes the experimental procedure for SoC data acquisition by means
of EIS. The procedure consists of EIS measurements, resting time, charge–discharge
cycling current and discharge profile. The resting time of 15 minutes was experi-
mentally determined. Experiments have shown that a resting time of 15 minutes is
sufficient to have minimal influence on the capacity and parameter determination in
the SoC range of interest. A charging current of 1.5 A and a discharging current of 1 A
were chosen and represent the recommended charging–discharging current profile
from the data sheet of the cells [11]. The cells were charged and discharged with 100%
depth of discharge (DoD), which represents 3.6 V, the end-of-charge voltage, and 2 V,
the cut-off voltage. EIS was measured at different SoC and SoH at OCP (I = 0 A) and
a current amplitude of 50 mA. The EIS spectra were recorded between the frequency
range 100 kHz and 10 mHz. The EIS test procedure is in Fig. 2 described.

EIS was performed for each cell at successive discharge intervals until a 2-V
cut-off voltage was reached. The SoC of each cell was calculated on the basis of
nominal voltage of the cell. In this study, the galvanostatic charge–discharge cycling
of cells was conducted using a BioLogic Potentiostat/Galvanostat (type VSP, France)
at room temperature (about 25◦). The settings of voltage range and current density
were chosen in correlation with the desired DoD.


