Eco-Materials Processing and Design XV

Edited by Banh Tien Long, Hyung Sun Kim, Jian Feng Yang, Tohru Sekino and Soo Wohn Lee

TRANS TECH PUBLICATIONS

Eco-Materials Processing and Design XV

Edited by Banh Tien Long Hyung Sun Kim Jian Feng Yang Tohru Sekino Soo Wohn Lee

Eco-Materials Processing and Design XV

Selected, peer reviewed papers from the 15th International Symposium on Eco-Materials Processing and Design (ISEPD 2014), January 12-15, 2014, Hanoi, Vietnam

Edited by

Banh Tien Long, Hyung Sun Kim, Jian Feng Yang, Tohru Sekino and Soo Wohn Lee

Copyright © 2015 Trans Tech Publications Ltd, Switzerland

All rights reserved. No part of the contents of this publication may be reproduced or transmitted in any form or by any means without the written permission of the publisher.

Trans Tech Publications Ltd Churerstrasse 20 CH-8808 Pfaffikon Switzerland http://www.ttp.net

Volume 804 of Materials Science Forum ISSN print 0255-5476 ISSN cd 1662-9760 ISSN web 1662-9752

Full text available online at http://www.scientific.net

Distributed worldwide by

Trans Tech Publications Ltd Churerstrasse 20 CH-8808 Pfaffikon Switzerland

Fax: +41 (44) 922 10 33 e-mail: sales@ttp.net

and in the Americas by

Trans Tech Publications Inc. PO Box 699, May Street Enfield, NH 03748 USA

Phone: +1 (603) 632-7377 Fax: +1 (603) 632-5611 e-mail: sales-usa@ttp.net

Preface

Ecomaterials, or "Green materials" are those designed to minimize environmental impact, while or maintaining or maximizing materials performance with reducing environmental burden. Ecomaterials research is an interdisciplinary field that scientists and engineers with background among chemistry, physics, and materials such as metals, ceramics, polymers, and carbon are involved in understanding the environmental consciousness in industries and motivating ecological researches. It is the goal of the meeting organizers to bring together experts in these various areas to provide a symposium to promote the exchange of ideas that will occur when workers in diverse materials concentrate on the whole spectra of ecology, eco-processing, recycle, energy harvest, energy saving, and environmental protection. This volume contains papers presented the fifteen symposium on ecomaterials processing and design (ISEPD), which was held in January 15-17, 2014 at the Hanoi University of Science and Technology in Hanoi, Vietnam.

We would like to thank the generous financial support so far through the Core University program between the Korea Science and Engineering Foundation and the Japanese Society of the Promotion Science (JSPS) for this series international conferences from 2000 to 2007. From 2009 to 2013, the A3 foresight Program among the National Research Foundation in Korea, the JSPS in Japan, and the National Natural Science Foundation of China in China. After these two important programs, the Global Research Laboratory Program in Korea between the Sun Moon University in Korea and the Osaka University in Japan has helped the some part of financial support such as speakers' flight tickets since 2010 year. Finally we are grateful to all participants who attended the ISEPD2014 conference and authors who submitted their manuscripts on time.

Editors

Banh Tien Long, Hyung Sun Kim, Jian Feng Yang, Tohru Sekino, Soo Wohn Lee

Organizing Committee

SYMPOSIUM CHAIR

Banh Tien Long, Hanoi University of Science and Technology, Vietnam

General Chair

Koichi Niihara, Nagaoka University of Technology, Japan Kozo Ishizaki, Nagaoka University of Technology, Japan Soo Wohn Lee, Sun Moon University, Korea Yu Bao Li, Sichuan University, China Pham Hoang Luong, Hanoi University of Science and Technology, Vietnam

Academic Committee

Dang Mau Chien, Vietnam National University in HCM City, Vietnam Do Minh Nghiep, Hanoi University of Science and Technology, Vietnam Eiji Tani, Advanced Industrial Science and Technology, Japan Feng Pan, Tsinghua University, China GuanJun Qiao, Jiangsu University, China Hao Wang, Wuhan University of Technology, China Hojung Chang, DanKuk University, Korea HyungMee Lim, KICET, Korea HyungSun Kim, Inha University, Korea JianFeng Zhu, Shaanxi University of Science and Technology, China KeunYoung Yeum, Sunggyunkwan University, Korea Kosuke Mori, Osaka University, Japan KyungNam Kim, Gangwon University, Korea Li Fu, Northwestern Polytechnic University, China Makoto Nanko, Nagaoka University of Technology, Japan Masato Takeuchi, Osaka Prefecture University, Japan Masaya Matsuoka, Osaka Prefecture University, Japan Nguyen Duc Chien, Hanoi University of Science and Technology Nguyen Hoang Luong, Vietnam National University in Hanoi, Vietnam Nguyen Huu Duc, Vietnam National University in Hanoi, Vietnam Nguyen Xuan Phuc, Materials Research Society - Vietnam SangYup Park, Kangnung University, Korea Shinya Higashimoto, Osaka Institute of Technology, Japan Shu Yin, Tohoku University, Japan Takashi Shirai, Nagoya Institute of Technology, Japan Tadachika Nakayama, Nagaoka University of Technology, Japan Takamasa Onoki, Osaka Prefecture University, Japan Takanori Watari, Saga University, Japan Takashi Kamegawa, Osaka University, Japan Tohru Sekino, Osaka University, Japan WonYong Kim, KITECH, Korea Yoshihiro Hirata, Kagoshima University, Japan YoungHee Kim, KICET, Korea Yi Zeng, Shanghai Institute of Ceramics, China XueBin Zheng, Shanghai Institute of Ceramics, China

Publication Committee

Banh Tien Long, Hanoi University of Science and Technology, Vietnam Hyung Sun Kim, Inha University, Korea Tohru Sekino, Osaka University, Japan JianFeng Yang, Xi'an Jiaotong University, China Soo Wohn Lee, Sun Moon University, Korea Yu Bao Li, Sichuan University, China Sang Yeup Park, Kangnung National Univ., Korea Yonghee Kim, KICET, Korea Hyungmi Lim, KICET, Korea Won Yong Kim, Korea Institute of Industrial Technology, Korea Bo Young Hur, Gyeongsang National University, Korea Dong Sik Bae, Changwon National University, Korea KyungNam Kim, Gangwon University, Korea Wen Bin Cao, University of Science and TechnologyBeijing, China Nguyen Hong Minh, Hanoi University of Science and Technology, Vietnam Bui Anh Hoa, Hanoi University of Science and Technology, Vietnam Nguyen Duc Toan, Hanoi University of Science and Technology, Vietnam Nguyen Hong Lien, Hanoi University of Science and Technology, Vietnam

SYMPOSIUM ORGANIZING COMMITTEE

Banh Tien Long, Hanoi University of Science and Technology, Hanoi, Vietnam Phan Bui Khoi, Hanoi University of Science and Technology Ng. Hong Minh, Hanoi University of Science and Technology Bui Anh Hoa, Hanoi University of Science and Technology Dao Minh Ngung, Hanoi University of Science and Technology Dinh Duy Khoe, Hanoi University of Science and Technology Nguyen DucToan, Hanoi University of Science and Technology Nguyen Hong Lien, Hanoi University of Science and Technology Nguyen Phuong Mai, Hanoi University of Science and Technology Nguyen Tien Dong, Hanoi University of Science and Technology Nguyen Trong Hai, Hanoi University of Science and Technology Ngo Chi Trung, Hanoi University of Science and Technology Nguyen Truong Son, Bao Son Group Pham DucThang, Vietnam National University in Hanoi Pham Huyen Cham, Hanoi University of Science and Technology Phan Quang The, Technical Indus. University in Thai Nguyen Thai Linh Thu, Hanoi University of Science and Technology Tran Hung Tra, NhaTrang University Tran Thi Thu Hien, Hanoi University of Science and Technology Tran Thien Phuc, Hochiminh University of Technology

International Advisory Committee

Alfredo-Aguilar Elguezabar, CIMAV, Mexico Banh Tien Long, Hanoi University of Science and Technology, Vietnam BoYoung Hur, Kyungsang National University, Korea ByungSe Jun, Kyungnam University, Korea Chuan Xian Ding, Shanghai Institute of Ceramics, China Detlef Bahaneman, University Hannover, Germany Djega Marriadassou, Paris VI University, France Ernesto Indacochea, University of Illinois at Chicago, USA G. P. Li, University of California, Irvine, USA Hirotsugu Takizawa, Tohoku University, Japan JianFeng Huang, Shaanxi University of Science and Technology, China JianFeng Yang, Xi'an Jiaotong University, China Lei Jiang, Beihang University, China Joaquin Lira-Olivares, Simon Bolivar University, Venezuela Jun Yang, Xi'an University of Architecture and Technology, China Junichi Hojo, Kyushu University, Japan Junichi Matsushita, Tokai University, Japan KeZheng Sang, ChangAn University, China Klass de Groot, Leiden University, The Netherlands

KwangSun Kim, Seoul National University, Korea Leticia M. Torres-Martinaz, UniveridadAutonoma De Nuevro Leon, Mexico Lian Gao, Shanghai Jiaotong University, China Li Dong Chen, Shanghai Institute of Ceramics, China Klass de Groot, Leiden University, The Netherlands KwangSun Kim, Seoul National University, Korea Leticia M. Torres-Martinaz, UniveridadAutonoma De Nuevro Leon, Mexico NakJung Kim, POSTEC, Korea Qing Ling Feng, Tsinghua University, China Robert Hurt, Brown University, USA ShaoXiong Zhou, Advanced Technology & Materials Co. Ltd, China Simo-Pekka Hannula, Helsinki University of Technology, Finland Somchai Thongtem, Chiang Mai University, Thailand Xian Hong Wang, ChangChun Institute of Applied Chemistry, China XueGang Luo, Southwest University of Science and Technology, China Yasuo Uchiyama, Nagasaki University, Japan ZhengYi Fu, Wuhan University of Technology, China ZhenLin Lu, Xi'an University of Technology, China Zuo Ren Nie, Beijing University of Technology, China

Organized by

International Materials Society Hanoi University of Science and Technology, Hanoi, Vietnam & Materials Research Society-Vietnam (MRS-V)

Sponsored by

 A3 foresight program (NSFC-China, JSPS-Japan, NRF-Korea) Global Research Laboratory (GRL) Program (NRF-Korea) Japan Society for the Promotion of Science (JSPS), Japan Korea Science and Engineering Foundation (KOSEF), Korea
Vietnam National Foundation for Science and Technology Development

Table of Contents

Preface and Organizing Committee

I. Materials for Environment Preservation, Energy Conservation/Harvesting and New Energy

Characterization of Cast Iron Scrap Chips toward β-FeSi₂ Thermoelectric Materials A. Laila and M. Nanko	3
Two-Step Sintering of Non-Stoichiometric CeO _{2-x} H. Abe, M. Nanko, M. Kato and S. Hirooka	7
Adsorption Characteristics of Impregnated Adsorbent for Mercury Removal Y.S. Kim and W.K. Lee	11
Effect of the Alkali-Activation on the Mechanical Property of Geopolymer Composite Y.G. Son and W.K. Lee	15
Fabrication of FRP Spacers of Insulating Glass for Energy-Saving Eco-Friendly Home S.G. Kang, M.Y. Han and Y.N. Lee	19
Synthesis of Diglycerol Ester as Insulating Oil for Offshore Wind Turbine Transformer M.S. Gwon, B.R. Kwak, D.W. Park and M.S. Lee	23
The Effects of Deposited Material and Loaded Amount within Synthesis of TMP-Ester M.S. Lee, B.R. Kwak, J.H. Baek, M.S. Gwon and S.H. Hur	27
Effect of CaO Content on Yb: YAG Disk Laser Weldability of AZ31 Mg Alloy M.J. Kang and C.H. Kim	31
Fabrication and Electrochemical Performance of Nitrogen-Doped Graphene Synthesized by Hydrothermal Method	
S. Liang, M. Luo, Y.Y. Dou, L. Guo, B. Liang, H.B. Li and J. Li	35
Graphene Oxide Based Selective VOCs Sensor for Indoor Air Quality Monitoring H.S. Ahn, B.K. Jung, J.R. Park and J.C. Joo	39
Thermocatalytic Degradation of Low Density Polyethylene Films at Artificial Aging Treatment under Lower Temperature S.Z. Zhang, X.G. Luo, F. Ding, K. Li, X.Y. Lin and G.L. Zhu	43
Low-Temperature Thermocatalytic Degradation of Polyethene Films by Nano-Titanium	15
Dioxide in Water	47
K. Li, X.G. Luo, M. Wang, F.W. Qi, P. Wu and Q.F. Meng Study on Aqueous Viscosity Behaviors of Hydroxypropyl Methylcellulose Hydrosol and	4/
Konjac Glucomanan Hydrosol	
B. Tang, X.G. Luo, X.Y. Lin and F.W. Qi	51
Effect of Lignin and RLDPE Soil Amendments on Water Holding Capacities of Desert Q.F. Meng, X.G. Luo, X.Y. Lin, S.Z. Zhang and K. Li	55
Biosorption of Strontium Ions by Low-Cost Sunflower Stem and Leaf L. Ai, X.G. Luo and X.Y. Lin	59
Preparation and Characterizations of Novel Near Room-Temperature Driven Fe/Sr ₂ Bi ₂ O ₅ Thermocatalyst	()
P. Wu, X.G. Luo, X.Y. Lin and K. Li	63
Effects of Ultrafine Grinded Steel Slag Addition on Properties of Cement Y. Shi, H.Y. Chen and J. Wang	67
Effect of Calcium Compounds on Mechanical Properties of Eco-Friendly Non-Cement Mortar	
Y.T. Kim and J.Y. Park	71
Enhancement of PEM Fuel Cell Performance by Flow Control V.N. Duy, J.K. Lee, K.W. Park and H.M. Kim	75

II. Materials Cutting and Processing Technologies for Reduction of Environmental Impact

A Comparative Study on the Physical Properties of Artificial Aggregates Made from Acid	
Clay and Dredged Soil S.G. Kang and Y.S. Kim	81
Dust Removal Using Electrode-Plates Coated with Activated Carbon T.W. Jun, H.C. Park, K.H. Ahn, M. Sajjad and K.S. Kim	85
Effects of Nano-Porous Materials and Inert Gas on Sound Proof Properties of Double Layer Acryl Plate	
H.C. Park, J.H. Lee, I.H. Kim, M. Sajjad, K.H. Ahn and K.S. Kim	89
Characteristics of MSWI Ash and its Application to Zeolite Synthesis Y.S. Yoo and J.H. Jo	93

III. Eco-Processing and Design on Polymer, Ceramics, Metals, Semiconductors

Characteristics of Pollutants Removal by Carbonized Porous Media Made from Sewage Sludge Y.S. Yoo, J.H. Jo and G.T. Seo

99

Fabrication of Aluminum Superhydrophobic Surface with Facile Chemical Etching Method Z. Huang, Y.F. Li, P. Jin, M.S. Hu, B. He, N.K. Gao, H. Zhang and H.Y. Jin	103
Purification and Size Control of AIN Powder for AIN Single Crystal Growth K.H. Lee, S.M. Jeong, W.T. Kwon, S.R. Kim, D.G. Shin, H.S. Kim and Y.H. Kim	107
A Brief Review on TiO₂ Coating Deposited by Cold Spraying Y.F. Shen, W. Song, X.Y. Cui and T.Y. Xiong	111
Protective Agent Free Eco-Synthesis of Silver Nanowire via Needle-Shaped Silver Acetate Precursor K. Sugawara, Y. Hayashi, J. Fukushima and H. Takizawa	115
Synthesis and Characterization of Ag/Graphene Nanocomposites by Solid-Liquid Sonochemical Reactions	
T. Mochizuki, Y. Hayashi, J. Fukushima and H. Takizawa Production and Characterization of Recycled SUS 439L Powders by Gas Atomization	119
Process J.C. Kim, J.Y. Jo, M.K. Shin and J.H. Lim	123
Study on Recycling of Electric Arc Furnace Dust A.H. Bui, T.L. Vu and V.T. Nguyen	127
Preparation of Drug Loaded Polyurethane Thin Layer on the Silicone Tube by Electrospinning Technique for Stent Application D.G. Shin, Y.J. Lee, Y. Kim, W.T. Kwon, S.R. Kim and D.H. Riu	131
A Smart System Combining Rainwater and Treated Sewage for Use in Sports Complexes in	151
Korea R.H. Kim, J.H. Lee, M.Y. Kim and H.N. Choi	135
Composition and Microstructure of Koryo Celadon in Korea K.N. Kim and S.J. Kim	139
IV. High Performance Materials Including Nano-Materials for the Environment, and Coating/Corrosion	
Density Functional Theory Study of the Interaction of Nitric Oxide with 3D Transition Metal Dimers	
J. Nie, R.J. Li, L.J. He and J. Li	145
Effect of Carbon Pre-Treatment on Pd Dispersion in Synthesis of Pd/C Catalyst J.S. Kim, J.H. Baek, M.H. Kim, S.S. Hong and M.S. Lee	149
Temperature Dependence of Magnetic Properties in Ferrite Powders by High Energy Ball Milling	
C.S. Hong, Y.S. Song and S.Y. Chang	153
Self-Cleaning TiO ₂ / SiO ₂ Thin Film Prepared by a Simple Sol-Gel Method W.X. Liu, J.N. Xu, J. Zhang, X.M. Liu and W.B. Cao	157

Development of a Carbon Nanotube Paste for the High-Performance Field Emitters by	
Using the Simple Ball-Milling Method	1.61
S.J. Ahn, J.W. Kim, S.J. Ahn, D.H. Han, H.S. Kim and Y.H. Song	161
Application of Low Voltage in Quantitative Analysis by Energy Dispersive Spectrum (EDS) W. Wu, Z.W. Liu, C.C. Lin, J.J. Hua and Y. Zeng	165
Surface Modification of CaCO ₃ Micro/Nanofillers by Pimelic Acid: Consequences on Crystallization Behaviors of Polypropylene Composites F.W. Qi, X.G. Luo and X.Y. Lin	169
Synthesis and Characterization of Cu–TiC Nanocomposites by Ball Milling and Spark Plasma Sintering	
N.T.H. Oanh, N.H. Viet, J.C. Kim and J.S. Kim	173

V. Hybrid Materials and Composites for ECO Society

Crack-Healing Function of Nano-Ni/(ZrO₂+Al₂O₃) Hybrid Materials H.V. Pham and M. Nanko	179
	1/9
Fabrication and Fracture Characteristics of AlN/Ni Laminated Composites H.Y. Jin, P. Jin, Y.F. Li, B. He, N.K. Gao and Y.L. Wang	183
Preparation and Thermal-Physical Properties of Three Dimensional Bicontinuous SiC/Cu- Si Composite	
K. Zhang, H.Y. Xia, B. Wang, Z.Q. Shi, X.Z. Zhang, G.W. Liu and G.J. Qiao	187
Study on Electrical and Thermal Properties of Epoxy Resin/Inorganic Filler Composites for the Fully Enclosed Casting Bus Bar and its Calculation of the Temperature Field N.K. Gao, Y.L. Wang, W.X. Zhang, Z. Liu, C. Chen and H.Y. Jin	191
Preparation of Titanium Coating on Alumina Foam by Chemical Vapor Deposition K.Z. Sang, L. He, X.G. Hui, Y. Zhang and J.F. Yang	195
Fabrication and Characterization of Silica Aerogel @Polystyrene Composite Beads by Suspension Polymerization H.W. Li, N. Lv, P.Y. Lu, G.Q. Geng and W. Wang	199
Research on Preparation Technology for Machinable Ceramics H. Zhang, Y. Xu, H.Y. Jin and G.J. Qiao	203

VI. Photocatalysis for a Better Environment and Clean Energy

The Photocatalytic Degradation of Methomyl over TiO ₂ Nanopowder Prepared by the Low Temperature Solvothermal Route	
P. Pookmanee, I. Phiwchai, S. Yoriya, R. Puntharod, S. Sangsrichan, J. Kittikul and S. Phanichphant	209
Estimation of UV Dose for the Effective Degradation of Pharmaceuticals in Secondary Treated Wastewater	
I.H. Kim, J.S. Kim and H. Tanaka	213
Preparation of Fe/N Co-Doped TiO ₂ Powders by Mild Hydrothermal Method J.N. Xu, W.X. Liu, P. Sun, M. Guan and W.B. Cao	217
Control of Indoor Suspended Microorganisms by UV and Photocatalytic Disinfection Y.H. Yoon, S.H. Nam, J.C. Joo, H.S. Ahn, T.M. Hwang and J.R. Park	221
Catalytic Activities of α , β , γ - Bismuth Molybdates for Selective Oxidation of Propylene to	
Arcrolein L.M. Thang and I. van Driessche	225

VII. Bio-Inspired Materials for a Better Life and Other Novel Bio-Materials

Antibacterial Properties Evaluation of a Novel Polyurethane-Based Root Canal Sealer J. Wang, M.H. Zhao, Y.B. Li, Y. Zuo, B. Sun, J.X. Jiang, Q. Zou and J.D. Li	231
Potential of Tourmaline/Chitosan Fiber for Wound Dressing K. Zhao, J.F. Li, Y.B. Li, X. Tang and Q. Zou	235

Fluoridation and Mechanical Properties of Hydroxyapatite with Addition of TiF ₃ , Al ₂ O ₃	
and Fe ₂ O ₃ by Sintering M. Asif, Z.Y. Fu, S.A. Khan, W.M. Wang, H. Wang, Y.C. Wang, S.S. Rehman and R.F. Ma	239
Application of Finite Element Method to the Simulation of Vessel Stents	
D. van Hai, H. Minh Tam and D. van Quang	243
Influencing Factors on Chest Compression in Moving Ambulance S.G. Roh, J.G. Lee and J.H. Kim	248
Eating Speed Controls the Metabolic Syndrome	252
J.H. Kim, S.G. Roh and J.G. Lee	252
VIII. Light Metals and Alloys of Mg, Al, Ti, Be, and Porous Materials	
Fractal Research of Pore-Structure in Porous Titanium Fibers	
S.F. Liu, H.P. Tang, X. Yang and Z.H. Zhang	259
Structure and Mechanical Properties of Lotus-Type Porous Copper with a Ti Coating on the Pore Wall by Arc Ion Plating	
H. Du, D.Z. Lu, H. Nakajima, Y. Wang, L.S. Yin and T.Y. Xiong	263
Fabrication of Porous SiAlON Using Fe₂O₃ as Pore Former Q.W. Duan, R.Z. Liu, H.Y. Jin, J.F. Yang and Z.H. Jin	267
Thermal Stability of Amorphous Al-Fe-Y Prepared by Mechanical Alloying N.H. Viet, N.T.H. Oanh, P.N.D. Quynh, T.Q. Lap and J.S. Kim	271
IX. Steel and Alloy	
The Study on Welding HAZ Microstructure of SAF 2507 Duplex Stainless Steel by Simulation Tests	
R.L. Tao, J. Liu, G.W. Fan and X. Chang	277
Phase Transformation Behavior of Niobium Containing Microalloyed Steel with Predeformation and Continuous Cooling	201
Y. She, Z.H. Zhang, J.T. Ju and B. Jin	281
Influence of Top Slag on the Plasticity of CaO-SiO ₂ -Al ₂ O ₃ Inclusions in 42CrMoA Crankshaft Steel	
J.T. Ju, S. Yang, Y.P. Guo, Y. She and Z.H. Zhang	285
Study on Microstructure and Fracture Morphology of 2205 Duplex Stainless Steel	
Resistance Spot Welds X. Chang, J. Liu, G.W. Fan and R.L. Tao	289

A. Chang, J. Elu, O. W. Fan and K.E. Tuo	20)
Effect of C Content on the Microstructure and Physical Properties of Fe-36Ni Invar Alloy T.K. Ha and S.H. Min	293
Effects of Chromium Content and Impact Load on Microstructures and Properties of High	
Manganese Steel P.M. Khanh, N.D. Nam, L.T. Chieu and H.T.N. Quyen	297

X. Manufacturing and Mechanical Technology

Characterization of High Speed Steel Billets Fabricated by Electro-Slag Rapid Remelting	
Method J.H. Moon and T.K. Ha	303
Cutting Analysis of 3-Layer Laminated Plate K.S. Kim	307
Finite Element Simulation and Experimental Study on Internal Fracture of Railway Sleeper Screw during Cross Wedge Rolling Process D. van Hai and D. Thi Hong Hue	311
Simulation Analysis of HPDC Process with Automobile Part by CAE H.K. Kwon and B.J. Lee	315

I. Materials for Environment Preservation, Energy Conservation/Harvesting and New Energy

Characterization of Cast Iron Scrap Chips toward β-FeSi₂ Thermoelectric Materials

Assayidatul Laila^{1,2,a} and Makoto Nanko^{3,b}

¹ Graduate School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, JAPAN

² Department of Manufacturing and Materials Engineering, Kuliyyah of Engineering, International Islamic University, Kuala Lumpur, 50728, MALAYSIA

³ Department of Mechanical, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, JAPAN e-mail: ^alaila@stn.nagaokaut.ac.jp, ^bnanko@mech.nagaokaut.ac.jp

Keywords: β-FeSi₂, Cast iron scrap chips, Thermoelectric properties, Recycling process.

Abstract. The upgrade recycling process of cast-iron scrap chips toward β -FeSi₂ is regarded as an eco-friendly and cost-effective production process. It is useful for reducing the material cost in fabricating β -FeSi₂ by utilizing the waste that is obtained from the manufacturing process of cast-iron components. In this research, β -FeSi₂ was successfully obtained from cast iron bscrap chips and showed good thermoelectric performance in Seebeck coefficient and electrical conductivity which is around 70% to almost 100% compared to β -FeSi₂ that was prepared from pure Fe and other publications. The thermoelectric power factor was achieved 90% performance compared to other literatures and β -FeSi₂ prepared from pure Fe.

Introduction

Semiconducting iron silicide (β -FeSi₂) has received a great attention as a cost-effective and environment-friendly thermoelectric material consists of abundant and economical raw material [1,2]. As well it has high potential in high temperature oxidation resistance [3,4]. On the other hand, cast-iron is one of the most popular metallic materials for mechanical components. Since cast-iron consists of mainly iron with carbon and silicon, scrap chips of cast-iron (C.I.) may be good starting material for preparing β -FeSi₂. Upgrade recycling process which is an eco-friendly and cost-effective production process. By utilizing the cast iron waste from the machining process of cast-iron component, the material cost to fabricate β -FeSi₂ is reduced and at the same time the said industrial waste is recycled. In this research, the thermoelectric performance of β -FeSi₂ made from cast iron scrap chips of undoped, Co-doped (n-type) and Al-doped (p-type) were evaluated.

Experimental Procedure

The undoped, p-type and n-type β -FeSi₂ powders were prepared by a solid state reaction technique of cast-iron (C.I.) scarp chips, silicon grains (99.99%), powders of dopant element Co (99%) for n-type and Al (99%) for p-type. The numerical chemical compositions were cast-iron (C.I.):Si= 1:1.86 for undoped ones, cast-iron (C.I.):Co:Si= 0.98:0.02:1.86 for n-type and cast-iron (C.I.):Al:Si= 1: 0.09:1.77 for p-type. The names of the prepared samples in the present study are P. Undoped : FeSi₂ prepared with pure Fe, C.I. Undoped= C.I.-Si_{1.86} that prepared with C.I. scrap, P. Co Doped= Fe_{0.98}Co_{0.02}Si₂ prepared with pure Fe, C.I. Co Doped= C.I._{0.98}-Co_{0.02}-Si_{1.86} that prepared with C.I. scrap, P. Al Doped= FeAl_{0.09}Si_{1.91} prepared with pure Fe and C.I. Al Doped= C.I.-Al_{0.09}-Si_{1.77} that prepared with C.I. scrap. The powder mixture was prepared by using a mortar and milled for 1 d using the planetary ball milling. The powder mixture undergo a solid state reaction at 1100°C for 3 d in vacuum. The reacted powder was consolidated by using a pulsed electric current sintering technique at 900-1000°C for 10 min in vacuum to under an uni-axial pressure of 80 MPa. The sintered samples

were annealed at 900°C for 5 d in vacuum to obtain the β -FeSi₂ phase. Sintered samples were characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) and energy dispersion X-ray spectroscopy (EDXS). The electrical conductivity and Seebeck coefficient of sintered β -FeSi₂ were measured by a standard four probe method and the steady-state temperature gradient with commercial apparatus (ZEM-2, Ulvac Co.) at temperature ranging from room temperature to 800°C in a stream of He gas.

Result and Discussion

The XRF analysis of the cast iron bulk in Table 1 indicates that the sample is mainly consists of iron with 5.99 mass % of carbon, 2.05 mass % of silicon and minor elements such as magnesium, manganese, phosphorus and sulphur, which are the typical elemental contents of cast iron product. Fig. 1 shows the XRD patterns of annealed β -FeSi₂ undoped, Co-doped and Al-doped specimens from pure Fe and cast iron scrap chips. It is observed that for all samples, the dominant peaks were β -FeSi₂ [5]. XRD patterns proved that the α + ϵ structures in all samples have been almost completely transformed to β phase after annealing 900°C for 5 d.

Element	mass %
Carbon (C)	5.99
Silicon (Si)	2.05
Minor elements: Mg, Mn, P, S	< 0.1
Iron (Fe)	Balance

Table 1 XRF composition of elements in the cast iron bulk.

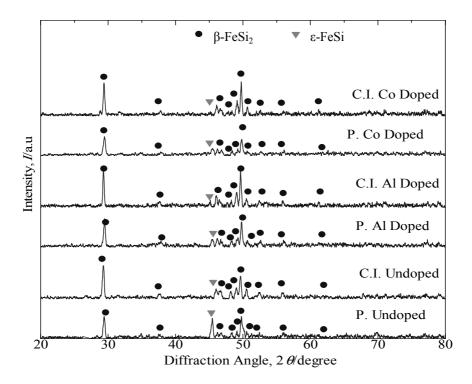


Fig. 1 XRD patterns of annealed β -FeSi₂ samples at 900°C for 5 d.

Fig. 2 shows the microstructure for the annealed samples of undoped, Co-doped and Al-doped β -FeSi₂ from pure Fe and cast iron scrap chips. The open porosity observed for both samples was below 1% after the sintering process. From the SEM images (d) and (e) (C.I. Undoped and C.I. Co Doped), Si-rich phase [6] (black dot) with some small pores (white dot) were observed.

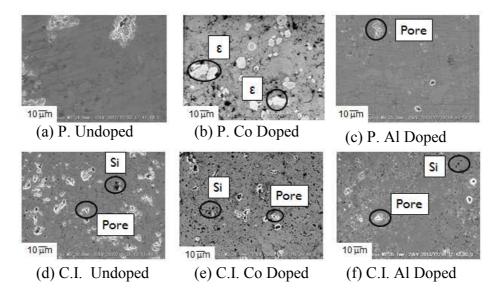


Fig. 2 SEM microstructures of annealed β -FeSi₂ samples at 900°C for 5 d.

Fig. 3 shows the thermoelectric properties of the annealed β -FeSi₂ samples that were evaluated from room temperature to 800°C. The electrical conductivity of annealed β -FeSi₂ decrease with increasing the measuring temperature until 400°C and then increase with the further temperature increase [7]. By comparing the electrical conductivity obtained by others and the samples prepared from pure Fe, the values of β -FeSi₂ from cast iron scrap chips are 70% (p-type) and almost 100% (n-type) performance. Furthermore, the Seebeck coefficient of Co-doped and Al-doped β -FeSi₂ from cast iron scrap chips were obtained 90% to almost 100% performance compared to the samples prepared from pure Fe and reported studies.

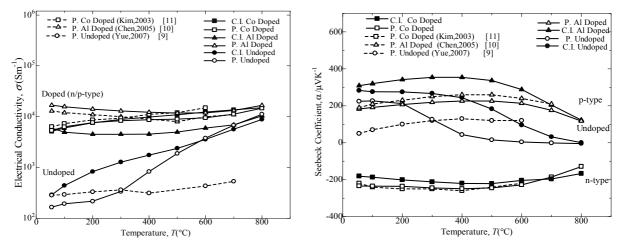


Fig. 3 Electrical conductivity and Seebeck coefficient of annealed β -FeSi₂ samples.

Fig. 4 shows the thermoelectric power factor of the annealed β -FeSi₂ samples. It is commonly used to evaluate the performance of thermoelectric materials as kind of figure of merit and is easily obtained by the combination of Seebeck coefficient and electrical conductivity [8]. By comparing the thermoelectric power factors of other publications and that from pure Fe, the values of β -FeSi₂ from cast iron scrap chips are 90% performance. Thus, β -FeSi₂ from cast iron scrap chips shows positive