Electroceramics VI

Edited by Daniel Z. de Florio, Eliana N. S. Muccillo, Fábio C. Fonseca and R. Muccillo

TRANS TECH PUBLICATIONS

Electroceramics VI

Edited by Daniel Z. de Florio Eliana N. S. Muccillo Fábio C. Fonseca R. Muccillo

Electroceramics VI

Selected, peer reviewed papers from the 6th International Conference on Electroceramics (ICHSM 2010), November 9-13, 2013, João Pessoa, Brazil

Edited by

Daniel Z. de Florio, Eliana N. S. Muccillo, Fábio C. Fonseca and R. Muccillo

Copyright © 2014 Trans Tech Publications Ltd, Switzerland

All rights reserved. No part of the contents of this publication may be reproduced or transmitted in any form or by any means without the written permission of the publisher.

Trans Tech Publications Ltd Churerstrasse 20 CH-8808 Pfaffikon Switzerland http://www.ttp.net

Volume 975 of Advanced Materials Research ISSN print 1022-6680 ISSN cd 1022-6680 ISSN web 1662-8985

Full text available online at http://www.scientific.net

Distributed worldwide by

Trans Tech Publications Ltd Churerstrasse 20 CH-8808 Pfaffikon Switzerland

Fax: +41 (44) 922 10 33 e-mail: sales@ttp.net

and in the Americas by

Trans Tech Publications Inc. PO Box 699, May Street Enfield, NH 03748 USA

Phone: +1 (603) 632-7377 Fax: +1 (603) 632-5611 e-mail: sales-usa@ttp.net

International Advisory Committee

Name	Affiliation	Country
Tuller H. L.	Massachusetts Institute of Technology	USA
Beach G. S. D.	Massachusetts Institute of Technology	USA
Bishop S. R.	Kyushu University	Japan
Eiras J. A.	Federal University of S. Carlos	Brazil
Grande T.	Norwegian University of Science and Technology	Norway
Jantunen H.	University of Oulu	Finland
Marques F. M. B.	University of Aveiro	Portugal
Nino J. C.	University of Florida	USA
Ramesh R.	University of California	USA
Randall C. A.	Penn State University	USA
Rijnders G.	University of Twente	The Netherlands
Rupp J.	ETH Zürich	Switzerland
Sean Li	University of New South Wales	Australia
Setter N.	École Polytechnique Fédérale de Lausanne	Switzerland
Suvorov D.	Josef Stefan Institute	Slovenia
Thangadurai V.	University of Calgary	Canada
Traversa E.	University Tor Vergata	Italy
Varela J. A.	S. Paulo State University	Brazil
Waser R.	RWTH Aachen University	Germany
Weidenkaff A.	Empa - Swiss Fed. Labs for Mater. Testing and Res.	Switzerland
Wessels B.	Northwestern University	USA

Local Organizing Committee

Name	Affiliation
Muccillo R Chair	Energy and Nuclear Research Institute - IPEN
Eiras JA - Chair	Federal University of S. Carlos - UFSCar
Varela JA - Chair	State University of S. Paulo - UNESP
Carmo JR	UNIBAN - SP
de Florio DZ	Federal University of ABC - UFABC
Fonseca FC	Energy and Nuclear Research Institute - IPEN
Muccillo ENS	Energy and Nuclear Research Institute - IPEN
Orlandi MO	State University of S. Paulo - UNESP
Porfirio TC	Energy and Nuclear Research Institute - IPEN
Reis SL	Energy and Nuclear Research Institute - IPEN
Rocha RA	Federal University of ABC - UFABC
Santos EZ	Energy and Nuclear Research Institute - IPEN
Zaghete MA	State University of S. Paulo - UNESP
Zanetti SM	State University of S. Paulo - UNESP

Acknowledgement

The 6th International Conference on Electroceramics was organized under the auspices of

and with support from

Table of Contents

Committees and Acknowledgement

Chapter 1: Ferroelectrics, Piezoelectrics and Pyroelectrics

Ferroelectric Properties of Bi _{0.5} (Na _{0.8} K _{0.2}) _{0.5} TiO ₃ Ceramics J. Camargo, L. Ramajo, F. Rubio-Marcos and M. Castro	3
Physical Properties of Self-Polarized PZT Thin Films at Compositions around the Morphotropic Phase Boundary	
E.B. Araujo, E.C. Lima, I.K. Bdikin and A.L. Kholkin	9
Structure, Dielectric Relaxor Behavior and Ferroelectric Properties of Sr_{1-x}La_xBi₂Nb_{2-x/5}O₉ Ferroelectric Ceramics P.Y. Fang, Z.Z. Xi, W. Long and X.J. Li	16
PZT Dielectric Ceramic Characterization for Application in Nonlinear Transmission Lines L.P. Silva Neto and J.O. Rossi	23
Titanium K-Edge XAS Study on Local Structure of Pb _{1-x} Ca _x TiO ₃ Ferroelectric Ceramics A. Mesquita, F.R. Estrada, V.R. Mastelaro, J.A. Eiras and D. Garcia	29
Effects of La Doping on the Structural and Dielectric Properties of Barium Titanate Ceramics M.S. Silva and N.S. Ferreira	36
Cr-Doping-Induced Ferromagnetism in CeO _{2-δ} Nanopowders N.S. Ferreira and M.A. Macedo	42
Electrodeposition of Zinc Oxide NanoSheets on Exfoliated Tips of Carbon Nanotube Films E.F. Antunes, E. Saito, M. Pianassola, F.H. Christovam, V.J. Trava-Airoldi and E.J. Corat	50
Ultrasonic Synthesis of SrTiO ₃ O. Andrade Raponi, A. Silva Chaves, M.V. Gelfuso and D. Thomazini	56
Characterization of Multilayer Ferroelectric Ceramic Capacitors in a Wide Frequency Range for RF Applications L.P. Silva Neto, J.O. Rossi and J.J. Barroso	61
Chapter 2: Thermoelectrics	
Structural and Thermal Properties of YMn _{1-x} Ru _x O ₃ R.K. Thakur, R. Thakur, N. Kaurav, G.S. Okram and N.K. Gaur	69
Chapter 3: Ionic and Electronic Conductors and Applications to Solid Oxide Fuel Cells and Membrane Technology	
Influence of the Zn Dopant in Structural and Electrical Properties of the La₂Ni_{1-x}Zn_xO₄ C.A. Silva, J.B. Silva, M.C. Silva-Santana, P.B. Silva and N.O. Moreno	75
Ionic Conductivity of Chemically Synthesized La _{0.9} Sr _{0.1} Ga _{0.8} Mg _{0.2} O _{3-δ} Solid Electrolyte S.L. Reis and E.N.S. Muccillo	81
Effect of Manganese Dioxide Addition on the Cubic Phase Stability, Densification and Electrical Conductivity of Scandia-Stabilized Zirconia E.Z. Santos and R. Muccillo	86
Chapter 4: Magnetic and Superconducting Ceramics	
Effects of Oxygen Doping on the Transport Properties of Hg _{0.82} Re _{0.18} Ba ₂ Ca ₂ Cu ₃ O _{8+d} Superconducting Polycrystals	_
C.A.C. Passos, J.R. Rocha and M. de Sousa Bolzan	95

Magnetic Properties of YBCO/LCMO Superlattices with and without STO Interlayers A.H. Yonamine, S.A. Fedoseev, D.I. dos Santos and A.V. Pan

101

Characterization of Superconducting BSCCO/CaSiO ₃ and BSCCO/CaZrO ₃ Ag PIT Wires N.A. Nogueira, A.H. Yonamine, D.I. dos Santos, J.H. Kim and S.X. Dou	106
Magnetocrystalline Properties of Sr _{1.4} Ba _{1.6} Co ₂ Fe ₂₄ O ₄₁ Y.P. dos Santos, B. da Costa Andrade and M.A. Macedo	111
Effects of Ca ²⁺ -Doping on the Crystal Lattice of α-Fe ₂ O ₃ B. da Costa Andrade, J.C. da Conceição Passos and M.A. Macedo	116
Ferromagnetic Cluster on La ₂ FeMnO ₆ P. Barrozo, N.O. Moreno and J.A. Aguiar	122
Characterization of Bi2212 Superconductor Bulk Samples by Digital Image Processing A.R. Bigansolli, T.G. da Cruz, F.R. de Souza Machado and D. Rodrigues Jr.	128
Chapter 5: Materials for Fuel Cells	
Propagation of (BaSr) Sm C Fa O and (BaSr) Nd C Fa O Cathodos for IT	

Preparation of $(BaSr)_{0.5}Sm_{0.5}C_{0.8}Fe_{0.2}O_{3-\delta}$ and $(BaSr)_{0.5}Nd_{0.5}C_{0.8}Fe_{0.2}O_{3-\delta}$ Cathodes for IT-	
F.M. Aquino, F.M.B. Marques, D.M.A. Melo, D.A. Macedo, A.A. Yaremchenko and F.M. Figueiredo	137
Low Temperature Synthesis of Lanthanum Silicate Apatite Type by Modified Sol Gel	
A.M. Misso, D.R. Elias, F. dos Santos and C. Yamagata	143
Particle-Filled Polysilazane Coatings for Steel Protection L. Neckel Jr., A.G. Weiss, G. Motz, D. Hotza and M.C. Fredel	149
Effects of Microwave Processing on the Properties of Nickel Oxide/Zirconia/Ceria	
Composites L.B. Pinheiro, A.E. Martinelli and F.C. Fonseca	154

Chapter 6: Electroceramic Devices. Sensors and Actuators

Effect of Cd Doping on Mechanical Properties of SrCoO ₃ N.K. Gaur, R. Thakur, R.K. Thakur and A.K. Nigam	163
Electrical Properties of a TiO₂-SrO Varistor System T. Delbrücke, I. Schmidt, S. Cava and V.C. Sousa	168
Development and Test of a Small Resistive Fault Current Limiting Device Based on a SmBaCuO Ceramic C.A.C. Passos, M.T.D. Orlando, J.N.O. Pinto, V.T. Abilio, J.B. Depianti, A. Cavichini and L.C. Machado	173
Electrodeposition of Zinc Oxide on Graphene Tips Electrochemically Exfoliated and O₂- Plasma Treated E. Saito, E.F. Antunes, M. Pianassola, F.H. Christovan, J.P.B. Machado, E.J. Corat and V.J. Trava-Airoldi	179
Dielectric Properties of CaCu ₃ Ti ₄ O ₁₂ Synthesized by Different Routes T.C. Porfirio and E.N.S. Muccillo	184
Gas Sensor Properties of ZnO Nanorods Grown by Chemical Bath Deposition G. Gasparotto, T. Mazon, G. Gasparotto, M.A. Zaghete, L.A. Perazolli and J.A. Varela	189
A Capacitive-Type Humidity Sensor Using Porous Ceramics for Environmental Monitoring R. de Matos Oliveira, M.D.C. de Andrade Nono and G. de Souza Oliveira	194
Chapter 7: Solar Photovoltaic and Photoelectrochemical Cells	

Investigation of Photoinduced Electrical Properties in the Heteroiunction TiO ₂ /SnO ₂	
D.H. de Oliveira Machado, E.A. Floriano, L.V. de Andrade Scalvi and M.J. Saeki	201
Nanostructured TiO ₂ -Based Composites for Light Absorption	
D.I. dos Santos, O. Modesto Jr., L.V.A. Scalvi and A.S. Tabata	207
Photocatalytic Decomposition of Rhodamine-B Using Scandium and Silver-Modified TiO ₂	
Powders	
D.W. da Silva, D.C. Manfroi, G.F. Teixeira, L.A. Perazolli, M.A. Zaghete and A.A. Cavalheiro	213

Flexible Linear Array with Curvature Sensor T.F. Oliveira, M.Y. Matuda, C.N. Pai, F. Buiochi and J.C. Adamowski	219
Development of Novel Photoelectrode Materials with Improved Charge Separation	
Properties L.R. Sheppard, M.B. Lamo, T. Dittrich and R. Wuhrer	224
Chapter 8: Photonic and Electro-Optical Ceramics	
Synthesis and Characterization of Nanostructured TiO ₂ -SnO ₂ Composite	222
Structural, Optical, and Electrical Properties of ZnO/Nb/ZnO Multilayer Thin Films A H N Melo P B Silva and M A Macedo	233
Synthesis and Optical Property of MgMoO ₄ Crystals C.S. Xavier, A.P. de Moura, E. Longo, J.A. Varela and M.A. Zaghete	233
Al_2O_3 Obtained through Resistive Evaporation for Use as Insulating Layer in Transparent	
Field Effect Transistor M.H. Boratto, L.V. de Andrade Scalvi and D.H. de Oliveira Machado	248
Chapter 9: Magneto-Electric Coupling and Multiferroics	
Multiferroic Properties and Piezoelectric Characterizations of Bismuth Ferrite Based Compounds Produced by Spark Plasma Sintering	
R.A.M. Gotardo, D. Montanher, O.A. Protzek, L.F. Cótica, I.A. Santos, D.S.F. Viana, W.J. Nascimento, D. Garcia and J.A. Eiras	257
Structural and Magnetoelectric Properties of a New W-Type Hexaferrite (Sr _{0.85} Ce _{0.15} Co ₂ Fe ₁₆ O _{27-δ})	
B. da Costa Andrade and M.A. Macedo Effort of Substituting Sr^{2+} for Cd^{3+} on Structural and Magnetoelectric Properties of W.	263
Type Hexaferrite	
B. da Costa Andrade and M.A. Macedo	268
Controlled Atmosphere Thermal Treatment for Pyrochlore Phase Elimination of PMN- PT/CEO Propagad by Sport Plasma Sintaring	
D.S.F. Viana, J.A. Eiras, W.J. Nascimento, F.L. Zabotto and D. Garcia	274
Chapter 10: Modeling and Simulation	
Elastic and Thermal Properties of SrCo _{1-x} Sc _x O _{3-δ} R. Thakur, R.K. Thakur and N.K. Gaur	283
Sensitivity Analysis and Identification of Damping Parameters in the Finite Element	-
Modeling of Piezoelectric Ceramic Disks N.P. Alvarez, R.C. Carbonari, M.A.B. Andrade, F. Buiochi and J.C. Adamowski	288

CHAPTER 1:

Ferroelectrics, Piezoelectrics and Pyroelectrics

Ferroelectric Properties of Bi_{0.5}(Na_{0.8}K_{0.2})_{0.5}TiO₃ Ceramics

Javier Camargo^{1,a}, Leandro Ramajo^{1,b}, Fernando Rubio-Marcos^{2,c}

and Miriam Castro1,d

¹Institute of Research in Materials Science and Technology (INTEMA), Juan B. Justo 4302 (B7608FDQ), Mar del Plata, Argentina

²Institute of Ceramic and Glass (ICV), Campus UAM c/Kelsen 5, Madrid, Spain

^ajavijec@gmail.com, ^bIramajo@fi.mdp.edu.ar, ^cfrmarcos@icv.csic.es, ^dmcastro@fi.mdp.edu.ar

Keywords: piezoelectric ceramics, lead-free compositions, ferroelectric properties.

Abstract. Different processing conditions and the effect of secondary phases on ferroelectric properties of $Bi_{0.5}(Na_{0.8}K_{0.2})_{0.5}TiO_3$ (BNKT) are studied. Ceramic powders are prepared by solid state reaction and different sintering temperatures (temperatures between 1075 and 1150 °C) are analyzed. Finally, samples are characterized by X-ray diffraction, Raman micro-spectroscopy, scanning electron microscopy, impedance spectroscopy, and density measurements. Through XRD patterns, the perovskite structure is stabilized; together with small peaks corresponding to a secondary phase associated with $K_{2-x}Na_xTi_6O_{13}$ phase. Moreover, the content of the secondary phase, d₃₃ piezoelectric constant and dielectric properties increase with sintering temperature.

Introduction

Lead titanate-zirconate piezoceramics are the most important and widely used materials for piezoelectric transducers, transformers and sensors. They have played a dominant role in the piezoelectric field for a long time owing their excellent piezoelectric properties [1]. However, the toxicity of lead is a serious threat to human health and environment [2]. Thus, considerable effort has been devoted towards the development of lead-free piezoelectric ceramics.

Numerous studies on lead-free piezoelectric ceramics, such as (K,Na)NbO₃, BaTiO₃-based, Bilayered, bismuth sodium titanate and tungsten bronze-type materials, have been recently published. For this reason, K_{0.5}Na_{0.5}NbO₃ (KNN) system attracts much attention, due to its elevated Curie temperature (about 420°C) and high piezoelectric properties close to the morphotropic phase boundary (MPB) [3]. Nevertheless, it is difficult to obtain pure KNN ceramics with high density and great piezoelectric performance. Sodium bismuth titanate Na_{0.5}Bi_{0.5}TiO₃ (BNT) with a relatively large remnant polarization at room temperature and a relatively high Curie temperature, could be considered another promising candidate to lead-free piezoelectric ceramics. However, its high coercive field hinders the obtention of the desired piezoelectric properties. Therefore, a number of studies have been carried out to improve electrical properties of BNT by the formation of solid solutions with other ABO₃ perovskites [4-5]. It has been reported that BNT ceramics modified with Bi_{0.5}K_{0.5}TiO₃ (BKT) showed improved dielectric and piezoelectric properties, due to a rhombohedral–tetragonal morphotropic phase boundary (MPB) at the optimal composition of Bi_{0.5}(Na_{0.85}K_{0.15})_{0.5}TiO₃ [6].

In the current work, lead-free $Bi_{0.5}(Na_{0.8}K_{0.2})_{0.5}TiO_3$ -based ceramics are prepared by the solid state reaction method using a previous mecanochemical activation step of reagents. Results will be discussed considering the effect of secondary phases on structure, microstructure, dielectric and piezoelectric properties of these ceramics.

Experimental Procedure

 $Bi_{0.5}(K_{0.2}Na_{0.8})_{0.5}TiO_3$ was synthesized through solid state reaction, using K_2CO_3 and Na_2CO_3 (Cicarelli 99.99%; Argentina), Bi_2O_3 (Aldrich 99.8%; USA) and TiO_2 (Aldrich 99.9%; USA). Powders were mixed and milled using zirconia balls in an alcoholic medium for 5 h in a planetary mill (Fritsch, Pulverisette 7, 1450 rpm). Powders were dried and calcined at 700 °C for 2 h. The resulting powders were milled again, pressed into disks and sintered at 1075 to 1150 °C for 2 h.

Crystalline phases were characterized by X-ray diffraction (XRD) (Philips PW1830), using CuK_{α} radiation. Raman spectra were acquired at room temperature with a Renishaw inVia microscope by means of the 514 nm Ar-ion laser line (50 mW nominal power) with a diffraction grating of 2400 lines/mm. Density values were determined using the Archimedes method. Microstructures were evaluated on polished and thermally etched samples using a Field Emission Scanning Electron Microscope, FE-SEM (Hitachi S-4700) equipped with energy dispersive spectroscopy, EDS. Previous to the electrical measurements, a fired silver paste was used for the electric contacts. Dielectric properties were determined at different frequencies using impedance analyzers Hioki 3532-3550 in the frequency range 100 mHz-10 MHz at room temperature. Samples were polled in a silicone oil bath at 25 °C by applying a DC field of 30.0 kV/cm for 30 min. The piezoelectric constant d_{33} was measured using a piezo d_{33} meter (YE2730A d_{33} Meter, APC International, Ltd., USA). Finally, the ferroelectric nature of these ceramics was determined using a hysteresis meter (RT 6000 HVS, Radiant Technologies).

Results and Discussion

From XRD patterns (Fig. 1), the BNKT phase is stabilized in all sintered samples. However, samples sintered at temperatures higher than 1100 °C present secondary phases, which can be indexed to $K_{2-x}Na_xTi_6O_{13}$ phase (monoclinic structure, JCPDS Nos. 40-0403 and 74-0275).

Figure 1 - XRD patterns of sintered samples. (o) Peaks corresponding to BNKT phase, (x) peaks associated with a secondary phase.

Raman analyses are performed on different regions of all sintered samples between 200 and 1000 cm⁻¹ (Fig. 2). From Raman spectra, six vibration bands corresponding to BNKT, in all sintered samples are observed. The amplitude and overlapping Raman bands reflect the strong anharmonicity and disorder inherent to A-sites. Moreover, new peaks related to a secondary phase assigned to $K_{2-x}Na_xTi_6O_{13}$ can be observed in Fig. 2. Peaks below 500 cm⁻¹ could be attributed to the K–O–Ti stretching vibration. Peaks at about 655 cm⁻¹ have been assigned to the Ti–O–Ti stretch in edge-shared TiO₆. Peaks near 870 cm⁻¹ are reported for a short Ti–O stretching vibration in distorted TiO₆. Weak peaks at around 240 and 400 cm⁻¹ characteristic of the K–O–Ti containing short Ti–O bonds are also observed. Although secondary phases are not detected through XRD patterns at the lowest sintering temperature, Raman spectra confirm the formation of a secondary phase with a composition close to $K_{2-x}Na_xTi_6O_{13}$ in all samples [7], see Fig. 2.

Figure 2 - Raman spectra of sintered samples. From the Raman spectra, the apparition of a secondary phase can be observed. The secondary phase associated with the BNKT phase is signaled with a red dash dot line, whereas the BNKT perovskite phase corresponds to the black solid line. In addition, the position of the main Raman modes associated to the secondary phase are marked with \hat{x} symbols

Microstructural characteristics of sintered samples are observed through Field Emission Scanning Electron Microscopy (FE-SEM) (Fig. 3). The FE-SEM micrographs show the typical BNKT morphology consisting of very small faceted grains. Furthermore, it was determined that sintering temperature affects the grain size and the amount of the secondary phase. This phase, which is present in the form of rods, has a composition close to $K_{2-x}Na_xTi_6O_{13}$ as detected by EDS, XRD and Raman microspectroscopy. All systems show small grains ($\leq 1 \mu m$) that become finer at low sintering temperatures.

Relative permittivity and dielectric loss values as a function of frequency for samples sintered at different temperatures are measured at room temperature (Fig. 4). In all cases, it is determined that at low frequencies, permittivity decreases drastically due to a space charge relaxation process characteristic of the polycrystalline material. Additionally, from the Fig. 4 a relaxation process at high frequency (8~MHz), which is associated with a dipolar relaxation phenomena can be observed. In these samples, the improvement in the real permittivity value with the sintering temperature could be related to the secondary phase formation, the grain size increase and the densification degree.

Figure 3 - FE-SEM images of pure BNKT sintered at (A) 1075 °C, (B) 1100 °C, (C) 1125 °C and (D) 1150 °C.

Figure 4 - Curves of relative permittivity (A) and dielectric loss (B) as a function of frequency at room temperature. The sintering temperatures of BNKT ceramics represented in Fig. (A-B) are the following: (1) 1075 °C; (2) 1100 °C; (3) 1125 °C; (4) 1150 °C. The dotted arrow marked in (A) corresponds to the evolution of the relative permittivity depending on sintering temperatures of the BNKT system.

From density measurements, samples sintered at 1100 $^{\circ}$ C present the maximum value of the complete set of samples (Table 1). Interestingly, the higher the sintering temperature of the system, the higher the piezoelectric coefficient (d₃₃) and real permittivity values (see Table 1). Although this