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Preface 
 
 
The collective monograph “Shape memory alloys: properties, technologies, opportunities” 

presents the scientific results obtained by leading scientific teams studying shape memory alloys in 
former Soviet Republics during the last decade. The scientists from Russia (Moscow, Saint 
Petersburg, Ekaterinburg, Chelyabinsk, Tomsk), Ukraine (Kiev) and Belarus (Vitebsk) together 
with their colleagues from other countries made contributions to prepare this monograph. 

 
The collective monograph consists of five parts covering of all aspects of shape memory alloys 

from theory and modelling to applications. The first part is devoted to the theory of martensitic 
transformations and the modelling of functional properties of shape memory alloys. New methods 
for the simulation and prediction of the behaviour of shape memory alloys under different stress – 
temperature regimes are described. The wave model for the description of martensite crystal growth 
at different sequences of martensitic transformations and the analysis of recent achievements in 
theoretical description of phase transformation in Heusler alloys are presented. The second part is 
devoted to the physical basis for the development of shape memory alloys, including unique 
properties such as high-temperature shape memory alloys, high-strength single crystals of shape 
memory alloys and ferromagnetic shape memory alloys. The third part is devoted to the methods for 
controlling functional properties of shape memory alloys by thermomechanical treatment, warm 
deformation, electroplastic deformation, high strain rate loading, ultrasonic vibration and neutron 
irradiation. The fourth part is devoted to the study of martensitic transformation and shape memory 
effects in special objects such as porous alloys, thin ribbons, high-strength precipitation-hardening 
austenitic steels and alloying TiNi-based alloys. Finally, the fifth part contains a review of shape 
memory alloy applications in Russia. 

 
All chapters were peer-reviewed by expert referees. As the guest editors of the volume, we are 

grateful to the authors who prepared the chapters. We wish to acknowledge all those who reviewed 
the papers submitted to the monograph. 
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I. Theory and Modeling of Martensitic 
Transformation and Functional Properties



Possible Wave Processes Controlling the Growth of Martensite Crystals 
at B2-B19, B2-B19' and B2-R Transformations 

Mikhail Kashchenko
1,2,a 

and Vera Chashchina
1,2,b

 
1Ural State Forestry University, Ekaterinburg, Russia 

2Ural Federal University, Ekaterinburg, Russia 

ampk46@mail.ru,  bvera.chashina.77@mail.ru 

Keywords: dynamic model, martensitic transformation, morphological parameters, titanium 
nickelide, intermediate mesoscopic state. 

Abstract. Basic directions in the theory of martensitic transformations are briefly listed. Within the 
framework of the dynamic theory based on the synthesis of concepts of heterogeneous nucleation 
and wave growth of martensite crystals, the possibilities of description of morphological parameters 
during the В2→B19, В2→B19′, В2→R transformations are analyzed. It is demonstrated that the 
calculated and observed habit planes and orientation relationships can be matched.  

In particular it is demonstrated that an introduction of the notion of the intermediate mesoscopic 
state during the B2 → B19′ transformation is expedient for a description of the observed 
morphological parameters. The {78 39 48}B2 habit planes of the B19′ phase can be associated with 
standard dislocation nucleation centers.  

It is noted that the exact inheriting of elastic fields of a dislocation nucleation center is possible. 
This is a necessary condition for explanation of the effect of transformation reversibility upon 
thermocycling. 

The results obtained are briefly discussed. 

Introduction 

The phenomenon of martensitic transformation (MT) as a specific variant of the realization of a 
polymorphic transformation associated with a cooperative mechanism of atomic displacements 
attracts wide attention of researchers. On the one hand, an MT modifies the properties of a material 
and therefore plays an important practical role (it suffices to mention the process of quenching 
steels or a shape memory effect in NiTi alloys). On the other hand, it is quite interesting to construct 
a physical theory of MTs that would not be limited to fragmentary explanations of separate aspects 
of this phenomenon but rather would enjoy a high degree of completeness of description of all 
significant observable properties. It is obvious that such a theory should be based on a clear 
understanding of the physical nature of the mechanism of control of the structure rearrangement. It 
is evident that in the case of metals and alloys that represent electron-ion systems, we should first of 
all understand what features and states of the subsystems are necessary for the development of the 
MT. The issue is complicated by the fact that in different metallic systems, the MT can occur via 
different scenarios, which include the differentiation not only of the structures of the initial and final 
phases but also of the character of the phase transition, whose manifestations in some cases 
correspond to a limit version of a second-order transition, while in other cases, - to a clearly 
pronounced first-order transition. The understanding of both limit cases seems to be important. 
Until recently, the main problems are currently related precisely to the explanation of the MT 
mechanism in the case of distinctly pronounced first-order transitions.  

This is not surprising because such a transition occurs upon a significant deviation from the point 
of equilibrium of the phases, and the strongly supercooled (or superheated) system is an active 
medium capable of liberating energy. Consequently, under nonequilibrium conditions, the MT 
mechanism that ensures the fastest rate of energy liberation may be unrivaled. Detecting such a 
mechanism requires revising familiar concepts of first-order phase transitions, in particular, revising 
the problem of the existence of equilibrium (quasi-equilibrium) nuclei of a new phase. It is obvious 

Materials Science Foundations Vols. 81-82 (2015) pp 3-19
© (2015) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/MSFo.81-82.3



that in a metallic system, the mechanism of propagation of the fastest relaxation of energy is related 
to a wave process, and the appearance of waves is related to the initial excited (oscillatory) state of 
ions, which is maximally efficient for triggering the process of rapid growth of the new phase. In 
turn, this initial state is localized in those regions of space where, owing to the influence of the 
elastic fields of defects (e.g., ordinary dislocations), a significant decrease occurs in the interphase 
energy barrier. This explains the specific character of heterogeneous nucleation. And, finally, the 
case that is richest in physical contents is where the maintenance of a high (threshold) level of 
deformations at the front of the control wave process (CWP) is possible due to the participation of 
the electronic subsystem.  

The physically transparent picture described in an above general representation corresponds to a 
new paradigm of MTs that allows consistently describing a large body of observed facts and 
removing problems that seemed to be insurmountable for theoretical constructions based on the 
traditional quasi-equilibrium approach. 

In making the final conclusions, we can state that the current model of the formation of a 
martensite crystal (including the stages of heterogeneous nucleation, wave growth, and 
accommodation of the coexisting phases) in the case of a spontaneous (in the process of cooling) 
γ−α martensitic transformation in iron alloys realized in single crystals or in polycrystals with large 
grain sizes D is generally complete [1-4]. The high degree of the completeness of the description of 
the observed features of the transformation suggests a new paradigm of the dynamic theory of the 
spontaneous γ−α MT.  

The scheme in fig. 1 reflects an important role of the concept of initial exited state (IES) within 
the limits of new paradigm of MT. This concept has essentially completed the ideas of physics of 
first-order phase transitions on the initial stage of transformation. A deduction on the existence of 
the controlling wave process and its supersonic speed is a direct consequence of this. 

IES is a region having the shape of an elongated rectangular parallelepiped with transverse 
dimensions d1, 2 (d1 ~ d2 ~ d) that is constructed on orthogonal eigenvectors of the tensor of elastic 
deformations of the defect (as a rule, a dislocation). It is important that d makes about one 
hundredth of the size of defect-free volume. The relation between spatial scales together with the 
condition for occupation of states of the electrons generating waves allows explaining an Ms 
dependence on D (Ms is the temperature of MT start and D is the size of austenite grain). 

 

 
Fig. 1. Key position of the concept of Initial Excited State in dynamical theory of MT [2] 

 
This conclusion can also be related to the dynamic theory of the formation of stress-assisted 

martensite (upon cooling in an external elastic field), in which case we simply observe a reduction 
in the number of realized variants of orientations of martensite crystals (compared to that observed 
in the case of a spontaneous transformation).  

For the completeness of the analysis, we recall that at grain sizes exceeding the critical size Dc, 
apart from the above-considered cooling-induced martensite, crystals of deformation-induced 
martensite can be formed (at the stage of plastic flow), which is related to the carriers of threshold 

Initial excited state 
(IES): oscillations 

Controlling wave 
process 

Dislocation Nucleation 
Center (DNC) 

Dependence of Ms on 
D (size of austenite 

grain) 

Mechanism of wave generation 
(amplification) by non-equilibrium 

electron subsystem  
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deformation called crystons. The crystons (shear superdislocation carriers that arise upon the 
contact interaction of dislocations with intersecting slip planes) specify the orientations of habit 
planes during their propagation [5-7]. Fig. 2 displays the formation scheme of a cryston due to the 
interaction of n and m dislocations with different initial slip systems.  

 
 

Fig. 2. Generalized Frank-Read source (typical of the fcc phase) of crystons each of which is 
characterized by a total (superposition) Burgers vector 21 bmbnb += . 

 
The cryston concept is also efficient in describing shear bands with an arbitrary crystallographic 

orientation of planar boundaries.  
Fig. 3 schematically shows the logical structure of the dynamic approach to the description of 

martensitic transformations.  
The conformity of the theory to the observed picture of a γ−α MT is beyond doubt. Here is a list 

of the main obtained achievements and solved problems. 1. The new model of martensite nucleation 
in elastic fields of dislocations. 2. Тhe concept of the initial exited state. 3. The identification of the 
characteristic spatial scales at the nucleation. 4. The mechanism of generation of elastic waves by 
nonequilibrium electrons. 5. The supersonic growth speed of martensite crystals. 6. The transition 
from threshold to ultimate deformations. 7. The interpretation of all observed macroscopic 
morphological features (habitus, macroshear and orientation relationships of the initial and final 
phase lattices). 8. The martensite crystal twinning in the course of γ−α martensitic transformation 
[4, 8]. 9. Analytical formula for the critical size of austenite grains Dc (Ms (Dc) = 0) has been 
obtained [1, 9, 10]. 10. The dependence of Dc on significant physical parameters was analyzed. 11. 
The existence of the special concentration C* (for C → C*, Ms → 0, Dc → ∞). 12. An 
explanation of the dependence of the size Dc on the strong magnetic field H and, as a result, the 
effect of destabilization of austenite preliminarily stabilized via grain refinement or severe plastic 
deformation. 13. An estimation of the macroscopic fraction of martensite for self-similar kinetics 
of ensembles of martensitic crystals in the model of symmetric orthogonal joints [11]. 14. The 
description of the profiles of martensite crystals formed in a medium containing planar 
inhomogeneities [12, 13]. 15. The calculation of critical rates of cooling of an austenite [14]. 16. 
The estimations of scales of incubatory times during the forming of a macroplate of bainitic ferrite 
[15]. 

This opens a wide field of activity for using the diverse tools of physical acoustics in the analysis 
of the morphological features of separate crystals (e.g., of plate-like or wedge-like forms), their 
junctions (acute and obtuse), mutual intersections, interactions with grain boundaries, etc., on the 
basis of the concepts of the CWP as a superposition of wave beams propagating in metastable 
austenite and capable of disturbing its stability. As regards other promising avenues of 
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investigations, we note the possibility of extending the applicability of the theory to bcc-hcp and 
hcp-bcc transitions [16, 17], which require an additional short-wavelength “reshuffling” of planes 
(which does not affect the macroscopic morphological features). 

The purpose of this paper is to show that the concept of the controlling wave process is efficient 
also in the case of MTs in titanium nickelide-based alloys. 

 
 

Fig. 3. Key points of the description of a martensitic reaction in single crystals and in 
polycrystalline materials with the grain size exceeding the critical size Dc. 

Theory Procedure 

The key role in a new paradigm is played by the concept of the IES appearing in the elastic field 
of a dislocation nucleation center (DNC). The oscillatory character of the IES generates a control 
wave process resulting in the threshold deformation disruption of the stability of the initial phase. In 
the simplest case the synthesis of concepts of heterogeneous nucleation and wave growth is reached 
if we consider that the wave normals 1n  and 2n  of wave beams in the CWP, describing in the 
superposition region the tensile (ε1 > 0) and compression strain (ε2 < 0), are collinear to the 
eigenvectors 

i
ξ  (i = 1, 2) of the strain tensor of the elastic defect field in the nucleation region (see 

Fig.4): 
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the characteristics of the nucleation process 

 

Relaxation of the area that lost stability upon the propagation  
of the process carrying threshold deformation 

 

Observed morphological features 
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Fig. 4. Wave model of controlling growth of a martensite crystal (the segment bounded by the 
symbols ┴ corresponds to a dislocation line). 

1n || 1ξ , 2n || 2ξ , 1n ⊥ 2n , | 1n | = |
i

ξ | = 1.   (1) 

The normal wN  to the habit plane associated with CWP propagation is set by the relationship 

wN  || 2n – 1n æ,  æ = 12 vv ,  (2) 

where v1 and v2 are the moduli of the velocities of wave propagation in the 1n and 2n  directions. 
For the small threshold strains εth, there holds true the relationship 

æ = 12 vv = 21k εε=             (3) 

The reconstructive γ-α MT in iron-based alloys possess clearly pronounced properties of 
cooperative phase transitions of the first kind, whereas in the В2 titanium–nickelide-based alloys, 
the characteristics of transitions of the first kind are expressed to a lesser degree. From three 
widespread MT variants (B2 → B19, B2 → R, and B2 → B19′), we consider at first the B2 → B19 
transition with the greatest relative change of the volume.  

Results and Discussion 

B2 → B19 MT for simplest variant (wave vectors along the axes of symmetry). Here the 
attention is focused on CWP cases [16-18] providing the fastest transformation of the {110}B2 
planes. The present paragraph is aimed at demonstration of the possibility of a choice of the 
deformable plane convenient for a description of the B2 → B19 (and B2 → B19′) MT through the 
intermediate mesoscopic state.  

We begin by considering of expected habit planes and DNC for quenched martensitic crystals. 
Based on the data on the elastic moduli of Ti–Ni–Cu and Ti50–Ni38–Cu10–Fe2 systems presented 
in [19-22], the elastic moduli (in GPa) are assumed to be 

C11 = 165, C12 = 139, C44 = 34.   (4) 
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Setting in Eq. (2) 1n ||[110]В2 and 2n ||[001]В2 (the (1 1 0)В2 plane is deformed), we find 

wN ||[ -æ -æ 2 ]В2, æ =
441211

11

C2CC
2C

++
.  (5) 

Substitution of elastic moduli (4) into Eq. (5) yields 

æ ≈ 0.9419 and wN  || B21.5015]11[   (6) 

that is, the {223}B2  habit planes, as well as {334}B2 ones (for small deviations of 1n  and 2n  from 
the symmetry axes), are easily realized in the wave description. It is well known (for example, see 
[23, 24]) that the necessary conditions for the formation of the corresponding IES exist in elastic 
fields of edge dislocations with a [ ] 2B011  direction of dislocation lines. Recall that the habit 
planes, close to {223}B2 and {334}B2, are observed in Ti–Ni–Cu [25].  

The B19 phase is orthorhombic; therefore, the additional requirement caused by the lattice 
symmetry during an α–ε MT (see [17]) is absent, and it is impossible to determine analytically the 
final strains only from the known ratio of their values. However, knowing the lattice parameters for 
the initial and final phases, it is possible to verify whether the observable ratio of final strains is in 
agreement with the ratio of threshold strains according to the requirement (3). Fig. 5 taken from 
[19] shows elementary cells of phases.  

 

 
 

Fig. 5. Elementary cells of В2 (a), В19 (b and c), and В19′ phases (d) in titanium nickelide alloys 
and their size-orientation relations and reorganization schemes determined by shuffle (of 
{011}<100> and { 101 }<011> types)  displacements of atoms (the {011}В2 shear planes are 
hatched). The Fig. 5 corresponds to Fig. 3.12 in [19]. 

 
It should be borne in mind that Fig. 5 displays only approximate correspondence of cell sizes of 

the initial В2 phase. For example, setting the cell size in the [100]B2 direction equal to aB2 = 0.3 nm, 
the sizes in the [011]B2 and [ 101 ]B2 directions must be set equal to 2 aB2 ≈ 0.42426 nm rather 
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than 0.43 nm. Below it is expedient to take advantage of experimental data for the lattice parameters 
with greater number of significant digits. Thus, according to [25], we have  

аВ2 = 0.3030 nm, аВ19 = 0.2881 nm, bВ19 = 0.4279 nm, сВ19 = 0.4514 nm. (7) 

A comparison of data (7) with data in Fig. 5 demonstrates the maximum difference between 
values of the parameter bВ19. 

From Fig. 5 it is clear that the final strains of the В2 phase cell are determined by formulas 

ε [100] = (aB19 – aB2)/aB2, ε [01 1 ] = (bB19 – 2 aB2) / ( 2 aB2), ε [011] = (сB19 – 2 aB2) / ( 2 aB2).  (8) 

From Eq. (8) with values of the parameters given by Eq. (7) we obtain 

ε [100] ≈ −0.04917, ε [01 1 ] ≈ −0.00142, ε [011] ≈ 0.05343. (9)  

Since the strain ε [01 1 ] ≈ −0.00142 in Eq. (9) is 10 times less than the two others, it is obvious 
that the plane ( 101 )В2 experiences the fastest tensile-compressive strain in the orthogonal [100]В2 
and [011]В2 directions. Choosing ε[011] ≈ 0.05343 for ε1 and ε[100] ≈ −0.04917 for ε2, we obtain the 
ratio of strains 

21 εε  ≈ 1.0865.   (10) 

From Eq. (6) we obtain æ2 ≈ 0.8872. According to Eq. (10), 21 εε > 1 and æ2 < 1; therefore, the 
ratio of the final strains deviates from that set by condition (3) in the threshold regime.  

We note that the fulfillment of condition (3) would mean smaller tensile strain value in 
comparison with the compressive strain for a pair of relatively long-wavelength beams (ℓ-beams), 
responsible for the formation of the habit plane of a martensite crystal. An analogous situation is 
observed during a γ−α MT in iron-based alloys. Moreover, by analogy with [16], it is clear that in 
the presence in the CWP  structure of relatively short-wavelength displacements (s-beams) 
responsible for the formation of the main component of transformation twins (with alternating 
principal tension axes), condition (3) can be met for ℓ-beams up to the final strains for the В2–В19 
MT as well.  

However, B19 martensite, as a rule, is not twinned. In this case, in our opinion, another 
transformation scenario not discussed earlier can be observed. 

 

Hypothesis about the intermediate mesoscale state. Since the strain rate of B19 martensite 
crystals is high and the observed habit planes are easily described by the wave model, it is possible 
to assume that actually, the CWP induces the first (main) stage of the fastest strain of the (01 1 )B2 
plane. In this stage, the final compression strain ε2 and the intermediate value of the tensile strain ε1 

are attained. The subsequent stage is associated with additional (rather small) stretching in the 
[011]B2 direction caused, most likely, by electron correlations. Then the CWP will determine the 
parameters aB19 and с'B19 according to the condition 21 εε ≈ æ2. For example, for 2ε  = 0.04917 
and æ2 = 0.8872, we obtain ε1 ≈ 0.04362, i.e., the strain ε1 ≈ 0.01 is retained for the second stage. 
The lattice parameter с'B19 is 2 aB2(1 + ε1) ≈ 0.4472 nm. This sequence of transformations is also 
suitable for a description of the В2 → В19' transformation. Indeed, it is convenient to consider the 
fast formed (due to CWP stimulation) state as an unstable intermediate mesoscale state (IMS), 
which has emerged after realization of the compression strain ε2 along [100]B2 and tensile strain ε1 = 
(c'B19– 2 aB2)/( 2 aB2) along [011]B2. The IMS → В19 transition is accompanied by additional 
stretching in the [011]B2 direction (and possibly by a smaller strain in the [01 1 ]B2 direction). The 
IMS → В19' transition is associated with the coordinated tension along [011]B2 and compression 
along [01 1 ]B2. We note that tensile and compressive strains for the IMS → В19' transition are 
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approximately equal. This means that the IMS → В19' transition can proceed in the wave mode for 
which the condition (3) holds true, because the velocities of waves in the equivalent directions are 
identical and hence æ = 1. 

 

Orientation relationship. First of all, proceeding to orientation relationships (OR) for the IMS, we 
note that for the fastest transformation of a plane, for example, (011)B2, it is possible to expect that 
this plane will enter into OR: 

(011)B2║(001)B19,  (11) 

and the given plane will be orthogonal to the habit one. The misorientation angle ∆φ for the 
corresponding directions is equal to ϕ(æ)−ϕ0 . Value ϕ0 is the misorientation angle for the 
corresponding directions after homogeneous deformation without turning the lattice as a whole. 
According to [4, 17], one of the variants of recording the analytical dependence of the ϕ(æ) on the 
wave velocity ratio æ has the form   

ϕ(æ) =
)1(æ)æ(

æ
arccos

222

2

++Γ

+Γ
, Г =

2

1

1
1

ε−

ε+
.  (12) 

In the case of the В2–IMS transition, the replacement ε1 → ε′1 in Eq. (12) should be borne in 
mind. In the examined case, the angle ϕ(æ) describes rotation of the <100>B2, <01 1 >B2 reference 
basis vector pair about the <011>B2 axis. Substituting in Eq. (12) æ2 ≈ 0.8872, ε1 ≈ 0.04362, │ε2│ = 
0.04917, and Г ≈ 1.0976, we obtain ϕ(æ) ≈ 2.6516º. 

Additional strain during IMS–В2 and IMS–В19 rearrangements leads to an increase in ϕ(æ) 
within the limits of 3º. It should be noted that the Bain variant of the orientation relations equivalent 
to the special case of OR (11) and (12) at ϕ = 0 was indicated in [19] as the OR for the B2 →B19′ 
and B2 → B19 transformations. Our estimate of the OR demonstrates that the OR must be 
determined as exact as possible to judge the mechanism of cooperative transformation. In our 
opinion, the exact fulfillment of the Bain OR would demonstrate that the conditions for material 
rotation of the lattice were not met in experiments with foils under examined conditions. In the 
general case, OR (11), (12) are preferable. 

 

Dynamical model of the B2 → B19′MT with taking into account an intermediate state. As 
indicated in [19], the B19′ phase can be formed directly from the B2 phase after (or simultaneously 
with) the B2–B19 and B2–R transitions. In particular, the possibilities for initiation of the direct 
B2–B19(19′) transformation with the formation of the habit planes close to {78 39 48}B2 observed 
in [26] within the limits of the concepts of heterogeneous nucleation and wave growth were studied 
in [24, 27, 28]. Based on the data about the orientation relationships between the lattice of Ti3Ni4 
particles (precipitated in the process of aging) and the lattice of the B2 phase, the dislocation with 
line orientation <1 2 0>B2 associated with the elastic field of particles and untypical of the 
homogeneous B2 phase was chosen. It was demonstrated that this dislocation can play the role of a 
nucleation center for the crystals with the habit planes {78  38  48}B2 and for the crystals with the 
habit planes {0.868  0.269  0.414}B2 observed in [29]. In [30, 31] it was shown that the {78  38  
48}B2 habit planes for crystals of the B19′ phase can also be associated  with the standard 
orientations of dislocation lines Λ ║ <111>B2 and Λ ║ <110>B2. For this purpose, it must be taken 
into account that the initial stage of forming the B19′ phase is associated with the influence of 
elastic fields of dislocations inherited by an intermediate mesoscopic state (IMS) after the 
B2 → IMS transition [30] or by the B19 phase after the B2 → B19 transition [31]. It was shown 
that dislocations change the orientation of the lines Λ by Λ′ due to strain of unit cells and of the 
lines Λ′  by Λ ′′  due to material rotation (12). As a result, the martensite crystals with the {0.78 0.39 
0.48}B2 habit planes are associated with nucleation in elastic fields of dislocations with lines whose 
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orientations Λ ′′  virtually coincide with the habit planes after strain and material rotation as it is 
evident from Table 1.  

This means you can describe the growth of martensitic crystals in the wave mechanism, but with 
the change in the orientation of the dislocation lines in inheritance. Thus, the use of orientations 
Λ ║<1 2 0>B2 is not obligatory though possible [23, 27, 28]. 

 
Таble 1. Transformation of Orientations of Dislocation Lines Λ  during the B2 → IMS Conversion 
(θ′ ,θ ′′ are the angles between Λ′ , Λ ′′  and habit plane) 

 

wN  Λ  Λ′  Λ ′′  θ′ , [°] θ ′′ , [°] 
0.48 
0.39 
0.78 

[ 011 ] 
+ 

  0.95083 
–1.02181 
–0.02181 

  0.915672 
–1.052355 
–0.052355 

 
1.69 

 
0.48 

–0.48 
0.78 
0.39 

[101] 
− 

0.95083 
0.02181 
1.02181 

  0.983952 
–0.009853 
  0.990147 

 
1.69 
 

0.48 

0.48 
0.78 
0.39 

[ 011 ] 
 
+ 

–0.95083 
  0.02181 
  1.02181 

–0.915672 
  0.052355 
  1.052355 

 
1.69 
 

0.48 

0.48 
–0.39 
–0.78 

[110] 
– 

0.95083 
1.02181 
0.02181 

0.915672 
1.052355 
0.052355 

 
1.69 
 

0.48 

0.48 
–0.39 
0.78 

[ 111 ] 
 
+ 

–0.95083 
  1.04362 
  1.04362 

–0.881533 
  1.0736067 
  1.0736067 

1.62 0.15 

0.39 
–0.48 
0.78 

[ 111 ] 
 
+ 

–0.95083 
  1.04362 
  1.04362 

–0.881533 
  1.0736067 
  1.0736067 

 
1.89 

 
0.71 

–0.48 
–0.39 
0.78 

[111] 
– 

  0.95083 
  1.04362 
  1.04362 

  0.881533 
  1.073607 
  1.073607 

1.62 0.15 

–0.39 
–0.48 
0.78 

[111] 
– 

  0.95083 
  1.04362 
  1.04362 

  0.881533 
  1.073607 
  1.073607 

1.89 0.71 

0.48 
0.78 
0.39 

[ 111 ] 
 
+ 

  0.95083 
  –1 
  1 

  0.949812 
  1.031104 
–0.968896 

 
2.24 

 
1 

–0.48 
0.39 
0.78 

 
[ 111 ] 
 
– 

  0.95083 
  –1 
  1 

  0.949812 
–0.968896 
  1.031104 

 
2.24 

 
1 

0.48 
0.39 
0.78 

 
[ 111 ] 
+ 

  0.95083 
  1 
  –1 

  0.949812 
  1.031104 
–0.968896 

 
2.24 

 
1 

–0.48 
0.78 
0.39 

 
[ 111 ] 
– 

  0.95083 
  1 
  –1 

  0.949812 
–0.968896 
  1.031104 

 
2.24 

 
1 

 
 

Materials Science Foundations Vols. 81-82 11



Dynamical model of the B2 → R MT. The evolution of the B2→R instability channel is 
determined by the observed tension strain ε|| of the lattice along one of the symmetry axes <111>В2 
and by the compression strain ⊥ε  in the transverse directions. Values of the final strains in the 
vicinity of Ms are much smaller in comparison with the В2→B19 reorganization. Thus, for example 
[19], accurate measurements for the aged Ti49Ni51 alloy gave ε|| ≈ 1.1% and ⊥ε  ≈ −0. 56%. 

We first assume that the CWP creates the final tension strain ε1 along the <111>В2 direction and 
the compression strain ε2 along one of the transverse directions (for example, <1 2 1>B2). Then 
under conditions of low elastic anisotropy, the strain ratio created by the CWP will be | ε1/ε2| ≈ æ─2 
≈ 1. Therefore, the observed ratio |ε||/ ⊥ε | ≈ 2 indicated above cannot be produced directly by the 
CWP of the chosen type. It seems likely that the final resultant strain contains additional 
contribution caused by the loss of stability according to an unfinished soft-mode scenario (as 
indicated above, the B2→R transition is close to the second-order transition). However, here we 
focus our attention on a less widespread variant of control in which the main role is played by the 
CWP transferring the threshold strain without tension along <111>В2. 

In this case, it is natural to consider that the CWP induces the fastest compression of the plane 
orthogonal to <111>В2. The condition | || ⊥ε ε | ≈ 2 and the relationship | 1 2

⊥ ⊥ε ε  |  ≈ æ─2 ≈ 1 hold both 
true and are not contradictory. Moreover, the dynamic mechanism can play the key role, because 
the compression it induces will create quasistatic tension in the direction orthogonal to the 
compression plane. Then the lattice tension is an indirect consequence of the CWP. Indeed, within 
the framework of the linear elasticity theory of an isotropic medium, the uniaxial tension ε|| is 
expressed in terms of the transverse isotropic compression strain ⊥ε  as follows: 

ν−
νε

=ε
⊥

1
2|| .   (13) 

Then, determining the Poisson coefficient 

2
)CC/()CC(5.01 12111211 +−−

=ν ,   (14) 

we can estimate ε|| considering that the CWP induces the observed strain ⊥ε . Using the data shown 
in Fig. 2.6 of [19] (for Ti49Ni51 single crystals cooled in a furnace) and assuming that C11 values for 
Ti49Ni51 and Ti50Ni50 are close, for the elastic moduli (in GPa) we obtain: 

C11 ≈ 155, C12 ≈ 125, C44 ≈ 26.    (15) 

From Eqs. (15) and (14) we obtain ν ≈ 0.4732. Then for ⊥ε ≈ 0.56% and for the ν value 
calculated from Eq. (13) we obtain ε|| ≈ 1.006%. Though this estimate is smaller than the observed 
value equal to 1.1%, it can be accepted as quite satisfactory with allowance for errors of the 
employed data and linearity of the employed theory. 

We note that the presence of strains of one sign in the CWP is not an obstacle for the CWP 
application, because at small strains (for the first-order transitions close to the second-order 
transitions), the role of the habit plane favorable for minimization of elastic distortion energy at the 
interface between the co-existing phases is not determining. An analysis of the morphological 
parameters can provide additional arguments for choosing among different CWP variants. 

 

Variant of the habit planes. The habit planes of the R-martensite crystals are close to {110}B2. 
Unfortunately, the degree of proximity was not indicated in [19]. Therefore, assuming as previously 
that the habit planes are determined by the CWP, we now consider their different variants.  

In the approximation of the isotropic elastic properties, the pairs of the wave normals can be 
matched especially simply with the observed habit planes, since in this case we obviate the need for 
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calculating the parameter æ = 1. For a preset orientation of the dislocation line Λ , we can always 
find a pair of wave normals (that together with Λ  form three orthogonal vectors) which describes, 
according to Eq. (2), any of the family of habit planes parallel to Λ . If the plane is parallel to Λ , 
the line of its intersection with the plane perpendicular to Λ  must be determined first. Then 
orientations of the normals 1n  and 2n  are determined by rotating the intersection line through the 

angles ± π/4 about the Λ  axis. For a comparison we now consider typical set of orientations 
Λ corresponding to the symmetry axes of the cubic lattice. 

1. Let we haveΛ || <10 1 >B2. 
1. 1. The wave beams transferring the tension strain in the < 1 1 1 >B2 directions and the 

compression strain in the <121>B2 orthogonal directions are excited with wave normals 1n  ||  
< 1 1 1 >B2 and 2n ||<121>B2. Then from Eq. (2) for æ ≈ 0.9897 ≈ 1 we obtain the habit planes almost 
coinciding with {414}B2 and making the least angles of ∼10º with the {101}B2 planes. We note  that 
this variant of the wave normals can be used for a combined description of the resultant strain when 
additional compression in the < 1 0 1 >B2 directions and tension in the < 1 1 1 >B2 directions, 
providing compression of the { 1 1 1 }B2 planes and the required ratio | || ⊥ε ε | ≈ 2, are observed 
together with the strain induced by the CWP. 

1. 2. We now find 1n  and 2n  for the (101)B2 habit plane given that Λ || [10 1 ]B2. Considering that 
the (101)B2 plane is intersected with the (10 1 )B2 plane along the [010]B2 line and rotating the 
[010]B2 vector through the angles ± π/4 about the [10 1 ]B2 axis, we obtain 

1n  ||[ 1 2 1]B2 and 2n ||[1 2 1 ]B2.    (16) 

It is clear that for Λ || [10 1 ]B2, 1n  and 2n  can be easily determined formally for the (hkh)B2 habit 
planes. Analogous CWP variants provide the fastest strain of the {10 1 }B2 planes and incorporation 
of these planes into the OR.  

2. In particular, exact crystallographic orientations of the habit planes {011}B2 and {001}B2 can 
be observed  for Λ || <100>B2. These habit planes are specially mentioned, since crystals forming 
polycrystal ensembles are combined along the above-indicated planes. The CWP corresponding to 
Λ || <100>B2 provides the fastest transformation of the {100}B2 plane and its inclusion into the OR. 

3. Let we haveΛ || <111>B2. 
3. 1. As a first example, we choose 2n ||[ 1 2 1 ]B2 and 1n ||[10 1 ]B2. Then, according to Eq. (2), we 

obtain 

wN ||[1± 3 æ, 1∓ 3 æ, 2 ]B2,  (17) 

and for æ ≈ 1 we have the family of the habit planes close to {413}B2 (in the approximation of small 
integer indices). 

3. 2. We now obtain a pair of normals to the (1 1 0)B2 habit plane for Λ ||[111]B2. We consider 
that the (1 1 0)B2 and (111)B2 planes are intersected along the [ 1 1 2]B2 direction. Then orientations 
of the normals 1n  and 2n  in the isotropic approximation (for æ ≈ 1) can be determined by rotation 
of the vector [ 1 1 2]B2 through the angles ± π/4 about the [111]B2 axis: 

1n ||[1 − 3 , 1 + 3 , 2 ]B2, 2n ||[1 + 3 , 1 − 3 , 2 ]B2.   (18) 

It can be easily verified that ( 2n – 1n ) ||[ 1 10]B2, that is, it determines the normal to the habit 
plane. Speaking about the character of the strain transferred by the CWP, it is pertinent to note two 
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extreme cases. First, it is possible to assume that the CWP transfers only the compression strain that 
causes quasi-static tension along the [111]B2 direction. It seems likely that this variant is observed in 
the case of independent formation of individual crystals. The negative volume effect during the 
transformation, though small, is the evidence in its favor. Second, in the case of the self-consistent 
formation of polycrystal ensembles, the variants of the CWP transferring strains of opposite signs 
can be observed, but crystals are combined so that they provide quasi-isotropic resultant strain. In 
any variant with Λ || <111>B2, the CWP provides the fastest reorganization of the (111)B2 plane and 
its inclusion into the OR.  

 

Orientation relationships. The observed orientation relations, according to [19], are close to the 
variant  

{111}B2||(111)R, 

< 1 2 1 >B2||[ 1 2 1 ]R,   (19) 

< 1 10>B2||[ 1 10]R. 

As follows from the consideration in Sections 1 and 2, the OR can be interpreted as a 
consequence of the tension–compression process that preserves the orientation of the {111}B2 plane 
induced by the dynamic strain process of the {111}B2 plane upon exposure to the pair of wave 
beams with wave normals from (18). According to [4, 17], it is natural to consider what exactly the 
plane subject to the fastest strain is involved into the OR, and for the misorientation angle ∆φ= 
ϕ(æ)  ̶  ϕ0 of the respective directions where ϕ(æ) is determined by (12). 

When the strains are small, from Eq. (12) we derive the approximate relation 

)1æ(
)(æ180

)æ( 2
21

+π
ε+ε

≈ϕ .  (20) 

For the В2–R MT, it is natural to expect that the CWP provides only small deviations from 
formulas (19). Indeed, for the strain ε1 ≈ |ε2| ≈ 0.0764%, we obtain from Eq. (20) the rotation angle 
of the < 1 1 1 >B2, <121>B2 reference basis vector pair about the < 1 01>B2 axis φ ≈ 0.044°. We note 
also that for the strain ε1 ≈ |ε2| ≈ 0.56% and opposite signs of the strains in the CWP field, reference 
basis vector pair (18) will rotate about the <111>B2 axis through the angle φ ≈ 0.32°. When the 
strain signs coincide (we must set ε1< 0 in Eq. (20)), the angle φ ≈ 0°, and in this case, the ORs (19) 
hold true. 

Thus, the CWP with wave normals from (18) transferring equal compression strains in the 
orthogonal directions and providing the fastest strain of the {111}B2 plane corresponds to the 
observed strain ratio, orientation of the habit plane, and orientation relations. 

 

Refinement of the data on the dislocation nucleation center in the approximation of the 
isotropic elastic medium. Till now we have not concretized all the details of the dislocation 
nucleation center. Suffice it to have known only the orientation of the dislocation line Λ . However, 
it is easy to perform the necessary refinements useful for vivid geometrical interpretation of the 
morphological parameters. Setting Λ || <111>B2, we now determine the extra plane from the data on 
the wave normals and the character of the strain. Recall the description of the strain field of an edge 
dislocation whose Burgers vector determines the sliding plane and is collinear with a normal to the 
extra plane. It is convenient to describe the strain field of a rectilinear edge dislocation in the 
infinite isotropic medium in the plane perpendicular to Λ  using cylindrical coordinates [32, 33]. 
For a fixed distance r to the line Λ , the change of the eigenvalues ε1 and ε2 of the strain tensor is 
characterized by the polar angle θ counted from the shear vector in the half-space comprising the 
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extra plane. Here θ = −π/2 corresponds to points of the extra plane. If we do not require that the 
strain along the direction Λ  was equal to zero, we obtain 

,
)v1(r2

)cos(sinb
1 −π

θ+θ
=ε  ,

)v1(r2
)cos(sinb

2 −π

θ−θ
=ε    (21) 

where b is the modulus of the Burgers vector b  of an edge dislocation. The normalized 
eigenvectors of the strain tensor 

i
ξ  determined by projections onto the axes x1||b , x2||[Λ , b ], and 

x3||Λ  have the form  

1ξ  = cos sin 0 ,
4 4
π π    θ − θ −        

 

2ξ  = sin cos 0 ,
4 4
π π    − θ− θ−        

  (22) 

3ξ  = [ ]0 01 . 

If we require that the strain along the direction Λ  was equal to zero, the eigenvalues must be 
renormalized, and instead of Eq. (21), we obtain 

( )
)1(r4

)cossin21(b
1 ν−π

θ+θν−
=ε ,

( )
)1(r4

)cossin21(b
2 ν−π

θ−θν−
=ε    (23) 

From Eqs. (21) and (23) it follows that the equal negative values ε1 = ε2 < 0 are observed at θ = 
−π/2 in the compression field related to the extra plane. From Eq. (22) it follows that at θ = −π/2, 
the eigenvectors of the strain tensor are at angles of ±π/4 to the extra plane. This means that for 
normals from (18) the orientation of the extra plane of a DNC coincides with the orientation of the 
habit plane. For vectors b  ||<100>B2 typical of the B2 phase, dislocations with lines Λ ||<111>B2 are 
mixed. Hence, the eigenvectors 1ξ  and 2ξ  (and hence the wave normals) deflect from the {111}B2 

planes. Recall that for a purely screw dislocation (Λ ||b ) in the isotropic medium, one of the 
eigenvectors (correspondent to the eigenvalue equal to zero) coincides with the radial direction in 
the plane perpendicular to Λ , and two others (tension and compression axes) form the angle π/4 
with this plane for any arbitrary θ (the tension-compression plane is parallel to Λ ). Therefore, in 
general, 24 variants of the habit planes can be observed rather than six variants (in the degenerate 
case) when the normals to the habit plane lie in the stereographic orientation triangle. Accordingly, 
four poles of the normals to the habit planes are grouped in the vicinity of each pole <110>B2. Three 
extra planes (close to the habit planes) and hence six habit planes are associated with each line Λ . 
The observed accommodation variants of forming packet-pyramidal morphology of crystal 
ensembles with the R-phase were described in detail in Section 3.4.2 of the monograph [19]. 

Our analysis [34] has demonstrated that the morphological parameters observed during the B2–R 
MT within the framework of the dynamic theory [1–4] can provide adequate treatment, despite the 
proximity of the transformation to the second-order transitions. Small final strains require precise 
measurements of the OR to compare them with calculated values. When the accuracy of measuring 
the OR reached 0.01°, the calculated misorientation planes and the corresponding directions 
included into the OR must be refined considering though small, but still nonzero anisotropy of the 
elastic properties. In addition, it is clear that taking the anisotropy into account, the fastest strain of 
the {111}B2 plane induced by the CWP cannot be attributed to the DNC having the edge dislocation 
whose line is oriented strictly along the third-order <111>B2 symmetry axis as a basic segment. This 
was analyzed in detail in [35].  
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Additional Notes  
A more complicated (than (1)) variant corresponds to the vectors 1,2n  and 1,2ξ belonging to one 

and the same symmetry plane. For cubic symmetry crystals these are planes {001}c and {011}c. The 
CWP transports plane deformation of “extension-compression” type that (similarly to static 
deformation of DNC field) may be characterized by a tensor with the main axes orientations 1,2ξ w 
and ratio kw

2≈│ε1w/ε2w│. Then it is possible to obtain: 
kw= (æ +tg ψ)/(1 – æ tg ψ),          (24) 

where ѱ is the turning angle (around the axis 3n ║ 3wξ ) of the vectors 1,2wξ  regarding the wave 

normals 1,2n . Depending on the sign of ѱ inequalities k> æ (at ѱ>0) or k< æ (at ѱ < 0) may be held 
true, and at ѱ=0 the expression (24) is transformed into (3). It must be underlined that owing to a 
higher symmetry of the elastic field in the planes {001}c (as compared with that in {011}c) for any 
orthogonal pair of the directions 1,2n  in the plane {001}c we have v1=v2 and, consequently, æ=1. 

Thus, for the vector pairs 1,2n  and 1,2ξ  in this symmetry plane we have to put æ =1 in formula (2). 

In the general case when one can find no pair of parallel vectors from the totalities iwξ  and in  

(i=1, 2, 3). This means that the planes with the normals 3wξ  and 3n  containing respectively the 

vectors 1,2ξ  and 1,2n  are not complanar. Nevertheless from the requirement  

wN ║ 2wξ ± k w 1wξ           (25) 

it is possible to obtain: 

æ= |( 3wξ , 2n )/ ( 3wξ , 1n )|,  kw=|( 3n , 2wξ )/ ( 3n , 1wξ )|.     (26) 

In (26) the symbol ( , ) means the scalar product of vectors that are taken into round brackets. 
From (26) it follows that: 

æ= |( 3wξ , 2n ) ( 3n , 1wξ )/( 3wξ , 1n ) ( 3n , 2wξ )| kw.      (27) 

When DNC characteristics are inherited, the following conditions will be fulfilled: 1,2ξ w = 1,2ξ , 
k= kw. The obtained relations allow significant adjustment of the procedure of selection of the most 
probable DNC, not only for transformations in iron alloys but also for MTs in alloys with the effect 
of shape memory. It is clear that just for such alloys (having the shape memory effect) the exact 
inheriting of DNC elastic fields (at iwξ = iξ ) is a necessary condition for explanation of the effect 
of transformation reversibility upon thermocycling.  

It is essential that the verification of the compliance between ratios for the threshold and final 
deformations must be performed on the basis of formula (27). 

Summary 

Our analysis has demonstrated that within the framework of the dynamic theory based on the 
synthesis of concepts of the heterogeneous nucleation and wave growth of martensite crystals, the 
description of morphological parameters is also possible for MTs in alloys with the effect of shape 
memory. Apparently, the different dislocation nucleation centers can provide conditions for the 
realization of the fastest variants of transformation of an initial phase into both the final state of 
martensite and the intermediate states [36]. It is not excluded for example that the 
В2 → IMS → B19 reorganization is competitive with the direct channel of the B2 → B19 MT.  
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As for the prospects of the next research it should be noted the necessity of an interpretation 
within a dynamic theory of the observed variants of transformation twins. Apart from this, it is of 
urgent interest the carrying out of experiments on MT initiation by a couple of hypersound sources, 
which would allow to confirm the predictions of the dynamic theory that are based on the 
information about a deformation tensor relevant to the CWP description. Additional interest is also 
presented by the dynamic description of the accommodation MT that can occur in the 
nanocrystalline state. 

This work was supported in part by the Russian Foundation for Basic Research (project No. 14-
08-00734). 
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Abstract. This microstructural model of the functional-mechanical behavior of shape memory 

alloys (SMA) includes a description of the reversible phase deformation, microplastic deformation 

due to the accommodation of martensite and the evolution of the deformation defects. The laws of 

these phenomena are formulated in terms of the generalized thermodynamic forces. The 

microplastic flow rule accounts for isotropic and kinematic hardening, which are related to the 

accumulation of the deformation defects. The model gives a good description both of reversible and 

irreversible deformation under one-side or cyclic thermomechanical loading of SMA and opens a 

way for the fatigue life prediction. The model can be applied for solving of the mechanical 

problems for SMA parts such as dampers or base isolators used in seismic protection devices.  

 

Introduction 

 

Modeling of the deformation effects in shape memory alloys (SMA) is a quite necessary 

component of the general knowledge of this class of functional materials. Each particular SMA can 

undergo either one martensitic transformation or a sequence of transformations. The variety of the 

transformations and their characteristics stipulates for different types of the mechanical behavior 

demanding specific theoretical approaches. Consequently, a large number of theories have been 

developed, so that one can hardly give an exhaustive list of them. All existing models aimed at 

calculation of the stress and strain evolution of a representative volume under different 

thermomechanical loading can be roughly divided into two groups: macroscopic and 

microstructural. Models of the first group [1 – 5] directly establish relations between the 

macroscopic (related to a point of the body) stress, strain and internal parameters. One of the first 

macro-models was the model of Baumgart et al. [1]. It exploits an approach analogous to the 

classical plastic flow theory and does not comprise any internal parameters specific for the 

martensitic transformation. The increment of the deformation is split into two parts: a temperature-

driven part proportional to the increment of temperature and the stress-driven part proportional to 

the increment of the stress, both parts dependent on the current values of the temperature, stress and 

Odquist parameter. Further developed models  announced the use of a set of internal parameters 

including the volume fraction of martensite [6 – 12], volume fractions of self-accommodated 

martensite and detwinned martensite [13]; volume fraction of martensite and the phase strain [14], 

phase strain as the only parameter [15, 16]. A review and characterization of different macro-

models is given in [17].  

In microstructural theories [18 – 24] the equations are formulated for the physical processes, 

producing micro-strain in the micro-regions and the macroscopic strain of a representative volume 

is calculated by neutralization of strains of micro-regions constituting this volume. As for the 

primary structural elements of martensite they can be chosen in different ways depending on the 

choice of the microscopic level. E. Patoor et al. [19] considered them to be different martensite 

plates bearing the martensitic shift on a habit plane. In works [23 – 26] the primary structural 

elements of martensite are Bain's variants (martensite variants) originated from the parent phase in 

each grain by different but crystallographically equivalent variants of Bain’s deformation, i.e. the 

homogeneous part of the deformation transforming the lattice of the parent austenitic phase into that 

of the child martensitic phase. The direct and reverse martensitic transformations responsible for the 

pseudoelasticity and shape memory effects and the reorientation of martensite resulting in the 

Materials Science Foundations Vols. 81-82 (2015) pp 20-37
© (2015) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/MSFo.81-82.20



pseudoplastic deformation of specimens in the martensitic state are described in terms of the 

evolution of these parameters. An account of the irreversible plastic deformation accommodating 

the growth of martensitic plates requires an addition of special parameters. This idea was suggested 

in the microstructural models [20, 23]. The microstructural approach proved to be efficient for 

simulating the active deformation of a specimen in different states (martensitic, two-phase and 

austenitic) as well as its straining at cooling and heating under a constant or varying load. It was 

also suitable for simulating the mechanical behavior of an SMA suspension used as an element of 

active, semi-active and passive vibration control system [27]; for simulation of structure protection 

from earthquakes [28]; for modeling of vibration isolation by two helical SMA springs [29, 30]; for 

solving one-dimensional boundary-value problems [31]. 

 

Constitutive equations of the microstructural model 
 

Representative volume and deformation averaging. In the same way as in [23, 24] choose the 

representative volume V of a SMA (Fig.1) consisting of a set of grains, each characterized by the 

orientation ωof its crystallographic axes and put V=1. The orientation can be specified, for 

example, by Euler angles ω = (ϕ,θ,ψ). The rotation tensor R(ω) transforms the laboratory basis 

into the crystallographic basis of the grain with the orientation ω. 

Grain Ω

austenite

Grain 1

Grain ω

martensite

 
Fig.1. Scheme of the representative volume of SMA 

 

Apply the A. Reuss hypothesis that the macroscopic strain can be calculated as the average of 

all micro-strains. As it is very difficult to perform the spatial averaging of the micro-strains, 

substitute it by the orientation averaging thus expressing the macroscopic strain ε and the volume 

fraction Ф
м
 of martensite by the formulae: 

 
gr( ) ( )f

ω

ε = ω ε ω∑ ,  gr

M ( ) ( )f
ω

Φ = ω Φ ω∑ ,                                                                                (1) 

 

where the sum is taken on all grains, f(ω) is the volume fraction of the grains with orientation ω (a 

discrete analogue of the orientation distribution function), εgr
(ω) and Φgr

(ω) are the strain tensor 

and the volume fraction of martensite in a grain with orientation ω (everywhere in this chapter 
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small deformation tensors are used). Naturally, to perform the summation all tensors εgr
(ω) must 

be referred to the laboratory system of coordinates.  

In each grain there can exist N orientational variants of martensite originated from the parent 

phase by different but crystallographically equivalent Bain’s deformations Dn (n = 1 ,…, N). The 

number of variants N depends on the order of the symmetry groups of the parent austenitic phase 

and of the child martensitic phase. If austenite has a cubic lattice N is one of the divisors of 24, 

which is the order of the cube symmetry group. For the transformation of face-centered cubic (fcc) 

lattice into body-centered cubic (bcc) or body-centered tetragonal (bct) lattice N=3; for the 

transformation of the cubic lattice into rhombohedral lattice N=4, into orthorhombic lattice N=6, 

and into hexagonal or monoclinic lattice N=12. Thus, we characterize the martensite by parameters 

Φn (n = 1 ,…, N), such that (1/N)Φn are the volume fractions of the domains occupied by the 

orientational variants of martensite. For the total volume fraction of martensite in a grain one then 

has: 

 

gr

1

1 N

n

nN =

Φ = Φ∑ ,                                                                                                                             (2) 

 

here and everywhere further the argument ω is omitted. With such description of the material 

structure for the deformation of a grain one can write: 

 

gr gr A M

1

1
(1 )

N

n n

nN =

ε = − Φ ε + Φ ε∑ ,                                                                                                     (3) 

 

the superscripts A and M denoting austenite and martensite, εA
 and εM

 are the deformations of the 

austenitic and martensitic phases. In general, each of the strains εA
 and εM

 can be expressed as the 

sum of the elastic strain εe
, thermal expansion strain εT

, dislocation slip plastic strain εP
, phase 

strain εPh
 (strain due to the phase transformation) and the micro-plastic strain εMP

, which is the 

strain occurring by the localized dislocation slip under the action of the inter-phase stresses. In 

other words, it is the deformation providing for the plastic accommodation of martensite. In the 

present work we focus on calculating the phase deformation and micro-plastic deformation, i.e. 

we consider the case when εP
 = 0. Elastic and thermal strains are calculated by commonly known 

formulae, which we do not write down here. Since the phase strain is the strain, which occurs as 

the result of the transformation of austenite to martensite we put that for the austenite εPhA
 = 0 and 

for the n-th variant of martensite
PhM

n nDε = . So, the total phase strain of a grain is 

 

Ph gr

1

1 N

n n

n

D
N =

ε = Φ∑ .                                                                                                                       (4) 

 

Since the micro-plastic strain is connected with the phase deformation and occurs in the regions 

near the growing martensite variants, one can suppose that it can be expressed by an expansion 

similar to that for the phase strain: 

 

MP gr p

1

1 N

n n

n

D
N =

ε = κΦ∑ ,                                                                                                                    (5) 

 

where Φn
p 

are internal parameters – measures of the micro-plastic deformation and the material 

constant κ establishes the scale of the parameters Φn
p
 relative to parameters  Φn . Similar idea for 

the description of the micro-plastic deformation was suggested by Q.-P. Sun and C. Lexcellent [20]. 
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Thermodynamic forces of the transformation. Thus, to simulate the variation of the grain 

deformation one must know the variation of the internal parameters  Φn and  Φn
p
, which occurs 

when the transformations is going on. It is convenient to formulate the laws of the variation of  Φn 

and  Φn
p
 in terms of the generalized thermodynamic forces. We start from the thermodynamic 

Gibbs’ potential G . For a unit volume one can write 

 

eig mixG G G= + ,   eig gr A M

1

1
(1 )

N

n n

n

G G G
N =

= − Φ + Φ∑ ,   
mix p p

, 1

( )( )
2

N

mn m m n n

m n

G A
=

µ
= Φ − Φ Φ − Φ∑ ,  (6) 

 

where G
A
, Gn

M
, G

eig
 are the eigenpotentials of austenite, martensite and of their mixture; G

mix
 is the 

potential of the interaction between the phases equal to the elastic energy of the internal stresses 

caused by the incompatibility of the phase deformation. In the work [22] this potential is referred to 

as the “phase interaction energy function” (PIEF).  

The eigenpotentials G
A
 and Gn

M
 at temperature T and stress σ can be expressed by the formula: 

 
a 2

a a a 0a a0
0 0 0

0

( ) 1
( ) ( ) : : :

2 2

c T T
G G S T T T Q

T

σ −
= − − − − ε σ − σ σ , a = A, M,                                       (7) 

 

where T0 is the temperature of the thermodynamic equilibrium of austenite and martensite at zero 

stress, G0
a
 and S0

a
 are the values of the Gibbs’ potential and of the entropy at T=T0 and σ=0, cσ

a
 is 

the specific heat (per unit volume), ε0a
(T) is the strain at σ=0, Q

a
 is the tensor of elastic 

compliances, symbol “:” denotes double scalar product of tensors.  

As the exact calculation of G
mix

 can be done only by solving a very complicated boundary-value 

problem, one can try to use a qualitative estimation for it delivered by a quadratic form of the 

internal parameters describing the phase deformation. The matrix Amn of this quadratic form 

accounts for the interactions between the different variants of martensite.  

In one of the most important shape memory alloy TiNi the transformation is from cubic B2 

phase into monoclinic B19′ phase. For this transformation there exist 12 different Bain’s 
deformations. These variants group into pairs called the Corresponding Variants Pairs (CVP) [32-

35]. This martensite structure allows lowering the elastic energy of the interphase stresses. The 

tendency of the Bain's variants for grouping can be taken into account by the matrix Amn . 

Enumerating the Bain's variants in a convenient order we propose the following structure of the 

matrix Amn  (all unmarked matrix elements are zeroes): 
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where α is a material constant (0 <= α< 1/2) measuring the degree of the interaction between the 

Bain's variants forming one CVP. 
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The fact that the plastic accommodation of martensite reduces the elastic energy suggests that the 

variables of this quadratic form must be the differences  (Φn – Φn
p
). The generalized 

thermodynamic forces Fn and Fn
p
 tending to change the values of  Φn and  Φn

p
 are the derivatives of 

the Gibbs’ potential:  

t mix

n n nF F F= + ,  
eig

t 0
0

0

:n n

n

T TG
F q D

T

−∂
= − ≈ + σ

∂Φ
,  

mix
mix p

1

( )
N

n nm n n

nn

G
F A

=

∂
= − = −µ Φ − Φ

∂Φ ∑ , 

p mix p

p
1

( )
N

n n nm n n

nn

G
F F A

=

∂
= − = − = µ Φ − Φ

∂Φ ∑ .                                                                                        (9) 

 

The full thermodynamic force Fn is dependent on the temperature T  and stress σ and it is the sum 

of the driving force Fn
t 
and the opposing force Fn

mix 
(in the above formula for Fn

t
 we neglect the 

terms connected with the differences between the thermal expansion coefficients and the elastic 

constants of the two phases, which is a good approximation for most of the transformations). In its 

turn the driving force Fn
t
 is the sum of the chemical force Fn

chem 
depending only on the temperature 

and equal for all the martensite variants and the mechanical force Fn
mech

 depending on the stress:  

 

t chem mech

n nF F F= + ,   chem 0
0

0

T T
F q

T

−
= ,   

mech
:n nF D= σ .                                                           (10) 

 

Force Fn
p
 depends on the values of the amount of the n-th martensite variant  Φn and on the measure 

of the micro-plastic strain Φn
p
; q0 is the latent heat of the direct austenite to martensite 

transformation (q0 < 0); T0 is the phase equilibrium temperature, i.e. the temperature at which the 

Gibbs’ potentials of the unstressed austenite and martensite are equal; µ is a material constant. 

Experimental measuring of the temperature T0 is a very hard task since the transformation usually 

produces an incompatible phase strain thus occurring in the field of internal stresses. In many cases 

a good estimate for the temperature T0 is given by the formula [36]: 

 

0
fs

2

M A
T

+
= .                                                                                                                             (11) 

 

Here and further Ms, Mf, As, Af are the characteristic temperatures of the martensitic transformation: 

letters M and A refer to the direct austenite to martensite transformation on cooling and to the 
reverse martensite to austenite transformation on heating, subscripts “s” and “f” denoting the 

transformation start and finish. Since a temperature-phase hysteresis exists, one concludes that the 

transformation proceeds in conditions apart from the equilibrium under an excess thermodynamic 

force. So we formulate the condition of the transformation in the form: 

 
fr

nF F= ± ,            (12) 

 

where F
fr
 is a material constant – the “friction force”, which acts similarly to a dry friction force and 

is responsible for the temperature-phase hysteresis, sign “+” is taken for the direct and “–“ for the 

reverse transformation. Constants F
fr
 and µ are related to the characteristic temperatures and the 

latent heat of the transformation.  

 

Martensite reorientation. A special approach is used to describe the reorientation (twinning) of 
martensite. We accept three hypotheses: (1) any variant of martensite can be transformed in any 

other variant; (2) reorientation occurs along the direction in the space Φ1,…,ΦN , which corresponds 

to the fastest decrease of the Gibbs’ potential; (3) reorientation starts when the thermodynamic force 

reaches some critical value. To find the direction of the reorientation we use vector 

24 Shape Memory Alloys: Properties, Technologies, Opportunities



1

,...,n

N

G G
F

 ∂ ∂
= − − 

∂Φ ∂Φ 
 and take its projection L onto plane Φ1+…+ΦN =const. If for some n it 

holds that Φn=0 and Ln<0 we substitute L for its projection L′ onto intersection of planes Φn=0 and 

Φ1+…+ΦN =const, repeating this procedure for other components of Ln if necessary. Finally we 

obtain the direction l, which does not lead to a violation of conditions Φn>0, n=1,…,N. For this 

direction we postulate the condition of reorientation: 

 
tw fr tw( )F l F= ,           (13) 

 

where 

 

tw

1 1

( )
N N

n n n

n nn

G G
F l l l F

l = =

∂ ∂
= − = − =

∂ ∂Φ∑ ∑ .                                                                                        (14) 

 

In Eq. 13 F
frtw

 is a constant, characterizing the critical driving force for reorientation. From 

hypotheses 1 and 2 it follows that the increments dΦn  are proportional to ln : 
 

dΦn = ln dϕ,            (15) 

 

where dϕ is the proportionality factor. 

 

Micro-plastic flow condition. From Eq. 12 – Eq. 15 one can find the differences  (dΦn– dΦn
p
) of 

the internal parameters increments. To find the very increments dΦn
p
 one needs to formulate the 

micro-plastic flow conditions. Formulate this condition by analogy with the classic one-dimension 

plastic flow theory, parameters Φn
p
 acting as the plastic deformation and the force Fn

p
 – as the 

stress: 

 

|Fn
p
–Fn

ρ
| =Fn

y
 .           (16) 

 

The meaning of this condition is that the micro-plastic flow can occurs then and only then when the 

generalized force Fn
p
 is equal to the sum of the two opposing factors, one (Fn

y
 ) connected with the 

isotropic hardening and the other (Fn
ρ
 ) – with the kinematic hardening. These two types of 

hardening we relate to the accumulation of the deformation defects. We assume that the plastic flow 

caused by the growth of the n-th Bain's variant produces defects of two types: reversible bn and 

irreversible fn by deformation. The reversible defects can be related to small dislocation loops, 

which can expand and shrink in their slip planes, and the irreversible defects – to sessile 

dislocations, Lomer-Cottrell locks formed in the course of the dislocation interactions and their 

incomplete annihilation. For the defect densities we propose the evolution equations similar to those 

in the work [26]: 

 

)(
1

*

p

nn

p

nn

p

nn bHbb Φ⋅⋅Φ⋅⋅−Φ=
β

,        (17) 

 

( ) ( ) n

p

nnn fTrfqf ⋅−Φ⋅⋅+= 31  ,         (18) 

 

where β*, and q3 are material constants, r(T) is an Arrhenius-type function of temperature, H is the 

Heaviside's function. The first term of the right side of Eq. 17 accounts for the increase of the defect 

density in the course of their movement and formation of the new defects and the second term 

σaccounts for the decrease of the defect density due to their escape to the outer surface. In Eq. 18the 
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first term reflects the accumulation of the irreversible defects in the course of the plastic flow and 

the second – the annihilation of these defects due to thermoactivated recovery processes.  

Eqs. 17, 18 must be supplemented by the closing equations relating their densities to the 

parameters of hardening. Suppose that the kinematic hardening is due to the reversible defects and 

the isotropic hardening – to the irreversible ones. For simplicity choose linear relations in the form: 

 

Fn
y
  =ayfn ,                       (19) 

Fn
ρ
 =aρbn ,                       (20) 

 

where ay  and aρ are material constants. 

Eqs.12, 13 and 16 make up a set of conditions from which one can obtain the evolution 

equations for the internal parameters Φn and Φn
p
, thus making possible to simulate the variation of 

the deformation tensor ε of a shape memory alloy under given variations of the stress tensor σ and 

temperature T, i.e. they establish relations, which formally may be written as: 

 

dε = f1(T, dT, σ, dσ, X),   dX = f2(T, dT, σ, dσ, X),     (21) 

 

where X denotes the set of internal parameters Φ1(ω),…,ΦN(ω),Φ1
p
(ω),…,ΦN

p
(ω)  for all martensite 

variants in grains with all orientations ω. One of the advantages of this microstructural model is that 

it accounts for the tension-compression asymmetry without any additional assumptions as this 

asymmetry is the consequence of the specific structure of the Bain’s deformation tensor. The 

material constants used in this model are the elastic moduli, heat expansion coefficient, Bain’s 

deformation tensor D, phase thermodynamic equilibrium temperature T0. Constants F
fr
 and µ are 

calculated from the values of the characteristic temperatures of the transformation and its latent 

heat. Adjustable constants areα, F
fr tw

 , β*, q3, ay  ,aρ .  

 

Simulation of the functional-mechanical behavior of shape memory alloys 

 

Active deformation. The values of the material constants specifying the elastic, thermal and phase 

deformation of SMA were chosen to reproduce the mechanical behavior of the equiatomic TiNi 

SMA. For a specific TiNi composition they were determined in calorimetric and mechanical tests. 

For calculation the following values were used: the characteristic temperatures of the transformation 

Mf = 317 K, Ms = 326 K, As = 397 K, Af = 406 K, the latent heat of the transformation 

q0 = -160MJ/m
3
. The matrix of the lattice deformation D was taken from work [37]. The values of 

the other constants were chosen α=0.2, F
fr tw

 =17 MPa, β*=0.001, q3=0, ay =50 MPa, aρ =10 GPa. 

The stress-strain diagrams of SMA deformation in tension for temperatures 273 K, 350 K and 

420 K, corresponding to the martensitic, two-phase and austenitic states calculated by integrating 

the equations are presented in Fig. 2.  
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Fig.2. Calculated stress-strain diagrams of the SMA in the martensitic (a), two-phase (b) and 

austenitic state (c).  
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One can see that the simulation reproduces the typical for TiNi SMA pseudoplastic behavior at 

273 K when the alloy is in the martensitic state and pseudoelastic behavior at 420 K when it is in 

the austenitic state. The lowest level of the stress causing unelastic deformation is for the SMA in 

the two-phase state. This is completely in agreement with the well-known experimental data (for 

example, [38, 39]).  

 

Transformation plasticity and shape memory. When an SMA specimen undergoes a direct 

martensitic transformation under an applied stress it demonstrates the accumulation of reversible 

and irreversible deformation on cooling. This phenomenon is referred to as the transformation 

plasticity effect. On the subsequent heating partial recovery of the transformation plasticity strain is 

observed (shape memory effect). Fig. 3 shows calculated dependences of the TiNi specimen strain 

on temperature at a thermocycle under different stresses. This alloy demonstrates a very sharp 

dependence of the irreversible strain on the stress. This happens because the kinematic hardening 

coefficient aρ =10 GPa is much bigger than that of the isotropic hardening ay =50 MPa. At the same 

time the small value of the constant β*=0.001 does not allow a significant growth of the reversible 

defects density.  
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Fig.3. Calculated dependences of the strain on temperature due to the direct and reverse 

transformations under an applied stress 50, 100 and 200 MPa. 

 

Therefore, kinematic hardening hinders the micro-plastic flow only when the applied stress is 

small. If the applied stress exceeds some characteristic value, the microplastic flow is affected 

mainly by the small isotropic hardening. This type of behavior was observed experimentally in 

work [40]. More clearly it is illustrated on Fig. 4c: the irreversible strain is small at the stress less 

than 100 MPa and grows rapidly with the stress when it exceeds this characteristic (for this SMA) 

value. Fig.5 shows a comparison of the experimental data [40] and of the simulation. 
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Fig.4. Calculated dependences of the transformation plasticity strain (a) shape memory strain (b) 

and the irreversible strain (c) on the stress acting during the direct transformation. 
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Fig.5. Calculated and experimental [40] dependences of the strain on temperature at cooling and 

heating under an applied stress 50 and 200 MPa. 

 

Fig. 6 shows the dependence of the Ms temperature (estimated by the strain tolerance 0.01%) on 

the stress acting in the specimen during the direct transformation. Note the linear dependence, 

which is in agreement with the Clausius – Clapeyron law for the shift of the phase equilibrium point 

under an applied stress. 
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Fig.6. Calculated dependence of the Ms temperature on the applied stress. 

 

For practical applications it is important to know what will be the strain recovery and the 

irreversible strain, when a specimen after having accumulated a transformation plasticity strain 

under some stress gets an additional load and then is heated to undergo the reverse transformation. 

The results of the simulation of this regime of thermomechanical loading are presented in Fig. 7. 

Note that the irreversible strain in this case is much less than after cooling under stress 200 MPa. 
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