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Foreword 
 
 
The Third International Conference on Texture and Anisotropy of Polycrystals, ITAP-3, took 
place at the Geoscience Center of the University of Göttingen, Germany, on 23 – 25 September 
2009, following the intentions and guidelines of ITAP-1 in Clausthal (Germany) 1997 and ITAP-
2 in Metz (France) 2004. The purpose of this regional conference was to bring together 
renowned scientists, researchers, developers, practitioners and students in an informal setting to 
present and to discuss new and current work. 

The conference also hosted four one-day workshops on September 21 and 22. They covered the 
following topics: 

• An Introduction to EBSD and Orientation Microscopy 
 by Robert Schwarzer and Stefan Zaefferer 
• MAUD workshop: From Diffraction Images to Texture 
 by Luca Lutterotti and Daniel Chateigner 
• MTEX – Open-Source Software for Texture Analysis 
 by Ralf Hielscher and Helmut Schaeben 
• Texture Analysis at Large Scale Facilities – Neutron and Synchrotron Radiation  
 organized by Hans-Günter Brokmeier. 

The conference particularly encouraged the interaction of research students and developing 
academics with the more established community to foster further cooperation and exchange of 
ideas. About 100 registered representatives attended the conference. This is all the more 
remarkable in view of the economic restrictions to which the related industries might have been 
exposed. The actual economic crisis also cast shadows on the conference in that only a few 
delegates from industry had got an opportunity to attend. 
 
The great majority of solid-state materials – natural as well as man-made ones – have a poly-
crystalline structure that is characterized by the size, shape, arrangement and orientation of the 
constituting crystals. Crystal orientation is particularly important due to the anisotropy of many 
physical properties. Therefore, the study of preferred crystal orientations, or crystallographic 
texture, is of major interest in research and industrial application. 

• First of all, texture is one of the fundamental parameters, in addition to crystal structure, 
lattice defects and element composition, to characterize solid-state materials.  

• Texture changes are indicative of solid-state processes of all kind; hence texture can be 
utilized to advantage in failure analysis as a fingerprint of proper use or misuse of a 
work-piece. 

• Texture enables the geologist to shed light on the processes of rock forming which took 
place in early days of the history of Earth.  

• The knowledge of texture is a prerequisite for all quantitative techniques of materials 
characterization, which are based on the interpretation of diffraction peak intensities such 
as the determination of the content of residual austenite in steel, the determination of 
residual stress by X-ray diffraction, and structure analysis from powder diffraction patterns.  

• Most important, however, is texture as the link between anisotropic properties of single 
crystals and those of polycrystalline material. Its knowledge is utilized in the 
development and optimization of anisotropic properties of modern structural and 
functional materials. 

 



 
Traditionally (crystallographic) texture has referred to the statistical distribution of grain 
orientations in polycrystals, as obtained from X-ray or neutron pole figure measurement and 
mathematically described by the Orientation Density Function (ODF). But with the availability 
of spatially resolving techniques such as Kikuchi diffraction in the SEM and TEM as well as 
synchrotron diffraction with collimated intense beams, the field of texture research is being 
increasingly extended to other microstructural features such as grain boundaries, interfaces in 
general and the 3D characterization of microstructure. This widened experimental view has now 
again great impact on theory of material science. Texture research is so an appealing field not 
only for metallurgists, mechanical engineers, materials scientists and geologists, but also for 
physicists, mathematicians and those working in bioscience.  
 
Noticeable advancements in experimental as well as theoretical methods have been made during 
the last years. It was the purpose of the third conference in this ITAP series to provide a survey 
on the state of the art in texture analysis as well as to discuss some typical applications. Eight 
keynote speakers introduced special themes. 89 contributions were presented in three tracks of 
parallel sessions and in a poster session. The posters were displayed on all three days.  
 
This proceedings volume contains a selection of 49 peer-reviewed papers being written by 
authors from 15 countries. They have been arranged in four groups in alphabetic order with 
respect to the first author. In a few cases the authors preferred to fuse their presentations at the 
conference in one comprehensive paper. The proceedings volume thus may serve as a guide to 
this challenging field of science.  
 
Holding a scientific conference is a lot of work. We could not have done it without help from 
many people. First of all our thanks go to the workshop organizers, all the speakers and those 
who provided manuscripts for publication in these proceedings. Only by their brainwork and 
their efforts a scientific conference is enabled to be successful and to lead to fruitful discussions 
and findings. We also want to give a special thanks to the reviewers. 

We would like to thank the members of the International Advisory Committee and the Local 
Organizing Committee, the colleagues inside and outside Göttingen for their tireless support, as 
well as the University of Göttingen for providing the conference facilities. 

Finally, and most importantly, we would like to thank the conference participants – without your 
work and participation there would be no conference. We hope your stay in Göttingen was an 
enjoyable and stimulating one. 
 
Helmut Klein  and  Robert Schwarzer 
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EBSD-Based Dislocation Microscopy 
 

Brent L. Adams 1a, Calvin J. Gardner 1b and David T. Fullwood 1c 
 

1 Dept. of Mechanical Engineering, Brigham Young University, 435 CTB, Provo, UT 84602 USA 
 

a Textura49@gmail.com, b strike7dust@gmail.com, c dfullwood@byu.edu 
 

Keywords: Electron backscatter diffraction, EBSD, electron microscopy, dislocation tensor, strain 
localization. 
 

Abstract. Recent advances in high-resolution electron backscatter diffraction (EBSD)-based 
microscopy are applied to the characterization of incompatibility structures near the grain 
boundaries (GBs) in polycrystals. The principal interest described here is recovery of geometrically-
necessary dislocation (density) tensors, of the 2- and 3-D type, described by Nye and Kröner.  
These developments are presented in the context of the continuum dislocation theory.  High 
resolution data obtained near a single grain boundary in well-annealed, low content steel suggests 
that it may be possible to measure the intrinsic elastic properties of GBs. 
 
Introduction 

This paper describes the application of high-resolution EBSD-based scanning electron microscopy 
to measure characteristics of dislocation in polycrystalline materials.  The simplest possible view is 
described here – that of single-phase polycrystals, where the main defect structures are dislocations, 
within and between the constituent crystallites, and within the grain boundaries that separate the 
grains of the material.  That which is observable about these defects is the (elastic) self-stresses that 
preserve the compatibility of the displacement field.  It will be shown that these distortions of the 
crystal lattice can be recovered from the EBSD patterns. 
 The notion that incompatible plastic strains must be coupled with compensating elastic strains 
in order to maintain compatibility, reaches back at least to the foundational work of Eshelby [1] in 
1957, where these incompatible strains were referred to as stress-free transformation strains in 
treating ellipsoidal inclusion problems.  Earlier, in 1953, Nye had presented a geometrical theory of 
dislocation in crystals [2]; that workwas extended to include consideration of elastic self-stresses in 
the masterwork of Kröner in 1958 [3].  A significant retrospective of that work, written by Kröner 
himself, was published in 2001 [4].  Much of the focus of this paper will be with Kröner’s work in 
mind; and to the extent possible his notation will be maintained here.  For readers desiring a 
systematic, detailed presentation of the continuum theory of dislocations, the monographs of 
Teodosiu [5] and Mura [6] are recommended. 
 Connecting these theoretical constructs to experimental measurements is most direct with 
EBSD.  The first observations of backscattered diffraction patterns were reported by Nishikawa and 
Kikuchi in 1928 [7].  These images were recorded on film.  The first detailed description of the 
physics of backscattering was detailed in the work paper of Alam, Blackman and Pashley in 1953 [8].  
Venables [9] seems to have been the first to employ a camera located in the chamber of the electron 
microscope for recording these EBSD patterns.  Automated scanning and real-time analysis of 
EBSD-patterns, to form crystallographically-specific images, was reported by Adams and co-
workers in 1993 [10].  The acronym OIM, which stands for orientation imaging microscopy, has 
been used to describe 2-D images of microstructure, where the constituent features are 
discriminated by lattice orientation.  Numerous refinements and applications of OIM and EBSD-
related microscopy have been detailed in the monographs edited by Schartz and co-workers in 2000 
[11] and 2009 [12].   
 Using conventional OIM capabilities, Sun et al. [13] made the first measurements of Nye’s 
dislocation density tensor – in an Al bicrystal.  The resolution of the conventional EBSD 

Solid State Phenomena Vol. 160 (2010) pp 3-10
© (2010) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/SSP.160.3



techniques, based upon the Hough transformation for indexing lattice orientation, has been 
addressed by El-Dasher et al. [14], and Field [15], and more recently by Kacher and Adams [16].  
The Hough-based methods achieve a limiting angular resolution of ~0.5°, which restricts their 
application to materials with high dislocation densities (>1015 m-2). Of particular interest here, 
however,are the high-resolution cross-correlation-based techniques pioneered by Troost and co-
workers in 1993 [17], and more completely developed by Wilkinson et al. in 2006 [18].  An 
augmentation of Wilkinson’s approach, named the simulated-pattern method (SPM), was introduced 
by Kacher et al. in 2009 [19].  This paper describes applications of the Wilkinson method, using 
elements of the SPM augmentation to precisely locate the EBSD pattern center, to the 
characterization of dislocation tensor fields.  Due to space limitations, it will not describe the 
higher-order spatial correlation functions of the dislocation tensor field; if the reader is interested in 
these ideas, he is referred to the work of Landon et al. [20].  For the same reasons, a detailed 
description of pattern center location will not be described. 
  

Basic relations of continuum dislocation theory 
 
Our purpose for this section of the paper is to describe the context for the experimental 
measurements.  Microstructure representation, with its varied and multiplied possibilities, must be 
guided by physical theory to settle its context.  The authors contend that localization relations 
present a compelling context for EBSD-based microscopy, and vice-versa.  It is illustrated that the 
details of the local stress condition are dependent upon the local elastic polarization, and upon the 
field of dislocation, contained in both the grain interiors and the grain boundaries. 
Let ijε  represent the total strain in the material, ije  represents the elastic strain, and *

ijε
 
represents 

the ‘eigenstrain’ (the terminology of Mura [6]) caused by the presence of dislocations in the sample. 
Then 
 

 
*
ijijij e εε += . (1) 

 
And the compatibility relation may be written: 
 

 
( )ijjiij uu ,,2

1
+=ε  (2) 

 
in terms of the displacement components ui and their spatial derivatives, as denoted by ui,j.  We also 
have the elastic constitutive relations: 
 

 
( )*

klklijklklijklij CeC εεσ −== . (3) 

 
It suits our purposes here to write the local stiffness tensor in terms of a perturbation from a 
reference stiffness tensor: 
 

 
( ) )(' xx ijkl

r
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In the absence of external body forces, the equilibrium condition 0, =jijσ  may be combined with 
the previous two equations to give: 
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From the symmetry of r
ijklC  we may write ljk

r
ijkljkl

r
ijkl uCC ,, =ε , and combining the second term into a 

fictitious body force: 
 

 
( )[ ]
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Thereby we arrive at the fundamental differential equation that we wish to solve: 
 

 
0, =+ iljk
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Define a Green’s function, G, such that: 
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Now multiply Eq. 7 by G, and integrate. Using integration by parts twice on the first term to obtain 
second derivatives of G, and then using Eq. 8: 
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Using Eq. 1 this becomes: 
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To deal with the singularity in the Green’s function at x = x’ we integrate by parts between a sphere 
about the singularity and an infinite sphere (see Torquato [21]): 
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The volume integral may be compared with Mura [6] Eq. 6.1 for the case that C is constant.  
Ignore the eigenstrain surface integrals for now; let them be combined in the tensor, S(x). Consider 
the value of the elastic surface integrals. For the integral on the infinitesimal sphere xx →'  one may 
assume that the local stiffness and strain are approximately constant, and can be moved outside of 
the integral sign. Then for an isotropic reference tensor we may write [22, 23],  
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The integral on the infinite sphere may be approximated as [24]: 
 

 
∞∞ ≈ eCE 'I , (14) 

 

where ∞e  is the applied strain at infinity. Hence we may rewrite the elastic surface integrals as: 
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Clearly, if CC =R (the over-bar signifying the volume average) then 0C =' , and ∞I , as calculated 
from Eq. (14), tends to zero. Using the usual notation [23, 24]: 
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From Mura [6] Eqs. 6.1 and 37.13, when the eigenstrain is due purely to dislocations: 
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Hence: 
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The right hand side of Eq. (18) could be reached directly from the eigenstrain component of Eq. 
(11); hence we can deal with the singularity relating to the eigenstrain term (temporarily referred to 
as S(x) above) by integrating Eq. (18) by parts: 
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We treat two surface integrals as for the elastic case (Eq. (15)), with an approximate value for the 
infinite sphere. Let 
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Then: 
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Although quite complex in the form of its various terms, relation (23) defines the familiar 
dependence of local stress at position x upon the detailed spatial placement of lattice orientation at 
x’, through terms such as the elastic stiffness tensor, or its polarization.  Less familiar is its 
dependence upon the placement of dislocation, throughout the body.  (The reader is reminded that 
the dislocation tensor is related to the curl of the elastic distortion tensor, β , where i

e
jij xu ∂∂β /=  

are spatial derivatives of the elastic displacement field.  Fundamental to these developments is the 
idea that compatibility of the total displacement field requires that 
 
 pe curlcurl ββα −==  (24) 
 
It is this fundamental curl-free condition that enables the high-resolution EBSD-based experimental 
measurements to be connected to the constructs of the continuum dislocation theory of Kröner[4].) 
 
Measurements in Low Content Steel 
 
A sample of low-content steel, annealed to achieve a nominally columnar grain morphology, with 
grain size of ~ 500 µm, was sectioned, polished and examined within a 2x2 µm region using an 
FEI-Philips XL-30 SFEG scanning electron microscope.  EBSD images were captured using a 
DigiView CCD camera supplied by TSL-EDAX at full resolution (without binning).  These images 
were obtained over a square grid of points at 20 nm step size over the complete region, and stored 
for subsequent processing off-line.  A region was selected containing a single grain boundary 
oriented nominally in a plane parallel to that defined by the beam direction and the sample normal.  
Given the columnar nature of the grain morphology, this geometry gives the best possible spatial 
resolution (i.e. the minimum volume of grain boundary region contained in the electron beam 
interaction volume), assuming that the grain boundary normal is perpendicular to this plane. 
     At several points taken near the centroids of the two grains, reference EBSD patterns were taken.  
These reference images were used for pattern center calibration, and to provide nominally strain 
free reference patterns from which Fast Fourier Transform (FFT) algorithms were applied to 
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recover estimates of the local elastic distortion tensor using Wilkinson’s equations [18].  Initial 
estimates of lattice orientation were then corrected using the recovered off-diagonal components of 
the elastic distortion tensor.  Figure 1 depicts the principal measurements obtained through a false-
color image.  The elastic disturbance of the grain boundary region is evident in this image, as well 
as a horizontal region of disturbance extending across the boundary. 
 

 
 
     Figure 2 depicts the sum of the magnitudes of the six available components of the lattice 
curvature tensor.   The very small magnitude of these curvatures is notable.  Figure 3 shows the 
summed magnitude of the three measurable components of the dislocation density tensor, plotted as 
a field.  Related to the coordinate frame shown in Fig. 1, the available components are α31, α32, and 
α33.  These measurements include the elastic strain gradient contributions introduced by Kröner[4], 
but not included in Nye’s treatment [2].  The units shown, in m-1, can be related to the more 
conventional units of dislocation density, m-2, by dividing the field values by the length of the 
Burger’s vector in Fe, which is ~ 0.25 nm.  And, lastly, Fig. 4 depicts the sum over the magnitudes 
of the 6 components of the surface dislocation density tensor.  It is presumed, in forming these 
values that the interface normal lies in the 2-direction, as defined in Fig. 1.  Thus, the magnitudes of 

ssssss
333231131211  , , , , , αααααα  are accessible.  Note that the spiked feature near the center of the plot 

associates with the horizontal feature in the data set. 
 

 
 

Figure 1.  False color image of the 
recovered lattice orientation near the 
studied grain boundary. 

Figure 2.  Summation over 
the magnitudes of the six 
available components of the 
lattice curvature tensor, in 
units of degrees/micron. 
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Summary and Conclusions 
 

Elastic continuum theory, based upon solutions to the stress equilibrium equations and 
considerations of compatibility, clearly identify two sources of influence upon stress localization in 
single phasepolycrystals: the spatial heterogeneity of the elastic stiffness present within the grain 
structure, and the presence of dislocation within grain interiors and at grain boundaries.  
Experimental capability for recovering the first of these effects is now routine, through EBSD-based 
microscopy of ordinary resolution.  In this paper we have asked the question as to whether the 
second of these influences, coming from the presence of dislocation, can be recovered by high-
resolution EBSD methods.  Although the results presented in Figs. 1-4 are preliminary, they suggest 
that the intrinsic dislocation structure associated with elastic disturbances near grain boundaries 
(arising because of local disturbances in the atomic structure) may in fact be accessible via EBSD. 
     If these capabilities can be satisfactorily developed and exploited, it may be possible to map the 
elastic (and yield) properties of individual grain boundaries back to their five degrees of 
crystallographic freedom.  Such a mapping could have profound significance in extending theory 
for microstructure design to the design of grain boundary character and distribution, for the purpose 
of mitigating extreme value properties, such as fracture and fatigue, where it is known that 
properties depend upon the peaks within the stress field. 
 
Acknowledgment.  Support from the Materials Division of the U.S. Army Research Office, under 
the direction of Dr. David Stepp, is gratefully acknowledged. 
 

Figure 3. Summation of the 
magnitudes of the three 
directly measurable 
components of the 
dislocation tensor (including 
the elastic strain gradient 
contributions). 

Figure 4. Summation 
over the magnitudes of 
the six components of 
the surface dislocation 
density tensor along the 
vertical grain boundary. 
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Abstract: In the present work, we summarize three calculation methods to determine some specific 
crystallographic elements based on electron diffraction orientation measurements by SEM and TEM. 
The first one is to determine the plane indices of the faceted interfaces where the orientation 
relationships (ORs) between the adjacent crystals are reproducible. To acquire the orientation data, 
we need to prepare only one sample surface but not two perpendicular sample surfaces as usually 
required in the standard double trace method. The second is to characterize the surface crystalline 
planes and directions of a faceted nano-particle under TEM imaging and diffraction mode. With the 
determination of the edge trace vectors and then the plane normal vectors in the screen coordinate 
system of TEM, their Miller indices in the crystal coordinate system can be calculated through 
coordinate transformation. The third method is to determine the twin type and the twinning 
elements based on the orientation information acquired by SEM EBSD measurements from the two 
twinned crystals through misorientation calculations. These methods will facilitate related studies. 

Introduction 

With the advent of electron diffraction orientation determination realized in SEM [1] and TEM [2, 
3], microstructural analyses have gone one step further towards the quantitative level with the 
individual orientation information of the materials. The related studies on texture, on 
crystallographic plane of interfaces and on crystallographic characteristics of twinning, as 
commonly encountered in microstructural examinations, have become precise and easy by the 
availability of the direction orientation information through electron diffraction pattern acquiring 
and indexing system attached to either SEM or TEM. To further facilitate the related studies, the 
determination methods are needed. Based on such practical requirements, we have devoted to 
working out the possible calculation methods. The methods to determine the crystallographic 
reproducible faceted interface plane [4], that to determine the surface plane of nano-particles [5] 
and that to determine the twin type and twinning elements [6] based on the orientation data obtained 
by SEM or TEM are summarized in this work.  

Indirect two trace method to determine the crystallographic plane of specific interfaces 

Many solid-state phase transformations bring about crystallographically correlated phases with 
faceted low energy interfaces, like twin boundaries, martensitic variant boundaries and habit planes 
between precipitates and matrix. In most cases the orientation relationships (ORs) at interfaces are 
frequently reproducible and the interfaces are of the same crystallographic nature. Indexing their 
crystalline plane has involved constant effort. So far, the two-trace method [7] has long been 
accepted and widely practiced in experimentally determining the interface planes in various phase 

Solid State Phenomena Vol. 160 (2010) pp 11-16
© (2010) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/SSP.160.11



systems. However, this method suffers some drawbacks. For instance, it requires great care in 
sample preparations and tedious efforts in measurements. To make such measurements easily 
applicable and accurate, we propose an indirect two-trace method, as described below. 
We refer the basic principle of the indirect two-trace method to that of the traditional two-trace 
method. It is essential to find out two independent traces that belong to two interfaces of the same 
type on one sample surface. The vector product of the two trace vectors in a Cartesian crystal 
coordinate system then defines the normal of the interface plane. In contrast to the two-trace method, 
it requires no more preparation of two perpendicular sample surfaces. This is because the two trace 
vectors are obtained from two macroscopically differently oriented but crystallographically 
identical interface planes that are visible on the same sample surface, instead of from exactly one 
interface plane but on two different sample surfaces. 
Consider that two interfaces 1 and 2 – at which the phases α and β meet – intersect with a sample 
surface, as schematically shown in Fig. 1. The crystal orientations of the concerned α and β phases 
adjacent to the interfaces 1 and 2 are denoted as αg1 , βg1 , αg2  and βg2 , respectively. They can be 
determined from their SEM electron back-scattering patterns or the TEM Kikuchi patterns. We 
suppose that the two interfaces are crystallographically identical, i.e. with the same misorientation 

g∆  and the same interface plane normal in a fixed orthonormal crystal coordinate system αK  (or 
βK ), but differently oriented with respect to the orthonormal sample coordinate system SK . The 

traces of the interfaces on the sample surface are then specified by the normalized unit vectors V1
v

 

and V2
v

 in the sample coordinate system SK . Their equivalent vectors, expressed in the αK  (or βK ), 

are obtained through the following coordinate system transformations using the orientations αg1  (or 
βg1 ) and αg2  (or βg2 ) in matrix notation, 
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where α
jS  (or β

kS ) are the jth (or kth) rotational elements of the crystal symmetry group of the α (or 

β ) phase. Owing to the crystal symmetries, one and the same macroscopic trace vector is 
represented – in the general case – by J number of crystallographic equivalents in the α  crystal 
system and K number in the β  crystal system. As the two interfaces are supposed to be of the same 
type, the two trace vectors – when transformed into the αK  (or βK ) crystal system – must be in the 
same plane. The normal nv  to the interface plane in the either αK  or βK  is given by 
 

ααα K
'j2

K
j1

K
''j VVn

vvv ×=   or    
βββ K

'k2
K

k1
K

''k VVn
vvv ×=                                                                                        (2) 

                                                                                                                                                             

where 
αK

j1V '

v
 (or 

αK
j2V ''

v
) are the thj'  (or thj '' ) equivalents of the V1 (or V2 ) in the αK , and 

βK
k1V '

v
 (or 

βK
k2V ''

v
) are the thk '  (or thk '' ) equivalents of the V1  (or V2 ) in the βK , respectively. The interface 

plane in the αK  (or βK ) can thus be determined. The only concern of this method is how to pick 
out the correct unique solution after the multiplication induced by crystal symmetry. We solved this 
problem by using the following condition. Considering that the two interfaces provide the same 
misorientation between the α and β phases, i.e. gg ∆≡∆ 21 , the following relation can be used to 
locate the symmetry elements that produce the correct unique solution.  
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In this way, the interface plane normal can be uniquely calculated. The habit planes between 
pearlitic ferrite and cementite in an annealed 0.81C-Fe alloy have been successfully determined 
with this method [8].  
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Fig. 1 Schematic drawing of interface traces 
from two pairs of phases that have the same 
kind of interface V1

v
and V2

v
 are the interface 

trace vectors on the prepared sample surface. 
n1
v

 and n2
v  are the interface plane normals 

 Fig. 2 Relative positions of the Screen 
coordinate system and the Sample 
coordinate system 

 

Determination of surface crystallography of faceted nano-particles by TEM 

The study of unconventional shaped nano-particles has recently become intensive due to their 
unique catalytic properties resulting from the high index surface facets. Naturally, the correct 
indexing of such surface planes constitutes one of the important bases for the further property and 
growth kinetics investigation. Therefore, a general and accurate determination method appears to be 
in need. In response to such a requirement, we developed a calculation method that can be applied 
to determine any faceted surface plane indices of nano-particles provided that the edges of the 
facets are visible and diffraction line patterns (Kikuchi) can be obtained under TEM imaging and 
diffraction mode.  
The basic principle of this method is to determine the edge trace vectors that define the surface 
facets of a nano-particle in the TEM screen coordinate system and then obtain the surface plane 
normal by cross product and further calculate their Miller indices in the crystal coordinate system 
through coordinate transformation. The method is explained as follows. 
For convenience, we introduce three Cartesian coordinate systems and one non-Cartesian 
coordinate system if the unit cell of the crystallite is not orthogonal. Of the three Cartesian 
coordinate systems, one is referenced to the screen of the TEM that records the image of the particle, 
with its Z-axis in the inverse direction of the incident electron beam, another coordinate system is 
set to the sample holder also with its Z axis in the inverse direction of the incident electron beam 
when the holder is in non-tilt position, and the third one to the crystal structure. If the Bravais lattice 
of the crystallite is not orthogonal, an additional non-Cartesian crystal coordinate system is 
convenient. Hereafter, we select the non-orthogonal Bravais lattice as the general case. The 
orientation relationships between the Cartesian coordinate systems are defined as a set of rotations 
transforming one system into the other, specified by three Euler angles in Bunge notation, see e.g. 
[9].  
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To determine the coordinates of a trace vector in the screen coordinate system, two sample positions 
are required. Assume that the unit trace vector in the sample coordinate system is v ( x , y , z ) and 
let the equivalent vectors in the screen coordinate system with respect to the two sample holder 
positions be 1v ( 1x , 1y , 1z ) (position 1) and 2v ( 2x , 2y , 2z ) (position 2). Under TEM imaging 
condition, let the orientation relationship between the screen coordinate system and the first sample 
position described by rotation G ( φ1, Φ, φ2) and the rotation from the first sample position to the 
second sample position G∆ ( ∆φ1, ∆Φ, ∆φ2), as shown in Fig. 2. For the sake of simplicity, the first 
sample position could be taken without tilt operation. G  is then characterized by a single rotation 
around the Z axis of the screen coordinate system caused by the electron beam, which is 
magnification dependent. Thus, the following relations between the unit vectors v , 1v  and 2v  hold  
 

vv ⋅= 1
1 M    and   vv ⋅⋅= 21

2 MM ,                                                                                              (4) 
                                                                  
where 1M  and 2M  are the corresponding rotation matrices of G  and G∆ , and are known. Then the 

relation between the 1v ( 1x , 1y , 1z ) and 2v ( 2x , 2y , 2z ) can be deduced as: 
 

21
1

1
21

1 MMM vv ⋅⋅⋅= −− .                                                                                                                (5) 
 
According to the imaging principle of the TEM system, an image of a nano-particle is the rotated 
(around the Z axis of the screen coordinate system and dependent on the magnification) and 
amplified projection of the particle. As the Z axis of the screen coordinate system is set parallel to 
the incident beam, i.e., the Z axis is parallel to the projection direction, the X  and Y  coordinates of 

1v  and 2v  in the screen coordinate system can be measured. Only 1z  and 2z  are unknown. With the 

linear equations offered by Eq. (2), the two unknown 1z  and 2z  can be resolved. Thus the 
coordinates of the trace vector in the screen coordinate system are determined.  
The coordinate transformation from the screen coordinate system to the crystal coordinate system 
can be achieved through acquiring and indexing the electron diffraction pattern of the crystal. The 
coordinate transformation from the sample holder coordinate system to the Cartesian crystal 
coordinate system can be directly obtained by indexing the Kikuchi line pattern, e.g. with the 
software Euclid Phantasies (EP) [2, 3] and is expressed in three Euler angles (φ1, Φ, φ2) in Bunge 
notation. In such a way, the screen-to-reciprocal lattice base transformation matrix riM →  and the 

screen-to-crystal coordinate system (not necessarily Cartesian) transformation matrix nCiM →  will be: 
  

rCEPiri MMMM →→ ⋅=    and   nCCEPinCi MMMM →→ ⋅=                                                               (6) 
 

Notably, iM  is the rotation matrix from the screen to one of the sample holder positions where the 

Kikuchi pattern is acquired and EPM  is the transformation matrix from the sample holder 
coordinate system to the Cartesian crystal coordinate system, rCM →  is the matrix transforming from 

the Cartesian crystal coordinate system to the reciprocal lattice base and nCCM →  is the matrix from 
the Cartesian crystal coordinate system to the non-Cartesian crystal coordinate system. Therefore, 
for any vector obtained in the screen coordinate system )z,y,x( iii

iv  that corresponds to the sample 
position acquiring the diffraction pattern, its Miller indices and the Miller indices of the plane 
normal to this vector can be obtained, respectively, as   
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In this way, the crystalline directions of the edges and the surface planes of a nano-particle can be 
determined. This method has been successfully applied to determine the surface plane and edge 
vector indices of hematite particles enclosed by high index planes [5].  

Determination of twinning elements 

Twinning is a frequent physical process occurring either during mechanical deformation or during 
phase transformation. Determination of the twin type and twinning elements appears important as 
this offers useful information to understand the physical process of twinning and therefore has long 
been a topic in the domain of materials science. Previously, twin type and twinning elements were 
mainly determined by TEM. It requires specific sample on-edge positions to ambiguously decide 
the twinning type; therefore the determination process is complicated and not straightforward. 
Based on the misorientation calculation using the EBSD (SEM) individual orientation data, we 
proposed a calculation method to simplify this process, as described below.   
The misorientation between two crystals is defined by sets of rotations from one of the 
symmetrically equivalent coordinate systems of one crystal to another equivalent coordinate system 
of the other crystal. The measured orientation g of a crystal characterized by three Euler angles (φ1, 
Φ, φ2) (Bunge notation, see e.g. [9]) with respect to the macroscopic sample reference can be 
described by a rotation matrix that transforms the sample coordinate system into the Cartesian 
crystal coordinate system. Owing to the crystal symmetry, g has certain equivalents, expressed by 
Sig, where Si is the generic element of rotation symmetry group. The misorientation between the 
matrix and its twinned crystal can be expressed by ∆g:  
 

∆g SjgT= SigM, or ∆g= SigM gT
-1 Si

-1.                                                                                               (8) 

If we denote 
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then the misorientation angle ω and rotation axis d can be derived as: 
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       d= 2/)1a( 22 +±      with        0dm >   (by convention)              (if =ω 180°),                      (11)  

            2/)1a( 33 +±                     ,mi ≠∀  )sgn()sgn( imi ad =   
 
where d1, d2 and d3 are the coordinates of the rotation axis in the Cartesian crystal coordinate system 
and sgn stands for sign function. According to the definition of twin orientation relationship, there 
exists at least one 180° rotation. If the Miller indices of the plane normal to the rotation axis are 
rational, the twinning mode belongs to type I and K1 is determined. If the Miller indices of the 
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rotation axis are rational, the twinning mode belongs to type II and η1 is determined. According to 
the minimum shear criterion and the Bilby–Crocker theory [10], the complete twinning elements 
(K1 – the twinning plane; η1 – the twinning direction; K2 – the reciprocal or conjugate twinning 
plane; η2 – the reciprocal or conjugate twinning direction; P – the plane of shear; s – the amount of 
shear) of two types of twins can be calculated.  

Summary 

Methods to determine some specific crystallographic elements of interface plane, surface plane of 
nano-particles and twin type and twinning elements based on the orientation data acquired through 
SEM (EBSD) or TEM have been summarized in the present work. The methods are useful for the 
related studies.  
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Abstract. Electron backscatter diffraction (EBSD) techniques have been used to measure the 
dislocation density tensor for various materials. Orientation data are typically obtained over a planar 
array of measurement positions and the minimum dislocation content required to produce the 
observed lattice curvature is calculated as the geometrically necessary (or excess) dislocation density. 
The present work shows a comparison of measurements in two-dimensions and three-dimensions 
using a dual beam instrument (focused ion beam, electron beam) to obtain the data. The 
two-dimensional estimate is obviously lower than that obtained from three-dimensional data since the 
2D analysis necessarily assumes that the third dimension has no curvature in the lattice. Effects of the 
free-surface on EBSD measurements are discussed in conjunction with comparisons against X-ray 
microdiffraction experiments and a discrete dislocation dynamics model. It is observed that the EBSD 
measurements are sensitive to free-surface effects that may yield dislocation density observations that 
are not consistent with that of the bulk material.  

Introduction 

Plastic deformation in crystalline materials is facilitated by dislocation motion that acts on specific 
slip systems under given loading conditions. The early work of Schmid and others has laid the 
foundation for a rich body of research in this area of investigation. Schmid’s law predicts that slip will 
occur in a single crystal on the slip system subjected to the highest resolved shear stress. Many authors 
have noted conditions for non-Schmid behavior in various materials under given conditions. A new 
experimental technique for deformation of oriented single crystal materials (termed the six degree of 
freedom) offered one such observation of non-Schmid slip behavior [1].  

During plastic deformation of crystalline materials, so-called geometrically necessary dislocations 
(or excess dislocations) accommodate orientation gradients within single crystallites in the material. 
This dislocation structure is necessary to maintain lattice continuity. The concept of geometrically 
necessary dislocations was first introduced by Nye [2].  

Nye’s dislocation density tensor αij quantifies the content of dislocations in the lattice with Burgers 
vector i and the dislocation line vector j. Any dislocation structure that makes no contribution to the 
dislocation density tensor, such as a dislocation dipole, is termed statistically stored dislocations. 
Assuming a minimal effect from elastic strain gradients, any crystallite containing non-zero 
dislocation density tensor components necessarily contains lattice curvature that can be quantified by 
spatially specific orientation measurements. Such measurements are inherent to automated EBSD 
scans of crystalline materials. A detailed description of the geometrically necessary dislocation is 
given by Arsenlis and Park [3]. It is possible to relate the dislocation density tensor, α, to the 
dislocations present in the neighborhood by the relation: 
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where, the dislocation dyadic represents a geometrical definition of dislocation i having Burgers 
vector bi and slip plane normal direction zi. The sum is over all the dislocations present and ρi is the 
scalar dislocation density of dislocation i. Since the dislocation density tensor has 9 components it is 
possible, using a linear simplex method, to determine a set of densities of 9 dislocation types which 
minimizes the total dislocation content. One disadvantage of using this technique is that it does not 
take into account all the types of dislocations that could contribute to lattice curvature. This limitation 
could be overcome by using a normal equation lower bound method (as shown by El-Dasher et al [4]) 
where equation (1) for FCC materials could be reduced to: 

αl = Alkρk, k = 1, 36 and l = 1, 9 (2) 
 
where the matrix A represents a component of the dislocation dyadic. Using the L2 minimization 
method it is possible to compute the densities of all 36 dislocations, where equation (3) reduces to 

ρG� = AT(AAT)-1α  (3) 
 
In the current analysis we have limited the dislocation types to pure edge and pure screw and hence 
code was developed to determine the densities of 18 total dislocation types (12 pure edge and 6 pure 
screw dislocations). To determine an accurate estimate of GND density when analyzing poly-
crystalline materials, it is necessary to ignore the high angle grain boundaries from the calculation of 
GND. In the current analysis this is generally not necessary since measurements are made on lightly 
deformed single crystals. Nevertheless, the code ignores positions wherever the point-to-point 
misorientation exceeds 10º.  

Experimental Details 

One sample of polycrystalline AA 7050 T7451 was deformed and characterized using EBSD. No 
further heat treatment was conducted leaving the material in the as received condition. The sample 
was deformed at room temperature using channel die compression to a 5% height reduction at a strain 
rate of ~ 5.5x10-3 s-1

 
to simulate cold rolling of aluminum. Four serial sections were produced using a 

dual beam instrument (focused ion beam (FIB)/SEM) for sectioning and analysis. The data analysis 
was performed using in house software that includes the calculation of the dislocation density tensor 
and the ability to perform this calculation across multiple datasets.  

The 4 plane serial section data set from the channel die deformed AA 7050 specimen contained 
~244,000 points and a volume of 2500 µm3, the step size used for these datasets was 0.25 µm with 
each FIB milling process removing 0.25 µm of material.  

In a second experiment, single crystal copper, 99.99% pure and with the <2 9 20> direction aligned 
with the deformation axis, was deformed 10 percent in uniaxial compression using a six-degrees of 
freedom testing apparatus [1]. The orientation was selected so that a {111}<110> type slip system 
would lie exactly in coincidence with the direction of maximum resolved shear stress. EBSD scans 
were performed using step sizes ranging from 0.1 µm to 100 µm on a polished surface taken from the 
interior of the specimen. All scans were made near the central part of the prepared surface so as to 
avoid any edge or surface effects with the compression direction vertical on the images. A similar set 
of measurements was performed on a mating surface of this specimen using x-ray microdiffraction [5]. 
A complete description of the experiment and the characterization performed is found in reference [6]. 
Staker and Holt used TEM imaging techniques to measure the dislocation density in a Cu specimen 
deformed 10 percent in tension to be 118 x 1012 m-2 [5]. Similar results were obtained by Heuser using 
neutron scattering techniques who measured 1.9 x 1014 m-2 at 16% compression of Cu single crystals 
[6]. The excess dislocation content was determined from the data obtained from the plane sections 
using the assumption that there is no lattice curvature in the through-thickness direction.  
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Results 

2D and 3D EBSD. Figure 1 shows an orientation image of the 2nd
 
serial section of the sample (the 

orientation color key for orientations normal to the plane of the specimen surface is included for 
reference). Figure 2 shows the 2-D and 3-D excess dislocation density maps generated from the same 
data represented in the orientation image shown in Figure 1. White areas are regions of high excess 
dislocation density while black regions are grain boundaries or low confidence data. The gray scale 
indicates black for regions of excess dislocation density less than 1011

 
m-2 to white for densities of 

1015
 
m-2 on a linear scale. Table 1 shows all pertinent data calculated for the 2-D and 3-D excess 

dislocation density. Dislocation densities are not determined for the first and fourth slices of the 3-D 
dataset because these are the edges of the 3D volume analyzed and the software requires that data be 
present on all sides of the position being analyzed. The gray scale indicates black for regions of excess 
dislocation density less than 1011

 
m-2 to white for densities of 1015

 
m-2.  

Analysis on similar specimens but with a far larger number of section planes has yielded similar 
results. The three-dimensional dislocation density is a factor of two higher than the estimates obtained 
from data on plane sections. The obvious question of the researcher relates to the reliability of the 
plane section data in relation to the bulk material since EBSD involves measurement on a free surface.  

 

Table 1 – Excess Dislocation Density (EDD) after 5% Deformation in AA 7050 

Serial Section  2-D EDD [1012
 
m-2] 3-D EDD [1012

 
m-2]  

1  922  --  

2  958  1851  

3  942  1722  

4  965  --  

Numerical Average  946  1786  
 
 

  
Figure 1 – Orientation image of serial section 2 (with the corresponding orientation shading 
key) for AA 7050 T7541 deformed in channel die compression to a 5% height reduction at a 
strain rate of ~ 5.5 x 10-3

 
s-1. The average excess dislocation density was 1786 x 1012

 
m-2 as 

determined from the 3-D data and 946 x 1012
 
m-2 as measured from the 2-D sections.  
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 (a) (b) 

Figure 2 – (a) 2-D and (b) 3-D excess dislocation density maps for serial section 2. The 2-D excess 
dislocation density was 958 x 1012

 
m-2 and the 3-D excess dislocation density was 1851 x 1012

 
m-2. 

The shading scale goes from black = 1011 m-2 to white = 1015 m-2. 
 
EBSD and x-ray micro-diffraction (XRM). The pure copper single crystals deformed using the 
six-degree-of-freedom testing apparatus were sectioned through the specimen center such that the slip 
plane normal and the slip direction were both contained in the section plane. Each side of the 
specimen was polished and one was used for EBSD analysis while the other was analyzed using 
XRM. The misorientation distribution was similar using both techniques with the misorientations 
ranging from 0 to 5º off the nominal orientation of the crystal. The primary difference in the 
measurements was in the sharpness of the images. The EBSD data indicated a loose wall of 
dislocation tangles as evidenced by the slowly changing orientation of the crystal lattice through the 
subcell structure. The XRM data, on the other hand, showed a sharp change in orientation at the 
subcell boundaries. Figure 3 shows point-to-point misorientations for both the XRM and EBSD 
analyzed regions, where the maximum misorientation is about 0.3º. The difference in these results is 
attributed to the free surface effects which likely allowed the dislocation structure to relax in the near 
surface region (where the EBSD data are obtained ~10 nm below the free surface), while the 
dislocation structure was more well-defined in the bulk of the material. This bulk region is where the 
XRM data are obtained (on the order of a few microns below the specimen surface). Dislocation 
dynamics calculations were employed to investigate the extent of the near-surface dislocation 
structure relaxation and to determine if this could indeed be used to explain the difference in the 
observed data. 

 
Dislocation Dynamics Calculations. In dislocation dynamics, each dislocation is represented as a 
curved line. The simulated three-dimensional space is usually a cube with edge dimensions varying 
from 3 to 30 µm, representing a single crystal. The dislocation lines are approximated with sets of 
discrete straight-line segments. This geometry allows calculation of the overall self - stress of the 
curved dislocation lines using the sum of the self - stresses of all the line segments which is known 
from the literature [9]. Then, the interaction between dislocation segments can be calculated using the 
expression for the Peach-Koehler force: 

selfiii
total
ii −+×⋅= FbF ξσ   (4) 

where bi represents the Burger vector and iξ  the line sense of a dislocation segment i. The last term 

selfi−F  is the force due to the local interaction between the segment adjustment to nodes j and j+1. The 
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total stress tensor 
total
iσ  at a given point is the sum of stresses from all dislocations, defects, cracks or 

any other internal and external agencies. 
 

        
 (a) (b) 
Figure 3 – Point to point misorientations shown for (a) XRM data and (b) EBSD data. The micron 

bar shown in the EBSD image is 45 µm and is the same scale for the XRM and EBSD based images. 
 
The point where two discrete dislocation segments meet is a node. Each node has in general three 

degrees of freedom unless is restricted for special reasons (e.g. surface nodes, pined nodes, etc.). A 
typical dislocation dynamics configuration can include thousands of nodes. During the simulation, all 
nodes move simultaneously in the glide direction over a characteristic time corresponding to the time 
increment required for an interaction to take place. The result is a set of nonlinear differential 
equations governing the motion of the dislocation segments. The governing equation of glide motion 
for each dislocation node is a modification of Newton’s second law: 

componentglide
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v
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  (5) 

where 
*
im  is the effective mass per unit dislocation, M is the mobility which depends on both 

temperature T and pressure p, iv  is the glide velocity of segment i and iF  is the glide component of 
the Peach-Koehler force [10]. 

In our case, parallel dislocations of mixed character were inserted into a simulation box repre-
senting a single crystal. The orientation of the specimen was <100>, <010> and <001> along x, y and 
z axes respectively. A “free” surface was then created by introducing image forces in the simulation 
box at an orientation normal to the dislocation lines. The structure was allowed to relax from this 
configuration by running the model for a certain amount of time without any external applied load. 
The images forces and interaction forces between the dislocations caused the dislocations to move 
towards the free surface. The parts of the dislocation lines nearest the free surface repelled one another 
and were in a significantly distorted arrangement to a depth of about 300 Burger’s vector (which 
corresponds to a distance of approximately 65 nm below the free surface. Figure 4.a shows a view of 
a 3D structure consisting of straight dislocation walls that intersect a free surface with the minimum 
possible dislocation line length. As the structure relaxes by dislocation interactions and image forces 
at the free surface, the structure coarsens near the surface but remains compact in the bulk of the 
material (Fig. 4.b). This is the range from whence the EBSD signal originates. The XRD measurement 
occurs significantly deeper in the “bulk” of the material (at least a few microns into the specimen), 
where the dislocations were still in a tight wall configuration in our simulation.  
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 (a) (b) 
Figure 4 – Dislocation dynamics simulations showing the initial dislocation wall, and the spread in 
the dislocation structure near the free surface after allowing for relaxation of the structure. 

Summary 

A comparison of excess dislocation density measurements using 2D and 3D EBSD scans were 
performed. Results indicated that the trend was similar for these measurements, and on the same order 
of magnitude as results reported in literature. Estimates of dislocation densities from the 3D data were 
approximately a factor of two greater than those obtained from the 2D sections. Depending on the 
character of the dislocation structure with respect to the section plane, these results may vary.  

The EBSD vs. XRM analysis showed that the surface sensitivity of the EBSD measurements can 
affect the character of the observed dislocation structures. The relatively small deformation for which 
the observations were made resulted in dislocation structures that were not well developed, and 
subsequently relaxed near the specimen surface. The XRM technique showed the true character of the 
bulk dislocation structure while the EBSD measurements were negatively influenced by the free 
surface on which the measurements were made. 
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Abstract. Although plenty of research has already been carried out on the issue of texture control in 
non-oriented electrical steels, there is not yet a universally applied industrial process to obtain an 
optimized {001} fibre texture. Among the various laboratory processes that have been studied so 
far, cross rolling seems to be one of the most promising approaches. For evident reasons cross-
rolling cannot be implemented on a conventional continuous rolling line of an industrial plant. In 
the present study a potential interesting alternative is presented which may deliver a similar texture 
evolution as the cross rolling process, but can be applied in a continuous line of hot and cold rolling 
operations followed by recrystallization annealing. By applying severe rolling reductions a very 
strong rotated cube texture is obtained very much similar to the one that is observed after cross 
rolling. After annealing, the rotated cube texture changes to a {h11}<1/h,21> fibre texture with a 
maximum on the {311}<136> component which implies the potential to develop a {001} fibre 
texture after further processing. It is argued that the appearance of the {311}<136> recrystallization 
texture component can be attributed to oriented nucleation in the vicinity of grain boundaries 
between slightly misoriented rotated cube grains. 

Introduction 

In the technical literature two grades of electrical steels are distinguished. Grain oriented (GO) 
electrical steels are employed as magnetic flux carriers in power transformer devices. They are 
characterized by a very strong Goss texture ({110}<001>) for which the <001> crystal directions 
are aligned with the direction of external magnetization. Conversely, non-oriented (NO) electrical 
steels are applied to carry magnetic flux in rotating electro-magnetic devices such as electrical 
motors. For NO electrical steels the optimum texture is the {001} or θ-fibre texture, which 
maximizes the density of <100> spontaneous magnetization directions along the flux lines of the 
rotating applied field. GO and NO electrical steels are facing the scientific and technical community 
with an opposing paradigm. Whereas the technical problem of manufacturing GO electrical steels 
has been solved long ago by virtue of the Goss patent [1], there still remains a lively scientific 
debate on the origin of the Goss texture during secondary recrystallization [e.g. 2, 3]. For NO 
electrical steels, however, a solid body of scientific knowledge on orientation selection has not yet 
produced a single standard manufacturing method that is applied worldwide. 

Although a large body of literature [e.g. 4, 5, 6] has already been published on texture control in 
NO electrical steels, most methods have only proven to be successful in the laboratory and are 
difficult to be implemented on an industrial manufacturing line. Moreover, the boundary conditions 
of GO and NO steel manufacturing are very different. GO steels are products of high added value 
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and relatively low production volumes, 
which justify the investment of dedicated 
production lines that are nearly exclusively 
used for GO production. NO electrical 
steels, however, are of lower added value 
but are produced in larger quantities on 
conventional low-carbon sheet production 
lines. This imposes more stringent 
boundary conditions on the production of 
NO steels. 

Kestens and Jacobs [7] have published a 
review in which it was claimed that the 
magnetic quality of the texture can hardly 
be affected by varying a broad variety of 
process parameters within the limits of a 
conventional integrated steel making, hot 
and cold rolling plant. This was illustrated 
by monitoring the evolution of the A-
parameter†, which was employed to 
quantify the magnetic quality of the texture. 

The A-parameter value may theoretically vary between the limits of 0 and 54.7° for single crystals 
with the <100> and <111> directions parallel to the magnetization direction, respectively. By 
modifying the chemical composition in addition to a wide variety of process parameters (such as the 
slab reheating temperature, the finish rolling temperature, the coiling temperature, the cold rolling 
reduction, the recrystallization time or temperature and the skin pass reduction) the A-values only 
varied between 25 and 31°; the latter A-value corresponding to the value of a random textured 
material. Hence, it was concluded that additional, non-conventional measures of texture control are 
required to obtain better results. 

One potential strategy reported by Kestens and Jacobs [7] is cross-rolling. By hot rolling a NO 
electrical steel with 0.5 to 1% Si and ~0.02%C in the two-phase austenite/ferrite region a hot band 
texture is obtained with a strong α-fibre (<110>//RD) and an intense maximum of ~30 x on the 
rotated cube component (cf. Fig. 1a). When the sheet is 90° rotated after hot rolling and thus, the 
direction of cold rolling is perpendicular to the direction of hot rolling, the ensuing cold rolling 
texture exhibits an extremely intense maximum of ~150 x on the rotated cube component 
({001}<110>), cf. Fig. 1b. After primary recrystallization at the conventional temperatures of 750 to 
850 °C of a current practice continuous annealing line, a relatively weak texture is obtained with a 
maximum of <5 x on the {311}<136> component which is positioned on the {h11}<1/h,12> fibre 
reported by Homma et al. [8] and Gobernado et al. [9], cf. Fig. 1c. In itself this texture does not 
exhibit an interesting magnetic quality, but when the annealed material is further cold rolled to a 
reduction of 4 to 8%, followed by another annealing treatment, a very different texture arises with a 
strong maximum of ~50 x on the rotated cube component and some intensity distribution over the 
entire θ-fibre, cf. Fig. 1d. The exceptional magnetic quality of the ODF of Fig. 1d is reflected in the 
very low direction-averaged A-value of 24.3°. It is obvious, though, that cross rolling cannot be 
implemented in a line manufacturing process. 

                                                           
† The A-parameter is the weighted average of the angles between one arbitrary magnetization direction and the closest 
<100> crystal direction of the orientations that are present in the ODF f(g). The direction averaged A-parameter is the 
average A-parameter for an applied magnetic field in three different directions: RD, TD and 45° to RD. The theoretical 
minimum value of the direction averaged A-parameter is 22.5°. 

Figure 1.  ODFs observed after cross rolling: hot band texture 
(a), cold rolled texture (b), primary recrystallized (c) and after 
an additional annealing treatment (d). 

 0 90

90

 0

PHI2= 45

 0 90

90

 0

PHI2= 45

 0 90

90

 0

PHI2= 45

a) 

d) 

b) 

c) 

 0 90

90

00

PHI2= 45

{h11}<1/h,1,2>  

24 Texture and Anisotropy of Polycrystals III



 

Accumulative Roll Bonding 

In an attempt to investigate the grain 
refining effect of severe rolling reductions, an 
IF-steel was cold rolled to various reductions, 
following the accumulative roll bonding 
(ARB) process proposed by Tsuji et al. [10]. 
After 10 ARB passes at room temperature, an 
accumulated rolling strain is obtained of 6.93 
(true logarithmic strain) which corresponds to 
an accumulated reduction of 99.9%. The 
ensuing rolling texture exhibits a strong α-
fibre with an intense maximum of ~30x on the 
rotated cube component, cf. Fig. 2a. Upon 
annealing of such an excessively cold rolled 
material a recrystallization texture appears 
which is very much similar to the one 
observed after cross-rolling of the NO 
electrical steel, i.e. with a maximum in the 
vicinity of {311}<136> component on the 
{h11}<1/h,12> fibre as shown in Fig. 2b 
(compare with Fig. 1c).  
A similar trend was observed even after a somewhat less severe cold rolling, i.e. after the 8th ARB 
pass yielding a true strain of 5.55 which corresponds to an accumulated reduction of 99.6%. Fig. 2c 
illustrates that a strong rotated cube component is present in the rolling texture, even though the 
absolute ODF maximum is on the {332}<110> component. After annealing, however, an equally 
strong {311}<136> recrystallization component is present, cf. Fig. 2d. These observations made us 
conjecture that the successful trail of NO steel texture control by cross rolling could be mimicked by 
applying excessive rolling strains whilst omitting rotating the sheet 90° between hot and cold 
rolling. This would render the procedure far friendlier to an industrial process of line production.  

Severe Plastic Deformation of �O Electrical Steel 

The concept of severe plastic deformation was applied on a NO steel grade with more than 2% Si 
and hence a single ferrite structure over the entire solid domain. In order to avoid excessive cold 
rolling reductions, which cannot be applied in an industrial installation, it was decided to carry out 
hot rolling below the Tnr temperature (recrystallization stop temperature), so as to accumulate the 
reductions of hot and cold rolling. The processing schedule is schematically represented in Fig. 3.  

Figure 3.  Representation of the thermo-mechanical schedule applied during severe plastic deformation. 

Treheat=1150°C 
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Figure 2.  ARB textures corresponding to a cumulated 
reduction of 99.9%: deformed texture (a) and annealed 
texture (b), and to a cumulated reduction of 99.6%: 
deformed texture (c) and annealed (d) texture. 
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