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Preface

“Simulations in medicine” – typing these words into Google produces a long list of
institutions that train students in all practical aspects of medicine using phantoms.
The student may learn to perform a variety of procedures and surgical interventions
by interacting with a simulated patient. Such centers perform a great range of tasks
related tomedical education; however, medical simulations are not limited tomanual
procedures.

The very word “simulation” is closely tied to computer science. It involves recre-
ating a process which occurs over a period of time. The process may include actions
performed manually by a student but it can also comprise events occurring in virtual
space, under specific conditions and in accordance with predetermined rules – in-
cluding processes occurring on the molecular (Chapter 1) or cellular (Chapter 2) level,
at the level of a communication system (Chapter 3) or organs (Chapters 4 and 5) or
even at the level of the complete organism – musculoskeletal relations (Chapter 6).
“Simulations in medicine” also involve recreating the decision-making process in the
context of diagnosis (Chapters 7, 8, 9), treatment (Chapter 10, 11), therapy (Chapter 12),
as supported by large-scale telecommunication (Chapter 13) andfinally in patient sup-
port (Chapter 14).

This interpretation of the presented concept – focusing on understanding of phe-
nomena and processes observed in the organism – is the core subject of our book and
can, in fact, be referred to as “PHANTOMLESS medical simulations”.

The list of problems which can be presented in the form of simulations is vast.
Some selection is therefore necessary. While our book adopts a selective approach to
simulations, each simulation can be viewed as a specific example of a generic phe-
nomenon: indeed, many biological events and processes can be described using co-
herent models and assigned to individual categories. This pattern-based approach
broadens the range of interpretations and facilitates predictions based on the observ-
able analogies. As a result, simulation results become applicable to a wide category
of models, permitting further analysis.

One such universal pattern which we will refer to on numerous occasions is the
concept of an “autonomous entity”. The corresponding definition is broad, encom-
passing all systems capable of independent operation, ensuring their own survival
and homeostasis. This includes individual organisms, but also complex social struc-
tures such as ant colonies, beehives or even factories operating under market condi-
tions. The structures associatedwith the autonomous operation of these entities share
certain common characteristics – they include e.g. construction structures which ful-
fill the role of “building blocks” (Fig. 1 (a)), function-related structures which act in
accordance with automation principles (Fig. 1 (b)) and, finally, structures responsible
for sequestration ofmaterials, making them compact and durable while also ensuring
that they can be easily accessed when needed (Fig. 1 (c)).
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Fig. 1: Symbolic depiction of the structural and functional characteristics of the organism as an au-
tonomous entity, comprising three basic types of components (a, b, c) corresponding to specific
aims: (a) construction; (b) function; (c) storage.

Living organisms conform to the above described model. Each problem, when ex-
pressed in the form of a simulation, has its place in a coherent system – much like
a newly acquired book in a library collection.

The division presented also helps explain common issues and problems relevant
to each group of models. Afflictions of the skeletal system, metabolic diseases or
storage-related conditions can all be categorized using the above presented schema
(although some of them may affect more than one category).

Even randomly selected simulations follow this generalized model, contributing
to proper categorization of biological phenomena. This fact underscores the impor-
tance of simulation-based imaging.

Journal “Bio-Algorithms and Med-Systems” published by de Gruyter invites all
Readers to submit papers concerning the wildly understood spectrum of PHANTOM-
LESS simulations in medicine.

You are invited to visit: http://www.degruyter.com/view/j/bams

Krakow, March, 2015 Irena Roterman-Konieczna
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Part I:Molecular level





Monika Piwowar and Wiktor Jurkowski
1 Selected aspects of biological network analysis

1.1 Introduction

Muchhas beenmade of theHumanGenomeProject’s potential to unlock the secrets of
life [1, 2].Mapping the entire humanDNAwas expected to provide answers to unsolved
problems of heredity, evolution, protein structure and function, disease mechanisms
and many others. The actual outcome of the project, however, differed from expecta-
tions. It turned out that coding fragments – genes – constitute only a minute fraction
(approximately 2%) of humanDNA. Furthermore, comparative analysis of humanand
chimpanzee genomes revealed that despite profound phenotypic differences the DNA
of these species differs by only 1.5%. Despite being an undisputed technological tour
de force, the Human Genome Project did not live up to the far-reaching hopes of the
scientific community. It seems that genes alone do not convey sufficient information
to explain phenotypic uniqueness – indeed, additional sources of information are re-
quired in order to maintain a coherent system under which the expression of individ-
ual genes is strictly regulated [3].

Cellular biology has historically been dominated by the reductionist (“bottom-
up”) approach. Researchers studied specific components of the cell and drew conclu-
sions regarding the operation of the system as a whole [4, 5]. Structural and molec-
ular biology reveals the sequential and structural arrangement of proteins, DNA and
RNA chains. In recent years efficient technologies have emerged, enabling analysis
of entire genomes (genomics) [6, 7], regulation of transcription processes (transcrip-
tomics) [8], quantitative and qualitative properties of proteins (proteomics) [9] as well
as the chemical reactions which form the basis of life (metabolomics) [10, 11]. Special-
ist literature is replete with breadth-first data analysis studies which are often jointly
referred to as “omics” (e.g. lipidomics) [12]. The common factor of all these disciplines
is the application of modern experimental methods to study changes which occur in
a given cell or tissue [12].

The ongoing evolution of IT methodologies enables efficient processing of vast
quantities of data and, as a result, many specialist databases have emerged. Progres-
sive improvements in computational sciences facilitatesmore andmore accurate anal-
ysis of the structure and function of individual components of living cells. Yet, despite
the immense effort invested in this work, it has become evident that biological func-
tion cannot – in most cases – be accurately modeled by referring to a single molecule
or organelle. In other words, the cell is more than merely a sum of its parts and it is
not possible to analyze each part separately and then to assemble them together (like
a bicycle). The fundamental phenomena and properties of life fade from focus when
such a reductionist approach is applied.While an organism canbe said to “operate” as
determined by the laws of physics, andwhile it is composed of a wide variety of chem-
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ical elements, it cannot be analyzed using the same tools which are successfully ap-
plied in other disciplines (e.g. linearization, extrapolation etc.) where our knowledge
of the target system is complete [13, 14]. Molecules interact with one another forming
a fantastically complex web of relationships. Hundreds of thousands of proteins are
encoded by genes which themselves fall under the supervision of additional proteins.
Genes and proteins act together to drive innumerable processes on the level of individ-
ual cells, tissues, organs and entire organisms. The end result is an enormously com-
plicated, elastic and dynamic system, exhibiting amultitude of emergent phenomena
which cannot be adequately explained by focusing on its base components [15].

The knowledge and data derived from efficient experimentation allow us to begin
explaining how such components and their interactions affect the processes occur-
ring in cells – whether autonomous or acting within the scope of a given tissue, organ
or organism. This approach, usually referred to as “systems biology” has been gain-
ing popularity in recent years. It is based on a holistic (“top-down”) approach which
attributes the properties of biological units to the requirements and features of sys-
tems to which they belong [3]. While a comprehensive description of the mechanism
of life – even on the basic cellular level – is still beyond our capabilities, ongoing de-
velopments in systems biology and biomedicine supply ample evidence in support
of this holistic methodology. Barbasi et al. [16] have conducted several studies which
indicate that biological networks conform to certain basic, universal laws. Accurately
describing individualmodules and pathways calls for amarriage between experimen-
tal biology and other modern disciplines, including mathematics and computer sci-
ence, which supply efficientmeans for the analysis of vast experimental datasets. This
formal (mathematical) approach can be applied to biological processes, yielding suit-
able methods for modeling the complex interdependencies which play a key role in
cells and organisms alike [17]. Such a “network-based” view of cellular mechanisms
provides an entirely new framework for studies of both normal and pathological pro-
cesses observed in living organisms [16, 18].

Network analysis is a promising approach in systems biology and produces good
results when the target system has already been accurately described (e.g. metabolic
reactions in mitochondria; well-studied signaling pathways etc.). While such systems
are scarce – as evidenced by the interpretation of available results – networkmethods
are also good at supplying hypotheses or singling out candidates for further study (e.g.
interesting genes).

Existing mathematical models that find application in biology can be roughly di-
vided into two classes based on their descriptive accuracy: continuousmodels, where
the state of a molecule (its concentration, degree of activation etc.) and its interaction
with other molecules (chemical reactions) can be formally described using ordinary
differential equations (ODEs) [19, 20] under a specific kineticmodel, anddiscretemod-
els, wheremolecules exist in a limited number of states (typically two) interlinked in a
directionless or directed graph. This second class includes Boolean networks, where
each vertex assumes a value of 0 or 1 depending on the assumed topology and logic
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[21, 22], and Bayesian networks, where the relations between molecules are proba-
bilistic [23, 24]. As networks differ in terms of computational complexity, selecting the
appropriate tool depends on the problemwe are trying to solve. Boolean networks are
well suited to systemswhich involve “on/off” switches, such as gene transcription fac-
tors which can be either present or absent, while continuousmodels usually provide a
more accurate description of reaction kinetics where the quantities of substrates and
products vary over time.

1.2 Selected biological databases

Formulating more and more precise theoretical descriptions of protein/protein or
protein/gene interactions would not have been possible without experimental data
supplied by molecular biology studies such as sequencing, dihybrid crossing, mass
spectrometry and microarray experiments. From among these, particular attention
has recently been devoted to the so-called vital stain techniques. Their application
in the study of cellular processes is thought to hold great promise since they enable
analysis of dynamic changes occurring in a living cell without disrupting its function.
As a result, this approach avoids the complications associated with cell death and
its biochemical consequences. Vital stains provide a valuable source of information
which can be exploited in assembling and annotating relation networks. Such ef-
forts are often complemented by microarray techniques which “capture” the state
of the cell at a particular point in its life cycle. Microarray experiments carried out
at predetermined intervals, while imperfect, provide much information regarding
the relations between individual components of a cell, i.e. proteins. Such detailed
data describing specific “members” of interaction networks along with their mutual
relations is typically stored in specialized repositories, including:
– genomes

– Ensembl (http://www.ensembl.org/index.html)
– UCSD (http://genome.ucsc.edu/)

– protein data
– Protein (http://www.ncbi.nlm.nih.gov/protein/)
– Uniprot (http://www.uniprot.org/)
– PDB (http://www.rcsb.org)

– microarray and NGS data
– GEO (http://www.ncbi.nlm.nih.gov/geo/)
– ArrayExpress (http://www.ebi.ac.uk/arrayexpress/)
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1.2.1 Case study: Gene Expression Omnibus

GEO (Gene Expression Omnibus; http://www.ncbi.nlm.nih.gov/geo/) is a database
which aggregates publicly available microarray data as well as data provided by next
generation sequencing andother high-throughput genomics experiments. GEOdata is
curated and annotated so that users do not need to undertake complex preprocessing
steps (such as noise removal or normalization) when they wish to e.g. review gene
expression levels in patients with various stages of intestinal cancer. Additionally,
the database provides user-friendly query interfaces and supports a wide range of
visualization and data retrieval tools to ensure that gene expression profiles can be
readily located and accessed.

Owing to its structure, GEO permits comparative analysis of results e.g. for dif-
ferent patients, applying statistical methods such as Student’s t-test (comparison of
average values in two groups) or ANOVA (comparison of a larger number of groups).
Graphical representation of microarray data with color maps or charts depicting the
expression of selected genes in several different experiments facilitates preliminary
assessment and enables researchers to pinpoint interesting results. The database also
hosts supplementary data: primary datasets obtained directly from scanning micro-
arrays and converting fluorescence intensity into numerical values, as well as raw
microarray scans (see Gene Expression Omnibus info; http://www.ncbi.nlm.nih.gov/
geo/info/.)

The information present in the GEO databasemay be retrieved using several types
of identifiers; specifically:
– GPLxxx: requests a specific platform. Platform description files contain data on

matrices or microarray sequencers. Each platformmay include multiple samples.
– GSMxxx: requests a specific sample. The description of a sample comprises the

experiment’s free variables as well as the conditions under which the experiment
was performed. Each sample belongs to one platformandmaybe included inmul-
tiple series.

– GSExxx: requests a specific series. A series is a sequence of linked samples sup-
plemented by a general description of the corresponding experiment. Series may
also include information regarding specific data items and analysis steps, along
with a summary of research results.

The identifiers of samples, series and platforms are mutually linked – thus, by query-
ing for a specific microarray sample we may also obtain information on the platforms
and series to which it belongs.
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The GEO homepage offers access to gene expression profiles as well as sets of
individual microarray samples obtained using identical platforms and under iden-
tical conditions. The repository also publishes its data via the National Center of
Biotechnology Information (http://www.ncbi.nlm.nih.gov), with two distinct collec-
tions: GEO DataSet and Geo Gene Profiles. This division is due to practical reasons
and a brief summary of the NCBI databases which aggregate GEO data is presented
below.

GEO DataSet
The Geo DataSet database comprises data from curated microarray experiments car-
ried out with the use of specific platforms under consistent conditions. It can be
queried by supplying dataset identifiers (e.g. GDSxxx), keywords or names of target
organisms. ID-based queries produce themost accurate results – keywords andnames
are ambiguous and may result in redundant data being included in the result set. An
example of a microarray dataset (comprising a number of samples) is GDS3027 which
measures gene expression levels in patients suffering from early-stage Duchenne
muscular dystrophy. The study involved a control group as well as a group of patients
of varying age (measured in months) (Fig. 1.1).
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Fig. 1.1: Results of a microarray experiment involving a group of patients afflicted with Duchenne
muscular dystrophy, along with a control group. GSMxxx identifiers refer to specific samples.

Graphical representation of GDS3027 results reveals the expression levels of individ-
ual genes (Fig. 1.2). Purple markers indicate high expression, green markers corre-
spond topoor expressionandgrey areas indicate that no expression couldbedetected.

In addition, the repository aggregates data in clusters depending on the correla-
tion between expression profiles with regard to specific samples (columns) and genes
(rows).
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Fig. 1.2: Graphical representation of gene expression levels in the GDS3027 microarray dataset.
The inset frame shows a magnified fragment of the GDS matrix. Colors correspond to expression
levels: purple – high expression; green – poor expression; grey – no expression.

GEO Gene Profiles
Unlike GEO DataSet, this repository deals with expression of specific genes across a
number of microarray experiments.

Gene expression levels may be “observed” under a given set of experimental
conditions (such as time of study, gender or other concomitant variables) to quickly
determine whether there is a connection between expression levels and any of these
variables. Additionally, the database supplies links to genes with similar expression
profiles. Queries can be forwarded to other databases aggregated by NCBI, e.g. to
obtain additional data regarding the target sequence or protein structure. GEO Gene
Profile search interfaces are roughly similar to those provided by GEO DataSet.
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Fig. 1.3:MYH8 (myosin, heavy chain) expression profile. As shown, the expression levels of this
gene are higher in the test group than in the control group.

The GDS3027 dataset includes (among others) myosin, whose expression in the test
group is higher than in the control group. The corresponding GEO Gene Profile data is
presented as a bar graph (Fig. 1.3).

Similar techniques can be applied to other genes. The database enables re-
searchers to quickly discover homologues and genes with similar expression profiles
(referred to as “profile neighbors”). Links to GEO DataSet profiles are also provided.

1.2.2 RegulonDB

RegulonDB is a database that focuses on the gene regulatory network of E. coli – ar-
guably themost studied regulatory network [25]. The database portal provides a range
of online (browser accessible) tools that can be used to query the database, analyze
data and export results includingDNA sequences and biological interdependence net-
works.

In conjunction with the E. coli microarray experiment results (which can be ob-
tained from GEO), RegulonDB supports validation of regulatory network simulation
algorithms.

Using RegulonDB to determine the efficiency of network construction algorithms

The main page of RegulonDB (http://regulondb.ccg.unam.mx/index.jsp) provides links to a set of
search engines facilitating access to gene regulation data. The most popular engines are briefly
characterized below.
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– Gene: this interface returns data on a given gene, its products, Shine-Dalgarno sequences,
regulators, operons and all transcription units associated with the gene. It also supplies a
graphical depiction of all sequences present in the gene’s neighborhood, including promot-
ers, binding sites and terminators (in addition to loci which do not affect regulation of the
target gene).

– Operon: the operon is commonly defined as a set of neighboring genes subject to co-
transcription. The database introduces a further distinction between operons and transcrip-
tion units, treating the operon as a set of transcription units that are shared bymany genes. In
RegulonDB a gene may not belong to more than one operon. A transcription unit (TU) is a set
of one or more genes which are transcribed from a common promoter. TU may also provide
binding loci for regulatory proteins, affecting its promoter and terminator. The search engine
returns all information related to a given operon, its transcription units and the regulatory
elements present in each unit. Graph visualization is provided, showing the placement of
all regulatory elements within the target region. A complete set of known TUs (with detailed
descriptions) is also listed below each operon.

– Regulon: this search interface provides basic and detailed information concerning regulons,
i.e. groups of genes regulated by a single, common transcription factor. In addition to such
“simple” regulons, RegulonDB introduces the notion of a complex regulon where several dis-
tinct transcription factors regulate a set of genes, with each factor exerting equal influence
upon all genes from its set. The Regulon interface also shows binding sites and promoters
grouped by function.

1.3 Types of biological networks

1.3.1 Relations between molecules and types of networks

Biological networks are composed of molecules: proteins, genes, cellular metabolites
etc. These building blocks are linked by various types of chemical reactions. Among
the simplest biological networks is the gene regulatory network (GRN) showingwhich
genes activate or inhibit other genes. Networks are usually depicted as graphs (see
inset); however this representation should not be confused with the graphical layout
of networks stored in KEGG databases or wikipathways.

Graphs as a representation of networks

A graph is a collection of elements (called vertices) linked by mutual relationships (called edges).
The interpretation of vertices and edgesmay vary – in gene regulatory networks vertices represent
genes while edges correspond to activation/inhibition effects.

In a simple graph there are no loops (edges which connect a vertex with itself) and only one edge
may appear between each pair of vertices. The maximum number of edges in a simple graph with
N vertices is N(N−1)/2. In a directed graph each edge has a specific direction but there is no limit
on the number of edges between each pair of vertices.
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Protein-protein interaction networks are represented by simple graphs while signaling networks
and gene regulatory networks usually rely on directed graphs. Metabolic networks describing re-
versible chemical reactions may use graphs with weighed edges – in these types of graphs each
edge carries a numerical value which corresponds e.g. to its reaction rate constant. Graphs have
many applications in information technology: for example they can be used for traffic modeling or
Internet routing.

The most common types of vertices are genes, proteins and other molecules which
participate in biochemical processes. Some networks also include cellular organelles
(e.g. mitochondria, vacuoles etc.) viewed as “targets” of specific processes. The set
of potential elements may be further extended with abstract concepts: UV radiation
intensity, pH, ROS and any other phenomena which need to be taken into account
when performing network analysis.

Relations between elements can be direct – e.g. a simple chemical reaction be-
tween two molecules – or indirect where a number of intervening reactions are nec-
essary. An example of an indirect relationship is mutual regulation of genes. Simply
observing that “gene A regulates the expression of gene B” conceals the existence of
a complicated chain where the product of gene A acts upon the transcription factor or
other mechanisms which, in turn, regulate the expression of gene B.

When the character of the relation is unknown, the relation is said to be direc-
tionless, i.e. we cannot determine which of the two interacting elements is the ef-
fector and which one is the receptor. This phenomenon occurs in many nonspecific
protein-protein interactions: we may know that two proteins bind to each other but
the purpose of the reaction is not known – unlike, for example, directed activation of
adrenergic receptors via hormone complexation leading to release of protein Gwhich,
in turn, binds to its dedicated receptor. In some cases we possess knowledge not just
of the relation’s direction but also of its positive or negative effects.

A positive effectmay involve upregulation of a chemical reaction by an enzyme,
activation of gene expression or an increase in the concentration of some substrate.
A negative effect indicates inhibition or simply a reduction in the intensity of the
above mentioned processes.

This complex interplay of directionless and directed reactions underscores the
fundamental difference between protein-protein interaction (PPI) networks which fo-



12 | Monika Piwowar and Wiktor Jurkowski

cus on nonspecific interactions between proteins, and signaling networks (SN) which
provide detailed insight into biochemical processes occurring in the cell. As shown,
the types of network elements and their mutual relations are directly related to the
scope of our knowledge regarding biological mechanisms and the accuracy of exper-
imental data.

1.3.2 Biochemical pathways

Several online databases store manually-validated process relationship data and vi-
sualize it by means of interaction diagrams:
– KEGG (http://www.genome.jp/kegg/)
– Reactome Pathways Database (http://www.reactome.org)
– Wikipathways (http://www.wikipathways.org/)

KEGG (Kyoto Encyclopedia of Genes and Genomes – GenomeNet; http://www.kegg.jp/
kegg/) is a database dedicated to researchers who study the properties of molecular
interaction networks on the level of cells, organisms or even entire ecosystems [26, 27].

Among the most popular features of KEGG is the presentation of molecular inter-
actions as activity pathways (KEGG PATHWAY). The relationships between individual
molecules (typically proteins) are represented as block diagrams with directed or di-
rectionless links indicating the flow of information. The number of activity pathways
has grown so large that attempts are currently being made to assemble a global net-
work consisting of various interlinked pathways (Fig. 1.4).

KEGG also includes a set of relations between individual pathway components
(KEGG BRITE). This database is a set of hierarchical classifications representing our
knowledge regarding various aspects of biological systems. KEGGDISEASE is an inter-
esting database that stores molecular interaction data associated with various patho-
logical processes in humans (http://www.genome.jp/kegg/) (Fig. 1.5).

The ability to visualize individual proteins and other molecules, along with refer-
ences to detailed information regarding their properties, provides substantial help in
creating network models for analysis of disease-related processes.

All KEGG databases are interlinked, permitting easy navigation between datasets.
Although KEGG is popular as a source of gene-centric information applied for in-

stance to overrepresentation and Gene Set Enrichment analysis, KEGG has limited
applicability for network analysis. The main hurdle is the heterogeneity in the style
applied to represent particular pathways arising from the incompleteness of available
knowledge and missing annotations. Interactions represented as a graph are often
accompanied by disjoined boxes describing phenotypes or states. Some pathways are
described by a set of chemical reactions and some are just lists of genes.
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Fig. 1.4: Global activity network consisting of multiple pathways. Each dot indicates (in most cases)
a single pathway. A more detailed view of a representative pathway is shown in the central part of
the image, indicating stages of fructose and mannose metabolism.

Fig. 1.5: KEGG interaction diagram corresponding to Alzheimer’s disease. The red-framed inset con-
tains detailed information concerning the protein labeled “PSEN”.
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Both Wikipathways and Reactome are focusing on gathering information that can
be described in the form of biochemical reactions, therefore escaping the above-
mentioned problems. They are much more straightforward in defining simulation
models or interaction graphs.

1.4 Network development models

1.4.1 Selected tools for assembling networks on the basis of gene expression data

Assembling gene regulatory networks remains an open problem. Existing methods
are not equally efficient in processing diverse datasets and it is often difficult to se-
lect the optimal algorithm for a given task. As few regulatory networks have been
experimentally validated, assessment of the accuracy of hypothetical networks also
poses a significant challenge. The DREAM (Dialogue for Reverse Engineering Assess-
ments and Methods) consortium attempts to address these issues by organizing reg-
ular events where the efficiency of various network construction algorithms is inde-
pendently validated (see http://www.the-dream-project.org/). This section discusses
the fundamental aspects of the construction of regulatory networks based on gene
expression data.

Gene Network Weaver – gene regulatory network processing software
Gene Network Weaver (GNW) provides an efficient way to determine the validity of
gene regulatory network construction algorithms. This software package can read in-
put datasets created for the purposes of the DREAM project. The first analysis step
involves construction of a realistic regulatory network from known fragments of real-
life interaction networks. This is followed by generation of simulated gene expres-
sion data. GNW is bundled with a number of preassembled datasets (Escherichia coli
and Staphylococcus gene regulation networks along with several customized DREAM
databases). The program enables users to select subnetworks in order to carry out op-
erations on smaller andmore convenient sets of data. In addition to providing its own
datasets, GNW can import and parse user-generated networks [28].

Cytoscape
While Cytoscape will be presented further on in this chapter, we should note that it
includes the CyniToolbox extension which can derive gene regulation networks from
gene expression data [29]. Data analysis proceeds by detecting simple correlations on
the basis of information theory concepts, such as mutual information and Bayesian
networks. Additionally, CyniToolbox can fill in missing data and perform input dis-
cretization (as required by most processing algorithms). Similar tasks are handled by
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another Cytoscape plug-in – MONET (http://apps.cytoscape.org/apps/monet). Each
new version of Cytoscape comes with a range of plug-ins – up-to-date information
can always be obtained on the toolkit’s homepage.

GenePattern – gene expression analysis features
GenePattern is a comprehensive toolset for analyzing genomics data. Its feature anal-
ysis of genetic sequences, gene expression, proteomics and flow cytometry data. Tools
can be chained intoworkflows to automate complex analyses. GenePattern is an open-
source project and can be used free of charge for scientific purposes. User registration
is required. Tools can be downloaded from the project’s website and users may either
set up local copies of the software or connect to one of the available public servers.

ARACNE – one of many GenePatternmodules – can reconstruct cellular networks
by applying the ARACNE algorithm. A thorough description of the data input format
is available and data can also be imported from other modules using appropriate con-
verters. The GEOImporter tool can download data directly from the GEO database (see
Section 1.2.1). GenePattern also provides a server which recreates gene regulatory net-
works on the basis of selected DREAM methods, and implements a meta-algorithm
assembled from the three highest ranked algorithms submitted to themost recent edi-
tion of DREAM.

1.4.2 Selected tools for reconstruction of networks via literature mining

Networks can be reconstructed by analyzing peer-reviewed publications. This process
involves specification of target elements (e.g. gene symbols) and relation types (ge-
netic regulation, protein complexation, etc.) The resulting network can be exported
to a file which may then serve as input for another software package, or visualized
with a GUI to enable further analysis of a specific graph edge or to prepare a pre-
sentation. The methods described in this section can be roughly divided into two
groups. The first group comprises event-centric methods, e.g. searching for infor-
mation on physical interactions between two proteins. This approach offers a great
advantage since by focusing on the description of a biological event we avoid po-
tentially incorrect interpretation of experiment results – although on the other hand
the interpretation task is left entirely to the user. The second group covers meth-
ods which attempt to determine causative factors in intermolecular relations. This
approach offers a shortcut to useful results since – in most cases – correct interpre-
tations may have already been obtained and can aid in the reconstruction of cellular
networks.

In both cases we should be mindful of the limitations inherent in combining the
results of experiments carriedout in variousmodels (animals, tissues, cell lines) under
differing conditions and with the use of dissimilar experimental techniques. The final
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outcome of the process should be viewed with caution until it can be independently
validated by a consistent series of experiments (e.g. differential gene expression anal-
ysis).

IntAct and MINT
IntAct (http://www.ebi.ac.uk/intact/) and MINT (http://mint.bio.uniroma2.it/mint/
Welcome.do) contain validated interaction data for a broad set of proteins, genes
and other micromolecules in various organisms, including humans. All data is traced
to peer-reviewed publications presenting experimental results, and the databases
only provide information on direct interactions without attempting to interpret their
outcome.

The databases can be queried by publication, author credentials and proteins set,
and additionally by the quality of the applied experimentalmethods and target organ-
isms. Networks can be displayed or saved in one of the popular network file formats.
Each relation can be traced by supplying the corresponding PubMed ID.

Pathway Studio and Ingenuity Pathway Analysis
Pathway Studio (Ariadne Genomics, http://ariadnegenomics.com) and Ingenuity
Pathway Analysis (Ingenuity Systems, http://www.ingenuity.com) represent a dif-
ferent approach to literature mining: they subject publications to lexical analysis and
submit preliminary results to a panel of experts in order to reduce the likelihood of
mistakes.

Query results indicate which publications discuss the specific relation and pro-
vide information on the organisms, tissues and cells analyzed in the context of these
publications.

1.5 Network analysis

The typical systems biology research process is a cycle comprising preliminary bio-
informatics analysis generating new hypotheses concerning the operation of a given
system followed by subsequent experiments to verify initial assumptions which can
then be subjected to further analysis. The analysis of biological networks may be
approached from various angles such as pathway analysis, which concerns itself with
assembling rich gene ontology datasets and finding genes or biological processes
overrepresented in the data under study; analysis of the flow of substrates in chemi-
cal reaction chains that allows precise quantification of perturbation; graph analysis,
which seeks vertices of particular importance for a given process or cellular pheno-
type. Many software packages support the interpretation of biochemical data with the
use of network analysis tools. This section introduces some of most popular tools.
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1.5.1 Selected tools

From among the multitude of open-source and commercial network analysis pack-
ages, the following tools are particularly noteworthy: Cytoscape (www.cytoscape.
org/), COPASI (www.copasi.org), Cell Illustrator (www.cellillustrator.com), and igraph
(http://igraph.org/redirect.html). They permit the user to trace (among others) meta-
bolic pathways, signaling cascades, gene regulatory networks and many other types
of interactions between biologically active molecules (DNA, RNA and proteins). They
also support statistical analysis and visualization of results as well as of the networks
themselves. COPASI and Cell Illuminator base their simulations on a broad knowledge
base which describes many important reactions in terms of differential equations. In
Cytoscape and igraph biological networks are represented by graphs – in these cases
the underlying reactions are not described in detail and simulations are instead based
on the existence (or lack of) directed links between various molecules.

COPASI
COPASI is a noncommercial software package capable of analyzing and simulating
biochemical reactions as well as any other processes which can be expressed in terms
of mutual relations between entities [30]. It supports the SBML model description
standard and can perform simulations using ordinary differential equations (ODEs)
or Gillespie’s stochastic algorithms acknowledging arbitrary discrete events.

COPASI can be used to simulate and study the kinetics of chemical reactions oc-
curring in various zones (e.g. organelles) of the cell (Fig. 1.6). Biochemical processes
are expressed as sets of reactions, using a standardized notation, with parameters
such as reaction rate, stoichiometry and location taken into account. This function-
ality enables users to integrate various processes – chemical reaction, molecular ag-
gregation, transport etc. The software comes with a rich set of metadata describing
common reactions and, in most cases, the user only needs to select a given reaction
from a list. Inmore complex scenarios users can define custom biochemical functions
describing nonstandard reactions, along with a kinetic model expressing the relation
between reagent concentrations and reaction rate. The tool also enables the user to
determine where a given element can be found, which reactions it participates in
andwhich kineticmodels should be appliedwhen simulating these reactions. Finally,
COPASI can be used to define entirely new models describing phenomena other than
chemical reactions.

Each reaction is assigned to a differential equation which will be used to simulate
its progress. In theory this permits the user to simulate highly complex processes com-
prising many different reactions. In practice, however, dealing with a large set of dif-
ferential equations forces the user to provide the values for many distinct parameters
(e.g. on the basis of experimental data) and incorrect values may lead to nonsensical


