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Preface

The observation of two-photon excited fluorescence by Kaiser and Garrett and of
second-harmonic generation (SHG) by Franken et al. in 1961 marked the birth of Non-
linear Optics (NLO). They used a ruby laser emitting in the red spectral region at
694.3 nm. This novel light source was invented just some months before.

The NLO theory of two-photon absorption was provided by the PhD student and
later Nobel Prize winner named Maria Göppert in Göttingen in 1929. However, at that
“pre-laser” time, there was no intense light source to prove her hypothesis of two-
quantum transitions.

In 1961, threedecades later,WolfgangKaiser calledupMariaGoeppert-Mayer,who
hadmarried the chemist Joseph Edward Mayer and worked as professor in San Diego.
He told that her theory of two-photon absorption was finally confirmed. In order to
honor her outstanding PhD thesis, the unit of two-photon absorption cross sections
was termed “GM”.

When combined with an optical microscope, the laser beam can be confined to
an intense sub-wavelength light spot. According to Abbe’s diffraction law, the spot
diameter can be as small as 200 nanometers when using visible light.

In 1962, intense ruby laser spotswere used to generate a nonlinear inducedmicro-
emission from materials. Laser-induced breakdown spectroscopy (LIBS) was born.
Later on, Berns et al. used the laser microscope to perform intracellular laser surgery
and Ashkin employed the laser microscope non-destructively to create optical traps
and laser tweezers.

The pixel-by-pixel exposure across a sample with a focused laser spot by stage
scanning or beam scanning in order to induce signals such as fluorescence led to the
invention of laser scanning microscopy. Confocal laser scanning microscopes (CLSM)
provide optical sections for three-dimensional (3D) imaging. Typically, non-pulsed
(cw) visible laser beams are used.

The integration of ultrafast picosecond and femtosecond lasers into scanning
microscopes was a milestone in optical microscopy. It allowed fluorescence lifetime
imaging (FLIM) by time-correlated single-photon counting (TCSPC) and efficient non-
linear excitation within the focal spot, in particular two-photon microscopy.

The first integration of an ultrafast laser with a confocal laser scanning micro-
scope happened to my knowledge in the late 1980s in Jena in East Germany. The mi-
croscope manufacturer VEB Carl Zeiss Jena developed together with our Department
of Physics at the Friedrich Schiller University a prototype of a picosecond laser scan-
ning microscope for 4D microscopy with high spatial and temporal resolution based
on a mode-locked argon ion laser and a TCSPC module. Using that unique prototype,
we performed the first FLIM laser scanning microscopy in Life Sciences in 1988 on
living cancer cells.

https://doi.org/10.1515/9783110429985-001
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FLIM microscopy opened the possibility to introduce a further image contrast
modality, to probe the microenvironment of the fluorophore, and to detect protein-
protein interactions with high spatial resolution.

However, working in the NLO group under the guidance of the ultrashort laser
pulse expert Bernd Wilhelmi, we missed the chance to detect two-photon excited flu-
orescence with this very first ultrafast laser scanning microscope.

One year later in 1989, Denk, Strickler, and Webb from Cornell University used a
sub-picosecond dye lasermicroscope to perform two-photon imaging and two-photon
photochemistry. Cornell University filed a patent onNovember 14, 1989 on two-photon
laser microscopy. Licensed to the UK company Bio-Rad, this patent started a major le-
gal fight between the major microscope producers. In 2004, ZEISS acquired the Cell
Science Business of Bio-Rad to get access to the worldwide exclusive rights of multi-
photon microscopy.

Femtosecondnear-infrared (NIR) laser two-photonmicroscopesbecame themajor
tool for live cell imaging. Not only intracellular exogenous fluorophores and fluores-
cent proteins in transfected cells have been visualized over longer periods of time
noninvasively. Also a variety of endogenous fluorophores has been imaged. Piston and
König et al. introduced two-photon autofluorescence FLIM on live cells.

Two-photon optical sections were performed on tissue biopsies, and later mount-
ed in the skull through a glass window within the brain of live transgenic mice. Two-
photon fluorescence microscopes thus became now unique 3D imaging systems to
study intratissue neurons in situ.

In 1998,Masters et al. used a home-built two-photonmicroscope to image the skin
of the author’s arm noninvasively and label-free. They were able to monitor the com-
plete skin architecture of the epidermis and upper dermis.

Finally in 2003, König and coworkers introduced the first certified in vivo mul-
tiphoton tomograph for clinical imaging based on two-photon excited autofluores-
cence, SHG, and FLIM. Meanwhile the skin of thousands of volunteers and patients
has been examinedwith thesemultiphoton tomographs to detect skin cancer and skin
aging signs, to trace cosmetic and pharmaceutical compounds, and even to measure
skin alterations of astronauts after long-term space trips.

Instead of using a single femtosecond laser beam, Stefan Hell added a second op-
tically shaped laser beam to come up with the Nobel Prize winning STEDmicroscopy.
STED is the abbreviation for stimulated emission depletion microscopy, which opened
the door for super-resolution microscopy far beyond Abbe’s diffraction limit, and is
also called optical nanoscopy.

Two ultrafast laser beams were also employed to realize 3D microscopy with
chemical fingerprints based on Coherent Anti-Stokes Raman Spectroscopy (CARS).
Meanwhile, CARS tomographs are in clinical use in hospitals in Germany, USA, and
China.
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Besides imaging, nonlinear microscopes became novel micromachining tools in
material production and refractive eye surgery. Within the last ten years, femtosecond
laser nanoscopes have “turned” micromachining into nanomachining. When using
one-beam NIR nanoscopes, only the central part of the intense laser spot is employed
to create sub-100nmstructures basedon two-photon lithography,multiphoton ioniza-
tion, and plasma formation. In bulk 3D nanoprocessing became feasible. When using
two-beam nanoscopes, the 3D nanostructures with a feature size down to 9 nm have
been produced with nonlinear lithography where one beam is used for photoinduc-
tion and the other one for photoinhibition.

Undoubtedly, nonlinear microscopy/nanoscopy and multiphoton tomography
have revolutionized the imaging of live cells and tissues. It all started with the pio-
neering work of Kaiser and Garrett who demonstrated the two-photon fluorescence
for the first time. It is a great pleasure to dedicate this book to Professor Wolfgang
Kaiser on his 92nd birthday, which is on July 17, 2017.

Berlin, July 2017
Karsten König
Department of Biophotonics and Laser Technology, Saarland University, Germany

Wolfgang Kaiser with Karsten König at the 10th International Workshop and Conference on Advanced
Multiphoton and Fluorescence Lifetime Imaging Techniques FLIM2015 on June 17, 2015.





Foreword

The publication of this book is timely, because it is likely that multiphoton imaging is
about to make a serious impact in clinical diagnosis, after more than two decades of
successful applications in research in the life sciences. Andwhobetter to edit the book
than Karsten König, who has been active in the field almost since its experimental
demonstration?

Two-photon absorption was first proposed by Maria Göppert in 1929. It is interest-
ing to recall that Paul Dirac spent threemonths in Göttingen in early 1927, visitingMax
Born, Göppert’s supervisor. In this same period he submitted two papers, ‘The quan-
tum theory of dispersion’, and ‘The quantum theory of emission and absorption of
radiation’, which introduce the quantum theory of creation and annihilation of pho-
tons. The simultaneous absorption of multiple photons was predicted by his theory,
but he rejected this result as ‘These terms correspond to processes in which two light-
quanta are emitted or absorbed simultaneously, and cannot rise in a light-quantum
theory inwhich there are no forces between the light quanta. The effects of these terms
will be found to be negligible, so that the disagreement with the light-quantum theory
is not serious.’ Later, Dirac made reference to multiphoton absorption in his book The
Principles of Quantum Mechanics.

Variousdifferent nonlinear processeswere observed experimentally soonafter the
invention of the laser. In a paper submitted in 1976, we (Sheppard and Kompfner:
Resonant optical scanning microscope. Appl Opt. 1978;17:2879–2882) proposed that
the high field strength in a tightly focused laser beam could be used to excite non-
linear effects and produce images by scanning of the laser spot. Harmonic genera-
tion, two-photon fluorescence, and coherent Raman scattering were processes that
were specifically mentioned. Second-harmonic images were presented at a confer-
ence in 1977 (Sheppard et al. The second harmonic generation (SHG)microscope. IEEE
J Quant Electron. 1977;QE13:100D, post-deadline). Although the advantage of using
short pulses was mentioned in the paper, the harmonic images were, in fact, pro-
duced using a continuous wave laser. We had also experimented on using picosecond
pulses fromamode-locked argon ion laser.We thought thatwehadobserved a second-
harmonic signal, but further investigation showed it was fluorescence in the infrared.
The patent granted to Denk, Strickler, and Webb (US5034613) was for a two-photon
fluorescence microscope, specifically one using pulses with a pulse length shorter
than one picosecond. Interestingly, a patent was also granted to Hänninen and Hell
(WO1995030166) for a microscope system using pulses longer than one picosecond.
These patents have now expired, and several companies manufacture multiphoton
microscopes.

https://doi.org/10.1515/9783110429985-002



xii | Foreword

The scope of the present book includes multiphoton manipulation and material
processing, and also fluorescence lifetime imaging. These associatedmethods are also
very useful in biological andmedical applications. The book satisfies a need for an up-
to-date treatment of all these related techniques.

Wollongong, NSW, Australia, August 2017
Colin Sheppard
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Karsten König
1 Brief history of fluorescence lifetime imaging

Abstract: This review gives an overview of the history of fluorescence lifetime imaging
(FLIM) in life sciences. FLIM microscopy based on an ultrafast laser scanning micro-
scope and time-correlated single photon counting (TCSPC) was introduced in Jena/
Germany in 1988/89. FLIM images of porphyrin-labeled live cells and live mice were
taken with an unique ZEISS confocal picosecond laser microscope. Five years later,
the first in vivo FLIM on human volunteers started with time-gated cameras to detect
dental caries based on one-photon wide-field pulsed laser excitation of autofluores-
cent bacteria. Another five years later, two-photon FLIM of autofluorescent skin was
performed on a volunteer with a lab microscope in the frequency domain. The first
clinical non-invasive optical, two-photon 3DFLIMbiopsieswere obtainedfifteen years
ago in patientswith dermatological disorders using a certified clinicalmultiphoton to-
mograph based on a tunable femtosecond titanium:sapphire laser and TCSPC.

A current major FLIM application in cell biology is the study of protein-protein
interactions in transfected cells by FLIM-FRETmicroscopy. Clinical FLIM applications
are still on a research level and include preliminary studies on (i) one-photon FLIM
autofluorescence microscopy of patients with ocular diseases using picosecond laser
diodes, (ii) time-gated imaging in brain surgery using a nanosecond nitrogen laser,
and (iii) two-photon clinical FLIM tomography of patients with skin cancer and brain
tumors with near-infrared femtosecond lasers and TCSPC.

1.1 Introduction

FLIM is an imagingmethodologywith high specificity andhigh sensitivity to the nano-
andmicroenvironment. It is relatively insensitive to concentration and signal intensity
artefacts. The acronymFLIMstands forFluorescence Lifetime Imaging (sometimes also
for fluorescence lifetimemicroscopy) andmeans that the fluorescence lifetime τ is de-
picted with spatial resolution. FLIM images are typically generated with microscopes,
endoscopes, and tomographs but can be also acquired on a macroscopic level. FLIM
images canbe taken in the frequencydomain (measurement of phase shift anddemod-
ulation with cw or pulsed laser) as well as in the time domain using time-gated cam-
eras, streak cameras, and time-correlated single photon counting (TCSPC) units [1].
They are often false-color coded where the colors reflect certain τ values.

FLIM applications in cell biology are based on endogenous (intrinsic) and exoge-
nous fluorophore detection in a specific nano- and microenvironment. FLIM can be
used to probe intermolecular interactions within a 10 nm distance, such as bindings,
by Förster resonance energy transfer (FRET) and anisotropy measurements. Animal

Open Access. © 2018 Karsten König, published by De Gruyter. This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110429985-003
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studies, artworks,microfluidics, and forensic science such as fingerprint detection are
other applications of FLIM [2–8].

However, the most challenging and exciting FLIM application is in vivo clinical
imaging of patients. Clinical FLIMwith several hundreds of patients is currently based
on TCSPC using
(i) picosecond laser diodes in the visible spectral range (one-photon excitation) and
(ii) near-infrared (NIR) femtosecond Ti:sapphire lasers (two-photon excitation).

1.2 Time-resolved spectroscopy and first time-resolved
fluorescence microscopes

For decades, time-resolved fluorescence spectroscopy has been employed to inves-
tigate photophysical, photochemical, and photobiological processes of fluorescent
molecules in solution, suchas theprimary steps of visionandphotosynthesis (e.g. [9]).
In order to gain time-resolved fluorescence information on living cells, nanosecond
and sub-nanosecond fluorometers were combined with microscopes. Typically, a
fixed laser beamwas focused to a micrometer-sized laser spot [10–17]. Applications of
these time-resolved spectrometers with some spatial information included the analy-
sis of chlorophyll fluorescence from single chloroplasts, the coenzyme fluorescence
in bacteria, and the porphyrin fluorescence in cells after administration of fluorescent
photosensitizers.

1.3 First FLIM laser scanning microscope

In 1988, a real breakthrough was obtained by the combination of an ultrafast pulsed
laser in the picosecond range with a laser scanning microscope. Now the object was
illuminated point-by-point by the focused pulsed laser beam and the corresponding
time-resolvedfluorescence responsewasdetectedat eachpoint by time-correlated sin-
gle photon counting (TCSPC). The fluorescence intensity IF and the fluorescence decay
time τ were used as parameters to generate FLIM images. This first prototype of the
FLIM laser scanning microscope became operational in the Department of Physics at
the Friedrich Schiller University Jena in 1988 [18], shortly before the unification of Ger-
many. Twoyears earlier, thepatent on time-resolvedpulsed laser scanningmicroscopy
had been filed by Gröbler from the company VEB Carl Zeiss Jena [19].

This unique FLIM system was based on a confocal laser scanning microscope
(scanning stage with 0.5 µm steps) equipped with a 120MHz mode-locked argon
ion laser (100 ps). The fluorescence was detected with photomultipliers (FEU-77)
with short picosecond rise time from the Soviet Union in combination with the time-
resolved single photon counting unit SPC100 (ZOS Berlin, Fig. 1.1).
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Fig. 1.1: First FLIM laser scanning microscope. The apparatus is based on a ZEISS confocal stage
scan fluorescence microscope equipped with a mode-locked 120 MHz argon ion laser and the
TCSPC module SPC100 [20–22]. Single photon events are accumulated in a 256-channel memory,
maximum 65 535 counts per channel, channel width 48 ps or 20 ps, with a maximum count rate of
2 × 105/s. Temporal resolution: 300 ps, 50× NA 0.9 objective. AOM: acousto-optic mode-locker, PD:
photodiode, F1: attenuator, F2: blocking filter, ML: matching lens, DM: dichroic mirror, O: objective,
S: scanning stage with 0.5 µm steps, SPC: single photon counting.

König et al. used this unique novel TCSPC-FLIM tool to perform the first laser scanning
FLIM in life science [20–22]. In 1988, our groupgeneratedFLIM imageswith submicron
resolution (50×, NA 0.95) from living cancer cells. In particular, red-emitting intracel-
lular fluorescent porphyrin photosensitizers were imaged as line scans and 2D plots
with sub-nanosecond temporal resolution. Bi-exponential aswell as global fittingwas
performed to obtain data on porphyrin monomers, dimers, and higher aggregates as
well as to study photodynamic reactions (Fig. 1.2 and 1.3).

The mode-locked 120MHz argon ion laser was also used to pump a tunable dye
laser. Unfortunately, no two-photon excited fluorescence images (that would require
the use of short pass filters) were taken at that time in Jena with this remarkable tun-
able picosecond laser scanning microscope working even in the red spectral range.

In 1989, Wang et al. reported on fluorescence lifetime distribution measurements
by phase-resolved detection with an image dissector tube [23] and one year later on
time-resolved fluorescence microscopy by multichannel photon counting [24].

Denk, Strickler, and Webb realized the two-photon microscope based on a sub-
picosecond dye laser in 1989/1990 [25, 26]. With the availability of the more stable
and user-friendly femtosecond titanium:sapphire laser, two-photon laser scanning
microscopes with their inherent optical sectioning rapidly became a major tool for
cell biologists. Since these microscopes already have the expensive laser source, it is
relatively simple to add on a TCSPC module in order to perform FLIM.
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Fig. 1.2: Subsequent line scans (5 times the same cell, step width: 0.5 µm, laser spot size: 0.6 µm)
with the FLIM microscope were taken to study laser-induced bleaching and photoproduct formation
in a live cancer cell labeled with the photosensitizer HpD (mean power: 7 µW, interval I: 0.7–3.6 ns,
interval II: 3.6–6.5 ns, interval III: whole excitation pulse period). The intensity increase in interval III
and the decrease of the mean fluorescence lifetime reflect the formation of a short-lived porphyrin
photoproduct during five laser scans [20–22].

Fig. 1.3: First FLIM images using a confocal picosecond laser scanning microscope. The figure shows
a 2D scan of the fluorescence of the intracellular photosensitizer HpD in a part of an Ehrlich Ascites
Carcinoma (EAC) cell. Upper part: τ(x, y) values (1 µm steps), middle: fluorescence intensity values,
lower part: histograms along the lines [20–22].
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1.4 Two-photon FLIM microscopy

A drawback of one-photon FLIM with visible light sources is its inability to image the
most important intracellular fluorescent biomolecule, the coenzyme NAD(P)H in the
mitochondria with its absorption maximum around 340nm. Furthermore, problems
occur due to out-of-focus fluorescence excitation and the limited light penetration
depth in most tissues. These drawbacks can be overcome when using multiphoton
imaging with NIR lasers based on two-photon excited fluorescence, second harmonic
generation (SHG), and coherent anti-Stokes Raman spectroscopy (CARS).

Some years after the invention of the two-photonmicroscope, Piston et al. [27], So
et al. [28], and König et al. [29] performed two-photon FLIMmicroscopy on living cells.
Interestingly, a variety of first two-photon FLIMmicroscopes used a frequency domain
approachwhereas themajority of today’s two-photon FLIMdevices are employing fast
TCSPC. Soon after their introduction, the first two-photon FLIM images from animal
tissueswere taken and finally from the fingers of amicroscope user.Masters et al. used
a lab two-photonmicroscope operating in the frequency domain in 1997/1998 to obtain
the first two-photon FLIM data from in vivo human skin [30–32].

1.5 First wide-field FLIM in humans

Someyears earlier in themid-1990s, the firstwide-fieldmacroscopic FLIM images from
humans were obtained by König and Schneckenburger. In vivo autofluorescence im-
ages of the tooth region of two volunteers with carious lesions and dental plaquewere
taken. In particular, the distribution of the red-emitting, porphyrin-producing bac-
teria Actinomyces odontolyticus with fluorescence lifetimes of 10 ns and longer has
been studied in non-healthy teeth of volunteers with wide-field FLIM [33, 34]. A time-
gated camera and wide-field illumination with a frequency-doubled two nanosecond
Nd:YAG laser was employed. Time-gated “snapshots” were acquired at various time
delays after the excitation. When using “snapshots” several nanoseconds after the
excitation pulse, dental plaque could be clearly detected due to the suppression of
the short-lived autofluorescence of normal tooth material and the scattered laser light
(Fig. 1.4).

Today, clinical wide-field macroscopic FLIM is employed to detect tumor borders
during brain surgery. A nanosecond nitrogen laser at 337 nm is used to excite the fluo-
rescence of the tissue and to allow “snapshots” for the identification of the tumor [35].
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Fig. 1.4: In vivo time-gated autofluorescence images from anterior teeth of a volunteer with dental
plaque and caries. Bacteria (Actinomyces odontolyticus) produce coproporphyrin and PP IX with long
> 10 ns fluorescence lifetimes. Therefore, time windows with a long >10 ns delay compared to the
excitation light exhibited the porphyrin autofluorescence in caries and dental plaque. The short-
lived tooth autofluorescence is suppressed. Left: time gate: 0–5 ns, right: 30–55 ns [34].

1.6 Clinical FLIM tomography

A patent on a device and amethod for clinical time-resolved two-photon imaging and
treatment of skin disorders was filed by König in 2000 [36]. The first prototype of a
medical two-photon tomograph “DermaInspect”withpicosecond temporal resolution
was realized based on a tunable Ti:sapphire laser, x/y-galvoscanners, a piezodriven
NA 1.3 objective, and a TCSPCmodule in 2002 [37, 38]. Soon after it became CE-marked
for clinical use and commercialized by JenLab GmbH, Jena, Germany. The first studies
were performed on patients with skin cancer at the University Hospital Jena.

Today, the portable certified multiphoton tomographs “MPTflex” and “MPTflex-
CARS” with their optomechanical arms are in clinical use in Australia, Japan, Rus-
sia, US, and Europe. These medical tomographs simultaneously depict FLIM images,
SHG images, two-photon fluorescence intensity images, and CARS images, respec-
tively (Fig. 1.5 and 1.6). Clinical FLIM applications include early detection of skin can-
cer, tumor border recognition during brain surgery, and detection of intratissue in-
flammation sites (e.g. [39–56]).

▸ Fig. 1.6: Clinical two-photon FLIM images from human skin are based on two-photon excitation of
endogenous fluorophores using TCSPC. The arrival times of some fluorescence photons per pixel are
depicted as fluorescence decay curve (lower part). Bi-exponential fitting provides amplitudes and
lifetimes of two components as well as the mean fluorescence lifetime per pixel.
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Fig. 1.5: The Prism Award winning certified clin-
ical multiphoton FLIM tomograph MPTflex™
with its flexible optomechanical arm with active
beam stabilizer, the compact scan/detection
head, the tunable femtosecond laser, and the
TCSPC module. The head consists of a 3D scan-
ning system, the high NA focusing optics, and
two single photon counting sensors. Wide-field
(up to 5 × 5 mm2) images can be taken by mo-
saic scanning. Horizontal, vertical and diagonal
FLIM sections are possible. The lower image
left shows an emission intensity image based
on autofluorescence AF (green) and SHG (red).
The right image shows the time-resolved AF
image with pseudocolors representing the flu-
orescence lifetimes. FLIM of tissue AF provides
a significantly better contrast than intensity
images.
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1.7 One-photon FLIM in ophthalmology

The major clinical one-photon FLIM application today is in the field of ophthalmol-
ogy. Picosecond laser diodes in the visible range are employed to excite the ocular
autofluorescence. FLIM images are taken by the use of TCSPC units (Fig. 1.7 and 1.8).
The companyHeidelberg Engineering hasproduced thefirst prototypes for clinical use.
They are being tested, e.g., for the detection of macular degeneration and other dis-
eases. This pioneering FLIM work for the field of ophthalmology was performed by
Schweitzer and coworkers in Jena, Germany [57–59].

Fig. 1.7: In vivo FLIM images from the eyes of two volunteers. Clinical one-photon FLIM is based
on picosecond laser excitation (473 nm, 80 MHz) and TCSPC in two channels (498–560 nm and
560–720 nm). FLIM images of the editor (B) and a younger female student (A) were taken under
the same conditions. Note the longer lifetimes in the case of the older volunteer. Image acquisi-
tion: 1.5 min.

Fig. 1.8: The fluorescence lifetime ophthalmoscope FLIO.
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1.8 Endoscopic FLIM

In the late 1990s, the first FLIM endoscopes, such as the system by Mizeret et al. that
worked in the frequency domain [60], were also developed. Later on in 2004, video-
rate FLIM with a potentially portable flexible one-photon FLIM endoscope was re-
ported based on gated optical image intensifier technology [61].

Already in 2002, a compact two-photon fluorescence microscope based on a
single-mode fiber coupler was reported and one year later, two-photon low-weight
endoscopic systems were employed to study brain tissue in live mice [62].

Finally in 2007, thefirst clinical time-resolved two-photonfluorescence endoscopy
was performed using special highNAGRINmicroendoscopes on patientswith chronic
and acute wounds ([63], Fig. 1.9).

Fig. 1.9: Clinical two-photon GRIN microendoscope with high NA (0.8). The endoscope is connected
to a multiphoton tomograph. The images show two-photon sections of the lip of a volunteer.

1.9 FLIM-FRET

One current major application of FLIM microscopes in cell biology is FLIM-FRET.
Protein-protein interactions and the micro- and nano-environment of a molecule are
studied by the detection of the shortening of the fluorescence lifetime of a donor
molecule during Förster resonance energy transfer (FRET). During that transfer, the
energy of the light-excited fluorescent donor is transferred non-radiatively to a nearby
molecular chromophore in the ground state. A major condition is the spectral overlap
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of the donor’s emission with the acceptor’s absorption. The probability of fluores-
cence is thereby diminished and as a result, the fluorescence lifetime is shortened.
Förster showed in the 1940s that the rate of energy transfer is proportional to R−6,
where R is the distance between the chromophore centers [64]. Practically, it means
that the distance should be less than 10 nanometers and binding should occur.

FRET can bemeasured with a normal steady-state fluorescencemicroscope. How-
ever, it is difficult to quantify the FRET measurements because standards must be
used for calibration of the fluorescence intensities and problems are faced due to con-
centration gradients and dynamics of the proteins within the cell as well as due to
photobleaching phenomena. FLIM can overcome these difficulties in making reliable
FRET studies independent of fluorescence intensities by measuring the modifications
of the fluorescence decay of the donor [5, 6, 65].

Most FLIM-FRET studies are performed on green fluorescent proteins (GFP) and
other genetic constructs (Fig. 1.10). In some cases, FRET between natural fluorescent
chromophores such asNADHand tryptophanhas also been studied. Often FLIM-FRET
is performedwith one-photondonor excitation such asUVandblue light. Two-photon
excitation may cause a minor problem because of the broad two-photon excitation
spectra and the subsequent excitation of the donor as well as the non-desired excita-
tion of the acceptor. However, this problem can be solved by deconvolution methods
(e.g., global fitting). More information on FLIM-FRET can be found in [66–68].

Fig. 1.10: FLIM-FRET measurement from 2001. Our group observed FRET in Vero cells containing
green fluorescent protein (GFP, acceptor) and yellow fluorescent protein (YFP, donor). The short-
ening of the YFP lifetime and the increase of the ratio fast to slow component a1/a2 indicated FRET.
ZEISS LSM-410, Multichannel plate detector, SPC-730 TCSPC module [5].
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1.10 Conclusion

Since its introduction in life science in the late 1980s, FLIM scanning microscopy has
become an important tool for cell biologists. In particular, FLIM microscopy gained
a significant boost with the introduction of two-photon femtosecond laser scanning
microscopes in the 1990s. Nowadays, TCSPC-FLIM add-on modules can easily be im-
plemented in commercial ultrashort laser scanning microscopes.

Ten years after the invention of the two-photon microscope, the first commercial
certified clinical FLIM tomographs (“DermaInspect”) for medical diagnostics became
available [36–38].

Current FLIMmicroscopes, FLIM tomographs, and FLIM endoscopes still have the
drawback of being expensive and relatively bulky systems. However, with the avail-
ability of ultracompact low cost femtosecond laser sourceswithin the next years, FLIM
devices will likely become a common tool in research and application labs. Still, it re-
mains a major goal to identify promising applications in the medical field [69].
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Wolfgang Kaiser
2 The long journey to the laser and its use

for nonlinear optics

Abstract: Einstein introduced the basic principle of the laser in 1917. However, the pos-
sibility of light amplificationwasnot recognized for decades. Eventually,Maiman from
the Hughes Aircraft Co. realized the first laser based on ruby as active medium. This
unexpected result excited our group at the Bell Labs and we realized the first intense
and highly directional (< 1 degree) laser beam. On October 5, 1960 we demonstrated
the red laser beam fired from the radar tower in New Jersey and its detection 25 miles
away. The new light source initiated the field of Nonlinear Optics (NLO). We realized
the first two-photon fluorescence in 1961.

The title of this article suggests a substantial history of the laser. For you the laser is a
well-known and well-established optical light source. But please note, that the laser
started its existence just 55 years ago.

In 1900, Max Planck published a theory about the experimentally known black
body radiation [1]. In his derivation he introduced the light quantum E = hf for the
transition between two energy states. This revolutionary idea was used by the – then
young – Einstein in 1917 in a completely different derivation of the same black body
radiation [2]. In this paper the basic principle of the laser was introduced: the stim-
ulated emission of light. An excited quantum state can be de-excited by a passing
light quantum of the proper frequency, i.e., two photons leave the system or – in other
words – the stimulating photon is amplified. During the following decades the process
of stimulated light emission received surprisingly little attention in the scientific com-
munity. In a few papers the dispersion of light in excited gases was investigated and
named negative dispersion. The possibility of light amplification was not recognized
for 34 years.

Finally, in 1951, Charles Townes, a professor at Columbia University in New York
and consultant at the Bell Laboratories had the ingenious idea to build a microwave
amplifier (with ammonia gas at 1.25 cm) using the stimulated excitation process. It is
interesting to read in the biography of Townes how he found the maser (microwave
amplifier by stimulated emission of radiation). He was on his way to a meeting con-
cerningnewmicrowave amplifiers. He knew that noproposals existed. Under a certain
pressure the idea occurred to him to study the stimulated light emission process quan-
titatively for the application in a new device. In fact, in 1953 the first maser was in
operation. The desirable extension to higher frequencies – preferentially to the visi-
ble – was first discussed theoretically by Schawlow and Townes in 1958 [3]. Tab. 2.1
provides an overview of the historical development of the maser and laser.

Open Access. © 2018 Wolfgang Kaiser, published by De Gruyter. This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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Tab. 2.1: Overview of the historical development of the maser and laser.

1900 Planck Quantum of radiation E = hf

1917 Einstein

absorption emission stimulated
emission

1923 Tolman
1927 Ladenburg
1941 Fabrikant

1951 Townes
1952–1955 Townes MASER

Microwave Amplification by Stimulated
Emission of Radiation

(1955) Basov
Prokhorov

1958 Schawlow LASER
Theory: Physical Review 112, 1940 (1958)Townes

T.H.Maiman [4], a physicist at theHughesAircraft Co., realized the first laser based on
ruby as active medium. He talked on the new light source during a press conference
in New York on July 7, 1960. The newspaper New York Times reported on it one day
later. The first scientific paper “Stimulated optical radiation in ruby” was published
inNature in August 6, 1960.Maimanpumped a ruby crystal with a powerful flash lamp
and observed narrowing of the emitting beam to 55 degrees. The beam was delivered
through a hole in the silver coating.

This unexpected result excited our group at the Bell Laboratories to repeat the
ruby experiment. After three weeks we saw the expected extremely intense, highly
directional (< 1 degree) beam of coherent highly narrowed radiation and sent a
manuscript on our findings to the journal Physics Review Letters on August 26, 1960
([5], Fig. 2.1).

There was no doubt: This observation was a true laser emission as expected from
theory. We used a semitransparent silver coating instead of a hole for out-coupling.
On October 5, 1960 we gave a press conference (Fig. 2.2) and demonstrated a red beam
of the new light source, fired from the radar tower in New Jersey and detected 25 miles
away at Crawfort Hill using a photomultiplier (Fig. 2.3 and 2.4).

The same year, the He:Ne gas laser became operational at Bell [6] and the 4-level-
laser was introduced [7, 8].

The very strong light emission by the new light source laser initiated the field
of Nonlinear Optics (NLO). In 1961, second harmonic radiation was found in non-
centrosymmetric crystals (e.g. quartz) by Franken et al. at the University of Michigan
[9] and byGiordmaine at Bell [10]. First two-photon fluorescencewas seen in Eu2+CaF2
by Kaiser and Garrett at Bell [11].


