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Shape Optimization and topology optimization is a rapidly evolving field connect-
ing various branches of mathematics ranging from geometric analysis and multiscale
methods to numerical analysis and scientific computing.

This book examplarily presents a collection of recent trends.
Harbrecht and Peters study Bernoulli’s exterior free boundary value problem with

geometric uncertainties.
The paper by Hintermüller and Wegner studies an optimal control problem in the

context of flow with phase separation.
Bretin and Masnou study multiphase systems and interface configuration in these

systems. Kovtunenko’s article discusses the problem of identifying shapes from phys-
ical data measurements at a distance boundary.

The article by Crasta and Fragalà asks for a characterization of domains for the
infinity Laplace operator.

Toader and Barbarosie investigate in their paper shape optimization with cost
functions depending on the eigenvalues of an elliptic operator.

Finally, Buet, Leonardi and Masnou discuss the approximation of surface via dis-
crete varifolds and how to define a proper notion of the first variation of area.





Graziano Crasta and Ilaria Fragalà
1 Geometric issues in PDE problems related
to the infinity Laplace operator

Abstract: We review some recent results related to the homogeneous Dirichlet prob-
lem for the infinity Laplace equation with a constant source in a bounded domain.
We characterize the geometry of domains for which an overdetermined problem ad-
mits a viscosity solutions. An essential tool is a regularity result for viscosity solutions
in convex domains, obtained by the convex envelope method introduced by Alvarez,
Lasry, and Lions.

Keywords: Overdetermined problems, infinity Laplacian

AMS Classification: Primary 49K20, Secondary 49K30, 35J70, 35N25.

1.1 Introduction

Our primary interest in partial differential equation (PDE) problems for the infinity
Laplacian operator raised from the following overdetermined problem:{{{{{{{

−∆∞u = 1 in Ω
u = 0 on ∂Ω|∇u| = c on ∂Ω ,

(1.1)

whose study was firstly proposed in [6].
Let us recall that the infinity Laplacian is the strongly nonlinear and highly de-

generated differential operator defined for smooth functions u by

∆∞u := ∇2u∇u ⋅ ∇u .

It was firstly discovered by Aronsson in the sixties in connection with the so-called
absolutely minimizing Lipschitz extensions and later in the nineties a fundamental
advance concerning the existence and uniqueness of solutions came by Jensen. In
the last decade, also due to their connection with tug-of-war games, boundary value
problems involving the infinity Laplace operator have received a great impulse thanks
to the contribution of several authors; without any attempt of completeness, let us
quote the papers [2–4, 15, 16, 23–25, 27], where the reader may find further related
references.

Graziano Crasta, Dipartimento di Matematica “G. Castelnuovo,” Univ. di Roma I – P.le A. Moro 2 –
00185 Roma, Italy, crasta@mat.uniroma1.it
Ilaria Fragalà, Dipartimento di Matematica, Politecnico – Piazza Leonardo da Vinci, 32 –20133 Mi-
lano, Italy, ilaria.fragala@polimi.it
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On the other hand, starting from the fundamental paper by Serrin [26], overde-
termined problems of the type (1.1) have been studied for many operators (the basic
examples being the Laplace and p-Laplace operator; see for instance [5, 14, 18, 19, 26]),
not including the infinite Laplacian operator. In all these cases it is known that, if the
overdetermined problem (1.1) admits a solution, then Ω is a ball.

An intriguing discovery is that this is not the case for the infinity Laplacian, unless
more regularity (and topological) assumptions are required on the domain Ω.

Motivated by the aim of characterizing the shape of domains where problem (1.1)
admits a solution, we were led to study a number of geometrical and regularity mat-
ters, going from the concavity properties of the unique solution to the Dirichlet prob-
lem given by the first two equations in (1.1), to the study of sets with positive reach and
empty interior inℝn.

In this chapter, we review our achievements on these topics to this day. Our choice
is in favor of an intuitive presentation: though the results are rigorously stated, they
are introduced in an informal way, enlightening the main ideas and avoiding all tech-
nicalities. In this spirit, we invoke more than once heuristic arguments, and we limit
ourselves to sketch the proofs, referring for all details to the original papers.

The outline of the chapter is as follows.
In Section 1.2, we recall some basic facts concerning existence, uniqueness, and

regularity for the homogeneous Dirichlet problem with a constant source term.
In Section 1.3, we deal with a simplified version of problem (1.1) where solutions

are searched in the family of functions having prescribed level lines, and precisely the
same level lines as the distance function from ∂Ω. Studying the problem in this setting
leads to introduce a class of domains, that we call “stadium-like,” for which the cut
locus agrees with the set of maximal distance from the boundary.

In Section 1.4, we present the geometric results we obtained for stadium-like do-
mains, which rely on a new classification of closed sets with positive reach and empty
interior. These results are essentially two-dimensional.

In Section 1.5, we deal with problem (1.1) in its general and quite challenging for-
mulation.

To pursue our attempt of showing that the field is extremely rich, and many rele-
vant questions remain unsolved, we conclude the chapter with a short section of open
problems.

1.2 On the Dirichlet problem

In this section, we briefly discuss the Dirichlet problem for the infinity Laplace equa-
tion with a constant source term:{{{−∆∞u = 1 in Ω ,

u = 0 on ∂Ω .
(2.1)



1.2 On the Dirichlet problem | 7

R

g

t

y

Fig. 1: Radial solution of the Dirichlet problem (2.1).

We begin with a basic example in order to get a feeling with the problem and mo-
tivate the use of viscosity solutions.

Example 2.1. Let Ω = BR(0) be the ball of radius R centered at the origin. Let us look
for a radial solution to problem (2.1) of the form u(x) = g(R− |x|), where g : [0, R] → ℝ
is a continuous function, of class C2 in the interval (0, R). The Dirichlet boundary
condition gives g(0) = 0. On the other hand, if we want u to be differentiable at x = 0
(which is a posteriori justified by Theorem 2.2 stated hereafter) we have to require that
g(R) = 0. Hence, we have to solve the following one-dimensional boundary value
problem for the function g:−∆∞u(x) = −g(R − |x|) [g(R − |x|)]2 = 1, g(0) = 0, g(R) = 0 .

We easily obtain

g(t) = c0[R4/3 − (R − t)4/3], t ∈ [0, R] (c0 = 34/3/4)
(see Figure 1). The function u(x) = g(R − |x|) is of class C1,1/3(BR) ∩ C2(BR \ {0}). This
shows that there are no radial solutions of class C2(BR).
We shall turn back to the lackness of classical (i.e., C2) solutions for the Dirichlet prob-
lem (2.1) in arbitrary domains in Section 1.5.

By the moment, we limit ourselves to consider the above example as a heuristic ex-
planation why solutions to problem (2.1) cannot be expected to be classical. Moreover,
we also observe that the notion of weak solutions is ruled out, because the equation is
fully nonlinear and cannot be written in the divergence form. In fact, the right notion
of solution to problem (2.1) is one of the viscosity solution. We shortly recall it below,
for the benefit of the reader, referring to [8] for more details.

A viscosity subsolution to the equation −∆∞u−1 = 0 is a function u ∈ C(Ω)which,
for every x0 ∈ Ω, satisfies− ∆∞φ(x0) − 1 ≤ 0 whenever φ ∈ C2(Ω) and u − φ has a local maximum at x0 ,

(2.2)
or equivalently − ⟨Xp, p⟩ − 1 ≤ 0 ∀(p, X) ∈ J2,+

Ω u(x0) . (2.3)
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Here the second-order superjet J2,+
Ω u(x0) of a function u ∈ C(Ω) at a point x0 ∈ Ω

denotes the set of pairs (p, A) ∈ ℝn × ℝn×nsym such that

u(y) ≤ u(x0) + ⟨p, y − x0⟩ + 1
2 ⟨A(y − x0), y − x0⟩ + o (|y − x0|2)

as y → x0, y ∈ Ω.
Similarly, a viscosity supersolution to the equation −∆∞u − 1 = 0 is a function

u ∈ C(Ω) which, for every x0 ∈ Ω, satisfies−∆∞φ(x0)−1 ≥ 0 whenever φ ∈ C2(Ω)and u − φ has a local minimum at x0, (2.4)

or equivalently − ⟨Xp, p⟩ − 1 ≥ 0 ∀(p, X) ∈ J2,−
Ω u(x0) (2.5)

(the second-order subjet J2,−
Ω u(x0) is defined analogously to the superjet with the in-

equality reversed).
Finally, a viscosity solution to problem (2.1) is a function u ∈ C(Ω) such that u = 0

on ∂Ω and u is a viscosity solution to −∆∞u = 1 in Ω, meaning it is both a viscosity
subsolution and a viscosity supersolution on Ω, according to the above definition.

We are now in a position to recall the basic known facts concerning existence, unique-
ness, and regularity for viscosity solutions to problem (2.1).

Theorem 2.2 (Basic properties of viscosity solutions to (2.1)). The Dirichlet problem
(2.1) admits a unique viscosity solution u. Moreover, u is differentiable at every point
of Ω.

Both existence and uniqueness of viscosity solution have been obtained by Lu and
Wang in [24], by adapting the nowadays standard approach for viscosity solutions of
nondegenerate second-order fully nonlinear equations. In particular, existence is ob-
tained by Perron’s method, while uniqueness is a consequence of the following com-
parison principle.

Theorem 2.3 (Comparison principle). Let u, 𝑣 ∈ C(Ω) be, respectively, viscosity sub-
and supersolutions of −∆∞u = 1 in Ω. If u ≤ 𝑣 on ∂Ω, then u ≤ 𝑣 in Ω.

The fact that the unique solution u to (2.1) is differentiable everywhere has been re-
cently proved by Lindgren [23], by adapting the method of Evans and Smart [16] for
infinity harmonic functions.

1.3 On the overdetermined problem: the simple (web) case

In this section, we consider a simplified version of the overdetermined problem (1.1)
and introduce a class of domains where such a simplified version turns out to admit a
solution.
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To follow an intuitive approach, let us present a heuristic argument. Assume for a
moment that u is a smooth solution to (1.1), and consider the gradient flow associated
with u, i.e., the flow generated by the ordinary differential equation

ẋ(t) = ∇u(x(t)) .

Solutions of this differential equation will be called characteristics. If x(t), t ∈ [0, T),
is a characteristic, and φ(t) := u(x(t)) denotes the restriction of u along this solution,
we have

φ̇(t) = |∇u(x(t))|2 ,
φ̈(t) = 2⟨D2u(x)∇u(x), ∇u(x)⟩ = 2∆∞u(x) = −2

i.e., φ(t) = φ(0) + φ̇(0) t − t2. Moreover, if x(0) = y ∈ ∂Ω, from the conditions u(y) = 0
and |∇u(y)| = c we can determine explicitly φ as

φ(t) = √c t − t2 . (3.1)

On the other hand, from this information we cannot reconstruct the expression
of the solution u, because in general we do not know the geometry of characteristics,
which clearly depends on the solution itself!

However, there is a special case when this geometry is explicitly known, namely
when the function u belongs to the following class:

Definition 3.1 (Web functions). We say that u is a web function if it only depends on
the distance d from the boundary of ∂Ω, that is it can be written for some function w
as u(x) = w(d(x)).
As we are going to realize immediately, when dealing with problem (1.1) within the
class of web functions, there are two subsets of Ω related with the geometry of d which
turn out to play a crucial role. We introduce them below:

Definition 3.2 (Cut locus and high ridge). The cut locus Σ(Ω) of Ω is the closure in Ω
of the set Σ(Ω) of points of non differentiability of d. The high ridge M(Ω) of Ω is the
set where d achieves its maximum over Ω (called the inradius ρΩ of the set Ω).

Figure 2 shows the cut locus and the high ridge when Ω is a rectangle.

Fig. 2: Cut locus (solid), characteristics (dotted), high ridge (dashed).
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Observe now that, for a generic domain Ω, if u is a web function, ∇u is parallel
to ∇d, and hence the characteristics of u are line segments normal to the boundary.
More precisely, a characteristic is a line segment which starts at a point of the bound-
ary, is normal to the boundary itself, and reaches a point of the cut locus (for instance,
some characteristics of a web function on a rectangle are the dotted line segments in
Figure 2).

Moreover, if u is written as w(d), we have |∇u(y)| = w(0) for every y ∈ ∂Ω, so that
the condition |∇u| = c on ∂Ω is automatically satisfied, with c = w(0). Thus, asking
that the unique viscosity solution to problem (2.1) is a web function we immediately
obtain a solution to the overdetermined problem (1.1).

By arguing as in Example 2.1, namely solving a one-dimensional boundary value
problem for the function w, we obtain

w(t) = c0(R4/3 − (R − t)4/3) c0 := 34/3

4 , R := c3

3 .

If we now impose that u is differentiable, then we find that all characteristics must
have the same length R, and that this length R must coincide with the inradius ρΩ.

In other words, the requirement that all characteristics must have the same length
is equivalent to ask a precise geometric condition on Ω, which is the coincidence be-
tween cut locus and high ridge. Accordingly, we set the following:

Definition 3.3 (Stadium-like domains). A set Ω ⊂ ℝn is said to be a stadium-like do-
main if M(Ω) = Σ(Ω).
Clearly, the rectangle is not a stadium-like domain. Some examples of stadium-like
domains are represented in Figure 3.

The heuristic arguments presented above can be made rigorous and yield the fol-
lowing result. It has been proved in [6] in the regular case (for C1 solutions and C2

domains) and in [10] in the general case (with no regularity assumption on u and Ω).

Theorem 3.4 (Web-viscosity solutions). The unique viscosity solution to problem (2.1)
is a web function if and only if Ω is a stadium-like domain. In this case, the web-viscosity
solution is given by

u(x) = ψΩ(x) := g(d(x)) = c0 [ρ4/3
Ω − (ρΩ − d(x))4/3] . (3.2)

Σ =M

Fig. 3: Stadium-like domains.
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1.4 On stadium-like domains

In view of Theorem 3.4, a natural question is whether and how is it possible to char-
acterize the geometry of stadium-like domains. A complete classification of them has
been given in [9] in dimension n = 2; a similar statement in higher dimensions has
been proved until now only under the convexity assumption. To prepare our results,
we have to recall the fundamental notion of set of positive reach introduced by Federer
in [17].

Definition 4.1 (Set of positive reach). Let S ⊂ ℝn be a nonempty closed set, and let dS
denote the distance function from S. We say that S is a set of positive reach if there ex-
ists rS > 0 (called radius of proximal smoothness) such that every point of the tubular
neighborhood {x ∈ ℝn : 0 < dS(x) < rS} (4.1)

has a unique projection on S.

Federer himself proved that S has positive reach if and only if S isproximally C1, which
means that the distance function dS is of class C1 in a tubular neighborhood of the
form (4.1). (If this is the case, it can be proved that dS is of class C1,1 in such tubular
neighborhood.)

In [9, Theorem 2], we have obtained the following complete characterization of
planar sets with positive reach and empty interior:

Theorem 4.2 (Characterization of planar proximally C1 sets with empty interior).
Let S ⊂ ℝ2 be closed, proximally C1, with empty interior, and connected. Then S is
either a singleton, or a one-dimensional manifold of class C1,1.

Sketch of the proof. The proof is of marked geometric stamp, and here we limit our-
selves to give a rough idea of it. It consists basically in performing a careful analysis of
the so-called contact set. Namely, we fix a point p ∈ S and a positive r smaller than the
radius of proximal smoothness, and study the contact set of p into Sr, which is defined
as the set Cr(p)where the circumference of radius r centered at p meets the boundary
of the tubular neighborhood {dS(x) < r}. The main issue in the proof amounts to show
that Cr(p) consists either of two antipodal points, or of a semicircumference. Once one
has this geometric characterization of the contact set, it is rather easy to deduce that
S is locally the graph of a Lipschitz function g. Finally, the fact that it is of class C1,1

comes from the fact that g is both semiconcave and semiconvex.

We explicitly note that a one-dimensional connected manifold can be with boundary
(two points) or without boundary (a closed curve), see Figure 4.

It is interesting to observe that, as soon as we require dS to be of class C2 in a
tubular neighborhood of S, then the second case in Figure 4 (manifold with boundary)
cannot happen. More precisely, let us set the following:
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Fig. 4: Planar proximally C1 sets with empty interior.

Definition 4.3 (Proximally Ck sets). We say that a nonempty closed subset S of ℝn is
proximally Ck if there exists rS > 0 such that dS is of class Ck in a tubular neighborhood
of S of the form (4.1).

Then, we have (see [9, Theorem 3]):

Theorem 4.4 (Characterization of proximally C2 sets with empty interior).
Let S ⊂ ℝ2 be closed, proximally C2, with empty interior, and connected. Then S is
either a singleton, or a one-dimensional manifold of class C2 without a boundary.

The above statement can be generalized to the case when, with the analogous mean-
ing as in Definition 4.3, the set S is proximally Ck,α, for some k ≥ 2 and α ∈ [0, 1], or
proximally C∞, or proximally Cω. Accordingly, S turns out to be a manifold, respec-
tively, of class Ck,α, C∞, or Cω (cf. [9, Remark 4 (iii) and Remark 23]).

A direct consequence of Theorems 4.2 and 4.4 is the following characterization of
stadium-like domains. To understand it, one has to think of S as playing the role of the
set M(Ω) = Σ(Ω), which is a nonempty closed set with empty interior (notice in fact that
the high ridge M(Ω) cannot have interior points, since otherwise there would be points
where ∇d = 0). Accordingly, the set Ω has to be thought as a tubular neighborhood
of S.

Theorem 4.5 (Characterization of planar domains with M = Σ). Let Ω ⊂ ℝ2 be an open
bounded connected set with M(Ω) = Σ(Ω). Then Ω is either a disk or a parallel neigh-
borhood of a one-dimensional C1,1 manifold.

If in addition Ω is C2, then Ω is either a disk or a parallel neighborhood of a one-
dimensional C2 manifold with no boundary.

If Ω is also simply connected, then Ω is a disk.

Fig. 5: Stadium-like domains.
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The three possibilities are shown in Figure 5.
In [9, Theorem 12], we also proved a partial extension for convex sets in higher

dimension.

Theorem 4.6 (Extension to higher dimensions). Let Ω ⊂ ℝn be an open bounded con-
vex set. If M(Ω) = Σ(Ω) and Ω is C2, then Ω is a ball.

Now our Theorem 3.4 can be rephrased in the following much more “visual” way:

Theorem 4.7 (Web-viscosity solutions). The unique viscosity solution to problem (2.1)
is a web function if and only the shape of Ω can be characterized as in Theorem 4.5 (in
dimension n = 2) and 4.6 (in any dimension provided Ω is assumed to be convex).

1.5 On the overdetermined problem: the general (non-web) case

Up to now, we have characterized the geometry of sets for which the overdetermined
problem (1.1) admits a solution in the class of web functions. (We stress once more
that, in this class of functions, the overdetermined problem (1.1) is equivalent to the
Dirichlet problem (2.1), since the condition |∇u| constant on ∂Ω is automatically sat-
isfied.)

In this section, we are going to consider what happens in the general case, i.e.,
without the restriction to web functions. Recalling the heuristic argument given at
the beginning of Section 1.3, we see that we have to face with a number of additional
difficulties. In particular, the following two main problems emerge.
– Since u is unknown and, a priori, its level lines do not have any specific form, the

geometry of the trajectories of the gradient flow is unknown.
– Even worse, we do not know if the gradient flow is well posed. Namely, in general,

we only know that ∇u is locally bounded, and it is never locally Lipschitz, as we
shall see in Theorem 5.4 that u never belongs to C1,1(Ω). This means that we can-
not use the standard Cauchy–Lipschitz theory for ordinary differential equations
for the gradient flow ẋ = ∇u(x). Moreover, even if we were able to prove an in-
termediate regularity result between local boundedness and local Lipschitzianity
for ∇u (e.g., that it is locally in BV or in some Sobolev space), we could not even
apply the Ambrosio–Di Perna–Lions theory of regular Lagrange flows, because
we do not have a lower bound for the measure div∇u.

Our approach is motivated by the above remarks, and in particular it stems from the
will of recovering the well-posedness of the gradient flow. In this respect it is well
known that, in order to have at least forward well posedness, it is enough u to be locally
semiconcave. By definition, this means that there exists a constant C ≥ 0 such that

u(x + h) + u(x − h) − 2u(x) ≤ C|h|2 ∀[x − h, x + h] ⊂ Ω ,
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where [x − h, x + h] denotes the segment inℝn joining the two points x − h and x + h.
In fact, the forward uniqueness of solutions follows from the property⟨∇u(y) − ∇u(x), y − x⟩ ≤ C|y − x|2 ,

which is the analogous, for differentiable semiconcave functions, of the monotonicity
of the gradient of a (differentiable) concave function. Now, if x(t) and y(t) are two
solutions of the gradient flow defined in a common interval [0, τ), setting w(t) :=|y(t) − x(t)|2/2 we obtain

ẇ(t) = ⟨∇u(y(t)) − ∇u(x(t)), y(t) − x(t)⟩ ≤ 2 C w(t) .
Hence, if w(t0) = 0 for some t0 ∈ [0, τ), i.e., if x(t0) = y(t0), then by Gronwall’s
inequality we obtain that w(t) = 0 for every t ∈ [t0 , τ), i.e., x(t) = y(t) for every
t ∈ [t0, τ).

For a review on semiconcave functions, we refer to [7].
In this perspective, our first step will be to set up a regularity result for u, proving

that u is locally semiconcave. Unfortunately, we are not able to obtain such a result
in full generality, but we have to restrict to convex domains without corners. More
precisely, we are going to assume that

Ω is convex and satisfies an interior sphere condition. (HΩ)

Theorem 5.1 (Power concavity and semiconcavity of solutions). Assume (HΩ) and let
u be the viscosity solution to the Dirichlet problem (2.1). Then, u3/4 is concave in Ω. In
particular, u is locally semiconcave in Ω.

Sketch of the proof. Let us outline the strategy we adopt in order to prove that the func-
tion w := −u3/4 is convex in Ω. For the detailed proof, we refer to [11, Theorem 1].

We first observe that w is well defined (since u > 0 in Ω), and it is the unique
viscosity solution of the Dirichlet problem{{{−∆∞w − 1

w [ 1
3 |∇w|4 + (3

4 )3] = 0 in Ω ,

w = 0 on ∂Ω .
(5.1)

At first sight, the equation satisfied by w looks more complicate than the original one
for u. On the other hand, thanks to the structure of such equation (we refer in par-
ticular to the factor 1/w in front of the brackets), we are enabled to adapt the convex
envelop method developed by Alvarez et al. (see [1]). It consists essentially in the fol-
lowing steps.
(i) Prove that the convex envelope w∗∗ of w is a viscosity supersolution to (5.1). This

is the most challenging task, where the structure of the equation intervenes. The
detailed proof can be found in [11]. The main ingredients are:
– the representation of the convex envelope as

w∗∗(x) = inf
k≤n+1

{ k∑
i=1

λiw(xi) : x = k∑
i=1

λixi , xi ∈ Ω, λi > 0,
k∑
i=1

λi = 1} ;
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– the fact that, since the normal derivative of w with respect to the external
normal is +∞ at every boundary point of Ω, in our case the points xi in the
formula above cannot lie on the boundary of Ω;

– Proposition 1 in [1];
– the concavity of the map Q → 1/tr((p ⊗ p)Q−1).

(ii) By Step (i) and the comparison principle (that for Equation (5.1) has been proved
in [24, Theorem 3]), it follows that w∗∗ ≥ w in Ω.

(iii) By definition of convex envelope, it is immediate that w∗∗ ≤ w in Ω.

By combining Steps (ii) and (iii), we conclude that w coincides with its convex enve-
lope, so that w = −u3/4 is a convex function. From this power-concavity property of u,
it is straightforward to conclude that u is locally semiconcave in Ω.

Since u is locally semiconcave and differentiable everywhere, we obtain at once the
following regularity property (see [7, Prop. 3.3.4]).

Corollary 5.2 (C1-regularity of solutions). Assume (HΩ) and let u be the viscosity solu-
tion to the Dirichlet problem (2.1). Then, u is continuously differentiable in Ω.

Let us now turn back to the overdetermined boundary value problem (1.1), in the light
of the regularity results obtained so far for the solution u to problem (2.1) in Ω. In order
not to face with boundary regularity matters for u at the boundary of Ω (for which
however some results are available in the literature, see [20, 21, 28]), in the following
we will assume that u is C1 up to the boundary, namely that∃ δ > 0: u is of class C1 on {x ∈ Ω : d(x) < δ} . (Hu)

As a consequence of Corollary 5.2 and assumption (Hu), for every initial point
x0 ∈ Ω the Cauchy problem {{{ẋ = ∇u(x) ,

x(0) = x0

turns out to admit a unique forward solution X(⋅, x0), defined on some maximal in-
terval [0, T(x0)). Moreover, we can prove that t → X(t, x0) reaches in finite time a
maximum point of u and then stops there.

Characteristics are now back at our disposal! So, let us resume the heuristic ap-
proach started in Section 1.3, consisting in studying the solution along such curves. As-
sume for a moment that the solution u of the Dirichlet problem (2.1) is smooth enough
(let’s say C2), and consider the P-function

P(x) := 1
4 |∇u(x)|4 + u(x) .

If x(⋅) = X(⋅, y) is a characteristic, then
d
dt P(x(t)) = |∇u(x)|2 ⟨D2u(x)∇u(x), ∇u(x)⟩ + |∇u(x)|2 = 0 ,

so that the P-function is constant along the gradient flow.
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If, in addition, we require the overdetermined condition |∇u| = c on ∂Ω to hold,
we have that P(y) = c4/4 at every point y ∈ ∂Ω. From this information, it follows
that the P-function is constant along the set spanned by the gradient flow, i.e., on the
whole Ω. In turn, the constancy of P over Ω allows us to characterize the expression
of u and the shape of Ω exactly in the same way as was done in Section 1.3 in the web
setting. Indeed, the following result holds.

Theorem 5.3 (P-function). Under the assumptions (HΩ)–(Hu), let u be the unique so-
lution to problem (2.1). If P(x) = λ ≤ c0ρ4/3

Ω for a.e. x ∈ Ω, then u is the web function
defined in (3.2)andΩ is a stadium-like domain (forwhich the conclusions of Theorem4.7
hold).

Sketch of the proof. The function ψΩ in (3.2) is the unique viscosity solution of the
Hamilton–Jacobi equation

H(u, ∇u) := 1
4 |∇u|4 + u − λ = 0 .

On the other hand, u ∈ C1(Ω) is a classical solution of the same equation (since P
is continuous and so P = λ in Ω). Therefore, u = ψΩ. In particular, since u is a web
function, the conclusions of Theorem 4.7 hold.

Unfortunately, in general, u is not regular enough to prove that P is constant a.e. in Ω.
Actually, the heuristic argument leading to the constancy of P can be made rigorous
only provided u is at least of class C1,1, and this kind of regularity never occurs. More
precisely, the optimal expected regularity is C1,1/3 according to the result below, which
is obtained essentially by dealing with ODE’s along the gradient flow of u, and, in
particular, exploiting the expression of u along characteristics given by equation (3.1).

Theorem 5.4 (Regularity threshold). If the unique solution u to problem (2.1) is of class
C1,1(A \ K), where K := argmaxΩ(u) and A is a neighborhood of K, then for any α > 1/3
it cannot occur that u is of class C1,α(A).
Nevertheless, not everything is lost. Still by exploiting characteristics, we can argue
to obtain, in place of the constancy of the P-function, some useful upper and lower
bounds for it.

Theorem 5.5 (P-function inequalities). Under the assumptions (HΩ)–(Hu), let u be the
unique solution to problem (2.1). Then,

min
∂Ω

|∇u|4
4 ≤ P(x) ≤ max

Ω
u ∀x ∈ Ω .

Sketch of the proof. Observe that, if y ∈ ∂Ω then P(X(0, y)) = P(y) = |∇u(y)|4/4; on
the other hand, for t large enough,X(t, y) is a maximum point of u, so that P(X(t, y)) =
max u. Then to prove the statement, it is enough to show that P is nondecreasing along
the gradient flow. To this end, in order to obtain a bit more of regularity, we consider
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Fig. 6: Domains considered in Theorem 5.6.

the supremal convolutions

uε(x) = sup
y
{u(y) − |x − y|22ε } .

By the local semiconcavity of u, these convolutions are of class C1,1. Moreover, thanks
to the so-called magic properties of their superjets, they turn out to be subsolutions of
the PDE. Hence the corresponding approximated P-functions

Pε := |∇uε|44 + uε
are nondecreasing along the gradient flow of uε. Finally by passing to the limit as
ε → 0+ we get the desired monotonicity property for P.

The bounds for the P-function obtained in Theorem 5.5 do not give us enough infor-
mation to deduce a complete characterization of domains where the overdetermined
problem (1.1) admits a solution. However, they are quite helpful to get at least a partial
target. Namely we can prove the following result, showing that the same conclusions
of Theorem 4.7 continue to hold without asking the solution to be a web function,
provided some a priori geometric restrictions on Ω are imposed.

Theorem 5.6 (Serrin-type theorem for ∆∞). Assume (HΩ)–(Hu). Further assume that
there exists an inner ball B of radius ρΩ which meets ∂Ω at two diametral points (see
Figure 6 left). If there exists a solution u to the overdetermined problem (1.1), then u is the
web function defined in (3.2), and Ω is a stadium-like domain (for which the conclusions
of Theorem 4.7 hold).

Sketch of the proof. Let p, q ∈ ∂Ω be the two diametral points belonging to ∂B ∩ ∂Ω,
and let D be a stadium-like domain D that contains Ω and is tangent to Ω at p and q
(see Figure 6, right). Let uB and uD denote, respectively, the solutions of the Dirichlet
problem (2.1) in B and D. By comparison, we have

uB ≤ u ≤ uD in B .

In particular, this implies that u = uB = uD on the segment [p, q] and that ∇u = ∇uB =∇uD at p and q, so that |∇uB| = |∇uD| = c at these two points. In turn, this gives
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max uD = c4/4 and hence, by Theorem 5.5, we obtain

c4

4 = min
∂Ω

|∇u|4
4 ≤ P(x) ≤ max

Ω
u ≤ c4

4 .

Now the conclusion follows from Theorem 5.3.

1.6 Open problems

We list below some open questions related to the results reviewed above, which are in
our opinion interesting challenges for further research.
– Problem 1. Provide a complete characterization of stadium-like domains in higher

dimensions (i.e., remove the convexity assumption in Theorem 4.6).
– Problem 2. Provide a general version of Serrin theorem for ∆∞ (i.e., remove the

geometric restrictions on Ω in Theorem 5.6).
– Problem 3. Prove that the solution to the Dirichlet problem (2.1) is actually of class

C1,1/3(Ω) (i.e., show that the regularity threshold of Theorem 5.4 is achieved).
– Problem 4. To some extent surprisingly, the geometric condition Σ(Ω) = M(Ω)

appears independently in the paper [29], where it is shown that on stadium-like
domains the infinity Laplacian admits a unique ground state. (An infinity ground
state is, roughly speaking, the limit as p → +∞ of a sequence of solutions to the
Euler–Lagrange equation for the nonlinear Rayleigh quotient associated with the
p-Laplacian). As recently shown in [22], the uniqueness of an infinity ground state
is false, in general, and the geometric characterization of domains where it is true
is a completely open problem. It would be interesting to understand whether∞-
ground states are unique in all convex domains or just in stadium-like ones.

Note added in proof. Recently, some of the results presented in this chapter have been
generalized to the case of the normalized infinity Laplace operator, see [12]. Moreover,
we address to the forthcoming paper [13] for some developments on Problem 2.
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H. Harbrecht and M. D. Peters
2 Solution of free boundary problems
in the presence of geometric uncertainties

Abstract: This chapter is concerned with solving Bernoulli’s exterior free boundary
problem in the case of an interior boundary which is random. We model this random
free boundary problem such that the expectation and the variance of the sought do-
main can be defined. In order to numerically approximate the expectation and the
variance, we propose a sampling method like the (quasi-) Monte Carlo quadrature. The
free boundary is determined for each sample by the trial method which is a fixed-point-
like iteration. Extensive numerical results are given in order to illustrate the model.

Keywords: Bernoulli’s exterior free boundary problem, random boundary

2.1 Introduction

Let T ⊂ ℝn denote a bounded domain with boundary ∂T = Γ. Inside the domain
T, we assume the existence of a simply connected subdomain S ⊂ T with boundary
∂S = Σ. The resulting annular domain T \ S is denoted by D. The topological situation
is visualized in Figure 1.

Σ Ω Γ

Fig. 1: The domain D and its boundaries Γ and Σ.

We consider the following overdetermined boundary value problem in the annu-
lar domain D:

∆u = 0 in D ,‖∇u‖ = f on Γ ,
u = 0 on Γ ,
u = 1 on Σ ,

(1.1)
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where f > 0 is a given constant. We like to stress that the non-negativity of the Dirichlet
data implies that u is positive in D. Hence, there holds the identity

‖∇u‖ ≡ − ∂u∂n on Γ (1.2)

since u admits homogeneous Dirichlet data on Γ.
We arrive at Bernoulli’s exterior free boundary problem if the boundary Γ is un-

known. In other words, we seek a domain D with a fixed boundary Σ and unknown
boundary Γ such that the overdetermined boundary value problem (1.1) is solvable.
This problem has many applications in engineering sciences such as fluid mechanics,
see [10], or electromagnetics, see [6, 7] and references therein. In the present form, it
models, for example, the growth of anodes in electrochemical processes. For the ex-
istence and uniqueness of solutions, we refer the reader to, e.g., [3, 4, 17]; see also [9]
for the related interior free boundary problem. Results concerning the geometric form
of the solutions can be found in [1] and references therein.

In this chapter, we try to model and solve the free boundary problem (1.1) in the
case that the interior boundary is uncertain, i.e., if Σ = Σ(ω)with an additional param-
eter ω ∈ Ω. This model is of practical interest in order to treat, for example, tolerances
in fabrication processes or if the interior boundary is only known by measurements
which typically contain errors. We are thus looking for a tuple (D(ω), u(ω)) such that
it holds

∆u(ω) = 0 in D(ω) ,‖∇u(ω)‖ = f on Γ(ω) ,
u(ω) = 0 on Γ(ω) ,
u(ω) = 1 on Σ(ω) .

(1.3)

The questions to be answered in the following are:
– How to model the random domain D(ω)? What is the associated expectation and

the variance?
– Do the expectation and the variance exist and are they finite?
– What is the expectation and the variance of the potential u(ω) if the domain D(ω)

is uncertain?
– How to compute the solution to the random free boundary problem numerically?

For the sake of simplicity, we restrict our consideration to the two-dimensional situ-
ation. Nevertheless, the extension to higher dimensions is straightforward and is left
to the reader.

The rest of this chapter is organized as follows. Section 2.2 is dedicated to answer-
ing the first two questions. We start by defining appropriate function spaces to define
the stochastic model. Afterward, we define the random inner boundary and the result-
ing random outer boundary. Especially, we provide a theorem which guarantees the
well posedness of the random free boundary problem under consideration. Moreover,
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we introduce here the expectation and the variance of the domain’s boundaries. Fi-
nally, we give an analytic example which shows that the solution of the free boundary
problem depends nonlinearly on the stochastic parameter. In Section 2.3, we answer
the latter two questions. We propose the use of boundary integral equations for the
solution of the underlying boundary value problem. This significantly decreases the
effort for the numerical solution. In particular, we can describe the related potential
of the free boundary problem in terms of Green’s representation formula. This also al-
lows us to define its expectation and its variance. For the numerical approximation of
the free boundary, we apply a trial method in combination with a Nyström discretiza-
tion of the boundary integral equations. Section 2.4 is then devoted to the numerical
examples. We will present here four different examples in order to illustrate differ-
ent aspects of the proposed approach. We especially show that there is a clear differ-
ence between the expected free boundary and the free boundary which belongs to the
expected interior boundary. As an important result, it follows thus that one cannot
ignore random influences in numerical simulations. Finally, in Section 2.5, we state
some concluding remarks.

2.2 Modelling uncertain domains

2.2.1 Notation

In the sequel, let (Ω, F,ℙ) denote a complete and separable probability space with
σ-algebra F and probability measure ℙ. Here, complete means that F contains allℙ-null sets. In the sequel, for a given Banach space X, the Bochner space Lpℙ(Ω; X),
1 ≤ p ≤ ∞, consists of all equivalence classes of strongly measurable functions𝑣 : Ω → X whose norm

‖𝑣‖Lpℙ(Ω;X) := {{{{{{{{{{{
(∫

Ω

‖𝑣(⋅, ω)‖pX dℙ(ω))1/p

, p < ∞
ess sup
ω∈Ω

‖𝑣(⋅, ω)‖X , p = ∞
is finite. If p = 2 and X is a separable Hilbert space, then the Bochner space is iso-
morphic to the tensor product space L2

ℙ(Ω)⊗X. Note that, for notational convenience,
we will always write 𝑣(ϕ, ω) instead of (𝑣(ω))(ϕ) if 𝑣 ∈ Lpℙ(Ω; X). For more details on
Bochner spaces, we refer the reader to [14].

2.2.2 Random interior boundary

Throughout the chapter, the domain D(ω) will be identified by its boundaries Σ(ω)
and Γ(ω). Indeed, we assume that Σ(ω) is ℙ-almost surely starlike. This enables us to
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parameterize this random boundary in accordance with

Σ(ω) = {x = σ(ϕ, ω) ∈ ℝ2 : σ(ϕ, ω) = q(ϕ, ω)er(ϕ), ϕ ∈ I} .

Here, er(ϕ) := [cos(ϕ), sin(ϕ)]⊺ is the radial direction and I := [0, 2π] is the pa-
rameter interval. The radial function q(ϕ, ω) ≥ c > 0 has to be in the Bochner space
L2(Ω; C2

per(I)), where C2
per(I) denotes the Banach space of periodic, twice continuously

differentiable functions, i.e.,

C2
per(I) := {f ∈ C(I) : f (i)(0) = f (i)(2π), i = 0, 1, 2} ,

equipped with the norm

‖f‖C2
per(I) := 2∑

i=0
max
x∈I
f (i)(x) .

For our purposes, we assume that q(ϕ, ω) is described by its expectation𝔼[q](ϕ) = ∫
Ω

q(ϕ, ω)dℙ(ω)
and its covariance

Cov[q](ϕ, ϕ) = 𝔼[q(ϕ, ω)q(ϕ , ω)] = ∫
Ω

q(ϕ, ω)q(ϕ , ω)dℙ(ω) .

Then, q(ϕ, ω) can be represented by the so-calledKarhunen–Loève expansion, cf. [16],

q(ϕ, ω) = 𝔼[q](ϕ) + N∑
k=1

qk(ϕ)Yk(ω) .

Herein, the functions {qk(ϕ)}k are scaled versions of the eigenfunctions of the Hilbert–
Schmidt operator associated with Cov[q](ϕ, ϕ). Common approaches to numerically
recover the Karhunen–Loève expansion from these quantities are, e.g., given in [13]
and the references therein. By construction, the random variables {Yk(ω)}k in the
Karhunen–Loève expansion are uncorrelated. For our modelling, we shall also require
that they are independent, which is a common assumption. Moreover, we suppose
that they are identically distributed with img Yk(ω) = [−1, 1]. Note that it holds

𝕍[q](ϕ) = ∫
Ω

{q(ϕ, ω) − 𝔼[q](ϕ)}2 dℙ(ω) = N∑
k=1
(qk(ϕ))2 .

2.2.3 Random exterior boundary

If the interior boundary Σ(ω) is starlike, then also the exterior boundary Γ(ω) is star-
like. In particular, it also follows that the free boundary Γ(ω) is C∞-smooth, see [2]
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for details. Hence, the exterior boundary can likewise be represented via its parame-
terization:

Γ(ω) = {x = γ(ϕ, ω) ∈ ℝ2 : γ(ϕ, ω) = r(ϕ, ω)er(ϕ), ϕ ∈ I} . (2.1)

The following theorem guarantees us the well posedness of the problem under consid-
eration, cf. [4, 17]. It shows that it holds r(ϕ, ω) ∈ L∞ℙ (Ω, C2

per(I)) if q(ϕ, ω) is almost
surely bounded and thus that γ(ϕ, ω) is well defined.

Theorem 2.1. Assume that q(ϕ, ω) is uniformly bounded almost surely, i.e.,
q(ϕ, ω) ≤ R for all ϕ ∈ I and ℙ-almost every ω ∈ Ω . (2.2)

Then, there exists a unique solution (D(ω), u(ω)) to (1.3) for almost every ω ∈ Ω. Es-
pecially, with some constant R > R, the radial function r(ϕ, ω) of the associated free
boundary (2.1) satisfies

q(ϕ, ω) < r(ϕ, ω) ≤ R for all ϕ ∈ I and ℙ-almost every ω ∈ Ω .

Proof. In view of (2.2), it follows that

Σ(ω) ⊂ BR(0) := {x ∈ ℝ2 : ‖x‖ < R}
for almost every ω ∈ Ω. Hence, for fixed ω ∈ Ω, [17, Theorem 1] guarantees the unique
solvability of (1.3). In particular, there exists a constant R > R such that Γ(ω) ⊂ BR(0)
whenever Σ(ω) ⊂ BR(0). Therefore, the claim follows since q(ϕ, ω) is supposed to be
uniformly bounded in ω ∈ Ω.

2.2.4 Expectation and variance of the domain

Having the parameterizations σ(ω) and γ(ω) at hand, we can obtain the expectation
and the variance of the domain D(ω).
Theorem 2.2. The expectation of the domain D(ω) is given via the expectations of its
boundaries’ parameterizations in accordance with𝔼[∂D(ω)] = 𝔼[Σ(ω)] ∪ 𝔼[Γ(ω)] ,

where 𝔼[Σ(ω)] = {x ∈ ℝ2 : x = 𝔼[q(ϕ, ω)]er(ϕ), ϕ ∈ I} ,𝔼[Γ(ω)] = {x ∈ ℝ2 : x = 𝔼[r(ϕ, ω)]er(ϕ), ϕ ∈ I} .

Proof. For the proof, we introduce the global parameterization δ : [0, 4π) → ∂D(ω)
given by

δ(ϕ, ω) = {{{σ(ϕ, ω), ϕ ∈ [0, 2π) ,
γ(ϕ − 2π, ω), ϕ ∈ [2π, 4π) .

(2.3)
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Then, it holds per definition that𝔼[∂D(ω)] = {x ∈ ℝ2 : x = 𝔼[δ(ϕ, ω)], ϕ ∈ [0, 4π)} .

Therefore, the expected boundary 𝔼[∂D(ω)] consists of all points x ∈ ℝ2 with

x = {{{𝔼[σ(ϕ, ω)], ϕ ∈ [0, 2π) ,𝔼[γ(ϕ − 2π, ω)], ϕ ∈ [2π, 4π) .

This is equivalent to

x = {{{𝔼[q(ϕ, ω)]er(ϕ), ϕ ∈ [0, 2π) ,𝔼[r(ϕ − 2π, ω)]er(ϕ − 2π), ϕ ∈ [2π, 4π) ,

which immediately implies the assertion.

The variance of the domain D(ω) is obtained in a similar way as the expectation. In
particular, it suffices to take only the radial part of the variance into account due to
the star shapedness.

Theorem 2.3. The variance of the domain D(ω) in the radial direction is given via the
variances of its boundaries parameterizations in accordance with𝕍[∂D(ω)] = 𝕍[Σ(ω)] ∪ 𝕍[Γ(ω)]
where 𝕍[Σ(ω)] = {x ∈ ℝ2 : x = 𝕍[q(ϕ, ω)]er (ϕ), ϕ ∈ I} ,𝕍[Γ(ω)] = {x ∈ ℝ2 : x = 𝕍[r(ϕ, ω)]er (ϕ), ϕ ∈ I} .

Proof. We shall again employ the global parameterization δ(ϕ, ω) from (2.3). For the
sake of notational convenience, we denote its centered version by

δ0(ϕ, ω) := δ(ϕ, ω) − 𝔼[δ(ϕ, ω)] ,

and likewise for σ(ϕ, ω) and γ(ϕ, ω).
The variance of D(ω) can be determined as the trace of the covariance

Cov[∂D(ω)] = {X ∈ ℝ2×2 : X = 𝔼[δ0(ϕ, ω)δ0(ϕ , ω)⊺], ϕ ∈ [0, 4π)} .

From this representation, one concludes that Cov[∂D(ω)] consists of all (2 × 2)matri-
ces X with

X = {{{{{{{{{{{{{
𝔼[σ0(ϕ, ω)σ0(ϕ , ω)⊺], ϕ, ϕ ∈ [0, 2π) ,𝔼[σ0(ϕ, ω)γ0(ϕ − 2π, ω)⊺], ϕ ∈ [0, 2π), ϕ ∈ [2π, 4π) ,𝔼[γ0(ϕ − 2π, ω)σ0(ϕ , ω)⊺], ϕ ∈ [2π, 4π), ϕ ∈ [0, 2π) ,𝔼[γ0(ϕ − 2π, ω)γ0(ϕ − 2π, ω)⊺], ϕ, ϕ ∈ [2π, 4π) .
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The situation ϕ = ϕ can only appear in the first or last case. These can be reformu-
lated with ϕ, ϕ ∈ [0, 2π) as

Cov[σ, σ](ϕ, ϕ) = 𝔼[σ0(ϕ, ω)σ0(ϕ , ω)⊺]= 𝔼[(q(ϕ, ω) − 𝔼[q](ϕ))(q(ϕ , ω) − 𝔼[q](ϕ))]er(ϕ)er(ϕ)⊺
and likewise as

Cov[γ, γ](ϕ, ϕ) = 𝔼[γ0(ϕ, ω)γ0(ϕ , ω)⊺]= 𝔼[(r(ϕ, ω) − 𝔼[r](ϕ))(r(ϕ , ω) − 𝔼[r](ϕ))]er(ϕ)er(ϕ)⊺ .

By setting ϕ = ϕ, we arrive at

Cov[σ, σ](ϕ, ϕ) = 𝕍[q](ϕ)er (ϕ)er(ϕ)⊺ and Cov[γ, γ](ϕ, ϕ) = 𝕍[q](ϕ)er (ϕ)er(ϕ)⊺ .

To get the radial part of the variances, we multiply the last expression by the radial
direction er which yields the desired assertion.

Consequently, in view of having 𝔼[q(ϕ, ω)] and 𝕍[q(ϕ, ω)] at hand, we need just to
compute the expectation 𝔼[r(ϕ, ω)] and the variance𝕍[r(ϕ, ω)] to obtain the expec-
tation and the variance of the random domain D(ω).
2.2.5 Stochastic quadrature method

For numerical simulation, we aim at approximating 𝔼[r(ϕ, ω)] and 𝕍[r(ϕ, ω)] with
the aid of a (quasi-) Monte Carlo quadrature. To that end, we first parameterize the
stochastic influences in q(ϕ, ω) by considering the parameter domain ◻ := [−1, 1]N
and setting

q(ϕ, y) = 𝔼[q](ϕ) + N∑
k=1

qk(ϕ)yk for y = [y1 , . . . , yN]⊺ ∈ ◻ .

Especially, we have q(ϕ, y) ∈ L∞(◻; C2
per(I)) if q(ϕ, ω) ∈ L∞(Ω; C2

per(I)). Here, the
space L∞(◻; C2

per(I)) is equipped with the pushforward measure ℙY, where Y =[Y1, . . . , YN]⊺. This measure is of product structure due to the independence of the
random variables. If the measure ℙY is absolutely continuous with respect to the
Lebesgue measure, then there exists a density ρ(y), which is also of product struc-
ture, such that there holds𝔼[q](ϕ) = ∫

Ω

q(ϕ, ω)dℙ(ω) = ∫
◻

q(ϕ, y)ρ(y)dy .

In complete analogy, we have for the variance𝕍[q](ϕ) = ∫
Ω

(q(ϕ, ω))2 dℙ(ω) − (𝔼[q](ϕ))2 = ∫
◻

(q(ϕ, y))2ρ(y)dy − (𝔼[q](ϕ))2 .
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Now, if
F : L∞(Ω; C2

per(I)) → L∞(Ω; C2
per(I)), q(ϕ, ω) → r(ϕ, ω) (2.4)

denotes the solution map, the expectation and the variance of r(ϕ, ω) are given ac-
cording to 𝔼[r](ϕ) = 𝔼[F(q)](ϕ) and 𝕍[r](ϕ) = 𝕍[F(q)](ϕ) .

In view of this representation, we can apply a (quasi-) Monte Carlo quadrature in order
to approximate the desired quantities.

The Monte Carlo quadrature and the quasi-Monte Carlo quadrature approximate
the integral of a sufficiently smooth function f over ◻ by a weighted sum according to

∫
◻

f(y)dy ≈ 1
M

M∑
i=1

f(yi) .

Herein, the sample points {y1, . . . , yM} are either chosen randomly with respect to
the uniform distribution, which results in the Monte Carlo quadrature, or according
to a deterministic low-discrepancy sequence, which results in the quasi-Monte Carlo
quadrature. The Monte Carlo quadrature can be shown to converge, in the mean
square sense, with a dimension-independent rate of M−1/2. The quasi-Monte Carlo
quadrature based, for example, on Halton points, cf. [11], converges instead with the
rate Mδ−1 for arbitrary δ > 0. Although, for the quasi-Monte Carlo quadrature, the
integrand has to provide bounded first-order mixed derivatives. For more details on
this topic, see [5] and the references therein.

In our particular problem under consideration, the expectation 𝔼[r](ϕ) and the
variance𝕍[r](ϕ) are finally computed in accordance with

𝔼[r](ϕ) = 𝔼[F(q)](ϕ) ≈ 1
M

M∑
i=1

F(q(ϕ, yi))ρ(yi)
and

𝕍[r](ϕ) = 𝕍[F(q)](ϕ) ≈ 1
M

M∑
i=1
(F(q(ϕ, yi)))2

ρ(yi) − ( 1
M

M∑
i=1

F(q(ϕ, yi))ρ(yi))2

.

2.2.6 Analytical example

The calculations can be performed analytically if the interior boundary Σ(ω) is a circle
around the origin with radius q(ω). Then, due to symmetry, also the free boundary
Γ(ω) will be a circle around the origin with unknown radius r(ω). We shall thus focus
on this particular situation in order to verify that the radius r(ω) depends nonlinearly
on the stochastic input q(ω). Hence, on the associated expected domain𝔼[D(ω)], the
overdetermined boundary value problem (1.1) has, in general, no solution.
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Using polar coordinates and making the ansatz |u(ρ, ϕ)| = y(ρ), the solution with
respect to the prescribed Dirichlet boundary condition of (1.1) has to satisfy

y + yρ = 0, y(q(ω)) = 1, y(r(ω)) = 0 .

The solution to this boundary value problem is given by

y(ρ) = log ( ρ
r(ω))

log ( q(ω)r(ω) ) .

The desired Neumann boundary condition at the free boundary r(ω) yields the equa-
tion −y(r(ω)) = 1

r(ω) log ( r(ω)q(ω)) != f ,

which can be solved by means of Lambert’s W-function:

r(ω) = 1
fW( 1

fq(ω)) . (2.5)

Thus, the free boundary r(ω) depends nonlinearly on q(ω) since it generally holds𝔼[r(ω)] = 𝔼[ 1
fW( 1

fq(ω))] ̸= 1
fW( 1

f𝔼[q]) . (2.6)

Notice that the right-hand side would be the (unique) solution of the free boundary
problem in the case of the interior circle of radius 𝔼[q(ω)]. Thus, indeed the overde-
termined boundary value problem (1.1) will, in general, not be fulfilled on the expected
domain 𝔼[D(ω)].
2.3 Computing free boundaries

2.3.1 Trial method

For computing the expected domain 𝔼[D(ω)] and its variance 𝕍[D(ω)], we have to
be able to determine the free boundary Γ(ω) for each specific realization of the fixed
boundary Σ(ω). This will be done by the so-called trial method, which is a fixed point
type iterative scheme. For the sake of simplicity in representation, we omit the stochas-
tic variable ω in this section, i.e., we assume that ω ∈ Ω is fixed.

The trial method for the solution of the free boundary problem (1.1) requires an
update rule. Suppose that the current boundary in the k-th iteration is Γk and let the
current state uk satisfy

∆uk = 0 in Dk ,
uk = 1 on Σ ,−∂uk
∂n
= f on Γk .

(3.1)
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The new boundary Γk+1 is now determined by moving the old boundary into the radial
direction, which is expressed by the update rule

γk+1 = γk + δrker .

The update function δrk ∈ C2
per([0, 2π]) is chosen such that the desired homogeneous

Dirichlet boundary condition is approximately satisfied at the new boundary Γk+1, i.e.,

0 != uk ∘ γk+1 ≈ uk ∘ γk + (∂uk∂er
∘ γk) δrk on [0, 2π] , (3.2)

where uk is assumed to be smoothly extended into the exterior of the domain Dk. We
decompose the derivative of uk in the direction er into its normal and tangential com-
ponents

∂uk
∂er
= ∂uk

∂n
⟨er, n⟩ + ∂uk∂t

⟨er, t⟩ on Γk (3.3)

to arrive finally at the following iterative scheme (cf. [9, 12, 18]):
(1) Choose an initial guess Γ0 of the free boundary.
(2a) Solve the boundary value problem with the Neumann boundary condition on the

free boundary Γk .
(2b) Update the free boundary Γk such that the Dirichlet boundary condition is approx-

imately satisfied at the new boundary Γk+1:

δrk = − uk∂uk
∂er

= − uk
f⟨n, er⟩ + ∂uk

∂t ⟨t, er⟩ . (3.4)

(3) Repeat step 2 until the process becomes stationary up to a specified accuracy.

Notice that the update equation (3.4) is always solvable at least in a neighborhood
of the optimum free boundary Γ since there it holds −∂u/∂er = f⟨er, n⟩ > 0 due to
∂uk/∂t = 0, f > 0 and ⟨er, n⟩ > 0 for starlike domains.

2.3.2 Discretizing the free boundary

For the numerical computations, we discretize the radial function rk associated with
the boundary Γk by a trigonometric polynomial according to

rk(ϕ) = a0
2 + n−1∑

i=1
{ai cos(iϕ) + bi sin(iϕ)} + an

2 cos(nϕ) . (3.5)

This obviously ensures that rk is always an element of C2
per(I). To determine the up-

date function δrk, represented likewise by a trigonometric polynomial, we insert the
m ≥ 2n equidistantly distributed points ϕi = 2πi/m into the update equation (3.4):

δrk = − uk
f⟨n, er⟩ + ∂uk

∂t ⟨t, er⟩ in all the points ϕ1, . . . , ϕm .
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This is a discrete least-squares problem which can simply be solved by the normal
equations. In view of the orthogonality of the Fourier basis, this means just a trunca-
tion of the trigonometric polynomial.

2.3.3 Boundary integral equations

Our approach to determine the solution uk of the state equation (3.1) relies on the re-
formulation as a boundary integral equation by using Green’s fundamental solution

G(x, y) = − 1
2π log ‖x − y‖2 .

Namely, the solution uk(x) of (3.1) is given in each point x ∈ D by Green’s representa-
tion formula

uk(x) = ∫
Γk∪Σ

{G(x, y)∂uk
∂n
(y) − ∂G(x, y)

∂ny
uk(y)}dσy . (3.6)

Using the jump properties of the layer potentials, we obtain the direct boundary inte-
gral formulation of the problem

1
2 uk(x) = ∫

Γk∪Σ

G(x, y)∂uk∂n (y)dσy − ∫
Γk∪Σ

∂G(x, y)
∂ny

uk(y)dσy , (3.7)

where x ∈ Γk ∪ Σ. If we label the boundaries by A, B ∈ {Γk , Σ}, then (3.7) includes the
single-layer operator

V : C(A) → C(B), (VABρ)(x) = − 1
2π ∫

A

log ‖x − y‖2 ρ(y)dσy (3.8)

and the double-layer operator

K : C(A) → C(B), (KABρ)(x) = 1
2π ∫

A

⟨x − y, ny⟩‖x − y‖22 ρ(y)dσy (3.9)

with the densities ρ ∈ C(A)being the Cauchy data of u onA. Equation (3.7) in combina-
tion with (3.8) and (3.9) indicates the Neumann-to-Dirichlet map, which for problem
(3.1) induces the following system of integral equations:

[1
2 I +KΓΓ −VΣΓ
KΓΣ −VΣΣ

] [ uk|Γ∂uk
∂n
Σ] = [VΓΓ −KΣΓ

VΓΣ −(1
2 I +KΣΣ)] [−f1 ] . (3.10)

The boundary integral operator on the left-hand side of this coupled system of the
boundary integral equation is continuous and satisfies a Gårding inequality with
respect to the product Sobolev space L2(Γ) × H−1/2(Σ) provided that diam(Ω) < 1.
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Since its injectivity follows from potential theory, this system of integral equations is
uniquely solvable according to the Riesz–Schauder theory.

The next step to the solution of the boundary value problem is the numerical ap-
proximation of the integral operators included in (3.10) which first requires the pa-
rameterization of the integral equations. To that end, we insert the parameterizations
σ and γk of the boundaries Σ and Γk, respectively. For the approximation of the un-
known Cauchy data, we use the collocation method based on trigonometric polynomi-
als. Applying the trapezoidal rule for the numerical quadrature and the regularization
technique along the lines of [15] to deal with the singular integrals, we arrive at an ex-
ponentially convergent Nyström method provided that the data and the boundaries
and thus the solution are arbitrarily smooth.

2.3.4 Expectation and variance of the potential

We shall comment on the expectation and the variance of the potential. To that end,
we consider a specific sample ω ∈ Ω and assume that the associated free boundary
Γ(ω) is known. Then, with the aid of the parameterizations

σ(ω) : [0, 2π] → Σ(ω) and γ(ω) : [0, 2π] → Γ(ω) ,

we arrive, in view of (3.6), for x ∈ D(ω) at the potential representation

u(x, ω) = ∑
A∈{Σ(ω),Γ(ω)}

2π∫
0

{kVA (x, ϕ, ω)ρVA (ϕ, ω) − kKA (x, ϕ, ω)ρKA (ϕ, ω)} dϕ , (3.11)

where

kVΣ(ω)(x, ϕ, ω) = G(x, σ(ϕ, ω))‖σ(ϕ, ω)‖2 ,

kVΓ(ω)(x, ϕ, ω) = G(x, γ(ϕ, ω))‖γ(ϕ, ω)‖2 ,

and

kKΣ(ω)(x, ϕ, ω) = ∂G(x, σ(ϕ, ω))
∂ny

‖σ(ϕ, ω)‖2 ,

kKΓ(ω)(x, ϕ, ω) = ∂G(x, γ(ϕ, ω))
∂ny

‖γ(ϕ, ω)‖2 .

Moreover, the related densities are given according to

ρVΣ(ω)(ϕ, ω) = ∂u
∂n (σ(ϕ, ω)), ρVΓ(ω)(ϕ, ω) = ∂u

∂n (γ(ϕ, ω)) ,

ρKΣ(ω)(ϕ, ω) = u(σ(ϕ, ω)), ρKΓ(ω)(ϕ, ω) = u(γ(ϕ, ω)) .

These densities coincide with the Cauchy data of the potential u(ω) on the boundary
∂D(ω).


