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Preface 

This Conference Proceedings volume contains the written versions of most of the contributions 

presented during the scientific conference Week of Science in SPbSPU - Civil Engineering 

(SPbWOSCE 2014). Like in previous years, it took place in Saint-Petersburg, Russia. 

December 3–4, 2014. 

The Conference provided a setting for discussing recent developments in a wide variety of topics 

including Building constructions, buildings and structures;  Foundations, underground structures; 

Heating, ventilation, air conditioning, gas supply and illumination; Water supply, sewerage, 

construction of water-resources conservation; Building materials and construction products; Strength 

of materials; Hydraulic engineering work; Building technology and organization; Roads, bridges and 

tunnels; Fluid mechanics and engineering hydrology; Structural mechanics; Environmental safety of 

civil engineering and municipal facilities; Architecture and urban planning; Green buildings, energy 

efficiency and sustainable development; Management in science and education in the field of Civil 

and Construction Engineering. 

The Conference has been a good opportunity for participants coming from all over the world to 

present and discuss topics in their respective research areas. 

We would like to thank all participants for their contributions to the Conference program and for their 

contributions to these Proceedings. Many thanks go as well to the Russian participants for their 

support and hospitality, which allowed all foreign participants to feel more at home.  

We are looking forward to the next scientific conference Week of Science in SPbSPU - Civil 

Engineering (SPbWOSCE 2015) that will be held on December  2–3, 2015 at the same location. 

We hope that it will be an interesting and enjoying at least as all of its predecessors. 

The Scientific committee. 
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Abstract. In the article the brickwork joints effect on the thermotechnical uniformity parameters of 

the walls of gas-concrete blocks are considered. The additional thermal energy losses through joint 

masonry are calculated.  

The recommendations to reduce the brickwork joints effect on thermotechnical uniformity of 

external enclosure structures are offered. 

Introduction 

The blockwork of gas-concrete blocks is currently one of the most common building 

technologies on the Russian Federation territory. The gas-concrete masonry apply in construction of 

bearing, self-bearing and nonbearing enclosure structures of modern buildings such as high-rise 

building and low storey house as well as during installation of precast-monolithic slabs [1]. 

The autoclaved gas-concrete products have a relatively small thermal conductivity compared 

with other types of structural thermal insulation products [2-10]. It determines their high efficiency 

to meet the requirements for insulation of external walls. The estimate thermotechnical indicators of 

cell concrete of autoclave curing for some grade of product density are presented in table 1. 

Table 1 - The estimate thermotechnical indicators of cell concrete of autoclave curing. 
Materials The characteristics of the material in 

the dry state 

The estimated coefficients (with conditions) 

of 

Density 

ρ0, 

[kg/m
3
] 

Heat 

capacity с0,  

[kJ/kg·°C] 

Coefficient 

of heat 

conductivity

λ0, 

[W/m·°C] 

the mass relation of 

moisture in a 

material ω, [%] 

heat conductivity λ, 

[W/m·°C] 

A B A B 

Cell concrete 

of autoclave 

curing 

600 0.84 0.14 4 5 0.160 0.183 

500 0.84 0.12 4 5 0.141 0.147 

400 0.84 0.096 4 5 0.113 0.117 

300 0.84 0.072 4 5 0.084 0.088 

 

It is known that the joints of masonry of buildings external enclosure structures are heat-

conducting inclusions. In most cases the effect of seams on the above heat transmission resistance 

of the walls is not taken into account. In the actual values of the resistances to heat transfer may not 

coincide with the calculated. It affects the parameters of the energy efficiency of buildings [21-29]. 

However the wall construction of small piece gas-concrete products (blocks) requires the use of 

cement mortars to fasten blocks in the masonry with each other. As such solutions are used cement-

sand mortar or thin cement glue. Because of the presence of cement joints in the masonry the so-

called "cold bridges" are formed [11-20]. This is due to the fact that the thermal conductivity of 
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cement mortar used for bonding the blocks in the masonry significantly higher than the thermal 

conductivity of cell concrete with grade of density D300 and D600. 

The calculation of thermotechnical uniformity coefficients of the masonry with open joints 

We will consider the mortar joints influence of masonry on the thermotechnical uniformity 

parameters of the walls of gas-concrete blocks. 

To calculate we will accept the regular repetitive fragment of masonry walls made from concrete 

blocks (Fig. 1). Thickness of the considered fragment is 375 mm. The sizes of blocks of a masonry: 

length is 625 mm, width is 375 mm, height is 250 mm. The grade of blocks density is D400, heat 

conductivity coefficient for service conditions is B, λB=0.117 W/m · ºС according to GOST 31359. 

Consider the following options of blockwork: 

1. blockwork on glue with an average thickness of horizontal and vertical joints of masonry 2 

mm (Fig. 1);  

2. blockwork on mortar with an average thickness of horizontal and vertical joints of masonry 

10 mm (Fig. 2).  

The calculation of the thermal resistance of the regular fragment of wall structure will make by 

the method of conductivity addition. 

The blockwork on glue. We will allocate a blockwork fragment and will divide it into segments 

with various conductivity by planes that parallel to a thermal stream. We receive two uniform and 

identical segments with the following parameters (Eq. 1, Eq. 2): 

)W/Сm(.
.

.
R

g.c.

g.c.

g.c. °⋅===
2213

1170

3750

λ

δ
                                                                                   (1) 

)m(...А .g.c
2625050251 =⋅=  

)W/Сm(.
.

.
R

рр

рр

рр °⋅===
−

−

−

2400
930

3750

λ

δ
                                                                                  (2) 

).m(.....А рр
20070200205040200202541 =⋅⋅+⋅⋅=−  

We determine the thermal resistance of all regular fragments (Eq. 3): 
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The coefficient thermotechnical uniformity of masonry with regard to joint: 
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It means that additional thermal energy losses through joint masonry are equal 7%. 

The blockwork on mortar.  We will make similar calculation for a regular fragment B (Eq. 4, Eq. 

5): 
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Thermal resistance of all regular fragments: 
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The coefficient thermotechnical uniformity of masonry with regard to joint: 
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It means that additional thermal energy losses through joint masonry are equal 27%. 

Because of additional energy losses it is necessary to increase the rated capacity of the heating 

system and to increase of thermal energy consumption in the building for heating. 

Table 2 shows the estimated coefficients of thermal homogeneity r for some types of masonry 

walls made of concrete blocks with different thickness of the mortar joints in the masonry. 

Table 2 - Values of the thermal homogeneity coefficient for some types of masonry walls with solid 

wall unreinforced of products from cellular concrete autoclaved with the size of the product in the 

masonry 625×250 mm 
Mark 

blocks on 

the 

density 

The 

thickness of 

masonry 

joints  

The coefficient of thermal homogeneity of the masonry r with an estimated 

coefficient of thermal conductivity of a solution λр-р,  

[W/m · ºC] 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

D300 2 mm 0.99 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90 

10 mm 0.94 0.88 0.84 0.80 0.76 0.73 0.70 0.67 0.64 

D400 2 mm 099 0.98 0.97 0.96 0.96 0.95 0.94 0.93 0.92 

10 mm 0.96 0.92 0.88 0.85 0.82 0.79 0.76 0.73 0.71 

D500 2 mm 0.99 0.99 0.98 0.97 0.97 0.96 0.95 0.94 0.94 

10 mm 0.98 0.95 0.91 0.88 0.86 0.83 0.80 0.78 0.76 

D600 2 mm 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.95 0.95 

10 mm 0.99 0.97 0.94 0.91 0.89 0.87 0.84 0.82 0.80 

D700 2 mm 1.00 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.96 

10 mm 1.00 0.98 0.95 0.93 0.91 0.89 0.87 0.85 0.83 

Note - the values of the coefficient of thermal homogeneity at intermediate values of the weld thickness 

and the thermal conductivity of masonry mortar is allowed to take on interpolation or calculated using the 

above methodology. 

 

Because of laying joint the thermotechnical uniformity of walls from gas-concrete blocks is 

broken, the coefficient of thermotechnical uniformity of a laying becomes other than unit. Besides 

than joints are thicker and the heat conductivity of masonry structure is higher than a coefficient r is 

less and the specified heat transmission resistance of a wall fragment is smaller. 
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Figure 1. The blockwork on glue with an average thickness of horizontal and vertical joints of 

masonry 2 mm 

 

 
Figure 2. The blockwork on mortar with an average thickness of horizontal and vertical joints of 

masonry 10 mm 
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Resume 

Because of laying joint the thermotechnical uniformity of walls from gas-concrete blocks is 

broken, the coefficient of thermotechnical uniformity of a laying becomes other than unit. Besides 

than joints are thicker and the heat conductivity of masonry structure is higher than a coefficient r is 

less and the specified heat transmission resistance of a wall fragment is smaller. 

The polyurethane glues can be recommended to reduce the brickwork joints effect on 

thermotechnical uniformity of external nonbearing enclosure structures. 
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Abstract. The article presents the methodology of thermal balance equation generation for cold 

attics. This methodology is aimed to provide the scientific basis for engineer activities to prevent 

the ice hillock building-up on roofs during the periods of the lowest temperature of outside air. The 

complex of actions that leads to reduction of damages from buildings of thermal energy is listed, 

heating up to improvement of parameters of a microclimate in the operated rooms of the top floors 

of buildings. For realization of these actions any materials and technologies providing the necessary 

level of thermal isolation for the concrete building and satisfying to the fire-prevention and sanitary 

and hygienic requirements existing in the territory of the Russian Federation are used. 

Introduction 

When snow collects on a roof, there is a thawing and refreezing cycle. In an ideal, snow would 

thaw from a roof, water would go to ditches, and to the earth. However, interaction of two key 

factors generates a problem - it is the external temperature and temperature of internal part of an 

attic. 

Than more warmly on an attic, especially more intensively snow melts on a roof surface. This 

thawed snow usually flows down from the roof edge. Nevertheless, under certain conditions, when 

air temperature is very low, this water freezes on the edge of a roof where the internal surface of a 

roof doesn't heat up an attic. This refreezing over and over again, gradually forms an ice dam. 

Existence ice built-up on roofs of buildings after their mechanical removal in the course of 

cleaning and snow dumping from roofs often leads subsequently to leakages of a roofing covering. 

It is damaged as a result of shock influences by sharp metal subjects. Thus, absence ice built-up on 

roofs provides the best safety of a roofing covering after cleaning and snow dumping, increases 

operational service life of a covering, reduces probability of formation of leakages. 

Problem review 
 

In this work the problem of icicles formation on roofs of buildings and ways of fight against this 

negative phenomenon is considered. Especially considerably this problem is shown on garret roofs 

of buildings with a pitched roof. A number of the Russian [1-15] and foreign publications [16-22] 

are devoted to this problem and ways of its decision. 

It should be noted that icicles are only visible part of this problem, which consists in formation 

on a roof of an ice dam. The ice dam (fig. 1) in the form of a crest of ice is usually formed on a roof 

parallel to the line of its eaves, prevents a descent of the thawing snow from a roof [23-28].  

Insufficient thermal insulation and lack of appropriate ventilation of a garret, and also solar 

radiation at the end of winter, cause heating of a roofing covering to above-zero temperature and 

snow fusion above a dam while temperature on eaves remains lower than zero. In this case water 

flows down on a roof and collects behind a dam crest. Further ways of this saved-up water within 
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intra daily fluctuation of external temperature: extension of a body of an ice dam, modulation or 

infiltration through a dam with formation of icicles, infiltration through a roofing covering in the 

form of leakages [29, 30]. 

 
Fig. 1. Formation of an ice dam 

The purpose of work is development of scientific and technical justification of specifications and 

the engineering actions providing prevention of ice build-up formation on buildings roofs with not 

heated attic during the periods of time with the lowest temperatures of external air. \ 

Equation of thermal balance 

The technique offered in work is based on drawing up the equation of thermal balance of garrets of 

the building. The scheme of balance of heat losses and heatreceipts of garrets of the building with a 

cold attic and a pitched roof is submitted in figure 2. 

 

 

Fig. 2. Scheme of balance of heat losses and heatreceipts 
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From the presented scheme of thermal balance of rooms of a cold attic it is visible that 

heatreceipts in them are formed due to inflow of heat through garret overlapping of the top floor 

rooms of the operated building, and also at the expense of a thermolysis of the heating system 

pipelines laid on an attic [31]. Heat losses consist of heat losses through external protecting designs 

of an attic (walls and a covering) and heat losses due to ventilation of garrets by external air. 

Analytically the scheme of thermal balance of garrets of the building can be expressed the 

following equation: 

( ) ( ) ( )A An n ng gi kt t q t t 0, 28 V n t , (1)gext extint int pj pj inti 1 j 1 k 1R R
i k

l α

+ −

− ⋅ + ⋅ = − ⋅ + ⋅ ⋅ ⋅∑ ∑ ∑+ −= = =

   
      
     

tint – temperature of internal air in the top floor rooms of the building, accepted according to 

requirements of GOST 30494 for residential and public buildings, GOST 12.1.005 for production 

buildings, °C, or defined in the course of natural measurements of parameters of a microclimate in 

rooms of the building; 

text – temperature of external air, °C, accepted for the respective settlement on the average 

temperature of the coldest five-day week with security 0,92 according to Construction Norms and 

Regulations 23-01; 

g
t
int  – air temperature in rooms of a cold attic of the building, ºС; 

А , R
i i
+ +

 – the area, sq.m and the specified resistance to a heat transfer, sq.m • °C/W, protections 

between rooms heated in the building and rooms of a cold attic (garret overlapping, partitions 

between garrets and rooms of ladder marches, etc.); 

qpj – the linear density of a thermal stream through the thermal insulation surface, falling on 1 linear 

meter of length of the pipeline of a certain diameter taking into account heat losses through the 

isolated support, flange connections and fittings, W/m (for attics and cellars of qpj value depending 

on the nominal diameter of the pipeline and the average temperature of the heat carrier are provided 

in the tab. of 12 construction regulations 23–101); 

lpj – length of the pipeline of a certain diameter, m (for the operated buildings is accepted according 

to actual data); 

А , R
k k
− −

 – the area, sq.m, and the specified resistance to a heat transfer, sq.m • °C/W, a site of 

external enclosing structures of garrets (a covering, external walls, fillings of window apertures in 

the presence); 

Vg – the volume of the air filling space of a cold attic, m
3
; 

nα – frequency rate of air exchange in rooms of a cold attic, h
-1

. 

The left member of equation (1) shows total quantity of the thermal energy coming to rooms of a 

cold attic, the right part - losses of thermal energy through the external enclosing structures, and due 

to ventilation of garret space external air.  

Condition of prevention of formation ice built-up on roofs of buildings with a cold attic in the 

period of the lowest temperatures of external air is the requirement according to which air 

temperature in garrets shouldn't more, than on 4 ºС to exceed temperature of external air. 

In 2–4 ºС generally it appears differences of temperatures insufficiently for a warming up of the 

bottom layer of the snow cover lying on a roofing covering. Analytically this condition can be 

expressed in the following look: 

g o
t t 4 C, (2)extint

− ≤  
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g
t
int  , text – the same, as in the equation (1). 

The climate of St. Petersburg during the heating period of operation is characterized by 

considerable dispersion of temperatures of external air. For climatic conditions of St. Petersburg the 

air temperature of the coldest five-day week with security 0,92 makes 26 °C lower than zero. 

Performance of a condition (2) at a temperature of external air of 26 °C lower than zero 

automatically means performance of a condition (2) at more high temperatures of external air (that 

is at text≥ 26 °C lower than zero). 

From the equation (1) it is possible to calculate air temperature in a cold attic of the building: 

( )A An n n
i kt t q 0, 28 V n tgext extint pj pji 1 k 1 j 1R Rg i k

t , (3)
int

A An n
i k

i 1 k 1R R
i k

l α

+ −

⋅ + ⋅ + ⋅ − ⋅ ⋅ ⋅∑ ∑ ∑+ −= = =
= + −

+∑ ∑+ −= =

   
      
   

   
      
   

 

All designations in the equation (3) same, as in the equation (1). 

The analysis of expressions (1) and (3) allows to make the following conclusions. To reduce a 

thermal stream through the external enclosing structures of a cold attic rooms it is necessary to 

reduce air temperature on an attic. At preset values of temperatures external ( text ) and internal (

tint ) air, the invariable geometrical sizes of the enclosing structures of a cold attic ( А
i
+

, А
k
−

, Vg ) 

and the constant length of pipelines of systems of heating and hot water supply ( pj
l ), decrease in air 

temperature in rooms of a cold attic is provided with reduction of heatreceipts. 

It is possible to achieve reduction of heatreceipts to rooms of a cold attic the following 

engineering actions: 

• warming of garret overlapping (increase sizes R
i
+

); 

• thermal insulation of pipelines of systems of heating and hot water supply (reduction of 

size q
pj ); 

• increase in air exchange in garrets (increase nα in value). 

Resume 

The listed above actions for prevention of formation of ice dams and ice built-up (icicles) on the 

eaves of a roof are rather well-known. The listed above actions for prevention of formation of ice 

dams and ice built up (icicles) on the eaves of a roof are rather well-known. Advantage of the 

offered calculation method consists in exact determination of the demanded heater thickness for 

isolation of pipelines and warming of garret overlappings. Heating of garret overlapping reduces 

inflow of heat from rooms of the top operated building floor, isolation of pipelines reduces their 

thermolysis. Thus the amount of heat arriving on an attic decreases. Respectively, on an attic air 

temperature decreases. At a certain thickness of a layer of a heater which can be calculated on the 

equation of thermal balance, such decrease in air temperature in garret space (
g

tint ) is reached at 

which energy of a thermal stream becomes insufficiently for a warming up of a cover of the snow 

lying on a roofing covering of the building. If snow on a roof doesn't thaw over rooms of an attic, 

won't be formed ice built-up on the eaves of a roofing covering. It should be noted that only at 

simultaneous performance of the listed above actions the positive result from their introduction can 

be reached. Heating only of garret overlapping without the corresponding isolation of pipelines can 

lead to defrosting of the heating system laid on an attic.  
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Besides a solution of the problem of formation ice built-up on buildings roofs with a cold attic, 

the listed complex of actions leads to reduction of losses by buildings of thermal energy by heating, 

to improvement of microclimate parameters in the operated rooms of the top floors of buildings. For 

realization of these actions any materials and technologies providing the necessary level of thermal 

insulation for the concrete building, and satisfying to the fire-prevention and sanitary and hygienic 

requirements existing in the territory of the Russian Federation can be used. 

The analysis of a formula (3) leads also to other important conclusion. Air temperature (
g

intt ) 

increases in garrets at increase in resistance to a heat transfer of the external enclosing structures of 

a cold attic (
−
kR ), for example a roofing covering. It automatically leads to violation of a condition 

(2). Thereby conditions for formation of ice built-up on a roofing covering are created. The snow 

layer of a certain thickness on a roofing covering increases its resistance to a heat transfer 
−
kR  that 

is a counterbalance for actions for prevention of formation ice built-up on roofs of buildings. It 

means that one of conditions of prevention of formation ice built-up on roofs is periodic cleaning of 

snow from roofing coverings of buildings with a cold attic. It is necessary to clean snow from 

roofing coverings of buildings anyway, even at cumulative realization of the actions offered above. 
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Abstract. In developed countries only loss of property because of fire makes annually up to 2 % of 
their national income. The bearing capacity of reinforced concrete structures at high temperature 
impact is lost within several dozens of minutes. Disappointing statistics of increase of both the 
number of fires and the scope of damage due to them aggravates the actual problem of 
determination of reinforced concrete structures fire-endurance. The main problems and methods of 
evaluation of reinforced concrete structure fire resistance are stated. Within the framework of block 
approach to evaluation of strain of flexural reinforced concrete elements with cracks, design model 
of reinforced concrete thermo-force resistance is made. Extended nomenclature of influences of 
high temperature at fire on decrease of performance of bearing reinforced concrete structures is 
considered. Empirical dependencies of strength and strain characteristics of concrete and 
reinforcement on high temperatures are used. Proposals on specification of evaluation of fire 
resistance of statically indeterminate reinforced concrete structures are formulated. 

Introduction 

The norms of designing concrete and reinforced concrete structures in evaluation of reinforced 
concrete fire resistance go behind the needs of construction practice (see, for example, [1–15]).  
That said using the notion of operational integrity of building structures, the acting normatives 
directly define only the conditions of design section strength. Thus, the functional failure of 
structural system is identified with life-limiting failure of its individual components (parts) [16, 17]. 
Such situation simplification does not guarantee provision of structural safety. From the points of 
view of reliability theory, the probability of occurrence of structural system limit state C in 
simplified form is evaluated as 

 
P(C) = P(C│L)•P(L│E) •P(E),                                                                                                     (1) 
 
where P(E) is probability of implementation of initiating event E, 
P (L│E) is probability of local failure L at implementation of E, 
P (C│L) is probability C at implementation of L. 
But P(C│L) factor is not considered in verification procedures of acting norms.  
Substantial specificity here is brought by non-stationary temperature strains. Besides, design 

models of section rated limit states are taken apriori and without consideration of the background of 
their straining, not always “for reserve”. 

Main Part 

Fire resistance of building structures is determined by experimental and design methods. That's 
why, their harmonious combination is necessary. In general, design methods contain 
thermotechnical part [18–20] and statical part whose aim is to determine the structure bearing 
capacity [2, 5, 21, 22]. 
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Results of complex analysis of experimental and theoretical studies of change of characteristics 
of concrete, reinforcement and their contact collaboration, strength and rigidity of flexural 
reinforced concrete elements under the influence of fire are presented in the article. 

Divergent model of resistance and method of evaluation of operation and limit states at fire for 
reinforced concrete elements of various profiles with cracks is proposed. Within the framework of 
the approach proposed, the following stages of element strain are marked: 
• stage I ( 0≤М≤Мcrc) is initial stage progressing with keeping concrete macrosoundness; 
• stage Iа (Мcrc<М≤М0 ) corresponds to the phase of formation of stabilized system of normal 

macrocracks;  
• stage II (М0<М≤М00) is the operational one and is featured with balanced development of 

earlier formed quasiregular system of normal cracks; 
• stage III (М= Мres, Мres→0) of postbuckling behaviour with formation of quasiperfectlink  
Stage completion criteria (element divergence): 
− εs= εsuТ (break of stretched reinforcement), 
where εsuТ is limit resistance to stretching of reinforcement at high temperatures; 
and/or 
− Nsc= Nsc,cr (loss of stability of compressed reinforcing belt), 
where Nsc,cr is critical force for compressed reinforcement; 
and/or 
− Nb= Nb,cr (loss of stability of element compressed zone), 
where Nb,cr is critical force for element compressed zone; 
Nb is resultant of concrete compressing stresses. 
Problem-oriented option of strain block model [23, 24] is used. Flat shape of bend is kept  

at one-, two-, three- and four-sided fire effect. [20]. The problem of determination of element stress 
and strain state amounts to task solution for symmetrical half of individual block with length L. 
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strain compatibility condition 
m
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“reinforcement-concrete” contact у= – 0.5 h+a; 
strain compatibility condition: 
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where πs is perimeter of reinforcement section; crcag ⋅=
2
1

 is shift of reinforcement with respect 

to concrete hooping; Rg =0,15 C0 is shift at reaching the limit of bond strength; С0 [mm] is pitch of 
corrugation of reinforcement bar with diameter ds ; α=0.3. 
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Well-approved local bond law is used (see, for [25]). The main variables in equation resolving 

system are: height x of compressive zone of concrete, relative strains of the mostly compressed 
fabric of concrete εb and stretched reinforcement εs in section with crack l=L, and three similar 
parameters in middle section l=0 (xm, εm

b, εm
s). Pitch of stabilization of normal cracks lcrc = 2L0 is 

determined in assumption that stress diagram fullness ratio of bond tangential stresses ωτ is equal to 
stress diagram fullness ratio of relative strains of reinforcement 
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At operational stage, at certain pitch of cracks lcrc = 2L0 ,  

fullness ratio ωτ is the sought value. 
 

 
Figure 1. Design block with stress diagrams: 1) shifts, 2) relative strains, 3) internal forces 

 
Work of concrete in single axis stress and strain state at impact of high temperatures is described 

by strain design diagram CEB-FIP.  
Here concrete strain module depending on temperature is equal to tbbbt EE ,β⋅= , where bE  is 

initial concrete strain module, tb,β  is ratio considering concrete heating temperature influence. In 
accordance with [22] 
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is taken, 
where t0 is concrete monitoring temperature (t0=200 ˚С); bt  is concrete temperature for the 

design moment of time; bβ  Concrete strength decrease ratio tb,γ  is also taken like in work [22]: 
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where γ, m are empirical parameters (γ=2.6, m=4 for heavy concrete on granite filling). 
Relative strains of compressive and stretched concrete are summed up from force and 

temperature constituents: 
 

( ) ( ),, ,,,,,, 00 tttt bbttbtbtbttotbtbtbbtbbtotb −α+ε=ε+ε=ε−α+ε=ε+ε=ε  
 
where btα  is concrete temperature expansion ratio taken by [13]. For convenience of 

approximation, concrete temperature strains are expressed not via temperature expansion ratio, but 
as single dependency on the basis of premises similar to the ones accepted above: 
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where aε  is limit value of temperature strains; p is empirical parameter ( aε =2.3 %, р=2.5 for 
heavy concrete on granite filling). 

Reinforcement elasticity modulus at high temperatures is equal to tssts EE ,, β⋅=  where sE  is 

reinforcement elasticity modulus at normal operational conditions, ts,β  is ratio considering 
reinforcement heating temperature influence taken by [13]. For keeping unity of dependencies, the 
following function is taken as basis by analogy: 
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Complicated physical processes at fire damages of “reinforcement-concrete” contact system are 
reflected by means of transformation of the local law of bond and decrease of active bond length.  

Conclusions 

The obtained parameters of stress and strain state of concrete and reinforcement within the limits 
of design block allow evaluating extended nomenclature of element limit states from 
methodologically uniform positions: 
• reaching by stretching reinforcement in crack of yield strength εs = εs,el , 
• exhaustion of bearing capacity of compressive concrete in section with crack, εb = εb,ul; 
• spalling of concrete protective coating and loss of concrete-to-steel bond, β=1; 
• section layering with secondary longitudinal cracks, σspl = Rbt; 
• excessive opening of normal crack, аcrc = acrc,ul; 
• excessive turning angle ϕ = ϕul and/or flexure f = ful. 
The main advantages of resistance divergent model are: 
• rejection of apriori definition of element destruction scheme; consideration of fire damage of 

concrete and reinforcement, including impact of damage irregularity at crack pitch; capability of 
determination of design and residual life of element; design provision of uniform fire-resistance of 
elements (due to provision of simultaneous occurrence of local limit states) and structure as a whole 
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(by means of provision of equal life of its constituent elements); specified evaluation of bearing 
capacity of overreinforced elements: calculation of opening width of normal cracks at extended 
range of change of moments of flexure; substantiation of the necessity of fire protection use.  
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Abstract. The results of numerical simulation of heat and mass transfer in a low-temperature 

insulation in conditions of insulation freezing, a moisture migration to the front of phase transition 

and a condensation forming on an outer contour of interaction were obtained. Values of heat leakage 

were established. 

Introduction 

A protection of various low-temperature equipments (air conditioners, refrigerators, vessels of 

cryogenic liquids, etc.) from an environment exposure is an important problem [1, 2]. The one of 

features of a low-temperature insulation is a high probability of steam condensation on a surface or 

inside insulation and moisture freezing [3]. In this case, an accumulation of moisture at low-

temperature insulation leads to a considerable increase of heat leakage [4]. 

Mathematical models and approaches to analysis of a low-temperature equipments thermal 

regimes [1, 2] are very simple. These models and approaches disregard а nonstationarity processes 

of heat and mass transfer, an insulation freezing, a condensation forming on an outer contour of 

interaction, etc. The aim of the present paper is a mathematical modeling of heat and mass transfer 

in a layer of low-temperature insulation in conditions of insulation freezing, a moisture migration to 

the front of phase transition and a condensation forming on an outer contour of interaction. 

Problem statement 

We consider a cylindrical layer of low-temperature insulation to be fixed to the surface of a metal 

pipe. A scheme of solution domain is shown in Figure 1. For the domain under consideration (Fig. 

1) we solve a 1D non-linear and non-stationary problem of heat and mass transfer in a layer of low-

temperature insulation in conditions of phase transitions and the dependence of insulation properties 

from volume concentrations of water and ice. 

 

 
 

Figure 1. A scheme of decision domain: 

1 – frozen zone of insulation; 2 – moistened zone of insulation. 

 

The external contour of insulation interacts with a humid air. Water from the humid air 

condenses on the external contour (Fig. 1). A moisture transfer realizes only in a moistened zone by 

moisture migration to the freezing front by film-diffusion mechanism of moisture transfer. 

The internal surface of the insulation R1 (Fig. 1) has a constant temperature and the external 

surface R2 has a convective heat and mass exchange with an environment. At the boundary of phase 

transitions ξ(t) for problem of moisture transport was considered the condition of ideal 
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waterproofing. The initial values of temperature T0 and the relative moisture content of the 

insulation by volume W0 in the domain of solutions (Fig. 1) have the constant values. Because of the 

insulation cooling is formed a variable thickness frozen layer (Fig. 1) and the movable boundary of 

phase transition has a constant temperature of freezing. 

Formulating the problem, we used the following assumptions: 

1. The heat transfer processes in the internal and the external environment are disregarded. 

2. The thermophysical characteristics of materials used in the analysis are constant and known 

values. 

3. The heat in the insulation layer is transferred only by conduction. 

The listed assumptions, on the one hand, do not impose constrains of principle on the physical 

model of the system (Fig. 1), but, on the other hand, allow one to simplify in a certain manner the 

algorithm and method for solving the posed problem. 

Mathematical model 

In the proposed statement, the heat and mass transfer process in the considered decision domain 

(Fig. 1) in a 1D formulation is described: 
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The thermophysical properties of insulation were determined from the well-known expressions 

[5] and the effective coefficient of thermal conductivity – by the formula 
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The mass transfer intensity was calculated by the formula 

 

( )st s
.

p p
j

k

−
=

 

(12) 

Method of solution and initial data 

The system of equations (refer with: Eqs. 1–12) was solved by the finite-difference method [6] 

using an iterational implicit difference scheme. The characteristic features of the problem solution 

were the discontinuity of the thermophysical characteristics and the presence of additional 

summands in boundary conditions (Eqs. 7 and 10). 

The analysis was carried out for a cylindrical object with a diameter of nominal bore of 2400 

mm; the object was manufactured from steel with thermal insulation from polystyrene (50 mm 

thick). The ambient temperature was equal to Tex=290; 295 and 300 K and the temperature of the 

inner surface of the object was Tin = 230 К. The values of temperature and volume humidity in the 

considered region at the initial instant were Т0=Tin = 230 K and W0 = 1 %. The relative air humidity 

of the environment was equal to ϕ=60; 80 and 100 % and the atmospheric pressure was pat = 

101325 Pa. The coefficient of heat transfer in all variants of the numerical analysis was α = 5 

W/(m
2
·K) and the resistance of moisture exchange was k = 96 (МPa⋅s⋅m2

)/kg. The diffusion 

coefficient of moisture in the polystyrene was D2 = 2⋅10
-6

 m
2
/hr. 

Table 1 contains values of thermophysical characteristics, which were used in the numerical 

investigations of thermal conditions of the system under consideration (Fig. 1). 

 

Table 1. Thermophysical characteristics 

Characteristic λ, [W/(m⋅K)] С, [J/(kg⋅K)] ρ, [kg/m
3
] 

Water 0.6 4186 994.04 

Ice 2.4 1924 916.8 

Polystyrene 0.0342 1183 100 

Results of numerical simulation 

The main results of numerical modeling of thermal and mass conditions of the system under 

consideration (Fig. 1) are listed in Table 2 and in Fig. 2. 

Table 2 lists the results of numerical experiments of heat leakage for: in conditions of insulation 

freezing (q1) and without insulation freezing (q2). Also Table 1 contains the relative calculation 

error δ2, the thickness of frozen insulation δ, the volume humidity of the environment Wex and the 

time of the steady-state condition tsta. 

Validity and reliability of the obtained results follow from tests of the methods for convergence 

and stability of solutions on multiple meshes, fulfillment of the energy balance conditions at 

boundaries of the calculation domain, and is also confirmed by comparison of the obtained results 

and the known experimental [1, 2] and theoretical [4] data obtained by other authors. The relative 

calculation error δ2 in all versions of the numerical analysis did not exceed 0.5%, which is 

acceptable for investigations of thermal and mass conditions of the system under consideration (Fig. 

1). 

The numerical experimental results in Table 2 allow us to make the inference about the expected 

increase of heat leakage with growing a temperature of the ambient and the relative air humidity. 
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The data presented in Table 2 allow us to make the following conclusions: 

1. The heat leakage q1 increases by about 40 % compared with the heat leakage q2. Therefore the 

role of insulation freezing in determining heat leakage becomes important. 

2. The maximum value of the thickness of frozen insulation is δ = 44.7 mm. It corresponds to 

almost complete freezing of the insulation layer. 

3. The thickness of frozen insulation changes by about 20 % depending on the values of the 

temperature and the relative air humidity of the environment. 

 

Table 2. Results of numerical simulation 

Tex, 

[K] 
ϕ, 

[%] 

q1, 

[W/m] 

q2, 

[W/m] 

Wex, 

[%] 
δ, 

[mm] 

1 2

1

100%
q q

q

−
⋅  

δ2, 

[%] 

tsta, 

[hr] 

290 

60 447.6 

282.6 

1.14 44.7 36.9 0.36 21 

80 456.7 1.53 43.7 38.1 0.28 52 

100 466.8 1.91 42.7 39.5 0.25 56 

295 

60 479.7 

306.1 

1.56 41.6 36.2 0.34 72 

80 492.2 2.09 40.2 37.8 0.31 130 

100 511.0 2.61 39.0 40.1 0.36 138 

300 

60 516.7 

329.7 

2.11 38.5 36.2 0.24 149 

80 539.1 2.82 36.8 38.8 0.34 248 

100 563.4 3.54 35.2 41.5 0.26 309 

 

 
Figure 2. Temporal variation of the heat leakage (ϕ = 100%): 1 – 290 K; 2 – 295 K; 3 – 300 K 

 

Figure 2 shows the nonstationary of heat and mass transfer of the system under consideration (Fig. 

1). An analysis of nonstationary processes of heat and mass transfer of the system under 

consideration allow us to make the inference about what time to steady-state condition is from 21 to 

309 hours (Table 2). From analysis of results shown in Fig. 2, it is seen that the process of heat and 

mass transfer turns out to be nonstationary. 

Conclusion 

We have carried out numerical analysis of thermal and humidity regimes and numerical analysis 

of heat leakage in a low-temperature insulation in conditions of insulation freezing, a moisture 
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migration to the front of phase transition and a condensation forming on an outer contour of 

interaction. 

It has been shown that the heat leakage increases by about 40 % and time to steady-state 

condition is from 21 to 309 hours. 

In summary, the application of the proposed approach enables comprehensive analysis of thermal 

and humidity regimes of the system under consideration. 

Notations 

R – domain boundary; ξ – boundary of phase transitions; Т – temperature, K; W – relative moisture 

content; а – thermal diffusivity, m
2
/sec; t – time, sec; r – coordinate, m; D – diffusion coefficient, 

m
2
/sec; λ – thermal conductivity, W/(m·K); С – heat capacity, J/(kg·K); ρ – density, kg/m

3
; α – heat 

transfer coefficient, W/(m
2
·K); j – mass transfer intensity, kg/(m

2
·sec); Q – heat of phase transition, 

J/kg; β – mass-transfer coefficient, m/sec; ϕ – relative air humidity, %; k – resistance of moisture 

exchange, (МPa⋅s⋅m2
)/kg; p – pressure, Pa; tsta – time of the steady-state condition, hr; δ2 – relative 

calculation error, %; δ – thickness of frozen insulation, mm; q – heat leakage , W/m; 

( )w i
2ρ = ρ + ρ  – mean density, kg/m

3
; ( )

w i
2W WW = +  – mean relative moisture content. 

Indices: 1 and 2 – numbers of calculation domains (Fig. 1); 0 – initial time; ex – external 

environment; in – internal environment; ef – effective; i – ice; s – saturation, w – water; atm – 

atmospheric, st – steam; ins – insulation. 
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Abstract. Transparent structures are widely used in the construction of modern high-rise buildings. 

It is necessary to consider a number of important features in selecting of suitable design of the 

construction. These are energy efficiency, durability, simplicity of installation, exterior of the 

building, cost of the construction and payback period. The aim of this work is to determine the most 

appropriate transparent structure for high-rise buildings with a fully glazed facade according to 

these requirements. Accomplish this aim such challenges as comparison of characteristics of 

different methods of glazing, energy efficiency and cost-effectiveness problems were figured out. 

Basing on this comparison, most suitable transparent structures for the various priority factors have 

been identified. 

Introduction 

One of the topical issues of modern construction is energy efficiency. Many countries (every 2-3 

years) reconsider and strengthen the requirements for the energy performance of buildings 

according to long-term plan. Detailed rules imposed in Russia are set in Federal Law № 261-FZ 

"On energy saving and energy efficiency." This is particularly affect high-rise buildings and their 

enclosing structures, as the main heat loss pass through them. Because of these losses, a lot of 

energy and money are spent on maintaining the temperature in the rooms. Every year new materials 

and technologies are developed. A lot of researches are carried out in order to optimize the 

construction technology of transparent structures to reduce heat loss. 

The aim of this study is to determine the most appropriate design for facade glazing of high-rise 

buildings. It is necessary to figure out the following problems: 

1. To compare the features of different types of glazing. 

2. To calculate heat loss of each type of glazing and identify the most energy-efficient type of 

glazing. 

3. To make an evaluation for each type of glazing, and to identify the most appropriate 

transparent structure for high-rise buildings with a fully glazed facade according to this evaluation.  

Literature References 

The issues of energy efficient of constructions with transparent structures and energy efficiency 

of buildings are viewed in reports [1-26]. A.V. Spiridonov in his work [9] consider development of 

application of these structures. Different types of full glazings are discussed in the papers [4-5]. 

Gorshkov A.S made a great contribution to the description of the energy efficiency of enclosing 

structures [2-3, 7, 25-26], he revealed the necessity to increase the level of the thermal shielding of 

building envelope, offered the methods of the simple and complex payback of the energy-saving 

measures. 
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Figure 1. Schematic view of fixing of the glass in Mullion-transom facade 

Mullion-transom facade. Basis of this construction is an aluminum framework, which incorporates 

rising piers and longitudinal dwangs. Multiple glass is fixed with clamping straps to the outer side 

of the frame (Fig. 1). Decorative molding of various color and form can be used for overlapping 

straps. Installation of this construction is a quick and easy process. All bonds of the frame are 

situated inside of the building, so they are protected well from being weathering. It provides an 

adequate reliability and longevity of the present construction. In case of this type of glazing visual 

integrity lack has its influence on a building’s exterior. 

 

Structural glazing. Basis of this construction features a steel 

framework (Fig. 2, [29]) Indoor glass is fixed to an aluminum 

section of the window. The connection between outdoor glass and 

basis should be made by applying a joint filler or a special PVC-

membrane. Installation of this construction is a simple and 

relatively inexpensive process. The color of joint filler is usually 

same with the color of glass; it provides a visual integrity of the 

glazing. The deficiency of structural glazing is off-standard 

multiple glazing, because different sizes of outdoor and indoor 

glasses are used in the construction. 

Spider glazing system (Point fixed glazing systems). Spider fitting 

equalize forces due to its elastic structure. It is hinged by dint of 

through holes in every glass. Also spider fitting can be attached to 

columns, dwangs, floor slabs or walls. Point fixing (Fig. 3, [30]) is 

distensible enough for thermal distortion compensation. The joint 

between glasses can be performed at any angle, that allows to fix 

glasses to any facade’s form. Heat-strengthened glass is used for 

spider glazing system. The structure allows glass to bend under a 

strain, therefore, the glass fracture can be prevented. It provides an 

adequate longevity of the construction. Spider glazing system 

provides an all-round view due to absence of base frame between 

the panels and compartmentalization. 

Ventilated double-skin facade. This is a sandwich construction 

consisted of an inner and outer glazings and air cavity between 

them (Fig. 4, [31]). It absorbs the wind forces well. For providing 

free ventilation some sashes of an inner glazing are opening light. 

In the air cavity between two facades circulation of the air causes 

the natural convection cooling of the building, that increases 

its energy efficiency. The construction of the ventilated 

double-skin facade increases the transparency of the building 

Figure 2. Structural glazing 

Figure 3. Point fixing 

Figure 4. Ventilated double-skin 

facade 

Applied Mechanics and Materials Vols. 725-726 27



 

and improves the lightning of the spaces. However, the visual integrity of the glazing is disrupted 

because the panels are divided into small glasses. 

Installation of this construction is a complex and time-consuming process. 

Bench-mark data for the study. Analysis is based on determination of the most suitable design for 

different types of  full glazing and on the assumptions of the cost of constructions and cost 

savings by reducing heat loss in different cases of growth of tariffs (by 5%, 10% and 15%). For the 

study, 40-storey business center «Leader Tower» (Fig. 5), located at Moscow Avenue, St. 

Petersburg, was chosen. The area of the enclosing structure of this building is 18800 m
2
. 

 

Design variables with allowances made for climate pattern of St. Petersburg are subjected to 

SNiP 23-01-99 [27] and presented in Table 1. 

Value of the area and heat transmission resistance for enclosing structures are subjected to SNiP 

23-02-2003 [28] and presented in Table 2. 

Table 1. Design conditions 

Index Parameter label Unit of measurement Design value  

1.1. Design ambient air temperature to °C - 26 

1.2. The average ambient air temperature 

during the heating season 
th °C - 1.8 

1.3. The duration of the heating season 
zh day/year 220 

1.4. Heating season degree-day HSDD °C·day/year 4796 

1.5. Design indoor air temperature tin °C 20 

1.6  Design temperature underground tun °C 5 

Table 2. Value of area and heat transmission resistance for enclosing structures 

Type of enclosing structure 
The value of heat transmission 

resistance, [����, m
2
 * ° C/W] 

Construction area 

Ai, [m
2
] 

2.1. Curtain wall – 

Acw 

2.1.1. Ventilated double-skin facade 
0.9 

18 480 
2.1.2. Structural glazing 

0.57 

2.1.3. Mullion-transom facade 
0.55 

2.1.4. Spider glazing system 0.48 

2.2. Entrance doors – Aed 0.42 6.3 

2.3. Roofing system – Ars 3.34 1 008 

Figure 5. Leader Tower 
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2.4. Floor slab over an underground parking spaces – Afl 2.83 1 008 

Total area of enclosing structures of heated part of the building 20 502.3 

Assumptions. For the calculation the following assumptions were made: 

1. Rectangular shape of the building 

2. Detached building 

Heat loss through the enclosing structures. Most of heat loss are realized through the enclosing 

structures. Take a detailed look at structures mentioned above, their thermal insulation properties 

and cost. Calculate the payback period, and basing on it, identify the most energy-efficient type of a 

fully glazed facade. 

Calculations of heat loss through the enclosing structures are calculated by the formula: 

���	 = 0.024 ∗ HSDD ∗ ∑ ��
��� ∗ �                                                                                              (1)  

0.024 - converting factor of heat loss through the enclosing structures of W * day in kWh (1 day = 

24 hours, 1 W = 0.001 kW, 1 W * d = 0.024 kWh); 

HSDD - heating season degree-day for St. Petersburg, it is equal to 4796 ° C * d / year (see. Data 

Table 1); 

Ai - area of an i-th type of enclosing structure (curtain walls, floor slabs, roofing system, etc.) for the 

given building from Table 2; 

Ri - heat transmission resistance of the i-th type of enclosing structure; 

n - coefficient, depending on location of the external surface of enclosing structures; for exterior 

walls, floor slabs over passages and under the bay windows; n is equal to 1 for the floor slab over an 

underground parking spaces, taking into account the temperature of air equal to tun = 5 ° C; the 

coefficient of n is equal to 0.33. 

Heat loss through the enclosing structures of different types of glazing are calculated by the 

formula (1). Example of one of the calculations: 

���	 = 0.024 ∗ HSDD ∗ ∑ ��
��� ∗ � = 0.024 ∗ 4796 ∗ ����

���� + �"#
�"#� + � $

� $� + � ∗ �%&
�%&� ' = 0.024 ∗ 4796 ∗ ()*+*�

�., + -,/
�.+0 +

)��*
/./+ + 0.33 ∗ )��*

0.*/ 2 = 2 190 915 (678
9:;<2. 

 

 

The results of calculations of heat loss during the heating season, cost per square meter of the 

construction, and total construction cost are presented in Table 3. 

Table 3. Annual heat loss through the enclosing structures of different types of glazing and total 

construction cost 

Type of glazing 

Annual heat loss through the enclosing structures Cost per m2 of 

the 

construction, 

[RUB] 

Total 

construction 

cost, [ths. RUB] [kWh/year] [MJ/year *] [Gcal/year **] 
[ths. 

RUB/year***] 

Ventilated 

double-skin 

facade 

2 190 915 7 887 293 1 884 2 653 15 000 277 200 

Structural 

glazing 
3 389 427 12 201 936 2 915 4 104 8 000 147 840 

Mullion-transom 

facade 
3 556 956 12 805 042 3 059 4 307 6 800 125 664 

Spider glazing 

system 
4 069 222 14 649 199 3 500 4 927 17 000 314 160 

 

 

(2) 
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In Table 3 the following conversion factors of values of the heat energy were taken: 

* 1 kWh/year = 3.6 MJ/year 

** 1 kWh/year = 3600 kJ/year = 3.6 x 106 J/year = 3.6 * 106/4.187 cal/year = 3.6 * 10-3/4.187 

Gcal/year = 86 * 10 -5 Gcal/year 

*** 1 Gcal/year = 1408.01 rubles (as of 2014 in St. Petersburg) 

According to Table 3 it can be said that total construction cost of Spider glazing system is the 

biggest and at the same time heat loss of this construction are max in comparison with the other 

types. Thus, it can be concluded that this construction is cost-prohibitive. The further consideration 

of Spider glazing system has no sense. 

Compare three other types of glazing in order to determine the most cost-effective. For this 

purpose, calculate the cost of Ventilated double-skin facade in comparison with the cost of 

Structural glazing and cost of Structural glazing in comparison with the cost of Mullion-transom 

facade. Basing on data taken from Table 3 heat energy economies are presented in Table 4. 

Table 4. Comparison of structural and heat energy saving 

Compared structures 
Difference between the cost 

of structures, [ths. Rub] 

Heat energy economy per 

year, [ths. Rub] 

Ventilated double-skin facade and Structural 

glazing 
-129 360 1 451.26 

Structural glazing and Mullion-transom 

facade 
-22 176 202.86 

Based on these datas it is possible to determine the payback period of the most energy-efficient 

structure in three different cases of growth of heating tariffs (5, 10 and 15%) (Fig.6, Fig.7, Fig.8). 

The results are presented in Table 5. 

Fig.6 Payback period of the constructions at growth of tariffs by 5% 
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Fig.7 Payback period of the constructions at growth of tariffs by 10% 

 

Fig.8 Payback period of the constructions at growth of tariffs by 15% 

Table 5. Payback period of the most energy efficient structures 

Compared structure 

 

Payback period, years 

growth of tariffs by 

5% 

growth of tariffs by 

10% 

growth of tariffs by 

15% 

Ventilated double-skin facade 

and Structural glazing 
34 24 19 

Structural glazing and 

Mullion-transom facade  
44 29 23 

Table 6. Total evaluation of each type of glazing 

Criteria 

Ventilated 

double-skin 

facade 

Structural 

glazing 

Mullion-

transom facade 

Spider glazing 

system 

Exterior view  3 4 1 5 

Load resistance  5 5 4 5 

Erection speed and its simplicity 3 5 5 1 

Cost  3 4 5 2 

Thermal insulation properties 5 4 3 2 

Energy efficiency (payback 

period)  
5 4 3 2 

Total: 24 26 18 17 
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Conclusions 

In this paper, the properties of different types of full glazing were analyzed, evaluated heat loss 

through the enclosing structures for each type, identified the most energy-efficient and cost-

effective types of glazing. According to research, the following results were obtained: 

1. The total evaluation on such criteria as exterior view, load resistance, erection speed, energy 

efficiency and others determined that the most appropriate design for facade glazing of high-rise 

buildings are Ventilated double-skin facade and Structural glazing. The most unprofitable is Spider 

glazing systems, because heat loss, and payback period in this case are maximal. 

2. Payback period was calculated for three different cases of growth of tariffs. In case of the 

rapid growth of tariffs (by 15%), such constructions as Ventilated double-skin facade and Structural 

glazing will be paid off in about 20 years, or (in case of the minimal growth of tariff by 5%), 

Ventilated double-skin facade is paid off in 34 years, Structural glazing - in 44 years. On average, in 

case of growth of tariffs by 10%, these types of glazings are paid off in 24 and 29 years 

accordingly. 

References 

[1] Begoulev S.A. Experience reduce thermal requirements for the building envelope in the North-

West region (2007) Building materials, 2, pp. 18-19. 

[2] Vatin N.I., Nemova D.V., Rymkevich P.P., Gorshkov A.S. Vliyaniye urovnya teplovoy 

zashchity ograzhdayushchikh konstruktsiy na velichinu poter teplovoy energii v zdanii [Influence of 

level of enclosing structures  heat protection on the value  of heat loss in a building] (2012) 

Magazine of Civil Engineering, 8, pp. 4-14. 

[3] Gorshkov A.S., Nemova D.V., Vatin N.I. The energy saving formula (2013) Internet Journal 

"Construction of Unique Buildings and Structures", 7, pp. 49-63.  

[4] Darkwa J., Li Y. Chow, D.H.C.. Heat transfer and air movement behaviour in a double-skin 

façade (2014) Sustainable Cities and Society, 10, pp 130-139. 

[5] Vyzantiadou M.A., Avdelas A.V. Point fixed glazing systems: technological and morphological 

aspects (2004) Journal of Constructional Steel Research, 60 (8), pp 1227-1240. 

[6] Freire R.Z., Mazuroski W., Abadie M.O., Mendes N. Capacitive effect on the heat transfer 

through building glazing systems (2011) Applied Energy, 88 (12), pp 4310-4319.  

[7] Gorshkov A.S., Zadvinskaya T.O. Comprehensive method of energy efficiency of residential 

house (2014) Advanced Materials Research, pp. 1570-1577. 

[8] Kanga N.N., Choa S.H., Kimb J.T. The energy-saving effects of apartment residents  awareness 

and behavior (2012) Energy and Buildings, 46, pp.112–122.  

[9] Spiridonov A. V. Razvitiye svetoprozrachnykh konstruktsiy v kontekste sovremennoy istorii 

energosberezheniya [Development of transparent structures within the context of contemporary 

history of energy savings] (2011) Energosberezheniye, 5. 

[10] Murgul V. Solar energy systems in the reconstruction of heritage historical buildings of the 

northern towns (for example Sankt-Petersburg) (2014) Journal of Applied Engineering Science, 12 

(2), pp. 121-128. 

[11] Murgul V. Features of energy efficient upgrade of historic buildings (illustrated with the 

example of Saint-Petersburg) (2014) Journal of Applied Engineering Science, 12 (1), pp. 1-10. 

[12] Alihodzic R., Murgul V., Vatin V.N., Aronova E., Nikolić V., Tanić M., Stanković D. 

Renewable Energy Sources used to Supply Pre-school Facilities with Energy in Different Weather 

Conditions (2014) Applied Mechanics and Materials, 624, pp. 604-612. 

32 Innovative Technologies in Development of Construction Industry



 

[13] Borodinecs A., Gaujena B. The implementation of building envelopes with controlled thermal 

resistance (2012), pp. 1715-1722. 

[14] Kurenkova A.Y., Kononova A.N. Puti energoeffektivnogo ostekleniya [Ways of energy-

efficient glazing] (2012) Energosberejeniye, 2. 

[15] Paulauskayte S., Sasnauskayte V., Valanchyus K. Vliyaniye kharakteristik ostekleniya zdaniya 

na raskhod energii v sistemakh otopleniya i okhlazhdeniya [Influence of characteristics of buildings 

glazing on energy consumption in heating and cooling] (2010) Energosberejeniye, 1. 

[16] Borodinecs A., Zemitis J., Prozuments A. Passive use of solar energy in double skin facades 

for reduction of cooling loads (2012) World Renewable Energy Forum, WREF 2012, Including 

World Renewable Energy Congress XII and Colorado Renewable Energy Society (CRES) Annual 

Conference 6, pp. 4181-4186. 

[17] Kaklauskas A.A., Rute J.A., Zavadskas E.K.A., Daniunas A.A., Pruskus V.A., Bivainis J.A.,  

Gudauskas R.B., Plakys V.A. Passive House model for quantitative and qualitative analyses and its 

intelligent system (2012) Energy and Buildings, 50, pp. 7-18. 

[18] Uygunoğlua T., Keçebaşb A. LCC analysis for energy-saving in residential buildings with 

different types of construction masonry blocks (2011) Energy and Buildings,43 (9), pp. 2077–2085. 

[19] Vatin N.I., Nemova D.V., Kazimirova A.S., Gureev K.N. Increase of energy efficiency of the 

building of kindergarten (2014) Advanced Materials Research, 953-954, pp. 1537-1544. 

[20] Petronijevic P., Ivanisevic N., Rakocevic M., Arizanovic D. Methods of calculating 

depreciation expenses of construction machinery (2012) Journal of Applied Engineering Science, 1 

(10), pp. 43-48. 

[21] Vatin N.I., Nemova D.V., Tarasova D.S., Staritcyna A.A. Increase of energy efficiency for 

educational institution building (2014) Advanced Materials Research, 953-954, pp. 854-870. 

[22] Pukhkal V., Murgul V., Vatin N. Central ventilation system with heat recovery as one of the 

measures to upgrade energy efficiency of historic buildings (2014) Applied Mechanics and 

Materials, 633-634, pp. 1077-1081. 

[23] Petrov K.V., Sled I.A., Eagles O.A., Lynx I.V., Urustimov A.I.  Competition "Architectural 

concept of building with zero energy consumption" (2012) Construction of unique buildings and 

structures, 1, pp. 53-60. 

[24] Knatko M.V., Efimenko M.N. Ampere-second pots to a question of durability and energy 

efficiency of modern protecting wall designs of residential, office and production buildings (2008) 

Magazine of Civil Engineering, 2, pp. 50-53. 

[25] Nemova D.V., Gorshkov A.S., Kazimirova A.S., Gureev K.N. Calculation of payback period 

mineral wool with longitudinal fibers of ITE PARISO (PAREXLANKO) (2014) 5TH International 

conference civil engineering-science and practice, pp. 1609-1615. 

[26] Grinfeld G., Gorshkov A., Vatin N. Tests results strength and thermophysical properties of 

aerated concrete block wall samples with the use of polyurethane adhesive (2014) Advanced 

Materials Research, pp. 786-799. 

[27] SNiP 23-01-99* Stroitelnaya klimatologiya [Construction climatology.] 

[28] SNiP 23-02-2003 Teplovaya zashchita zdaniy [Thermal protection of buildings.] 

[29] http://www.sakti.com.ua/upload/i/00000316_b.jpg 

[30] http://www.build-online.ru/images/stories/walls/doublefas1.jpg 

[31] http://gbd.su/news/spaydernoe_osteklenie/ 

Applied Mechanics and Materials Vols. 725-726 33



 

Prodrome In Experimental Investigation The Thermal Shielding Systems 

In Enclosure Structures 

Nikolay Vatin1, a, Issa Togo2,b, Vladimir Bespalov3, c *, Dmitriy Kuzmenkov4,d, 
German Panteleev5,e and Dmitriy Smirnitskiy6,f 

1,2,3,4,5,6 
St. Petersburg State Polytechnical University, St.Petersburg, 195251, Russian Federation 

a
vatin@mail.ru, 

b
issatogo@mail.ru, 

c
chanchullero@yandex.ru,

 d
kuzmenkovdv1994@gmail.com, 

e
german3730051@gmail.com, 

f
ktoeto95@mail.ru 

Keywords: energy efficiency, energy-savings, experimentation, engineering, construction, building 
materials, heat transfer resistance, heat losses, enclosure structure. 

Abstract. This work is devoted to description the outset of research the modern thermal shielding 

systems on the model of house, and desired outcome. Results can be basement for modernisation of 

building regulation, in prospect. Experiment consists in tests conducting and drafting of 

troubleshooting guideline. 

Introduction  

In industrial countries modern buildings consumer more then 40% produced energy. 60% of this 

energy is used for heating, ventilation, air conditioning and lighting. Russian territory is located in 

three general climatic zones: arctic, sub-arctic and temperate. A lot of energy required for heating in 

civil and industrial objects. Therefore, in cold climate it required for cooling because average of 

temperatures can reach +30 °С. It’s necessary to increase energy efficient of buildings and 

constructions in modern conditions of limitation economic resources. Heat energy economy is a 

potential way for energy-efficiency. More efficient would be events aimed at elimination of 

enclosure structures defects and heat energy efficient [1]. Now Russia is in the end of list world 

house thermal effectiveness. Currently new costeffective save-energy technology search is 

actual [2]. In year 2009 a law [3], pointing at necessity of a major upgrade in this province, was 

passed. Today there is no consensus about the most effective way of increasing building efficiency. 

There are two ways of heat insulation to increase energy efficiency of enclosing structures: external 

and internal. They both have favourers [4-8, 19, 20]. Moreover, there is analysis [9] approved that 

it’s difficult to choose optimum heat insulating material. 

Literature review 

The work Gorshkov A.S. «Puti povysheniya energoeffektivnosti ograjdayuschikh konstruktsiy 

zdaniy» largely motivate our research [10]. Platonova M.A., Vatin N.I., Nemova D.V., Matoshkina 

S.A., Iotty D., Togo I. reviewed various methods of increase energy efficiency. [1, 5, 11]. As a 

heater for an external wall the heater for professional construction on the basis of flinty fiber 

ISOVER VENTI was chosen in article by D.A. Trubina, Z.S. Teplova, K.I. Solovyeva, D.V. 

Nemova, D.V. Petrosova. Article is devoted to the solution of an actual problem — to energy saving 

and increase of energy efficiency of buildings. Also in the article there is a definition of optimal and 

profitable width of insulation in a system of hinged ventilated facade [12]. Karin Buvik, Geir 

Andersen and Sverre Tangen described integrated modification and trial enclosure structures in cold 

climate(case study of Norvegian school) [13]. Kang, D.-H., Lorente, S., Bejan, A. show how to 

distribute multiple layers of insulation along a nonisothermal enclosure so that the total heat loss is 

minimal [14]. Nizovtsev, M.I. , Belyi, V.T., Sterlygov, A.N. describe a new thermal-insulating 

facade system for newly constructed and renovated buildings, based on heat-insulating panels with 

ventilated channels [15]. Moreover, Rahmi Andarini observes method of program simulating heat 
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loss during building operation. It might be useful for energy-efficient evaluating structures in design 

stage [16]. 

Purposes and tasks 

The paper had the following main objectives: 

1) Create experimental platform in the laboratory based on a prototype house as close as possible to 

the parameters of real homes, using the most widely used materials for the creation of the enclosing 

structure. 

2) Create a design for energy-efficient surface protection walling. Subsequently, an analysis and 

comparison of different systems for energy-efficient protection. With the purpose to ordering in the 

future and improve the parameters of materials and technologies that could be used in the 

regulations in the construction industry. 

House-lab building 

 

 

1 step. The model of house is erecting on special field (Fig. 1). Dimensions: mounting base 

2000x3000 mm; ceiling height 2500 mm; rise 3500 mm; wall thicknesses 450 mm. Door way 

(1600x800 mm) and 2 window (600x600 mm) are enclosing. Four brickwork columns 250x250 

have been raised on corners on prepared basement. They can be reinforced if it necessary. After that 

chases have been made in basement along  the line of future walls between columns. Gas-concrete 

blocks  have been set into chases (Fig. 2). Base of the walls is gas-concrete blocks 

400x300x300mm. Roof, door and windows have been installed after heat-insulation system. 

2 step. Previously, plinth wall set up for water disposal (Fig. 3). Plinth channel is 600 mm above 

the blind area, which match the height of capillary ascension of water in the Saint-Petersburg 

region. Plinth channel enable us to set thermal insulation slabs correctly and ensure them with extra 

stability. 

3 step. Before installation, structural adhesive MAITE PAREXLANKO is applied on rock wool 

boards, dismensions 1000x1000x120. (Adhesive mixture trowel circuit-wise Fig. 4, a) Importantly, 

offsets are laying from the edge no less than 20 mm. Otherwise structural adhesive can force away 

between slabs. 

Figure 1. Final house-lab model, done in Autodesk Revit 2014 
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4 step. Rock wool boards are applied to the wall from the plinth channel to up, closely to each 

other. Significantly, boards must be fixed as two quarters (Fig. 4, b). Then boards are additionally 

fixed to the wall by rawplugs, 6 pcs/m
2
. (Cavity brickwork and gas-concrete deteriorate by dynamic 

pressure. Therefore, rawplug holes should be made by drilling – Fig. 5). 

Figure 3. Plinth schematic illustration [17] 

Figure 2. House-lab model at the stage of building, done in Autodesk Revit 2014 
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5 step. Structural adhesive is applied on face of insulation boards. Then fiberglass grilliage steeps 

into adhesive and the second lay of structural adhesive is applied. Both lays are applied regulary.  

6 step. On the second lay of structural adhesive dabbed heavy plaster EHI 8-12mm.  

On the first stage of experiment we will research heat transfer of enclosure walls with described 

configuration (Fig. 6). In the future we are going to install few configurations of wall instead of 

previous and research theirs heat transfer and other parameters. Consequently, we could use house-

lab many times. 

Figure 4.  a) Structural adhesive applying; b) boards installation chart [17] 

Figure 5.  Drilling scheme [17] 
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Thermotechnical calculation 

It is expected that we would calculate pursuant to SNiP(Construction Norms and Regulations) II-3-

79* [18], with the use of below-listed formulas: 

Required thermal resistance 

int

int

0 ∆

)-(
=

αt

ttn
R

ext

extreq , (1) 

where n - coefficient, depending on the position of the outside surface of the enclosure against the 

external air; 

tint – average temperature of internal air; 

text – temperature of external air during the cold period of year for city conditions St. Petersburg; 

∆text – regulatory temperature difference the internal air against the internal surface of enclosure; 

αint – coefficient of a thermolysis of an internal surface of a protecting design. 

Thermal inertia of enclosure structure 

nnsRsRsRD +++= …2211 , (2) 

where Ri  – Thermal resistance of one layer enclosure structure; 

Si – Thermal absorptivity of one layer enclosure structure. 

Figure 6. Cross section view of wall [17] 
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Thermal resistance of one layer 

λ

δ
=R

, 
(3) 

where δ – thickness of a layer, m; 

λ – coefficient of heat conductivity of a material of this layer. 

Actual resistance to a wall heat transfer 

ext
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1
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int

0 , (4) 

where Rk – Thermal resistance of the enclosure structure; 

αint – coefficient of a thermolysis of an internal surface of a protecting design; 

αext – сoefficient of a thermolysis of an external surface of a protecting design. 

Reduced total thermal resistance 
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(5) 

where Fi - Square plots certain structures (or it’s part); 

Ri - Thermal resistance of above-noted certain structures. 

Performance of materials have taken from accompanying documents. It is expected that calculated 

data compare and contrast with those found by experiment. Then we will search the causes and 

conditions that have facilitated the dissonance. 

Recommendations and conclusions 

Much increase in energy saving is expected using materials and methods which were considered 

by the side of formerly used materials and methods. If the experiment would be successful, we will 

make recommendations about tried-and true materials and methods. New enclosure requirements 

would be recommended for include into building regulation.  
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Abstract. Double skin facades very popular in this time. They are applied for construction of new 
buildings and for reconstruction. But double skin facades contains some defects. In the present 
paper concrete constructive changes in a design of the Double skin facades which are offered. This 
changes will can to normalize heatmoisture conditions in the building. All proposed solutions are 
proved by theoretical calculations and numerical simulation. 

Introduction 

Real designs are projected and built with a dense adjunction to a socle (Fig. 1). At first of all it is 
made for a beautiful general architecture. In this case the free access of external air in a design "is 
blocked". Such design decisions don't provide optimum a condition for thermogravitational 
convection and therefore for optimum work of double skin facades. 

  

Figure 1. Real double skin facades 
Real designs of the double skin facades in existence gaps between facing plates which are put in 

the project for compensation of temperature deformations. The sizes of rust make 8-10 mm and they 
become on all height of a facade in the vertical and horizontal directions between each element of 
facing. 

The theoretical calculations presented in paper [1] were carried out for front systems into which 
air layer from the lower part air could get freely. That is adjunctions of front system to a socle was 
accepted leaky, between a socle and a facade there was a gap height to an equal one facing tile. 
Besides, in settlement systems there were no gaps. As showed calculations, in such designs 
optimum capacity can be realized, and in such systems the air stream will move vertically up that 
will promote removal of moisture from a design that is confirmed by also numerical simulation, 
presented in paper [2]. 

Studying of works of many scientists devoted to thermogravitational convection also confirms 
this theory. Thermogravitational convection as a whole and in protecting designs research Lorentz 
G. A., Ekkert E., Zhukovsky V.S., Sokovishin Yu.A., Murgul V., Gorshkov A.S., Petrichenko M.R., 
Vatin N.I., Borodinecs A., Kaklauskas A. and many others [1-27]. 

All this allows to make the assumption that real designs of the double skin facades can 
incorrectly work, without realizing all the potential. 
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It is necessary to prove or disprove this assumption and to determine the possible directions by 
improvement of double skin facades. 

Description of work of real double skin facades 

For real designs pressure lines for three cases were built: from windward and lee side of a facade for 
demonstration of influence of gaps on the movement of air and for option with considerable losses 
on an entrance, for demonstration of influence of a dense adjunction of front systems to a socle. 

 

a 

 

b 

 

c  

Figure 2. a,b,c. Pressure lines of flow. 
How we can see from picture (Fig. 2. a) gaps between plates of facing connect an air layer with 

the atmosphere therefore on a windward side cold air is blown to the canal with shown in drawing 
by a high-speed pressure. It leads to violation of the movement of a stream vertical up and to 
degradate air output of in an air layer. It is a negative factor. 

How we can see from picture (Fig. 2. b) on lee side air from an air layer flows away in the 
atmosphere. It too a negative factor as the air output degradation from below up decreases.. 

How we can see from picture (Fig. 2. c) the high-speed pressure changes from zero at a facade 
socle to the maximum value at the next gap between facing plates. The high-speed pressure doesn't 
reach values characteristic for ideal designs anywhere. 

 
Figure 3. a,b,c. The diagrams of velocity for three cases 

The ideal case provides gradual spreading of an diagram of velocity on all width of the channel 
and stabilization of a flow at height (The diagram a). 
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The worst case is shown on an diagram «b»: the air output in the ventilated air layer can reduce 
to zero and the directed movement from below up won't be. 

Diagram «c» shows that the speed gradient at a wall falls, in proportion to a gradient the heat 
transfer decreases. 

After the numerical experiment described in paper [2] was repeated with all same conditions, but 
the design already was same as real (Fig. 4-5). 

 

 
Figure 4. Speed vectors (numerical simulation for a real double skin facades) 

 

 
Figure 5. Temperature (numerical simulation for a real double skin facades) 

 
Creation of numerical models of real designs showed considerable reserves in their 

improvement. When modeling real knots of an adjunction of systems to a building socle were 
considered, seams between facing plates (gaps 8-10 mm) were considered. And as it is possible to 
see in figures designs don't provide optimum conditions for course of thermogravitational 
convection without providing fully optimum heatmoist the building mode. Cold air in the bottom of 
a design has no free access in an air layer to provide the movement of an air stream vertically up 
(designers and producers of systems of double skin facades aspire to it). The air getting through 
seams between facing plates on all height of a facade, on the contrary, "lowers" warm air, again 
without allowing to move it vertically up. 
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Figure 6. Dependence of velocity of flow from geometrical parameters of an air layer (numerical 

simulation of real double skin facades). 
Velocity has much less, than and on the maximum mark speed becomes equal in an ideal 

(settlement) design to zero. In ideal designs velocity on width of an air layer is distributed rather 
evenly. In a real design the maximum of speed is reached only in one point - in the middle of a 
layer. The interface is distributed practically on all width of a layer, the coefficient of a heat transfer 
is small, removal of moisture the inefficient (Fig. 6). 

 
Figure 7. Dependence of temperature of flow from geometrical parameters of an air layer 

(numerical simulation of real Double skin facades). 
From drawing it is visible that distribution of temperature in real designs almost linear.The 

interface is distributed practically on all width of a layer, the coefficient of a heat transfer is small, 
removal of moisture the inefficient (Fig. 7). 

Decisions for improvement of the double skin facades 

What solutions can be proposed for elimination of the found defects of double skin facades? First, it 
is necessary to provide free flowing of cold air in the lower part of a facade in order that it could 
accelerate an air stream in an air layer vertically up. It would ensure optimum functioning of this 
osystems. The moisture emitted in life wasn't condensed on a design, and was removed with air. 
Having it can be done made minor constructive change: having replaced the lower layer of tiles with 
ventilating grates on ordinary diffusers on all perimeter of the building (Fig. 8). 
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Figure 8. Improvement of designs of double skin facades 

After it is possible to vary: to make lattices adjustable, depending on the wind force surrounding 
building temperatures, even from time of day and the mode of the building. It is possible with 
automatic or manual control. 

Secondly, it would be possible to offer sealing of gaps between facing plates. They are arranged 
for compensation of temperature deformations if gaps were pressurized by some elastic material, it 
would allow to optimize double skin facades. 

Even addition of the diffuser in a design, without sealing of rust, favorably affects its work. For 
the proof of this fact modeling in the program Ansys complex was carried out.Ansys. 

 
Figure 9. Speed vectors (numerical simulation for a real double skin facades with open access of 

air ((at use of the diffuser instead lower line of facing plates)) 

 
Figure 10. Temperature (numerical simulation for a real double skin facades with open access of 

air((at use of the diffuser instead lower line of facing plates)) 
As it is possible to see (Fig. 9-10) at addition of real double skin facades with the diffuser it is 

possible to observe positive effects. Velocity of flow become more, rates of change of temperature 
increase. 

By results of modeling of real double skin facades with open access of air (with the diffuser) 
dependences of velocity and temperature on geometrical characteristics of an air layer were received 
(Fig.11, 12). 
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Figure 11. Dependence of velocity of flow from geometrical parameters of an air layer 

(numerical simulation for a real double skin facades with open access of air ((at use of the diffuser 
instead lower line of facing plates)) 

From pictures (Fig. 11) it is visible that at addition of a design with the diffuser, speeds 
increased, but open gaps between plates of facing lead to formation of zones of recirculation that not 
always allows to move to a stream in the necessary direction. 

 
Figure 12. Dependence of temperature of flow from geometrical parameters of an air layer 

(numerical simulation for a real double skin facades with open access of air ((at use of the diffuser 
instead lower line of facing plates)) 

From pictures (Fig. 12) it is visible that distribution of temperature in an advanced design not 
linear, convection is present, temperature gradients on a hot wall grew, coefficients of a heat transfer 
increased, removal of moisture and warming up of air became more intensive in comparison with 
real designs. 

It is noted that speeds in the settlement (offered) designs are made by not lower than 1 m/s, in 
real designs - 0.07-0.08 m/s, in real designs with open access of air of 0.1-0.14 m/s. 

Summary 

Numerical modeling of a flat stream in the conditions of thermogravitational convection was 
made. Lines of pressure for a stream with the movement up in the vertical flat channel for various 
conditions are built.  

High-speed and temperature fields for an air stream for real double skin facades with gaps 
between plates of facing and the closed entrance for a stream to an air layer are constructed. 
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The directions are determined by practical application of the received results for adoption of 
optimum design decisions and to improvement of the existing double skin facades which consist in 
the following: 

1. To alter a design of the double skin facades, having added it with the diffuser which is 
installed instead of the first row (lower) of facing plates in a design adjunction place to a socle on all 
perimeter of the building. 

2. To provide sealing of rust with elastic material on all height of a facade in the vertical and 
horizontal directions. 

It is noted that speeds in the settlement (offered) designs are made by not lower than 1 m/s, in 
real designs - 0.07-0.08 m/s, in real designs with open access of air of 0.1-0.14 m/s. 
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Abstract. The topic of the article regards to the development of new SP 50.13330.2012 “Heat 

protection of buildings” actualized edition of SNIP 23-02-2003. The article focuses on the reduced 

thermal resistance, which takes into account the influence of  thermally conductive inclusions by 

the coefficient of  heattechnical uniformity.  

Introduction 

At present one of the most common options for filling the outer thermal protection envelope of 

enclosure in the practice of designing and constructing buildings with monolithic reinforced 

concrete framework and floor-by-floor leaning exterior walls on monolithic or precast reinforced 

concrete floor slab is a constructive solution of the wall which consists of two layers (Fig. 1a) 

– Internal nonstructural layer made of aerated autoclaved concrete blocks thickness of 300 –

 400 mm, depending on the region construction and its climatic parameters;  

– The external covering layer of the facing brick thickness in one or two bricks.  

The overview 

In recent years all over the world in the construction of residential buildings emphasis on low 

energy consumption and the construction of energy-efficient buildings. In the last decade in Europe, 

energy efficiency of buildings has been one of the main directions of development of the 

construction industry [1-9].  Standard documentation of the European countries contributes to this 

objective, in most developed countries of the world the norms of energy consumption by buildings 

constantly decreasing, and requirements to the level of thermal insulation enclosing structure 

increase [9-17].  

There is an inverse dynamics in the Russian Federation. After the release of the federal law no. 

261-FZ of November 23, 2009 “On Energy Saving and Raising of Energy Efficiency and on 

Introduction of Changes into Some Legislative Acts of the Russian Federation” [18], Ministry of 

Regional Development of the Russian Federation has approved the Code SP 50.13330.2012 [20], 

which applies from 2013. The Code SP 50.13330.2012 [20] is actualized edition SNIP 

(Construction Norms and Regulations) 23-02-2003 “Heat protection of buildings” [19]. The authors 

of the article «Influence of building envelope thermal protection on heat loss value in the building» 

[12] carried out a comparative analysis on the example of a 25-storey building. Heat losses were 

20 % more through the exterior building envelope, which was built to the minimum requirements of  

the code SP 50.13330.2012 [20],  than the same building, the design of which had the minimum 

requirements of the norms SNIP 23-02 [19].  

The topic of the article regards to the development of new SP [20] for thermal protection. The 

article focuses on the reduced thermal resistance, which takes into account the influence of 

thermally conductive inclusions by the coefficient of heattechnical uniformity. The projects are 

transmission heat losses (losses through the exterior building envelope) are larger than the design, 

and the energy released by heating is not enough. [21-22]. 

The joint of the aerated autoclaved concrete blocks also affect to the reduced thermal resistance. 

In order to reduce the influence of masonry joints on the thermal homogeneity of the walls of 
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concrete blocks and reduce the additional heat loss through the joints, masonry performed on glue 

with a minimum thickness of joints (2 ± 1 mm). It is also necessary to seek to decrease the 

coefficient of thermal conductivity of masonry mortar [23-25]. The authors of article “Influence of 

masonry mortar joints on the parameters of thermal homogeneity of the walls of aerated autoclaved 

concrete” [23] calculated the reduced thermal resistance of masonry walls of aerated autoclaved 

concrete blocks grade density D400 thickness of 375 mm, made with glue joints with an average 

thickness of 2 mm. Coefficient of heattechnical uniformity is r = 0.93. 
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Figure 1. Constructive solution (a) and scheme of estimated fragments (b, c, d) of the external 

two-layer wall: 1 – brick masonry of ordinary clay bricks; 2 – masonry of aerated autoclaved 

concrete blocks grade density D400; 3 – reinforced concrete; 4 – layer of thermal insulation 

Description of the construction of the wall fencing 

In considered constructive solution the internal layer of the wall fencing performs the function of 

thermal insulation, the external layer performs the function of protection from climatic exposure, 

provides the desired durability of facades and architectural forms of the building. It is believed that 

this design solution meets the requirements of the thermal protection for the majority of regions of 
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the Russian Federation. The traditional solution in St Petersburg is a wall enclosure, in which the 

thickness of the aerated autoclaved concrete is 375 mm. A schematic representation of this 

constructive solution is presented in Fig. 1  

Regulatory Requirements 

In accordance with SNiP 23-02 [19] installed three parameters of the thermal protection for 

buildings: 

a) reduced thermal resistance of the individual elements of the building envelope;  

b) Sanitary, including the temperature difference between the temperature of the inside air and 

on surfaces of enclosures, and the temperature on the internal surface above the dewpoint;  

c) the specific consumption of thermal energy for heating the building, which allows to vary the 

quantities of thermal protection properties of different types of building envelopes with the space-

planning arrangement of a building and the choice of microclimate control systems to achieve the 

rated value of this parameter.  

In accordance with the requirement of item. 5.3 SNiP 23-02 [19], reduced thermal resistance r

0R  

of the building envelope should be not less than rated values reqR , which is determined according 

to Table 4 SNIP 23-02 [19], depending on the degree-days heating period of the construction 

region.  

Degree-days heating period for residential buildings, located in the city of St. Petersburg, 

according to Table. 3 RMD (regional methodological document) 23-16-2012 “Saint Petersburg. 

Recommendations to ensure the energy efficiency of residential and public buildings” [26] are 

4796°C·day, rated value of reduced thermal resistance to the exterior walls of residential buildings 

is 3.08 m
2
·°C/W [26, Table. 9]. In this case, item.5.13 SNIP 23-02 [19] admits a reduction of the 

rated value of the reduced thermal resistance for walls of residential and public buildings by 37 % 

in the accomplishment requirements “c” item.5.1. Thus, in this case, the minimum permissible 

value of the reduced thermal resistance of the exterior walls of residential buildings, designed in the 

territory of St. Petersburg, should not be less than: minR =0.63×3.08=1.94 m
2
·°C/W [19, the formula 

(8)].  

Purposes and research problems  

According to the requirements of item. 5.6 SNIP 23-02 [19], reduced thermal resistance for 

exterior walls should be calculated for the facade of the building or to one of the intermediate floor 

with soffits without their fillings.  

Consider a specific example of how this requirement is implemented in practice. To do this, 

perform the above calculation of the thermal resistance of exterior walls of the intermediate floor of 

the typical apartment building with a structural monolithic-frame scheme  and two-layer exterior 

walls, schematically represented in Figure 1, and compare the value obtained with the regulatory 

requirements for thermal protection. To do this we will perform the calculation of the reduced 

thermal resistance of the exterior walls of the intermediate floor of a typical apartment building with 

structural monolithic framing and two-layer exterior walls, and compare the resulting value with the 

regulatory requirements for thermal protection. The general form of walls is shown schematically in 

Fig. 1. 

The purpose of the research is to determine the reduced thermal resistance r

0R  of the exterior 

walls of the middle intermediate floor apartment building and compare the resulting value with 

rated reqR  and minimally permissible minR  values  reduced thermal resistance of exterior walls of a 

residential apartment building. 
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Initial data for calculation of thermal parameters 

Initial data:  

– The construction region – the city of St. Petersburg;  

– Purpose of the building – residential;  

– Design temperature of indoor air – intt = 20°C;  

– Design temperature of outdoor air – 
ext

t = -26°C;  

– Zone of moisture – wet;  

– Moisture conditions building space – normal;  

– Operating conditions walling – “B”.  

Thermal feature of materials used in the composition of wall fencing:  

– Cement-sand mortar γо = 1800 kg/m
3
; λB = 0.93 W/(m

2
×°C);  

– Bricklaying of ordinary clay bricks on cement-sand mortar γо = 1800 kg/m
3
;                             

λB = 0.80 W/(m
2
×°C);   

– Masonry of wall aerated autoclaved concrete unreinforced blocks density γо = 400 kg/m
3
; λB = 

0.14 W/( m
2
×°C). 

Boundary conditions:  

– heating capacity coefficient for interior side of a building envelope; intα = 8.7 W/(m
2
×°C);  

– heating capacity coefficient for window unit; intα = 8.0 W/(m
2
×°C); 

– heating capacity coefficient for exterior side of a building envelope under the conditions for the 

cold season, applicable for exterior walls and window; extα = 23.0 W/(m
2
×°C); 

The design schemes of the fragments of exterior walls are shown in Fig. 1b, 1c, 1d.  

Results of calculation  

The reduced thermal resistance of the considered fragments of thermal protection of the building 

envelope is calculated on the basis of calculation of the temperature fields. The essence of the 

method consists in the simulation of steady process heat transfer through the building envelope 

using computer programs. The method is designed to evaluate the temperature and the calculation 

of the reduced thermal resistance of building envelopes or parts of structural taking into account the 

geometrical shape, location and characteristics of the structural and thermal insulating layers, 

ambient air temperature, surface heating capacity coefficient. In this case, the calculation is made 

using the software package TEMPER 3D [28, 29].  

Value of the reduced thermal resistance of the middle of intermediate floor r

0R  determined on 

the basis of the calculation of reduced resistance of several fragments r

i0,R  taking into account the 

heat loss through the ends of the floor slabs, soffits window unit and balcony doors. In particular:  

– Fragment of a blank wall without openings, dimensions of height is equal to the height of the 

floor h = 3.0 m, width is 1.2 m (Fig. 1b);  

– Fragment of the wall with window openings, dimensions of height is equal to the height of the 

floor h = 3.0 m, width is equal to the distance between the axis of the window openings (Fig. 1c);  

– Fragment of the wall with the balcony door, dimensions of height is equal to the height of the 

floor h = 3.0 m, width is equal to the distance between the axis of the piers (Fig. 1d).  

The results are presented in Table 1.  

 

 

 

 

 

52 Innovative Technologies in Development of Construction Industry



Table 1.  The characteristics of the estimated fragments of the exterior walls of the intermediate 

floor of a residential building 

No. of 

fragments 

Features a constructive solution of the 

wall 

Reduced thermal resistance 
r

i0,R , [m
2
×°C /W] 

Area, 

 iA , [m
2
] 

1 
Fragment of the blank wall (without 

openings) 
2.09 61.20 

2 
Fragment of the blank wall with a 

column (without openings) 
1.73 94.68 

3 
Fragment of the wall with window 

openings (with insulation soffits) 
1.76 82.12 

4 

Fragment of the wall with the balcony 

door (taking into account glazing 

balconies) 

1.77 40.90 

Reduced thermal resistance of exterior walls of the middle of the intermediate floor of an 

apartment building r

0R  with the fragments area of the walls on the facades of the building, 

calculated by formula (22) SP 23-101-2004 “Design of thermal protection of buildings” [27] is:  

( )

i

(i)r

0 r

i 0,i 

(i)

61.20 94.68 82.12 40.90
R 1.81

61.20 94.68 82.12 40.90R

2.09 1.73 1.76 1.77

A

A

+ + +
= = =

+ + +

∑

∑
(m

2
×°C/W),    (1) 

By using the formula (8) SP 23-101 [27], we calculate conditional (excluding the influence of 

thermally conductive inclusions thermal homogeneity of the walls) thermal resistance оR  consider 

constructive solutions:  

n
i

о si k se si se

i 1 i

1 0.375 0.12 1
R R R R R R , 2.99

8.7 0.14 0.8 23

δ

λ=

= + + = + + = + + + =∑ (m
2
×°C/W), (2) 

where 
intintsi ,1R αα=  – heating capacity coefficient for interior side of a building envelope, 

W/(m
2
×°C), taken from Table. 7 SNIP 23-02 [19];  

extextse ,1R αα= – heating capacity coefficient for exterior side of a building envelope under the 

conditions for the cold season, W/(m
2
×°C), taken from Table 8 SP 23-101 [27];  

kR – thermal resistance of the enclosing structure with successive homogeneous layers 

(m
2
×°C)/W;  

δi – the thickness of the i-th layer of a multilayer enclosing structure, m;  

λi – thermal conductivity of i-th layer of a multilayer enclosing structure, W/(m
2
×°C),  received 

for the conditions “A” or “B” depending on the Zone of moisture  of the construction region and 

moisture  conditions of the premises. [30]  

Further on, one may determine the coefficient of heattechnical uniformity r of the exterior wall 

of a typical intermediate floor with the soffits without their fillings:  

r

0

0

R 1.81
r 0.61

R 2.99
= = = ,           (3) 

The author of the work “Thermalphysic Problems of Contemporary Wall Enclosure Structures of 

Buildings” [31] had a similar design solution and got even lower the calculated value of the 

coefficient of heattechnical uniformity r = 0.48. Differences in the coefficients of heattechnical 

uniformity may be due to differences made in project design solutions, the quantitative and 

qualitative composition of the thermally conductive inclusions. Also the heattechnical heterogeneity 

of wall constructions depends on the quality of the installation. In the same paper [31], in particular, 
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noted that the thermal resistance of a two-layer curtain wall, measured in natural conditions, from a 

survey of fifteen thermogram was 1.3÷1.5 (m
2
×°C)/W (conditional thermal resistance of the wall 

fence оR = 3.92 (m
2
×°C)/W) [31]. This means that the actual coefficient of heattechnical uniformity 

may be even smaller than the calculated values (as considered in [31] example:              

( )r 1.3 1.5 / 3.92 0.33 0.38= ÷ = ÷ ). As one of the possible causes of discrepancy Gagarin [31] notes 

the poor quality construction, due to the fact that the construction site can enter blocks of irregular 

shape. Indeed, the presence of cracks, faults, potholes and other defects in products, can lead to a 

waste of mortar [32], which acts as an additional thermally conductive inclusions, which are not 

considered in the calculation.  

It should be noted that the actual moisture of the aerated autoclaved concrete product may 

significantly exceed the design in the initial period of operation [32]. In this regard, the thermal 

conductivity of the products of the aerated autoclaved concrete may be provided is higher than the 

calculated values adopted in the project, since the thermal conductivity of the material depends on 

the moisture content of the mass. 

Conclusion  

In consequence of calculations formulated the following conclusions: 

1. Reduced thermal resistance r

0R  of a two-layer wall construction consisting of an inner self-

supporting layer of aerated autoclaved concrete unreinforced wall blocks grade density D400 and 

outer lining layer of ceramic facing brick thickness of 120 mm, calculated on the basis of the 

calculation of temperature fields for a typical intermediate floor of an apartment building is 1.81 

m
2
×°C/W.  

2. The construction of the wall fencing considered in the article (Fig. 1) does not satisfy the 

regulatory requirements for thermal protection ( reqR =3.08 m
2
×°C/W.). 

3. The construction of the wall fencing shown in fig. 1 does not satisfy the minimally permissible 

requirements of the thermal protection ( minR =1.94 (m
2
×°C)/W). 

4. Coefficient of  heattechnical uniformity of the construction of the exterior walls made of 

masonry of the aerated autoclaved concrete blocks mark density D400 with the lining layer of 

facing bricks, does not exceed 0.61.  

5. The actual value of the Coefficient of heattechnical uniformity considered constructive solutions, 

taking into account the quality of products delivered to the site and the quality of their 

installation [31], can be considerably smaller than the calculated value.  

6. In order to ensure compliance with regulatory requirements for the thermal protection of the 

exterior walls of buildings as part of wall fencing (Fig. 1) should either increase the thickness of 

the aerated autoclaved concrete blocks as part of the two-layer wall structure, or use an 

intermediate layer of thermal insulating material with a calculated thermal conductivity of not 

more than 0.05 W/m·°C. Layer of thermal insulation should be placed between the aerated 

autoclaved concrete layer and facing layer.  

7. In all cases, there should be ventilated gap between the thermal insulation layer and facing brick, 

the effective cross section of the gap (thickness) must be determined calculation. It is necessary 

for the efficient removal of moisture from the structure wall fencing. 

References 

[1] Energy Efficiency. D. Eastop, D.R. Croft. Longman. 1990. 400 p. 

[2] Sormunen, P. Energoeffektivnost zdaniy. Situatciya v Finlandii. [The energy efficiency of 

buildings. The situation in Finland] (2010) Magazine of Civil Engineering, 1, pp. 7-8. (rus) 

[3] Jormalainen, J., Käkelä, P. Sustainability of Polyurethane Thermal Insulation (2011) 9-th Nordic 

Symposium on Building Physics, Tempere, Finland, 6p. 

54 Innovative Technologies in Development of Construction Industry



[4] Vostrikova, E.V., Energoeffektivnaya rekonstruktciya zhilikh domov 1960-h godov. [Energy-

efficient renovation of residential buildings of the 1960s] (2014) The dissertation of Saint-

Petersburg state Polytechnic University, 57 p. (rus) 

[5] Ehhort, H., Reiss, J., Hellwig, R. Energy-efficient buildings. Analysis of the current state and 

prospects of development based on the completed projects (2006) AВОК, No.2, pp. 36–49.  

[6] Samuel Faye Gamtessa. An explanation of residential energy-efficiency retrofit behavior in 

Canada (2013) Energy and Buildings, Vol. 57, pp. 155-164.  

[7] Natasa Nord, Stine FjærliSjøthun. Success factors of energy efficiency measures in buildings in 

Norway (2014) Energy and Buildings, In Press, Accepted Manuscript, Available online. 

[8] National Building Code of Finland, Part D3.  

[9] A.A. Kaklauskas, J.A. Rute, E.K.A. Zavadskas, A.a. Daniunas, V.A. Pruskus, J.A. Bivainis, 

R.B. Gudauskas, V.A. Plakys, Passive House model for quantitative and qualitative analyses and its 

intelligent system (2012) Energy and Buildings, No. 50, pp.7-18. 

[10] Energy Concept for an Environmentally Sound, Reliable and Affordable Energy Supply. 

Federal Ministry of Economics and Technology (2010) Berlin, (BMWi), Public relations, 32 p.  

[11] Danny, L.D., Harvey Recent Advances in Sustainable Buildings: Review of the Energy and 

Cost Performance of the State-of-the-Art Best Practices from Around the World (2013) Annual 

Review of Environment and Resources, Vol. 38, pp. 281-309.  

[12] Vatin, N.I., Nemova, D.V., Rymkevich, P.P., Gorshkov, A.S.: Influence of building envelope 

thermal protection on heat loss value in the building (2012) Magazine of Civil Engineering, No.8, 

рр. 4-14.  

[13] EN 15603:2008 Energy performance of buildings. Overall energy use and definition of energy 

ratings. 

[14] Vatin, N., Gorshkov, A., Rymkevich, P., Nemova, D., Tarasova, D., Nonstationary thermal 

conduction through the building envelope (2014) Applied Mechanics and Materials, Vols. 670-671, 

pp. 365-369.  

[15] Nemova, D., Murgul, V., Golik, A., Chizhov, E., Pukhkal, V., Vatin N., Reconstruction of 

administrative buildings of the 70s: the possibility of energy modernization (2014) Journal of 

Applied Engineering Science, Vol. 12 (1), pp. 37-44.  

[16] Penic, M., Vatin, N., Murgul, V. Double skin facades in energy efficient design (2014) Applied 

Mechanics and Materials, Vol. 680, pp 534-538. 

[17] A. Borodinecs, B. Gaujena, The implementation of building envelopes with controlled thermal 

resistance (2012) 10th International Conference on Healthy Buildings 2012, Australia, Brisbane, pp. 

1715-1722. 

[18] Federalnyy Zakon ot 23.11.2009 No.261-FZ Ob energosberezhenii i o povyshenii 

energeticheskoy effectivnosti vnesenii izmeneniy v otdelnye zakonodatelnye akty Rossiyskoy 

Federatsii [Federal law No.261 On energy saving and energy efficiency improvements and on 

amendments to Certain Legislative Acts of the Russian Federation]. 

[19] SNiP 23-02-2003. Teplovaya zaschita zdaniy. [SNiP 23-02-2003 Heat protection of buildings]. 

M., 2004. (rus)  

[20] SP 50.13330.2012 Teplovaya zaschita zdaniy (actualizirovanaya redakciya SNiP 23-02-2003). 

[SP 50.13330.2012 Heat protection of buildings actualized edition of SNIP 23-02-2003]. M., 2012. 

(rus)  

Applied Mechanics and Materials Vols. 725-726 55



[21] Gorshkov, A.S.: The energy efficiency in the field of construction: questions of norms and 

standarts and solutions for the reduction of energy consumption at buildings (2010) Magazine of 

Civil Engineering, No.1, рр. 9-13. 

[22] Matrosov, Y. A, Mark Chao, Cliff Majersik: Increasing Thermal Performance and Energy 

Efficiency of Buildings in Russia: Problems and Solutions. [Electronic resource]. System 

requirements: AdobeAcrobatReader. URL http:,www.cenef.ru/file/St-267e.pdf . 

[23] Gorshkov, A.S., Gladkih, A.A. Vliyanie rastvornyh shvov kladki na parametry 

teplotehnicheskoy odnorodnosti sten iz gazobetona [The influence of mortar joints of masonry on 

the parameters of the thermal uniformity of the walls of aerated autoclaved concrete] (2010) 

Magazine of Civil Engineering, No.3, рр. 39-42. (rus) 

[24] GrinfeldI, G., Gorshkov, A., Vatin, N., Tests results strength and thermophysical properties of 

aerated concrete block wall samples with the use of polyurethane adhesive (2014) Advanced 

Materials Research, Vols. 941-944, pp. 786-799. 

[25] Graubohm, M., Brameshuber, W., Investigations on the gluing of masonry units with 

polyurethane adhesive (2010), 8th International Masonry Conference 2010 in Dresden, pp. 108-109. 

[26] RMD 23-16-2012 Sankt-Peterburg. Rekomendatsii po obespecheniyu energeticheskoi 

effektivnosti zhilyh i obschestvennih zdaniy [RMD 23-16-2012 Saint Petersburg. 

Recommendations to ensure the energy efficiency of residential and public buildings]. (rus) 

[27] SP 23-101-2004 Proektirovanie teplovoi zaschity zdaniy [SP 23-101-2004 Design of thermal 

protection of buildings]. (rus) 

[28] Krivoshein, A.D., Fedorov, S.V. “K voprosu o raschete privedennogo soprotivleniya 

teploperedache ograzhdayuschih konstrukciy”. [“To the question of the calculation of the reduced 

thermal resistance of frame structures”] (2010) Magazine of Civil Engineering, No.8, рр. 21-27. 

(rus) 

[29] Krivoshein, A.D., Fedorov, S.V. “Rukovodstvo polzovatelya programmnim kompleksom 

«TEMPER» po raschetu temperaturnih polei ograzhdayuschih konstrukciy zdaniy” [“User Manual 

software package “TEMPER” on the calculation of temperature fields of building envelopes”], 

SibADI, Omsk, 1997, 36 p. (rus) 

[30] Sokolov, N.A., Gorshkov, A.S. “Teploprovodnost stroitelnyh materialov i izdely: uroven 

garmonizatsii rossiyskih i evropeyskih stroitelnyh standartov” [“The thermal conductivity of 

building materials and products: the level of harmonization of Russian and European building 

standards”] (2014) Construction materials, equipment, technologies of the XXI century, No. 6 

(185), pp. 27-31. (rus)  

[31] Gagarin, V.G. Teplofizicheskie problemy sovremennykh stenovykh ograzhdayushchikh 

konstruktsiy mnogoetazhnykh zdaniy [Thermalphysic Problems of Contemporary Wall Enclosure 

Structures of Buildings] (2009) Academia. Architecture and building [The Academy], No. 5, pp. 

297—305. (rus) 

[32] Nemova, D.V., Spiridonova, T.I., Kurazhova, V.G. Unknown properties of the well-known 

material (2012), Construction of Unique Buildings and Structures, No.1, pp. 36-46.  

56 Innovative Technologies in Development of Construction Industry



 

Unsteady Temperature Condition Of The Enclosure Structure 

Mikhail Petrichenko1,a , Darya Tarasova2,b *, Darya Nemova3,c 
1,2,3

 St. Petersburg State Polytechnical University, Polytechnicheskaya st. 29, 195251, 
St. Petersburg, Russia 

a
fonpetrich@mail.ru, 

b
tarasovads@gmail.com, 

c
darya.nemova@gmail.com 

Keywords: External temperature fluctuations, energy efficiency, heating system, external 
enclosure structures, emidiurnal variations, energy consumption, thermal stability of cladding 
structures. 

Abstract. In this article the influence of external temperature fluctuations on temperature of the 

enclosure structures are defined, a selection of optimum heating system for thermal energy saving 

are offered, thickness of penetration layer of a temperature wave are defined. Fourier's differential 

equation of heat conductivity process in a solid body is solved and analysed. 

Introduction 

To maintain constant air temperature in winter time it is required to supply space heating in a 

variable number according to the variations of temperature on the enclosure structure inside face 

caused by external temperature changes. Property of enclosure structure to resist temperature 

changes is called thermal stability of cladding structures [3-29]. 

If there were no windows it would be practically possible to maintain constant inside temperature 

in the building without heat supply changing of heating system during a day despite of diurnal 

variation of external temperatures [1]. 

The systems without automatic regulation of temperature are possible to use until the emidiurnal 

variations of external temperatures completely attenuate in enclosure structure. 

The diurnal atmospheric internal temperature changes at a constant heat supply of heating will be 

the same as temperature changes of the unheated space. Heating will affect only the average room 

temperature [25]. 

The design of heating system with a condition that heating breaks were possible at any external 

temperatures can't be acquitted economically. However breaks in the interruption at a sufficiently 

high external temperatures will save energy consumption. How great will be the energy saving can 

be calculated knowing the curve of the winter temperatures. 

Gagarin V.G. offered to use the integrated indicator (specific heat transfer coefficient of the 

enclosure structure) to normalize the thermal protection of the enclosure structure. The specific heat 

transfer coefficient includes data of thermal protection of all enclosure structure. The difference of 

proposed metric is that it does not include ventilation parameters, insulation, heat emission of the 

building. This approach to normalization of thermal protection will allow to determine the weakest 

elements of constructive solutions in thermal protection matters of the building. Application of this 

complex indicator will allow to increase significantly energy efficiency of the buildings . 

V.N. Bukhartsev has proposed procedure that makes it possible to assign the rate of drop in water 

level in the upper pool which eliminates failure of earthen structures in the surveys [2-3].  

V.N. Bukhartsev offered to replace the traditional Dupuis formula by the condition of the 

minimum of the functional reflecting the average quadratic norm of the departure of the curvilinear 

profile of the free surface from a straight line in the surveys.  

V.N. Bukhartsev has derived an energy-balance equation for an integral flow with a variable flow 

rate over a particular length. The equation has been applied to the confluence of flows [4]. Other 

major factors have been also analyzed [5]. V.N. Bukhartsev has presented [6-8] an algorithm for the 

problem of flame propagation rate in combustion of a homogeneous fuel-air mixture in a cylinder of 
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an internal combustion engine. The principles presented can be used as the basis of an algorithm for 

heat liberation rate in an internal combustion engine with external mixture formation. 

The purposes of this work are definition of influence of external temperature fluctuations on 

temperature of the enclosure structures, a selection of optimum heating system for thermal energy 

saving , determination of thickness of penetration layer of a temperature wave.  

For achievement of the purpose it is necessary to solve and analyse the Fourier's differential 

equation of heat conductivity process in a solid body. 

The setting of the limit problem 

The problem of instant distribution temperature of uniform solid body (in this case enclosure 

structure) is considered x>0 (Fig.1). 

 

Figure 1.The uniform solid body (enclosure structure). 

 

The heat extends according to linear Fourier's law. The heat transfer of enclosure structure with 

surrounding environment  takes according to the law of external heat transfer. Any periodic change 

of external temperatures and heat supply is allowed. The limit Fourier's problem for periodic heat 

supply is: 
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From formula (1) 

p
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x
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t

λρ
αξτ 0

00

:,:,: === ; Te – external temperature; t0-time period of 

temperature change. The frequency condition on time is equivalent to such entry condition: 

( ) 0, =∞− ξT  

The solution of the Fourier's equation 

The temperature distribution is searched in the form: 

( ) ( ) ( ) ξξ ττξτ 2, −− += ebeaT                                                                                                         (2) 
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The Fourier's equation  with variable boundary conditions of the third kind (as in this problem) 

can not be solved by classical methods(spectrum analysis). 

 The differential Fourier's equation (Eq. 1) is replaced by the integral relation: 
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Procedure of data to an integral relation (Eq. 3) is equivalent to use of a thermal balance 

condition of a wall in general. This approach is applicable to nonlinear problems. In the left part of 

this equality the integral is calculated according to the theorem Bonn: 

∫
∞

=
0

0
δξ TTd ,                                                                                                         (4) 

where δ=δ(t) - thickness of a temperature fluctuations layer, T0(τ):=T(τ,0). 

Then to determine the coefficients of the functions a(τ), b(τ)  get the equality: 
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Bonnet's theorem (Eq. 4) allows entering layer thickness fluctuations obviously and showing that 

whole structures except a layer of fluctuations remains with a constant temperature, i.e. it performs 

the function of warmth accumulator. This way easily adapts on multilayered walls and on nonlinear 

conditions of a heat transfer (radiation, an infiltration, etc.).  

For determination of temperature on a wall surface T0(τ) the linear equation of the first order 

with a zero initial condition turns out: 
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Heat transfer coefficients h according to construction norms usually are constant, not time-

dependent, not distributions dependent. 
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The analysis of the received solution of the Fourier’s equation  

Let k→2-0 (h→∞). Then evenly on τ, T0→Te (temperature of a wall surface trends to 

environment temperature). 

 Let h→0, k→0. Then it is approximate: ( ) ( ) ...
2
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2

2

0 +−+=
ττ

ττ
d
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dT
TT ee
e  also the top and lower 

borders for a wall surface temperature assessment turn out. 

The product T0δ  is proportional to warmth accumulation in a wall. With growth h accumulation 

increases T0δ→Teh/2, δ→h/2.  
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For tasks construction heating engineers h is limited and T0δ changes  

proportionally to ( ) ( ) ...
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 In this case thickness of penetration layer of a temperature wave in shares (at0)
1/2

 makes:  
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It turns out that: 

1. accumulation capacity of the wall varies with changes of the external heat transfer. For large 

values of the external heat transfer coefficient the thickness of penetration layer of a temperature 

wave in shares (at0)
1/2

 make size of order h; 

2. for heat-insulating materials thickness of a temperature fluctuations layer is small and 

temperature of material doesn't influence on wall temperature: in a wall there is a slow aperiodic 

mode of heating (cooling); 

3. high-frequency (daily, week) fluctuations of temperature are localized in a thin fluctuations 

layer and don't cause noticeable change of average temperature of a wall on big times. 

Resume 

In the research the following conclusions were made: 

1. the typical construction possesses considerable thermal stability of cladding structures. The 

high-frequency vibrations (daily, hour and week) of temperature aren't matter; 

2. in this regard there are reserves for use of warmth accumulation of enclosure structure for 

realization of economy of energy saving in heating technology (on the simple: to heat the house 

periodically : to heat 2-3 hours in the afternoon, to block gates and not to heat at night). 
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Abstract. The presence of ice crusts and icicles on roofs is an urgent problem since they influence 

on the people safety and property which could be situated under roof cornices. There are a lot of 

methods to stop icicle formation on the roofs. At present article is considered an efficiency of an 

unsteady airway. The unsteady airway can change its section area depending on the wind speed. 

Such a constriction allows entering into the attic a big volume of cold air. At that сontribution is 

find a speed of snow melting on the roof featured by the unsteady airway. Speed of the snow 

melting influence the speed of ice crusting. By estimating these factors can be made a conclusion 

that the unsteady airway helps to reduce a quantity of ice dams.  

Introduction 

Heat loss through the building envelope is one of the most important problems in a building’s 

operation. Heat transfer through outer walls increases heating costs, while heat losses through attic 

floor and roof (apart from the fact that temperature decreases in habitable rooms) cause snow 

melting on roofs in winter. Within the limits of daily variation of the temperature, water which is 

generated because of snow melting can freeze and transforms to ice. Consequently, roof of dwelling 

houses are covered by icicles. Annual roof cleaning measures require considerable expenses from 

municipal budget. At the same time they are not always effective or timely enough. Roofs are being 

cleaned as early as possible in order to prevent injuries from falling ice or snow. In the article [1] it 

is proposed that the way to avoid the ice formation on the roof is by organization of the unsteady 

airway. The cross-sectional area of this airway changes depending on wind speed and allows a 

larger amount of air to penetrate into the attic floor. This cold air cools the roof void well enough. 

The difference between simple and unsteady airway is related to the mobility of the cubicle 

division. The cubical division isn’t made from solid material like plywood, but it is made from light 

and durable fabric, for example from tarpaulin. Applying rationality is being considered in the 

current article. For this purpose snow melting speed is calculated.  

Literature review 

Ice dam formation on the roof due to snow melting is a problem which is being explored by 

many authors not only in Russia [2-9], but also abroad [10-22]. There are a lot of different ways to 

reach a solution to the problem and large spectrum of methods can be used to attain such answers. 

Different authors have quite different ideas about measures for prevention of the ice formation. For 

example: renovation of the attic floor [8], aerated concrete used for heat insulation of slabs [6], 

cable heating system for changing the room heat and humidity regimen [19, 20], application of light 

thin-walled steelwork [3]. Most of these methods involve equipment installation costs, and 

furthermore, they require exploitation and repair costs. One of the easiest and the most economical 

ways to prevent ice formation on the roof is organization of the cold attic floor [4, 5, 7, 9-18, 21, 

22]. This exact method is estimated in given article.  
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Setting up of a goal and problems of the work 

The goal of work: to explore the possibility of reduction of ice formation on the roof with use of 

unsteady airways and also to determine the rationality of its usage.  

To reach this goal we should set up the following problems: 

1. Calculate the speed of ice melting on the flat roof. 

2. Calculate water volume which could potentially be transformed into the ice as the temperature 

of the surrounding environment air is reducing. 

3. Estimate the achievement probability of the critical amount of ice being on the roof. 

4. Consider the effectiveness of using unsteady airway as a method of reducing the heat input on 

the roof. 

Research description 

To reach a decision of the formulated problems it is necessary to define conditions which 

stimulate snow melting on the specified building roof. Attic floor parameters are taken from the 

normative documents for residential buildings [23-29]: length 20 m, height 2 m, width 10 m. The 

slab between the attic floor and upper inhabited floor is made of concrete (thickness 200 mm). 

Walls are also made of concrete without insulation. The roof consists of sheet iron (thickness 5 mm) 

on the timber rafters. 

According to experimental measurements the attic floor temperature is equal to 6℃ while outside 

air temperature is equal to 0℃. In article [1] there is a conclusion that, using unsteady airways, the 

attic floor temperature should be equal to 3℃. 

For estimation of the snow melting speed on the roof it is possible to use continuity equation for 

a heat flux which goes through the roof: 

0

.

=
∂
∂

+
∂
∂

x

q

t

h
, 

where dTcdh pρ=  - differential of the density enthalpy distribution, 
x

T
q

∂
∂

−= κ
.

 - heat flux 

density (can be calculated using Fourier’s law). Ratio 

pc
a

ρ
κ

=:  - temperature conductivity 

coefficient. Owing to admixture conservation (temperature, enthalpy) divergent members absent. 

We obtain:  

 









∂
∂

∂
∂

=
∂
∂

x

T
a

xt

T
.                                                          (1) 

 

Assume D(T)=(0<t<∞, 0<x<∞), T(0,x)=T(t, x)-1=T(t,∞) – limit conditions for Eq. 1. Instead the 

simplest (typical) limit conditions it’s possible to consider mixed limited conditions. In what 

follows, we shall accept that homeomorphism f exists: (0,1)→R
1
, f≥0, such that: α=α0f(z). 
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 brings limit task for Eq. 1 to the following view: 
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Approximative solution Eq. 2 is known: 
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We can introduce new variables: ( ) ( ) ∫==
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Actual equation in the limit task Eq. 1 is being brought to the view: 
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We decide Crocco’s equation Eq. 4 on the limit task characteristic. Due to dependence obtained 

in the work [30] along the characteristic of a limit task the following conclusion is being carried 

out: 
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Dividing variables of the differential equation Eq. 5: 
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Due to some variables changes and derivation we obtain functional connection: 
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Applying Eq. 7 to solving of the task about snow melting on the flat roof of a dwelling house, 

considering that attic floor is equipped with unsteady airway. Temperature distribution is shown on 

the Fig. 1. 

 
Figure 1. Temperature distribution on the flat roof. 

Let us put characteristics for liquid and solid medium:  
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It’s necessary to find the front of a snow melting the given moment: ζ=ζ0. Due to the ideal 

contact, there is identical equation: 
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Decide Crocco’s task on the first interval. It allows finding decision on the second interval. On 

the first interval task has following view: 
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Moreover: 
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Limit task Eq. 91 has a decision: 
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From decision Eq. 101: 
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On the interval T0<T<Ω limit task has the following view: 
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By a similar way, it has decision: 
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