
Signals, Systems and
Sound Synthesis

Martin Neukom

Peter Lang

M
artin

 N
eu

ko
m

          S
ignals, S

ystem
s and S

ound S
ynthesis

The subject of this book is the synthesis and treatment of sound by 
computer. Using illustrations, animations, sound examples and sam-
ple programs, it introduces the most important techniques of sound 
and score synthesis and explains the technical and mathematical 
principles necessary for understanding them. After reviewing funda-
mentals of acoustics, the author describes system and signal theory 
and introduces the programs and programming languages used in 
the book. The traditionally important synthesis techniques are 
described in detail, as are various nonlinear synthesis techniques 
and synthesis by physical modeling. The concluding chapters of the 
book deal with the projection of sound in space and with the use of 
algorithmic and stochastic procedures in computer music. The 
appendix contains a survey of basic mathematical principles, vari-
ous tables for reference and a detailed index. The included CD con-
tains the entire text of the book, as well as additional chapters and 
explanations, sound examples, animations illustrating dynamic pro-
cesses and many sample computer programs.

Martin Neukom studied music theory at the Musikhochschule Zurich and 
musicology, mathematics and psychology at the University of Zurich, 
where he received a doctorate in musicology. He is a composer, profes-
sor of music theory at the Zurich University of the Arts and research 
associate at the Institute for Computer Music and Sound Technology 
ICST of the Zurich University of the Arts.

ISBN 978-3-0343-1428-2

www.peterlang.com



Signals, Systems and
Sound Synthesis

Martin Neukom

Peter Lang

M
artin

 N
eu

ko
m

          S
ignals, S

ystem
s and S

ound S
ynthesis

The subject of this book is the synthesis and treatment of sound by 
computer. Using illustrations, animations, sound examples and sam-
ple programs, it introduces the most important techniques of sound 
and score synthesis and explains the technical and mathematical 
principles necessary for understanding them. After reviewing funda-
mentals of acoustics, the author describes system and signal theory 
and introduces the programs and programming languages used in 
the book. The traditionally important synthesis techniques are 
described in detail, as are various nonlinear synthesis techniques 
and synthesis by physical modeling. The concluding chapters of the 
book deal with the projection of sound in space and with the use of 
algorithmic and stochastic procedures in computer music. The 
appendix contains a survey of basic mathematical principles, vari-
ous tables for reference and a detailed index. The included CD con-
tains the entire text of the book, as well as additional chapters and 
explanations, sound examples, animations illustrating dynamic pro-
cesses and many sample computer programs.

Martin Neukom studied music theory at the Musikhochschule Zurich and 
musicology, mathematics and psychology at the University of Zurich, 
where he received a doctorate in musicology. He is a composer, profes-
sor of music theory at the Zurich University of the Arts and research 
associate at the Institute for Computer Music and Sound Technology 
ICST of the Zurich University of the Arts.



Signals, Systems and Sound Synthesis





PETER LANG
Bern · Berlin · Bruxelles · Frankfurt am Main · New York · Oxford · Wien

Signals, Systems and
Sound Synthesis

Martin Neukom

Translation from the German by

Gerald Bennett



Bibliographic information published by die Deutsche Nationalbibliothek
Die Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data is available on the Internet 
at ‹http://dnb.d-nb.de›.

British Library Cataloguing-in-Publication Data: A catalogue record for this book
is available from The British Library, Great Britain

Library of Congress Cataloging-in-Publication Data

Neukom, Martin, author.
[Signale, Systeme und Klangsynthese. English]
Signals, systems and sound synthesis / Martin Neukom.
pages cm
Accompanied by CD.
Translation of: Neukom, Martin. Signale, Systeme und Klangsynthese. Bern : P. Lang, 2003.
Includes bibliographical references and index.
ISBN 978-3-0343-1428-2
1.  Computer music–Instruction and study. 2.  Computer sound processing.
3.  Computer composition.  I. Title. 
MT723.N4813 2013
786.7–dc23

2013024500

Published with the support of the Swiss National Science Foundation.

Additional texts, emendations and programs for this book can be found at
the following address: www.icst.net/Signals_Systems_and_Sound_Synthesis.

ISBN 978-3-0343-1428-2 pb. ISBN 978-3-0351-0609-1 eBook

© Peter Lang AG, International Academic Publishers, Bern 2013
Hochfeldstrasse 32, CH-3012 Bern, Switzerland
info@peterlang.com, www.peterlang.com

All rights reserved.
All parts of this publication are protected by copyright. 
Any utilisation outside the strict limits of the copyright law, without the permission 
of the publisher, is forbidden and liable to prosecution.
This applies in particular to reproductions, translations, microfilming, and storage 
and processing in electronic retrieval systems.

Printed in Hungary



Short Contents 

Preface . . . . . . . . . . .    xxi

Acknowledgments . . . . . . . . .  xxiii

1  How to Use This Book. . . . . . . . .        1
1.1 Getting Started . . . . . . . . .        1
1.2 Overview. . . . . . . . . .        2
1.3 Instructions for Using Specific Programs . . . . .        2

2 Fundamentals of Acoustics . . . . . . . .        5
2.1 Basic Physical Principles and Units . . . . . .        5
2.2 Vibration and Waves . . . . . . . .        8
2.3 Sound and Hearing . . . . . . . .      30

3  Signals and Systems . . . . . . . . .      45
3.1 Analog Signals and the Fourier Transform . . . . .      45
3.2 Digital Signals, DFT, FFT . . . . . . .      63
3.3 Systems and Filters . . . . . . . .      78
3.4 Dynamic Systems and Feedback Control . . . . .    109

4 Computer Programs and Programming Languages . . . . .    163
4.1 Csound . . . . . . . . .    163
4.2 Max . . . . . . . . . .    176
4.3 Mathematica . . . . . . . . .    179
4.4 C / C++ . . . . . . . . .    190
4.5 Processing . . . . . . . . .    203

5 Fundamentals of Sound Synthesis . . . . . . .    207
5.1 Fundamental Techniques of Sound Synthesis . . . . .    207
5.2 Additive Synthesis . . . . . . . .    244
5.3 Subtractive Synthesis . . . . . . . .    259

6 Nonlinear Techniques . . . . . . . .    267
6.1 Modulation Techniques and Distortion. . . . . .    267
6.2 Nonlinear Systems . . . . . . . .    297

7  Other Techniques for Sound Analysis and Synthesis . . . . .    317
7.1 Granular Synthesis . . . . . . . .    317
7.2 Special Analysis Methods . . . . . . .    328

8  Physical Modeling . . . . . . . . .    337
8.1 Mass-Spring Models . . . . . . . .    338
8.2 Wave Guides. . . . . . . . . .    390



9  Sound and Space . . . . . . . . .    417
9.1 Spatial Hearing. . . . . . . . .    417
9.2 Reflection and Reverberation . . . . . . .    426
9.3 Sound Reproduction . . . . . . . .    435

10  Computers and Composition . . . . . . . .    455
10.1 Chance and Probability . . . . . . .    455
10.2 Stochastic Processes . . . . . . . .    487
10.3 Other Techniques Used for Composition . . . . .    508

Appendix A Fundamentals of Mathematics . . . . . .    545

Appendix B Tables . . . . . . . . .    571

Bibliography . . . . . . . . . .    577

Index . . . . . . . . . .    587

vi Short Contents



Contents 

Preface to the Original German Edition . . . . . . . . .    xxi
Preface to the English Edition . . . . . . . . . .   xxii
Acknowledgements . . . . . . . . . . . .  xxiii 

1  How to Use This Book                     1

1.1   Getting Started . . . . . . . . . . . .        1
1.2   Overview . . . . . . . . .     . . .        2
1.3   Instructions for Using Specific Programs . . . . . . .        2
        1.3.1 Using the Mathematica Notebooks . . . . . . .        3
        1.3.2 Using the Csound Programs . . . . . . . .        3
        1.3.3 Using the C/C++ Programs . . . . . . . .        3

1.3.4 Using the Max Patches . . . . . . . . .        4
1.3.5 Using the Processing Programs . . . . . . . .        4

2  Fundamentals of Acoustics                     5

2.1 Basic Physical Principles and Units . . . . . .      . .        5
2.1.1 Path, Velocity, Acceleration . . . . . . . .        5
2.1.2 Mass and Force . . . . . . .        . . .        6
2.1.3 Momentum, Work, Power, Energy . . . . . . .        7

2.2 Vibration and Waves . . . . . . . . . .       .        8
2.2.1 Harmonic Oscillation . . . . . . . . .        8 

2.2.1.1 Definition and Mathematical Representation . . .       .        8
2.2.1.2 Damped Oscillation . . . . . .        . .      10
2.2.1.3 The Addition of Harmonic Oscillations . . .        . .      11  
2.2.1.4 Beats . . . . . . .        .    . .      13
2.2.1.5 Natural Vibrations . . . . . .        . .      13
2.2.1.6     Driven Oscillation and Resonance . . . .        . .      15

2.2.2 Periodic Vibrations and their Spectrum . . . .        . .      16
2.2.2.1 The Definition of Periodic Vibrations . . .        . .      16
2.2.2.2 Standard Examples . . . . . .        . .      16
2.2.2.3 Other Examples . . . . . .        . . .      16
2.2.2.4 Constructing Periodic Oscillation from Harmonic Waveforms .      17
2.2.2.5 The Spectrum of Periodic Oscillations . . .        . .      18

2.2.3 Aperiodic Oscillation . . . . . . . .     .      20  
2.2.3.1 Non-harmonic Partials . . . . . . .      .      20  
2.2.3.2 Noise. . . . . . . . . .      .      20
2.2.3.3 Pulses . . . . . . . . . .      21  
2.2.3.4 Quasi-periodic Oscillation . . . . . . .      22
2.2.3.5 Variable Frequencies . . . . . . .     .      22

2.2.4 Waves . . . . . . . . . . . .      23 
  2.2.4.1 Definition and Examples . . . . . . .      23 
  2.2.4.2 Mathematical Description . . . . . . .      24



2.2.4.3 Superposition of Waves . . . . . . .      25
2.2.4.4 Propagation of Waves . . . . . . . .      27

  2.2.4.5 The Doppler Effect . . . . . . . .      29  
2.3 Sound and Hearing . . . . . . . . . . .      30

2.3.1 Pitch . . . . . . . . . . . .      30
2.3.1.1 Frequency Range and Octaves . . . . . .      30
2.3.1.2 The Harmonic Series and Pure Intervals . . . . .      31
2.3.1.3 Intervals . . . . . . . . . .      32

2.3.2 Timbre . . . . . . . . . . . .      33
  2.3.2.1 Periodic Vibration . . . . .  . . .      33

2.3.2.2 Formants . . . . . . . . . .      33
2.3.2.3 Spectra of Natural Sounds . . . . . . .      34 
2.3.2.4 Non-Harmonic Spectra. . . . . . .      .      35

  2.3.2.5 Fusion . . . . . . . . .  .      36  
2.3.2.6 Missing Fundamentals and Residue Pitch . . . .      36

2.3.3 Loudness. . . . . . . . . .  . .      37
  2.3.3.1 Sound Power and Sound Intensity . . . . . .      37  

2.3.3.2 Decibels . . . . . . . . .     .      37  
2.3.3.3 Phons . . . . . . . . . .      38

2.3.4    Interaction of the Parameters . . . . . . . .      38
2.3.4.1 Frequency Groups . . . . . . . .      39

  2.3.4.2 Auditory Masking . . . . . . . .      39
2.3.4.3 Combination Tones . . . . . . . .      40

  2.3.4.4 Particular Aspects of Pitch Perception . . . . .      41
2.3.5 Resonant Spaces . . . . . . . . . .      41

2.3.5.1 Reflections and Reverberation . . . . . .      42
2.3.5.2 Sound Localization . . . . . . . .      43

  2.3.5.3 Distance Perception . . . . . . . .      44 

3  Signals and Systems        45

3.1 Analog Signals and the Fourier Transform . . . . . . .      45
3.1.1    Periodic Signals and Fourier Series . . . . . . .      46

3.1.1.1 Fourier Series . . . . . . . .  .      46
  3.1.1.2 Calculating the Coefficients . . . . . . .      46 

3.1.1.3 Examples . . . . . . . . .  .      48  
3.1.2 Complex Representation . . . . . . . .  .      50
  3.1.2.1 Complex Numbers . . . . . . . .      50 

3.1.2.2 Trigonometric Representation . . . . . .      51
  3.1.2.3 The Exponential Form . . . . . . . .      52

3.1.2.4 Algebra With Complex Numbers . . . . . .      53
3.1.2.5 Rotating Complex Vectors . . . . . . .      55
3.1.2.6 Fourier Analysis in Complex Representation . . . .      58

3.1.3 Aperiodic Signals and Fourier Integrals . . . . . .      60
3.1.3.1 Definition . . . . . . . . .  .      60
3.1.3.2 Examples . . . . . . . . .  .      61

viii Contents



3.1.4 Analog Systems . . . . . . . . .  .      62
3.1.4.1 Definition and Examples . . . . . . .      62
3.1.4.2 Linear Differential Equations . . . . . .      62
3.1.4.3 Laplace Transform ( Ø CD) . . . . . . .      62

3.2 Digital Signals, DFT, FFT . . . . . . . . . .      63
3.2.1 Digital Representation of Signals . . . . . . .      63

3.2.1.1 Sampling . . . . . . . . . .      63
3.2.1.2 Representations and Simple Examples . . . . .      64
3.2.1.3 Characteristics and Basic Transformations . . . .      64
3.2.1.4 Quantization . . . . . . . . .      66
3.2.1.5 Aliasing . . . . . . . . . .      66
3.2.1.6 Rotating Vectors . . . . . . . .  .      67

 3.2.2 The Discrete Fourier Transform DFT . . . . . . .      68
3.2.2.1 Calculating the Coefficients of Discrete Fourier Series . .      68
3.2.2.2 Examples . . . . . . . . .  .      68
3.2.2.3 Signals With Unknown or Non-Integer Periods . . .      69
3.2.2.4 The Complex Form and the Characteristics of the DFT . .      70
3.2.2.5 The Fast Fourier Transform FFT . . . . . .      73

3.2.3 The Z-Transform . . . . . . . . .  .      76
3.2.3.1 Definition and Transformation of Simple Signals . . .      76
3.2.3.2 Characteristics and Examples . . . . . .      77

3.3 Systems and Filters . . . . . . . . . .  .      78
3.3.1 Systems . . . . . . . . . . . .      78

3.3.1.1 Definition and Examples . . . . . . .      78
3.3.1.2 General Properties of Systems . . . . . .      79
3.3.1.3 Impulse Response and Convolution . . . . .      79
3.3.1.4 Properties of Systems in the Frequency Domain . . .      80
3.3.1.5 The Complex Representation . . . . . .      82
3.3.1.6 Filters . . . . . . . . . .      84
3.3.1.7 The Transfer Function and the Z-Plane . . . . .      85

 3.3.1.8 Linear Phase Filters . . . . . . . .      89
3.3.1.9 Filter Design . . . . . . . . .      90

3.3.2 Non-Recursive Filters / FIR Filters . . . . . . .      91
3.3.2.1 Definitions and Properties . . . . . . .      91
3.3.2.2 Implementation . . . . . . . .  .      91
3.3.2.3 Designing Filters by Setting Zeros . . . . . .      93
3.3.2.4 Fourier Approximation. . . . . . .      .      94
3.3.2.5 Windowing . . . . . . . . .      95

3.3.3   Recursive Filters / IIR Filters . . . . . . . .      96
3.3.3.1 Definition and Properties . . . . . . .      96
3.3.3.2 Implementation . . . . . . . .  .      96
3.3.3.3 Designing Filters by Setting Poles and Zeros . . . .      99
3.3.3.4 Stability . . . . . . . . . .    100
3.3.3.5 Special Filters . . . . . . . .        .    100
3.3.3.6 Filter Design by Transforming Analog into Digital Systems .    108

Contents ix



3.4 Dynamic Systems and Feedback Control. . . . . . . .    109
3.4.1    Differential Equations . . . . . . . . .    110

3.4.1.1 Introductory Example, Phase Space . . . . .    110
3.4.1.2 The Types of Differential Equations and Further Definitions .    111
3.4.1.3 Stationary System Analysis, Characteristic Curves . . .    114
3.4.1.4 Numerical Methods, Difference Equations . . . .    116
3.4.1.5 The Pendulum . . . . . . . . .    119

3.4.2    Fixed Points and Attractors . . . . . . . .    122
3.4.2.1 Fixed Points . . . . . . . . .    122
3.4.2.2 Catastrophes . . . . . . . . .    124
3.4.2.3 Attractors. . . . . . . . . . .    127

3.4.3 Chaos . . . . . . . . . . . .    128
3.4.3.1 Introductory Example . . . . . . . .    128
3.4.3.2 Conditions for Chaos . . . . . . . .    129
3.4.3.3 Chaos in Time-Discrete Systems . . . . . .    130
3.4.3.4 Chaos in Differential Equations . . . . . .    133
3.4.3.5 Multiple Solutions and Discontinuities . . . . .    135 

3.4.4 Techniques of Feedback Control . . . . . . . .    137
3.4.4.1 Introductory Concepts and Examples . . . . .    137
3.4.4.2 Elements of Control Circuits . . . . . . .    139
3.4.4.3 Feedback Circuits . . . . . . . .    144
3.4.4.4 Nonlinear Feedback Circuits . . . . . . .    145
3.4.4.5 The Computation of Feedback Control . . . . .    148
3.4.4.6 Control By Filters . . . . . . . .    149
3.4.4.7 Examples . . . . . . . . . .    150

3.4.5 Synchronization . . . . . . . . . .    153
3.4.5.1 Self-Sustained Oscillators . . . . . . .    154
3.4.5.2 The Van der Pol Oscillator . . . . . . .    154
3.4.5.3 Synchronization Using Periodic Excitation . . . .    156
3.4.5.4 Mutual Synchronization of Weakly Coupled Oscillators . .    158
3.4.5.5 Synchronization of Chaotic Oscillators . . . . .    160

4  Computer Programs and Programming Languages      163

4.1 Csound . . . . . . . . . . . .    163
4.1.1 The Syntax of the Csound Orchestra . . . . . . .    163
      4.1.1.1 The Structure of the Orchestra . . . . . .    163
      4.1.1.2 Constants and Variables . . . . . . .    164
      4.1.1.3 Functions . . . . . . . . . .    165
      4.1.1.4 Assignment, Operators, Expressions and Conditional Expressions   165
      4.1.1.5 Control Flow . . . . . . . . .    166
      4.1.1.6 Simple Signal Generators ( Ø CD). . . . . .    167

4.1.1.7 Signal Modifiers ( Ø CD) . . . . . . .    167
      4.1.1.8 Delay Lines . . . . . . . . .    167
      4.1.1.9 Sound Input and Output . . . . . . .    167
      4.1.1.10 Opcodes . . . . . . . . . .    168

x Contents



4.1.2    The Score . . . . . . . . . . .    168
4.1.3    Function Table Generators . . . . . . . . .    169
4.1.4    Generating Scores and Events . . . . . . .    .    171

4.1.4.1 Generating Events With Csound Instruments . . . .    171
4.1.4.2 Generating Scores With Programs in C . . . . .    172
4.1.4.3 Generating Scores and Events Using Processing . . .    173
4.1.4.4 Generating Scores and Events With Max . . . .    175
4.1.4.5 Generating Scores With Python . . . . . .    175

4.2 Max  . . . . . . . . . . . .    176
4.2.1 Fundamentals . . . . . . . . . . .    176
4.2.2 Feedback. . . . . . . . . . . .    176
4.2.3 mxj-Objects . . . . . . . . . . .    177

4.3 Mathematica . . . . . . . . . . . .    179
4.3.1 Fundamentals . . . . . . . . . . .    179
4.3.2 Sounds . . . . . . . . . . . .    183
4.3.3 Graphics . . . . . . . . . . . .    185

4.4 C / C++ . . . . . . . . . . . .    190
4.4.1 Fundamentals . . . . . . . . . . .    190

4.4.1.1 The Structure of a C Program . . . . . .    190
4.4.1.2 Types . . . . . . . . . .    191
4.4.1.3 Derived and Composite Types . . . . . .    191
4.4.1.4 Operators, Expressions, Mathematical Functions . . .    193
4.4.1.5 Control Flow . . . . . . . . .    194
4.4.1.6 Functions . . . . . . . . . .    195
4.4.1.7 Input and Output . . . . . . . .    197
4.4.1.8 Classes and Objects ( Ø CD) . . . . . .    199
4.4.1.9 Reading and Writing Binary Data . . . . . .    199

4.4.2 Generating and Storing Sounds . . . . . . . .    200
4.4.2.1 Raw Data . . . . . . . . . .    200
4.4.2.2 Sound Files . . . . . . . . .    201

4.5 Processing . . . . . . . . . . . .    203
4.5.1 Fundamentals . . . . . . . . . . .    203
4.5.2 Simulations . . . . . . . . . . .    205
4.5.3 Libraries . . . . . . . . . . . .    206

5  Fundamentals of Sound Synthesis      207

5.1 Fundamental Techniques of Sound Synthesis . . . . . . .    207
5.1.1 Overview . . . . . . . . . . .    207

5.1.1.1 Instruments and Their Schematic Diagrams . . . .    207
5.1.1.2 Techniques for Sound Synthesis . . . . . .    208
5.1.1.3 Programs and Programming Languages . . . . .    209
5.1.1.4 Tables . . . . . . . . . .    209
5.1.1.5 Audio Signals and Control Signals . . . . . .    210
5.1.1.6 Interpolation . . . . . . . . .    210
5.1.1.7 Program Control and Conditional Statements . . . .    211

Contents xi



5.1.2 Unit Generators . . . . . . . . . .    211
5.1.2.1 The Oscillator . . . . . . . . .    211
5.1.2.2 The Pulse Generator . . . . . . . .    214
5.1.2.3 The Noise Generator . . . . . . . .    215

5.1.3 Control Signals . . . . . . . . . .    217
5.1.3.1 Simple Control Functions . . . . . . .    217
5.1.3.2 Splines . . . . . . . . . .    219
5.1.3.3 Interpolation Filters . . . . . . . .    223
5.1.3.4 Variable Control Signals . . . . . . .    224
5.1.3.5 Tempo Functions . . . . . . . .    226
5.1.3.6 Synchronization . . . . . . . . .    235

5.1.4 Delay Lines . . . . . . . . . . .    237
5.1.4.1 Definition and Direct Implementation . . . . .    237
5.1.4.2 The Circular Buffer . . . . . . . .    237
5.1.4.3 Delay Lines With Variable Delay . . . . . .    238
5.1.4.4   Delay Lines With Feedback . . . . . . .    242
5.1.4.5 Applications . . . . . . . . .    244

5.2 Additive Synthesis . . . . . . . . . . .    244
5.2.1 The Synthesis of Periodic Waveforms . . . . . . .    244

5.2.1.1 Basic Techniques . . . . . . . .    244
5.2.1.2 Variable Parameters . . . . . . . .    245
5.2.1.3 Fusion . . . . . . . . . .    246
5.2.1.4 Data Reduction . . . . . . . . .    247
5.2.1.5 Acoustic Illusions . . . . . . . .    247

5.2.2 Analysis-Resynthesis . . . . . . . . .    249
5.2.2.1 Introduction . . . . . . . . .    250
5.2.2.2 The Discrete Fourier Transform DFT . . . . .    251
5.2.2.3 Long-Term Fourier Transform LTFT . . . . .    254
5.2.2.4 Short-Term Fourier Transform STFT . . . . .    256
5.2.2.5 The Phase Vocoder . . . . . . . .    258

5.3 Subtractive Synthesis . . . . . . . . . . .    259
5.3.1 Filters . . . . . . . . . . . .    259

5.3.1.1 Characteristics of Filters in the Frequency Domain . . .    259
5.3.1.2 Types of Filters . . . . . . . . .    260
5.3.1.3 Special Filters . . . . . . . . .    261
5.3.1.4 Combining Filters . . . . . . . .    261
5.3.1.5 Effects in the Time Domain . . . . . . .    262
5.3.1.6 Variable Filters . . . . . . . . .    263

5.3.2 Applications . . . . . . . . . . .    263
5.3.2.1 Sound Sources . . . . . . . . .    263
5.3.2.2 Resonators and Formants . . . . . . .    264
5.3.2.3 Linear Prediction. . . . . . . . .    266

6  Nonlinear Techniques      267

6.1 Modulation Techniques and Distortion . . . . . . . .    267

xii Contents



6.1.1 Amplitude Modulation and Ring Modulation . . . . .    267
6.1.1.1 Introductory Example . . . . . . . .    267
6.1.1.2 Basic Techniques . . . . . . . .    268
6.1.1.3 The Spectrum of Amplitude Modulated Waveforms . . .    269
6.1.2.4 Ring Modulation . . . . . . . . .    271

6.1.2 Frequency Modulation and Phase Modulation . . . . .    272
6.1.2.1 Introductory Example . . . . . . . .    272
6.1.2.2 The Basic Method . . . . . . . .    272
6.1.2.3 The Spectrum of a Frequency Modulated Waveform. . .    274
6.1.2.4 The Proportion fc : fm . . . . . . . .    278
6.1.2.5 Variable Spectra . . . . . . . . .    278
6.1.2.6 Synthesis Models and Examples . . . . . .    279
6.1.2.7 Extensions of the Basic Method . . . . . .    280
6.1.2.8 The Influence of the Phase . . . . . . .    284

6.1.3 Nonlinear Distortion – Waveshaping . . . . . . .    285
6.1.3.1 Introductory Examples . . . . . . . .    286
6.1.3.2 Waveshaping . . . . . . . . .    288
6.1.3.3 The Modulation Index . . . . . . . .    289
6.1.3.4 Polynomials as Transfer Functions . . . . .    290
6.1.3.5 Chebyshev Polynomials as Transfer Functions . . .    292
6.1.3.6 Limiters, Compressors and Expanders . . . . .    294

6.2 Nonlinear Systems . . . . . . . . . . . .    297
6.2.1 Non-Recursive Systems With a Single Input . . . . . .    297

6.2.1.1 Functions of a Single Input Value . . . . . .    297
6.2.1.2 Functions of More Than One Input Value . . . .    297

6.2.2 Non-Recursive Systems With More Than One Input Signal . . .    302
6.2.2.1 Functions Using a Single Value of Each Input . . . .    302
6.2.2.2 Special Functions of Two Input Signals . . . . .    303
6.2.2.3 Functions of Several Values of Several Input Signals . .    307

6.2.3 Recursive Systems . . . . . . . . . .    308
6.2.3.1 Functions of One Value . . . . . . .    308
6.2.3.2 Functions of Two Values . . . . . . .    310

6.2.4 Time-Variant Systems . . . . . . . . .    311
6.2.4.1 Delimiting Systems . . . . . . . .    311
6.2.4.2 Non-Recursive Systems With Constant Delay . . . .    311
6.2.4.3 Non-Recursive Systems With Variable Delay . . . .    312
6.2.4.4 Recursive Systems With Constant Delay. . . . .    313
6.2.4.5 Recursive Systems With Variable Delay . . . . .    315

7  Other Techniques for Sound Analysis and Synthesis      317

7.1 Granular Synthesis . . . . . . . . . . .    317
7.1.1 Fundamentals . . . . . . . . . . .    317

7.1.1.1 Grains . . . . . . . . . .    317
7.1.1.2 Techniques for Making and Controlling Grains . . .    319
7.1.1.3 Synchronous Granular Synthesis . . . . . .    321

Contents xiii



7.1.1.4 Asynchronous Granular Synthesis . . . . . .    322
7.1.2 Applications . . . . . . . . . . .    323

7.1.2.1 FOF . . . . . . . . . . .    323
7.1.2.2 VOSIM . . . . . . . . . .    324
7.1.2.3 Granulating Sampled Sounds . . . . . .    326

7.2 Special Analysis Methods . . . . . . . . . .    328
7.2.1 Walsh Synthesis . . . . . . . . . .    328

7.2.1.1 Walsh Functions . . . . . . . . .    329
7.2.1.2 Examples . . . . . . . . . .    329

7.2.2 The Logarithmic Frequency Range in Spectral Analysis . . . .    330
7.2.3 Wavelets . . . . . . . . . . . .    331

7.2.3.1 Wavelets . . . . . . . . . .    331
7.2.3.2 The Continuous Wavelet Transform . . . . .    332
7.2.3.3     The Discrete Wavelet Transform . . . . . .    335

8  Physical Modeling      337

8.1 Mass-Spring Models . . . . . . . . . . .    338
8.1.1 Systems With One Mass . . . . . . . . .    338

8.1.1.1 Harmonic Oscillation . . . . . . . .    338
8.1.1.2 Exciting the Oscillation . . . . . . .    342
8.1.1.3 Damped Harmonic Oscillation . . . . . .    342
8.1.1.4 Exciting the Damped Oscillation . . . . . .    345
8.1.1.5 Oscillation With Nonlinear Acceleration . . . . .    347
8.1.1.6 Calculations . . . . . . . . .    348

8.1.2 Systems With Two Masses. . . . . . . . .    349
8.1.2.1 The Oscillation of Two Coupled Masses . . . . .    349
8.1.2.2 Excitation and Damping . . . . . . .    351
8.1.2.3 Nonlinear Acceleration . . . . . . .    352
8.1.2.4 Computing the Frequencies of the Natural Resonances . .    353
8.1.2.5 Calculations ( Ø CD) . . . . . . . .    355

8.1.3 The Linear Arrangement of Coupled Masses. . . . . .    355
8.1.3.1 A Model With Three Masses. . . . . . .    355
8.1.3.2 The String . . . . . . . . . .    356
8.1.3.3 Correcting the Dispersion Relation. . . . . .    358
8.1.3.4 Damping and Nonlinearity  . . . . . . .    360
8.1.3.5 Picking Up the Sound . . . . . . . .    361
8.1.3.6 Exciting the String . . . . . . . .    362
8.1.3.7 Harmonics . . . . . . . . . .    363

8.1.4 Two-Dimensional Arrangements of Coupled Masses . . . .    365
8.1.4.1 An Example With Three Masses . . . . . .    365
8.1.4.2 Representing the Plane by a Regular Grid . . . .    366
8.1.4.3 Resonant Frequencies of the Grid . . . . . .    367
8.1.4.4 Objects With Curved Edges . . . . . . .    369
8.1.4.5 Objects With Freely Oscillating Edges . . . . .    369
8.1.4.6 Rigid Body Motion . . . . . . . .    370

xiv Contents



8.1.4.7 Retroflex Surfaces . . . . . . . .    371
8.1.4.8 A Grid With Unequal Distances Between the Masses . .    372
8.1.4.9 Irregular Grids . . . . . . . . .    374
8.1.4.10 Irregular Density or Elasticity . . . . . .    376

8.1.5 Three-Dimensional Arrangements of Coupled Masses . . . .    377
8.1.5.1 Longitudinal and Transversal Oscillations of a Mass. . .    377
8.1.5.2 Subdividing Space With a Regular Grid . . . . .    378
8.1.5.3 Bodies in Free Motion . . . . . . . .    380
8.1.5.4 A Model With Fixed Points . . . . . . .    383
8.1.5.5 Variable Fixed Points . . . . . . . .    385
8.1.5.6 The Effect of Gravity . . . . . . . .    386
8.1.5.7 Damping . . . . . . . . . .    386

8.1.6 Arbitrary Configurations and Variations . . . . . .    387
8.1.6.1 Coupled Strings . . . . . . . . .    387
8.1.6.2 Geometrically Impossible Shapes . . . . . .    388
8.1.6.3 Spaces of More Than Three Dimensions . . . . .    389

8.2 Wave Guides. . . . . . . . . . . . .    390
8.2.1 Simple Delay Lines . . . . . . . . . .    390

8.2.1.1 Delay Lines . . . . . . . . .    390
8.2.1.2 Simple Damping . . . . . . . . .    392
8.2.1.3 Frequency . . . . . . . . . .    393
8.2.1.4 Nonlinearity . . . . . . . . .    396
8.2.1.5 The Excitation . . . . . . . . .    397
8.2.1.6 The Karplus-Strong Algorithm . . . . . .    398

8.2.2 Waveguides . . . . . . . . . . .    399
8.2.2.1 The Ideal Waveguide . . . . . . . .    400
8.2.2.2 Reflection . . . . . . . . . .    401
8.2.2.3 The Advancing Wave Front as Solution of the Wave Equation .    402
8.2.2.4 Other Variables for Representing Waves. . . . .    404

8.2.3. Sound Pickup and Excitation . . . . . . . .    405
8.2.3.1 The Postions of Pickup and Excitation . . . . .    405
8.2.3.2 The Duration of the Excitation . . . . . .    407
8.2.3.3 Excitation Without Feedback . . . . . .    408
8.2.3.4 Excitation With Feedback . . . . . . .    410
8.2.3.5 Selective Reflection and Sound Radiation . . . .    413
8.2.3.6 Harmonics . . . . . . . . . .    414

9  Sound and Space      417

9.1 Spatial Hearing . . . . . . . . . . . .    417
9.1.1 Sound Localization . . . . . . . . . .    418

9.1.1.1 Interaural Time Difference ITD . . . . . .    418
9.1.1.2 Interaural Intensity Difference IID . . . . . .    419
9.1.1.3 Head-Related Transfer Function HRTF . . . . .    421

9.1.2 Distance . . . . . . . . . . . .    422
9.1.2.1 The Decrease of Sound Intensity With Distance . . .    422

Contents xv



9.1.2.2 Proportion of Indirect Sound . . . . . . .    423
9.1.3 Movement of Sound in Space . . . . . . . .    424

9.1.3.1 The Doppler Effect . . . . . . . .    424
9.1.3.2 Additional Information Through Position Change . . .    425

9.2 Reflection and Reverberation . . . . . . . . .    426
9.2.1 Reflections . . . . . . . . . . .    426

9.2.1.1 Geometrical Considerations . . . . . . .    426
9.2.1.2 Scatter and Absorbtion . . . . . . . .    430

9.2.2 Reverberation . . . . . . . . . . .    430
9.2.2.1 The Nature of Reverberation . . . . . . .    431
9.2.2.2 Simple Reverberators . . . . . . . .    431
9.2.2.3 Frequency Dependency . . . . . . .    434
9.2.2.4 More Complex Filters . . . . . . . .    435
9.2.2.5 Convolution With an Impulse Response . . . . .    435

9.3 Sound Reproduction . . . . . . . . . . .    435
9.3.1 Ideal Solutions . . . . . . . . . . .    435

9.3.1.1 Simulation of the Sound Source . . . . . .    436
9.3.1.2 Sound Field Reproduction . . . . . . .    436
9.3.1.3 The Sound Wave in the Auditory Canal . . . . .    437

9.3.2 Practical Solutions . . . . . . . . . .    437
9.3.2.1 Stereo . . . . . . . . . .    438
9.3.2.2 Ambisonics . . . . . . . . .    438
9.3.2.3 Decorrelation . . . . . . . . .    451

10  Computers and Composition      455

10.1 Chance and Probability . . . . . . . . . .    455
10.1.1 Fundamentals of Combinatorics . . . . . . . .    455

10.1.1.1 Introductory Examples . . . . . . . .    455
10.1.1.2 Permutations . . . . . . . . .    456
10.1.1.3 Combinations . . . . . . . . .    456
10.1.1.4 Arrangements . . . . . . . . .    457
10.1.1.5 Ordering Permutations . . . . . . . .    458
10.1.1.6 Binomial and Polynomial Coefficients . . . . .    458

10.1.2   Fundamentals of Probability Calculus . . . . . . .    458
10.1.2.1 Standard Examples and Definitions . . . . .    458
10.1.2.2 Combining Events . . . . . . . .    459
10.1.2.3 The Terminology and Axioms of Probability Theory. . .    459
10.1.2.4 Conditional Probability and Stochastic Independence . .    461
10.1.2.5 Examples . . . . . . . . . .    461

10.1.3  Probability, Density and Distribution Functions of Random Variables .    461
10.1.3.1 Random Variables and the Probability Function . . .    462
10.1.3.2 Continuous Random Variables and Their Density Function .    462
10.1.3.3 Distribution Functions . . . . . . . .    463
10.1.3.4 Continuous Density Functions and Their Distributions . .    464
10.1.3.5 Functions of Random Variables . . . . . .    465

xvi Contents



10.1.3.6 Measuring Probability Distribution . . . . .    465
10.1.3.7 Parametric Control of Functions . . . . . .    467

10.1.4 Generating Random Numbers With a Given Density or Distribution. .    467
10.1.4.1 Pseudorandom Numbers . . . . . . .    467
10.1.4.2 Direct Methods for Generating a Given Distribution . . .    469
10.1.4.3 Inverting the Distribution Function . . . . .    470
10.1.4.4 Rejection Sampling . . . . . . . .    472
10.1.4.5 Tables of Elements With Specified Frequency of Occurrence .    473

10.1.5 Particular Distributions . . . . . . . . .    476
10.1.5.1 Continuous Uniform Distribution . . . . . .    476
10.1.5.2 Trapezoid Distribution . . . . . . . .    476
10.1.5.3 Binomial Distribution . . . . . . . .    477
10.1.5.4 Poisson Distribution . . . . . . . .    478
10.1.5.5 Normal Distribution . . . . . . . .    479
10.1.5.6 Exponential Distribution . . . . . . .    480
10.1.5.7 Gamma Distribution . . . . . . . .    481
10.1.5.8 Weibull Distribution . . . . . . . .    481

10.1.6 Applications . . . . . . . . . . .    483
10.1.6.1 Sound Examples From Random Number Sequences . . .    483
10.1.6.2 The Application of Random Numbers to Musical Parameters .    484
10.1.6.3 Applications Using Variable Distributions . . . .    485
10.1.6.4 Choosing Among Random Values . . . . . .    487

10.2 Stochastic Processes . . . . . . . . . . .    487
10.2.1 Introductory Examples and Concepts . . . . . . .    487

10.2.1.1 Games of Chance . . . . . . . .    487
10.2.1.2 White Noise . . . . . . . . .    488
10.2.1.3 General Formulation of the Concepts . . . . .    489

10.2.2 Markov Chains . . . . . . . . . .    490
10.2.2.1 Introductory Examples . . . . . . . .    490
10.2.2.2 Definition . . . . . . . . . .    492           
10.2.2.3 Transition Matrix and State Vectors . . . . .    493
10.2.2.4 Applications . . . . . . . . .    494
10.2.2.5 Markov Chains With Variable Transition Probabilities . .    497
10.2.2.6 Markov Chains With Variable States . . . . .    499
10.2.2.7 Other Examples . . . . . . . . .    499

10.2.3 More Stochastic Processes . . . . . . . .    502
10.2.3.1 Processes With Independent Increments . . . . .    502
10.2.3.2 Random Walk . . . . . . . . .    503
10.2.3.3 Describing a Process By Its Spectrum . . . . .    505
10.2.3.4 Processes Involving Previous Events . . . . .    506
10.2.3.5 Processes With Sieved Random Variables . . . .    507

10.3 Other Techniques Used for Composition. . . . . . . .    508
10.3.1 Cellular Automata . . . . . . . . . .    508

10.3.1.1 One-Dimensional Automata With Two States . . . .    508
10.3.1.2 One-Dimensional Automata With Many States . . .    510

Contents xvii



10.3.1.3 Two-Dimensional Automata With Two States . . .    513
10.3.2 The Golden Ratio . . . . . . . . . .    514

10.3.2.1 Definition and Classical Construction . . . . .    515
10.3.2.2 Fibonacci Numbers . . . . . . . .    516
10.3.2.3 Continued Fractions, Surds and Golden Ratio . . . .    516
10.3.2.4 Fractals . . . . . . . . .    518
10.3.2.5 A Process of Natural Growth. . . . . . .    518
10.3.2.6 Applications . . . . . . . . .    520

10.3.3 Chaos Theory . . . . . . . . . . .    525
10.3.3.1 Concepts . . . . . . . . . .    525
10.3.3.2 The Theory of Dynamic Systems . . . . . .    526
10.3.3.3 Self-Similarity and Fractals . . . . . . .    527
10.3.3.4 Applications to Music . . . . . . . .    528

10.3.4   Simulating Swarm Behavior . . . . . . . .    531
10.3.4.1 The Classical Boids Algorithm . . . . . .    531
10.3.4.2 Extensions of the Swarm Algorithm . . . . .    533
10.3.4.3 Implementations . . . . . . . . .    533

10.3.5   Toward a Topology of Sounds . . . . . . . .    535
10.3.5.1 Mental Representation . . . . . . . .    535
10.3.5.2 Complex Topologies to Represent Pitch Space. . . .    537
10.3.5.3 Time . . . . . . . . . . .    539
10.3.5.4 Timbre . . . . . . . . . .    540
10.3.5.5 Position Space . . . . . . . . .    541
10.3.5.6 Mapping . . . . . . . . . .    542
10.3.5.7 Systems . . . . . . . . . .    543

Appendix A Fundamentals of Mathematics          545 

A.1 Numbers and Arithmetic Operations . . . . . . . .    545
A.1.1 Numbers . . . . . . . . . . . .    545
A.1.2 Rules of Algebra . . . . . . . . . .    545

A.2 Statements, Sets and Operations on Sets . . . . . . . .    546
A.2.1 Statements . . . . . . . . . . .    546
A.2.2 Sets . . . . . . . . . . . .    547
A.2.3 Subsets and Power Set . . . . . . . . .    547
A.2.4 Operations on Sets . . . . . . . . . .    547
A.2.5 The Cartesian Product . . . . . . . . .    547

A.3 Equations . . . . . . . . . . . .    548
A.3.1 Definitions and Concepts . . . . . . . . .    548
A.3.2 Equivalence Transformations . . . . . . . .    548
A.3.3 Algebraic Equations . . . . . . . . . .    548
A.3.4 Systems of Linear Equations and Matrices . . . . . .    549
A.3.5 Transcendental Equations . . . . . . . . .    550 

A.4 Functions . . . . . . . . . . . .    551
A.4.1 Definition . . . . . . . . . . .    551

xviii Contents



A.4.2 Properties of Functions and Graphical Representation . . . .    552
A.4.3 Basic Functions . . . . . . . . . .    553
A.4.4 Composite Functions. . . . . . . . . .    562
A.4.5 Parametric Representation . . . . . . . . .    562
A.4.6 Functions of Several Variables . . . . . . . .    563
A.4.7 Even and Odd Functions . . . . . . . . .    564
A.4.8 Sequences and Series . . . . . . . . .    564 

A.5 Calculus . . . . . . . . . . . .    565
A.5.1 The Derivative of a Function . . . . . . . .    565
A.5.2 Rules for Differentiation . . . . . . . . .    566
A.5.3 The Indefinite Integral of a Function . . . . . . .    567
A.5.4 Integration Formulas . . . . . . . . . .    567
A.5.5 The Definite Integral . . . . . . . . . .    568
A.5.6 Partial Derivatives . . . . . . . . . .    568

Appendix B Tables       571

B.1   Pitches . . . . . . . . . . . . .    571
B.2   Formants of English Vowels . . . . . . . . . .    571
B.3   Constants . . . . . . . . . . . .    572
B.4   Fibonacci Numbers . . . . . . . . . . .    572
B.5   Prime Numbers . . . . . . . . . . . .    573
B.6   Bessel Functions . . . . . . . . . . . .    574
B.7   Chebyshev Polynomials . . . . . . . . . .    575

Bibliography         577

Books (by Author) . . . . . . . . . . .    577
Books (by Number of Reference) . . . . . . . . .    580
Articles from the Computer Music Journal (CMJ) . . . . . .    584
Articles from Other Sources . . . . . . . . . .    585
Articles Available on the Internet . . . . . . . . .    586

   
Index       587

Contents xix





Preface to the Original German Edition

The  first  digital  sound  synthesis  dates  back  to  1957,  when  an  IBM-709  Computer  in  New
York  calculated  a  17-second  long  piece  of  music.  The  program  that  had  produced  these
sounds  was  written  by  Max  Mathews,  who  12  years  later  would  write  the  first  book  giving
detailed  information  about  the  technology  of  digital  sound  synthesis.  This  book  was  of
extreme  importance.  Interest  in  electroacoustic  music,  and  particularly  in  music  made  by
computer, had greatly increased since 1957, and Mathews’ book contributed immeasurably to
knowledge about  digital  sound synthesis  and thus  paved the  way for  further  development  in
the field.

After  1969,  great  advances  were  made  in  the  technology  of  sound  synthesis  and  the  digital
treatment  of  sound:  Frequency Modulation,  Linear  Predictive  Synthesis,  Granular  Synthesis,
Formant Synthesis,  Synthesis in the Frequency Domain (for example the Phase Vocoder),  to
name  only  a  few  techniques.  These  developments  took  place  outside  the  commercial  world
and  were  generally  well  documented  in  specialized  journals  and  at  conferences,  so  that  the
growing  community  of  composers  for  whom  digital  sound  synthesis  had  become  important
was able to remain abreast of the newest technologies.

The  first  international  conference  for  computer  music  took  place  in  1974;  the  Computer
Music Journal  first  appeared in 1977. By the middle of the 1980’s there was enough known
about  digital  sound  synthesis  that  in  1985  Curtis  Roads  and  John  Strawn  could  publish
Foundations of Computer Music [43], a collection of 36 technical articles, most of which had
first appeared in the Computer Music Journal. In the same year, the first comprehensive book
about  techniques  of  computer  music,  Computer  Music:  Synthesis,  Composition,  and  Perfor-
mance  by  Charles  Dodge  and  Thomas  Jerse  [2]  was  published.  F.  Richard  Moore’s  book
Elements of Computer Music [8] followed in 1990, Curtis Roads’ 1234-page Computer Music
Tutorial [11] in 1996, and a second, revised edition of Doge and Jerse’s book was published
in 1997. Each of these books added substantially to the body of acquired knowledge about the
technology  and  aesthetics  of  computer  music.  Nowadays,  courses  in  digital  sound  synthesis
and the treatment of sound are offered in universities all over the world. These books, togeth-
er  with  the  Computer  Music  Journal,  furnish  the  foundations  for  this  teaching.  Without  the
generosity of very many colleagues in the field who took the time to document their research
and  their  achievements,  and  without  the  vision  and  magnanimity  of  the  few  companies  that
were willing to publish these writings, computer music as we know it today would surely not
exist.

Signals,  Systems and Sound Synthesis  by Martin Neukom belongs in this group of definitive
texts on computer music. Not only are all the important issues of sound synthesis discussed in
the light of the most recent developments,  but topics relevant to computer music but usually
disregarded or mentioned only marginally in earlier books, like systems theory, room acous-
tics or programming for musicians, are treated at length here. The book is by no means simply
a compendium of established techniques. Each theme is introduced and developed from a new
point of view. The approach is often mathematical, and the resulting level of abstraction and
change  of  perspective  are  refreshing  and  inspiring,  even  for  mathematically  less  proficient



readers.  A  CD-ROM is  included,  containing  the  entire  text,  many  graphic  animations  and  a
great  many  sound  examples,  making  of  the  book  both  an  up-to-date  documentation  of  what
has been achieved in the field of computer and a handbook of areas of work for the future.

The publication of Signals, Systems and Sound Synthesis would have been a significant event
in  any  country  and  language.  It  is  our  great  good  fortune  that  the  book  was  published  in
German  and  thus  became  the  first  German-language  textbook  on  digital  sound  synthesis.
When  I  asked  Martin  Neukom in  1998  to  write  a  short  guide  to  sound  synthesis  so  that  we
would not always have to direct our students to the English-language professional literature, I
had  no  idea  that  I  would  receive  such  a  rich,  original  and  comprehensive  text.  The  Zurich
University  of  the  Arts  gave  the  project  both  moral  and  financial  support,  for  which  we  are
very  grateful.  With  Signals,  Systems  and  Sound  Synthesis,  Martin  Neukom  has  given  the
computer  music  community  a  marvelous  textbook.  I  am proud that  the  Zurich  University  of
the Arts contributed to its realization.

Gerald Bennett

Preface to the English Edition

There  is  little  to  add  to  what  I  wrote  nearly  10  years  ago.  In  its  German  version,  Signals,
Systems and Sound Synthesis  has  become a standard work,  the standard work in the field of
computer music for German-language readers. The vision of a documentation which is both a
conventional, albeit rather heavy, book and a complex interactive tool for learning has proven
extremely  fertile  for  teaching,  and  the  book  has  been  used  for  several  years  with  success  in
courses  at  the  Zurich  University  of  the  Arts.  Signals,  Systems  and  Sound  Synthesis  remains
one of the few books to show in detail how to realize the techniques of contemporary comput-
er music.

The time seemed ripe to extend the book’s readership by issuing an English-language version.
Martin Neukom has rewritten extensive sections of the book, bringing up to date both content
and  references.  The  enclosed  CD-ROM  contains  much  new  additional  material.  Particularly
the number of interactive programming examples has been greatly increased. 

If I wrote the Foreword to the German Edition as supporter and defender of Martin Neukom’s
project,  I  now write  as  translator.  Of  course,  the  book’s  sheer  bulk  was a  challenge,  but  not
surprisingly I encountered the greatest difficulties with topics I knew little about. Despite 40
years’  experience as  a  composer  and researcher  in  computer  music,  I  often found myself  on
paths which were new to me. I have tried to find factually and grammatically correct,  felici-
tous English equivalents for the German text. I hope the reader will forgive me if she occasion-
ally misses the specific jargon of a domain in which I sojourned for the first time.

Gerald Bennett
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1   How to Use This Book

1.1   Getting Started

This  book  is  a  translation  from  the  German  original,  Systeme,  Signale  und  Klangsynthese
(2003,  2005).  The  text  for  the  English  edition  has  been  considerably  revised,  and  whole
sections  have  been  rewritten.  It  has  some  specific  features  of  format  and  layout  that  distin-
guish it from most other books, largely due to the fact that it is written using the computation-
al  software  Mathematica.  While  graphically  not  as  flexible  as  digital  publishing  software,
Mathematica allows the text to be published simultaneously as a book and as a CD containing
the  complete  text  in  computer-readable  form,  many  directly  executable  programs  as  well  as
links to additional relevant passages within the text, example programs, animations and sound
examples.

The book is stored on the CD in so-called Notebooks (see 1.3 below). It was decided that the
printed text and the screen version of the Mathematica notebooks should look as much alike
as possible. Because notebooks have no distinct pages, and hence no page numbers, reference
within  the  book  is  not  made  to  pages  but  to  chapters  and  sub-chapters.  The  illustrations
always follow immediately their explanations in the text and therefore have no captions. The
mathematical  formulas  are  not  numbered  as  usual  but  instead  are  linked  or  repeated  where
necessary.

In  the  German  original,  Chapter  1  (this  chapter)  and  the  introductions  to  the  programming
languages Csound and C were quite long. In this edition these chapters have been drastically
shortened  since  both  programming  languages  are  well  documented  in  English.  In  Chapter  4
one will find short descriptions of the programming languages one will encounter in the text
as well as explanations of some special applications and procedures used in the book.

The bibliography of  the  original  edition  contained a  commented list  of  German and English
books  suitable  for  interested  non-professional  readers.  In  this  edition,  the  books  listed  have
been  updated  to  their  most  recent  editions,  and  most  German references  have  been  replaced
by  their  English  versions  where  these  exist  or  by  comparable  English  language  literature.
Most  of  the  methods,  formulas  and  algorithms  used  here  belong  to  the  common  practice  of
their  respective  disciplines,  and  their  origins  cannot  be  determined  with  certainty.  For  this
reason,  no  texts  are  quoted  in  the  book  and  in  general  no  mention  is  made  of  authors  of
formulas or techniques. In addition, reference is usually made to secondary literature and not
to primary literature.

The CD contains:

– The complete text of the book as Mathematica-notebooks (name.nb) in the folder Text;
– Additional chapters, explanations and examples as hidden cells in the notebooks;
– C/C++ programs in source code (name.cpp) in the folder CPP;
– Java programs in source code (name.java) and Java classes (name.class) for the 
   mxj-externals in the folder Java;
– Sound examples (name.wav) in the folder Sounds;
– Csound examples in the folder Csound;
– Max patches in the folder Max;
– Programs in the Processing language in the folder Processing.



1.2   Overview

This  book  gives  an  introduction  to  the  techniques  of  digital  sound  synthesis  and  sound
transformation.  The  relevant  topics  are  presented  using  illustrations,  animations  of  complex
physical  and  mathematical  relationships,  sound  examples  and  sample  programs.  Basic
technical and mathematical principles will be explained where they are necessary for reading
the specialized literature.
This first chapter gives an overview of the book’s contents, the enclosed CD and the computer
programs used in  the  book.  In  Chapters  2  to  4  the  physical,  mathematical  and programming
essentials for the rest of the book are developed. The short overview of acoustics in Chapter 2
is followed in Chapter 3 by a thorough presentation of signal theory and system theory. These
theories  provide  the  tools  for  a  precise  derivation  of  many  techniques  of  sound  synthesis,
sound transformation and control theory. The text is written to give a clear and intuitive view
of the material rather than a more abstract, general presentation. The chapters that follow are
written so they can be understood in their  broad lines without the theoretical material  devel-
oped  in  Chapter  3.  Traditionally,  many  programming  languages  and  specific  programs  have
been  used  in  the  treatment  and  synthesis  of  sound.  In  Chapter  4,  only  those  languages  are
discussed which are later used in the book. Mathematica was chosen for the body of the text,
because  an  editor,  a  high-level  programming language  and  routines  to  generate  illustrations,
animations  and  sounds  are  integrated  into  the  language.  C/C++  was  chosen  as  a  general
programming language because Csound, Max and many other programs are written in C and
can  be  extended  using  additional  routines  written  in  C.  Csound  was  chosen  as  the  domain-
specific language (DSL) for sound synthesis because it has a long history in computer music
and  because  it  has  the  flexibility  of  a  general  programming  language.  Max  was  chosen  for
interactive  programming  because  it  is  the  most  frequently  used  language  in  live  electronics.
Max is intuitive to use and ideal for demonstrations because of its graphic interface. Several
techniques of sound synthesis and sound treatment are introduced in Chapters 5 to 8. Nonlin-
ear techniques and techniques that simulate the physical procedures of natural sound produc-
tion  are  particularly  emphasized  because  they  give  interesting  results  with  only  simple
programming  and  modest  computation  times.  Chapter  8  gives  a  comprehensive  introduction
to sound synthesis by physical modeling. At the same time it offers a first taste of digital filter
theory.  Chapter  9  discusses  some  of  the  many  problems  that  arise  in  connection  with  the
synthesis  of  sound  in  resonant  spaces  and  presents  suggestions  for  solutions.  Chapter  10,
finally, discusses techniques and aids for the composition of computer music.

1.3   Instructions for Using Specific Programs

The  rest  of  this  chapter  contains  instructions  for  using  the  data  and  the  programs  on  the
enclosed  CD.  Chapter  4  contains  more  detailed  descriptions  of  the  programs  and  program-
ming languages Mathematica, C/C++, Csound, Max and Processing.

The  text  of  this  book  is  stored  in  Mathematica  notebooks,  which  can  be  read  with  the  Wol-
fram CDF Player  or  read and edited with  the program Mathematica.  The program Wolfram
CDF  Player  can  be  downloaded  from  Wolfram  Research  (http://www.wolfram.com).  The
notebooks  include  closed  cells  containing  additional  text,  the  programs  used  to  generate  the
illustrations, animations ( Ø Animation) and sound examples ( Ø Sound example) as well as
additional cells. Longer sound examples are stored on the CD as WAVE files.
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The  Csound  program  (Version  5  or  later)  together  with  Csound  scores  and  orchestras
generates  sounds.  All  the  sounds  synthesized  by  the  Csound  program  in  the  course  of  the
book can be found on the enclosed CD. 

All the C/C++ programs can be compiled on a C++ compiler, but only some of the examples
can be compiled on a classical C compiler.
 
The Max programs can be run using the freely available program Max Runtime. They can be
executed, edited and extended using the Max program itself (http://cycling74.com).

The examples written in the language Processing can be executed, edited and extended using
the freely available program Processing (http://processing.org).

1.3.1   Using the Mathematica Notebooks

After  downloading  and  installing  the  Wolfram  CDF  Player,  start  the  program.  Now  a  note-
book  can  be  opened  using  the  Menu  item  File.  If  the  notebook  Contents.nb  or  Index.nb  is
opened first, the other notebooks can be opened using hyperlinks (see below). A Mathematica
notebook consists  of  cells  that  contain  text,  illustrations,  sounds  or  other  cells.  The cells  are
indicated  by  brackets  on  the  right  edge  of  the  screen.  Nested  cells  are  shown  by  nested
brackets. By double-clicking on an outer bracket, whole groups of cells can be closed so that
only the uppermost cell is visible. By double-clicking on an inner cell bracket, a group of cells
can be  closed so  that  only  the  selected  cell  is  visible.  Closed cells  can  be  opend by double-
clicking on a bracket with a hook. The text  appears as in the printed book. The hidden cells
contain the programs used to generate illustrations, animations and sounds as well as calcula-
tions and additional texts.

To  start  an  animation,  open  the  the  group  of  cells  whose  visible  cell  has  the  comment  ( Ø
Animation) by double-clicking on the corresponding bracket. Most animations are interactive.
Their parameters can be changed by graphic elements in and sliders next to the illustrations.
The  sliders  can  be  animated  by  clicking  on  the  plus  sign  next  to  the  slider.  In  this  way
continuous animations can be generated.

The CD version of the book contains hyperlinks which give access to other cells in the current
notebook  or  to  cells  in  other  notebooks.  These  hyperlinks  are  colored  blue.  Clicking  on  a
hyperlink retrieves the corresponding cell.

1.3.2   Using the Csound Programs

Csound  is  a  command-line  oriented  programming  language  designed  for  synthesizing  and
manipulating sound. Its name comes from the fact that it is written in C. For the examples in
this book QuteCsound was used as a development environment within which programs can be
edited  and  executed.  QuteCsound  has  a  highlighting  editor  with  autocompletion,  interactive
features and integrated help files. In the Csound folder the orchestra and score programs have
been combined to form files in so-called Csound unified file format (name.csd).

1.3.3   Using the C/C++ Programs

C++  is  an  intermediate-level  general-purpose  programming  language.  It  contains  nearly  all
the  features  of  the  language  C  and  adds  object-oriented  features,  in  particular,  classes.  This
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book does not always distinguish explicitly between programs in C and programs in C++. All
the programs can be compiled with a C++ compiler, but only some can be compiled with a C
compiler. In order to execute the programs that write sound files, the header file my_WAVE.h
must be included in the program text using the command: #include “my_WAVE.h”. 

1.3.4   Using the Max Patches

The  following  explanations  can  be  tested  interactively  by  double-clicking  on  the  Max patch
Instructions.maxpat in the folder Max. Max patches are made up of elements such as genera-
tors, faders, inputs and outputs, etc. They can also contain subpatches. The audio settings can
be  changed  by  clicking  on  the  word  “Audio”,  which  opens  the  window  “DSP  Status”.  The
settings used for the examples in the book are stored under “Presets”. Parameter values can be
changed in  the  corresponding number  fields  and graphic  elements  and can then be stored as
new  presets.  Clicking  on  the  subpatch  p  name  opens  the  subpatch  and  shows  it  in  a  new
window. The subpatch p comments  tells what the respective Max patch does and how to use
it.  The subpatch p presets  explains the preset settings. Max objects can be programmed in C
or Java as so-called externals.  In this  book only Java externals are used.  Double-clicking on
the object mxj quickie name displays the source code of the external name.

1.3.5   Using the Processing Programs

The  examples  written  in  the  language  Processing  are  stored  as  source  code  on  the  enclosed
CD  and  must  be  executed  using  the  freely  available  program  Processing  .  Some  examples
require libraries that are not automatically installed with Processing (controlP5, oscP5, netP5)
(http://processing.org).  Instructions  for  and  comments  on  the  Processing  examples  can  be
found in the headers of the respective source code files.
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2   Fundamentals of Acoustics

Further Reading: Musical Acoustics by Donald E. Hall [20] gives a comprehensive introduc-
tion to the general topic. Music Cognition and Computerized Sound by Perry R. Cook [41] is
especially  useful  because  of  the  enclosed  CD  with  sound  examples.  The  fundamentals  of
acoustic are summarized in several books on computer music, among them Computer Music
by Charles Dodge and Thomas A. Jerse [2]. Genealogie der Klangfarbe by Daniel Muzzulini
[77] presents a detailed discussion of the phenomenon of timbre.

2.1   Basic Physical Principles and Units

2.1.1   Path, Velocity, Acceleration

The  distance  between  the  points  P1  and  P2  is  †x2  –  x1†  =  †x1  –  x2†.  In  Cartesian  coordinates
(straight perpendicular axes with the same unit  of measurement) in two or three dimensions,
the Euclidean distance d is calculated from the difference of the coordinates by 

d = dx
2 + dy

2  or d = dx
2 + dy

2 + dz
2

respectively (left figure below). If the points are defined by position vectors r1 and r2 from the
origin,  then  the  shortest  path  Dr  =  r2  –  r1.  The  formulas  above  give  the  corresponding
distance (right figure below). 
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If  it  takes  time  Dt  for  a  point  to  traverse  the  path  Dr,  then  the  point’s  mean  velocity  is
v = Dr/Dt. The direction of Dr and v are the same. The instantaneous velocity v is equal to the
limit of Dr/Dt when Dt approaches 0, that is, equal to the first derivative of the position with
respect to time: v = limDtØ0(Dr/Dt) = dr/dt. In contrast to the vector velocity v, we refer to the
magnitude of the velocity as speed and write v or u. Acceleration is defined as the change in
velocity over time: a = Dv/Dt. The instantaneous acceleration is defined as: a = limDtØ0(Dv/Dt)
= dv/dt. Correspondingly, velocity is calculated by integrating acceleration over time, position
by integrating velocity over time (A5.3).

In  the  following example  a  mass  is  dropped from a  height  of  100 m.  We know the  position
x = 100 m at  time t  = 0 s,  the speed v  = 0 m/s at  time t  = 0 s  and the acceleration given by
gravitation g. If the x-axis is pointing upward (figure to the right), the acceleration is negative:
g º –10 m/s2. Since the acceleration is constant, we calculate from a = dv/dt the speed v = tg.
For the speed after 3 seconds, we have 

v(3) = –3 s·10 m/s2 = –30 m/s. 



In general the speed is 

v(t) = v0 + Ÿt=0

t
gHtL „t. 

At time t = 3 s the speed is 

v(3) = v0 + Ÿt=0

3
gHtL „t = 0 + Ÿt=0

3
–10 m/s2„t = –30 m/s, as above.

We calculate the distance covered at time t by 

d = Ÿt=0

t
vHtL „t = Ÿt=0

t
t(–10m/s2)„t = –10t2/2 

and the position x at time t by x(t) = x0 + d = 100 – 10t2/2. So after 3 seconds the mass is still
(100 – 10·9/2) m = 55 m above the ground.
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2.1.2   Mass and Force

Mass  is  a  basic  characteristic  of  matter.  It  is  measured  in  kilograms  (kg).  Mass  is  different
from  weight,  which  arises  from  the  action  of  a  gravitational  field  on  a  body.  The  mass  per
volume unit of a body or material is called its density r = m/V and is measured in kg/m3 or in
kg/Liter = kg/dm3.
When  a  force  acts  upon  a  body,  that  body  is  either  accelerated  or  deformed,  or  stress  or
pressure arises. Forces are defined by their magnitudes and directions; for this reason they are
represented as vectors. If the forces F1  and F2  act simultaneously at the same point as in the
illustration on the left below, the sum of the forces corresponds to the vector F. 
The  accelerating  force  acts  in  the  direction  in  which  a  body  can  move.  If  a  mass  is  on  an
inclined  plane,  as  in  the  illustration  to  the  right,  the  force  of  gravitation  F  pulls  the  mass
straight down, but acceleration can only take place in the direction of the plane’s inclination,
shown here by the vector F2.

F1

F2

F

a

a

F1

F

F2

Force  is  measured  in  Newtons.  One  Newton  is  equal  to  the  force  necessary  to  accelerate  a
mass of one kilogram by one meter per second within a second: 

1 N = 1 m·kg/s2. 
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Newton’s Second Law of motion states that force is proportional to a body’s mass and to the
acceleration acting upon that body.

F = m a

Example  1.  The  force  of  gravity  at  the  earth’s  surface  is  equal  to  F  =  mg,  where  g  is  the
acceleration due to gravity. Let the angle of inclination in the illustration to the right above be
a, then the accelerating force F2 = F·sin(a) = mg·sin(a). For a mass of one kilogram, an angle
of 30° and g = 9.807 m/s2, that means: 

F2 = 1 kg·9.807 m/s2·sin(30°) = 4.9035 N.

Example  2.  The  force  with  which  a  stretched  ideal  spring  pulls  back  is  proportional  to  the
elongation of the spring x, that is, F = –Kx. The minus sign indicates that the force F acts in
the direction opposite that of the elongation. The constant K depends on the properties of the
spring, such as elasticity, mass, etc., and is called the spring or force constant.

2.1.3   Momentum, Work, Power, Energy

The momentum p of an object is defined as the product of its mass and its velocity.

p = mv

If no external force acts on an object, its momentum is conserved. If an external force F acts
on an object, the object’s momentum is changed according to:

d p êdt = F

The mechanical work W is the amount of energy transferred when a force F moves an object
through the distance s and is given by:

W = Ÿa

b
F „ s

Here F and s are vectors, whereas W is a scalar quantity, that is, a quantity without direction.
If F and s are constant (with magnitude F and s) and include the angle b, then the work W is
given by:

W = Fs ÿcos HbL
Work is measured in Joules: 1 J = 1 m2·kg/s2 = 1 N·m.

Power P is defined as work performed over time. 

P = W ê t

Power is measured in Watts:  1 W = 1 m2·kg/s3  = 1 J/s.  Specifications for electronic devices
give  some  idea  of  how  much  a  Watt  is.  Automobiles  produce  several  tens  of  thousands  of
Watts of power (one horse-power is 735.3 W). The average overall performance of a human
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being  in  terms  of  power  is  about  100  Watts,  whereas  the  sound  power  of  a  violin  played
fortissimo is only about 0.001 Watt.

Energy is a notion of great importance in physics. As work, energy is measured in Joules. In
classical  mechanics,  the  law  of  the  conservation  of  energy  states  that  the  sum  of  all  the
various forms of energy in an isolated system remains constant. Forms of energy are mechani-
cal energy, chemical energy and electrical energy as well as warmth. 

Potential  energy  can  be  thought  of  as  energy stored  within  a  physical  system.  The  potential
energy EP  of an object results from the position of the object in space under the influence of
certain  forces.  For  objects  in  the  earth’s  gravitational  field  the  following  relationship  holds:
EP = mgh, where h is the object’s height above a reference level. The potential energy EP of a
stretched spring is 

EP = K

2
x2

where x is the deviation of the spring from its initial position.

The kinetic energy Ek of an object of mass m and velocity v is:

Ek = 1

2
mv2

2.2   Vibration and Waves

Further  Reading:  The book Waves  (Berkeley Physics  Course,  Vol.  3)  by Frank S.  Crawford
[6]  does  not  specifically  treat  musical  acoustics,  but  it  is  nonetheless  an  excellent  introduc-
tion to our subject. In addition, it describes numerous experiments that are easy to carry out.

2.2.1   Harmonic Oscillation

2.2.1.1   Definition and Mathematical Representation

If  the excursion  of  an oscillating point  corresponds to a sine function in time,  one speaks of
harmonic  oscillation.  The  figure  below shows  three  snapshots  taken  from an  animation  and
illustrates  the  relationship  between  the  harmonic  oscillation  of  a  point,  the  rotation  of  a
pointer on the left and a representation of the point’s excursion as a function of time: x = f(t)
= sin(t) on the right. ( Ø Animation)
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The  duration  of  the  cycle  of  an  oscillation,  that  is  the  interval  between  two  corresponding
states  of  the  oscillation,  is  its  period  T  (in  seconds),  the  number  of  cycles  per  second  is  its
frequency f (in Hertz). The following relationships hold:

f = 1

T
and T = 1

f

In the illustration below, the period is  2/3 s,  the frequency is  therefore 3/2 Hz.  The function
x = sin(t) has the period 2p and the frequency 1/2p. Hence, the so-called angular frequency of
an oscillation is defined as w  = 2pf,  where f  is the frequency. The maximum excursion from
zero is the amplitude. The excursion is always a function of time; in the illustration below, the
amplitude remains constant.
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The  instantaneous  state  of  a  vibration  is  described  by  the  phase,  or  more  precisely  by  the
instantaneous  phase.  The  instantaneous  phase  is  defined  either  as  the  argument  of  a  sine  or
cosine function (the unwrapped phase)  or  as this  argument modulo 2p  (the wrapped phase).
Hence  the  phase  is  simply  a  number.  In  the  representation  of  oscillation  using  a  revolving
vector,  the phase corresponds to  the angle  a  between the horizontal  axis  and the vector.  So,
for instance, the phase at a maximum point of a sine wave is 90º or p/2. Displacement along
the time axis results from the zero phase angle or phase constant f0, that is, from the instanta-
neous phase at time t  = 0. The oscillation above begins at a maximum point and thus has an
initial phase f0 = p/2. A harmonic oscillation is determined by its amplitude A, its frequency f
or angular frequency w,  and its initial phase f0. The instantaneous phase of the oscillation is
wt + f0 or Hwt + f0Lmod 2 p.

x = A ÿsin Hwt + f0L
In  the  oscillation above these  parameters  are  A  =  2.7,  f  =  3/2  and f0  = p/2,  which gives  the
equation: x = A·sin(wt + f0) = 2.7·sin(3pt + p/2).
From the time when the sine function is zero, or more precisely from a time t0, at which the
phase is zero, we obtain the zero phase angle as follows. By substituting t – t0  for t the graph
of a function is displaced along the positive x-axis by t0, giving the function equation

x = A·sin(w(t – t0)) = A·sin(wt – wt0))  

At time t = 0, therefore, we have for the phase f0 = –wt0. In the figure below the frequency is
3/2, and we have for the phase constant

f0 = –3/2·2p(–1/6) = p/2 or f0 = –3/2·2p·1/2= –3/2·p (ª p/2)

-
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The  frequency  of  a  periodic  signal  is  defined  as  the  number  of  oscillations  per  second.  In
general, instantaneous angular frequency w(t) is defined as the time derivative of the instanta-
neous phase f(t) (2.2.3.5)

w(t) := d

dt
f(t).  

Conversely,  we obtain  the  instantaneous  phase  f(t)  from the  instantaneous  frequency f(t)  by
the relationship

f(t) = 2p Ÿt=0

t
f HtL „t.

Harmonic oscillation arises in systems in which reactive force is proportional to displacement
and acts in opposition to it: F = –Dx. Newton’s Second Law of movement (2.1.2.3) states that
 

F = ma = mx
..
. 

Hence, it follows that x
..
 = –(D/m)x. The solutions of these differential equations are harmonic

oscillations. The total energy of an oscillating system consists of potential energy and kinetic
energy. At the turning points of the oscillation, where the displacement is at its maximum and
the velocity is zero, the potential energy 

Ep= 1

2
Dx2

is maximal (2.1.3.4) and the kinetic energy 

Ek = 1

2
mv2 

is zero. At zero crossings of the oscillation the displacement is zero and the velocity is at its
maximum, hence the potential energy is zero and the kinetic energy is maximal. 

Systems in which a reactive force F acts on a mass m proportionally to the displacement (i.e.
F = –Dx) oscillate harmonically: x = A·sin(wt + f0). The following relationships hold:

angular frequency w = D êm

potential energy Ep = 1

2
D x2

kinetic energy Ek = 1

2
m v2

2.2.1.2   Damped Oscillation

Free  vibration  in  mechanical  systems is  always  damped due  to  friction.  In  the  simplest  case
damping  causes  an  exponential  reduction  of  amplitude,  which  means  that  the  amplitude
diminishes by the same amount at each period of oscillation. The ratio A1/A2 = A2/A3 = ... = c
is called the damping coefficient and its natural logarithm L = ln(c) the logarithmic decrement.
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A0‰-dt

2
t

-2

-1

1

2

x

The damped oscillation can be described as the product of a sine or cosine function and a so-
called envelope.

x = A0 ‰-dt sin Hwt + f0L
The  function  of  damped  oscillation  solves  the  equation  of  motion  of  a  system  in  which  a
reactive force is proportional to displacement and additionally friction is present, proportional-
ly to the instantaneous velocity of the oscillating object: R = –rv = –r·dx/dt, where the factor r
is known as the coefficient of friction. The equation of motion of the system is: F = –Dx + R =
–Dx – rv. The frequency of the sinusoid is constant but depends upon the friction. If the mass
of the oscillating body is given by m and d = r/(2m), then

Frequency of the damped oscillation f = 1

2 p
,ID êm - r2 ëI4 m2MM

Logarithmic decrement L = dT = 2 p d êw

Energy E = 1

2
D x2 = 1

2
D A0

2 ‰-d t

The following figure shows two oscillations (A0  = 3, D = 2, m = 0.5) with different damping
coefficients (r1 = 0.1, r2 = 0.7). From the formulas above it follows that the frequencies are f1
= 0.3179 and f2 = 0.2982, and the corresponding periods are T1 = 3.146 and T2 = 3.354. After
10 time units the amplitudes are 1.104 and 0.00274.

2 4 6 8 10
t

-3

3
x

2.2.1.3   The Addition of Harmonic Oscillations

When two or more oscillations are superposed, their displacements are added together:

x = x1 + x2 =  A1sin(w1t + f0, 1) + A2sin(w2t + f0, 2).

x1

x2

x

t

x
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The addition can be simplified in straightforward cases. The sum of two oscillations of equal
frequency and phase x1 = A1sin(wt) and x2 = A2sin(wt)  is

x = x1 + x2 = A1sin(wt) + A2sin(wt) =  (A1 + A2)·sin(wt). 

The sum of two oscillations of equal frequency and amplitude but of different phase: 

x = x1 + x2 = A·sin(wt + f0, 1) + A·sin(wt + f0, 2)

can be written with the help of the formula sin(a) + sin(b) = 2·sinJ a + b

2
N·cosJ a - b

2
N as:

x = A·(sin(wt + f0, 1) + sin(wt + f0, 2)) = 2A·cosJ f0, 1 - f0, 2

2
N·sinJwt +

f0, 1 + f0, 2

2
N.

   
The sum of the two oscillations is an harmonic oscillation of frequency w whose initial phase
is the arithmetic mean of the initial phases of the two partial oscillations 

f0 = 
f0, 1 + f0, 2

2
 and whose amplitude is 

Asum = 2A·cosJ f0, 1 - f0, 2

2
N. 

The difference Df = f0, 1 – f0, 2 is called the phase difference. The following example uses the
values f0, 1 = p/4, f0, 2 = p/2, A = 1 and w = 1.

2 4
t

-2

-1

1

2
x

As  the  phase  difference  of  the  two  oscillations  approaches  p,  the  amplitude  of  their  sum
diminishes. When the phase difference is equal to p, the two oscillations cancel each other.

2 4
t

-1

1

x

2 4
t

-1

1

x

The sum of two oscillations of the same frequency but of different phase and amplitude is an
harmonic  oscillation  whose  phase  and  amplitude  can  be  seen  in  a  pointer  diagram.  If  the
oscillations are represented as circular motion (2.2.1.1), the pointer for their sum is the sum of
the pointers of the two partial oscillations. In the illustration below, the bold curve represents
the sum of two sine waves of different phase and amplitude. 

p 2 p
t

-1

1

x
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2.2.1.4   Beats

When  two  oscillations  of  nearly  equal  frequency  are  superposed,  so-called  beats  result.
Because  of  the  difference  in  frequency  between  the  two  oscillations,  their  phase  difference
gradually changes so that there are moments when they have the same phase and amplify each
other  and moments  when the phase difference is  equal  to  p  and they cancel  each other.  The
following  illustration  shows  two  oscillations  with  a  frequency  ratio  of  6:7  and  their  sum
(bold).

20 40
t

-2

-1

1

2
x

The sum of the oscillations

x = x1 + x2 = A·sin(w1t) + A·sin(w2t) = A(sin(w1t) + sin(w2t))
      

can be written as

x = 2A·cosI w1 - w2

2
tM·sinI w1 + w2

2
tM 

or, since w = 2pf, as

x = 2A·cosJ2 p
f1 - f2

2
tN·sinJ2 p

f1 + f2
2

tN.
The  resulting  function  corresponds  to  a  sinusoidal  oscillation  of  frequency  ( f1  +  f2)/2  and
amplitude 2A·cos(2pt( f1 – f2)/2), which varies slowly because ( f1 – f2)/2 is small. 
( Ø Beats.maxpat) ( Ø Beats_2.maxpat) ( Ø Beats_Partials.maxpat)

2 4
t

-1

1
x

2.2.1.5   Natural Vibrations

Elastic bodies like strings, bars, gases, etc. oscillate if they are excited by an external force. If
a body oscillates freely after the exciting force disappears, it does so only at certain frequen-
cies.  These  oscillations  are  known as  natural  oscillations  or  natural  vibrations  of  the  body.
When the body oscillates perpendicularly to the body’s axis or surface, one speaks of transver-
sal  oscillation.  Oscillation  along  the  axis  or  surface  is  called  longitudinal.  Points  whose
displacement is always zero are called nodes,  those whose displacement reaches a maximum
are called antinodes. ( Ø natural_vibrations.pde, natural_vibrations_sum.pde)

The following illustration shows the first three transverse natural oscillations of a string. Their
frequencies are related as 1:2:3. ( Ø Animation)
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The attached ends of the string are always nodes. For the nth natural frequency there are n – 1
additional nodes which divide the string into n equal parts. The so-called natural frequencies
or eigenfrequencies  of the string can be calculated from the string’s cross section S,  from its
normal stress s and from its density r: 

fn = n

2 l

s
rS

.

The following illustration shows the first three natural vibrations of a freely oscillating metal
bar. The eigenfrequencies of metal bars are not harmonic (see [20]). (Ø Animation)

l

x

l

x

l

x

The oscillations which cause a column of air to sound are longitudinal. They can be described
as variations of pressure or as displacement of the oscillating air molecules. In the animation
below, an air column is modeled as a series of cells of equal volume. Air pressure is indicated
by the intensity of the grey scale.

The next  illustration shows the moment of  maximum displacement for  the air  column’s first
three normal modes. If the distribution of pressure p is plotted as a function of position l, the
same picture results as for the normal oscillations of the string shown above. ( Ø Animation)
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For tubes with one open and one closed end, there is always an antinode of the oscillation at
the open end (that  is,  a  pressure node) and an oscillation node (that  is,  pressure antinode) at
the closed end. The following normal modes of oscillation are possible ( Ø Animation):

l

x

l

x

l

x

This  explains  the  typical  properties  of  stopped  organ  pipes  (Stopped  Diapason,  Gedackt,
Bourdon). The first eigenfrequency is an octave lower than for a pipe of the same length open
at both ends, and only odd-numbered partial tones are produced. (The frequency ratios of the
oscillations are 1 : 3 : 5 ...) 
( Ø Natural_Modes_Open_Tube.maxpat, Natural_Modes_Closed_Tube.maxpat)

2.2.1.6   Driven Oscillation and Resonance

When a  periodically  oscillating  force  acts  upon  an  object  capable  of  oscillation,  that  object,
after a certain settling time, effects driven oscillation, the frequency of which is equal to that
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of the driving force. If the driving force is a sinusoid F = F0sin(wt), then the driven oscillation
is x = x0sin(wt + a). The amplitude of the driven oscillation x0  depends on the ratio between
the  frequency  w  of  the  exciting  force  and  the  eigenfrequency  we  of  the  system.  If  the  ratio
w/we is close to 1, x0 increases greatly and the system begins to resonate.

2.2.2   Periodic Vibrations and their Spectrum

2.2.2.1   The Definition of Periodic Vibrations 

A repeated vibration or oscillation is called periodic.  A particular vibration is determined by
the duration of its period T, or by its frequency f, and by the form of the vibration. The pitch
of the heard tone depends on the frequency f = 1/T. The vibration’s form or shape influences
only  the  tone’s  timbre.  The  curve  corresponding  to  the  vibration’s  form  cannot  have  any
discontinuities,  because  the  vibrating  point  of  a  physical  object  cannot  suddenly  be  in  a
different  place.  The  curve  cannot  have  any  corners,  because  that  would  correspond  to  a
sudden  change  of  velocity.  Thus  the  function  describing  the  curve  must  be  continuous  and
differentiable.

T

t

x

2.2.2.2   Standard Examples

The following waveforms, which are impossible in the real world because they have corners
and discontinuities, are often approximated in electroacoustic music: triangle wave (a), square
wave (b), sawtooth wave (c, d), impulses of different impulse length or duty cycle (e, f). The
square wave corresponds to an impulse with a duty cycle of 50%.

aL
t

x
bL

t

x

cL
t

x
dL

t

x

eL
t

x
fL

t

x

2.2.2.3   Other Examples

Periodic oscillation occurs whenever any waveform is repeated.

t

x
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The following example shows a sine wave of varying period. Because the variation is regular
and repeats every 0.01 s,  the result  is  a periodic oscillation with a fundamental frequency of
100 Hz (cf. Frequency Modulation 6.1.2). 

w=800*2*p;w2=100*2*p;p1=Plot[Sin[w*t+4*Sin[w2*t+p]]...]

0.01
t

-1

1
x

In  the  following  example  the  amplitude  of  a  sine  wave  varies  regularly,  causing  again  a
periodic oscillation of frequency 100 Hz (cf. Amplitude Modulation 6.1.1). 

w=100*2*p;p1=Plot[Sin[w*t]*Sin[8*w*t]...]

0.01
t

-1

1
x

2.2.2.4   Constructing Periodic Oscillation from Harmonic Waveforms

When one adds together harmonic oscillations whose frequencies are all multiples of a fixed
fundamental  frequency  f1,  one  obtains  periodic  oscillation,  regardless  of  the  amplitudes  and
initial phase angles of the components. Because the sine function is symmetrical and repeats
after 2p, any sinusoidal oscillation can be written with positive amplitude and phase constant
between 0 and 2p, or with positive or negative amplitude and a phase constant between 0 and
p. In the first example, we add to a sine oscillation of 100 Hz (period = 0.01 s) and amplitude
2 a second sine oscillation of 900 Hz and amplitude –0.6.

w=100*2*p;Plot[2*Sin[w*t]-.6*Sin[9*w*t]...]

0.01 0.02 0.03
t

-3
-1

1
3

x

If one varies the phase constant of a partial oscillation, the waveform of the periodic oscilla-
tion changes. In the second waveform the phase of the third harmonic is displaced by p.

Plot[2*Sin[w*t]+2*Sin[3*w*t]...]
Plot[2*Sin[w*t]+2*Sin[3*w*t+p]...]

0.01
t

3
x

0.01
t

3

x
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One can approximate  a  square  wave by summing the  odd partials  with  amplitudes  inversely
proportional to the partial number (1, 1/3, 1/5, ...). ( Ø Animation)

Plot@Sin@w*tD + Sin@3*w*tDê3 + Sin@5*w*tDê5 +
Sin@7*w*tDê7 + Sin@9*w*tDê9 + Sin@11*w*tDê11 ...D

0.01
t

-1

1

x

One can approximate a  pulse train by adding together  several  harmonic cosine waves of  the
same amplitude. As the number of partials increases, the width of the pulse becomes narrower
and the curve between the pulses becomes flatter. ( Ø Animation)

Plot@Cos@w*tD + Cos@2*w*tD + Cos@3*w*tD ...D
0.01

t

-5

5

x

0.01
t

-10

10

x

( Ø Timbre_and_Spectrum.maxpat)

2.2.2.5   The Spectrum of Periodic Oscillations

At  the  beginning  of  the  19th  century,  the  French  mathematician  and  physicist  Jean  Baptiste
Joseph Fourier showed that any waveform with the period T  could be expanded into a series
of sine waves of frequency f1  = 1/T, f2  = 2 f1, f3  = 3 f1, ... having suitable amplitudes A1, A2,
A3, ... and phase constants f1, f2, f3, ... The sinusoidal oscillations f1, f2, f3, ... are known as
the partials of the waveform; the overtones of a waveform are the partials without the funda-
mental frequency. The representation of the amplitudes A1, A2, A3, ... as a function of frequen-
cy is  called the amplitude spectrum of  the periodic  oscillation or  sound.  Although the phase
constants are essential for determining the shape of the waveform of a sound, they are usually
disregarded  in  the  spectrum.  The  spectrum  shows  the  partials  present  in  a  sound  and  hence
informs  one  about  the  sound’s  timbre.  The  missing  phase  information  is  generally  not  a
problem,  because  the  phase  constants  do  not  as  a  rule  influence  the  timbre.  The  following
illustration shows the spectrum of a square wave.

etc.

1 2 3 4 5 6 7 8
f

1
A
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Any harmonic sound of period T and corresponding angular frequency w = 2pf = 2p/T can be
produced by summing sine waves.

x HtL = n=1
¶ An sinHnwt + fnL

The  indentity  sin(a  +  f)  =  sin(a)·cos(f)  +  cos(a)·sin(f)  implies  that  a  sine  wave  of  an
arbitrary phase constant f can be represented as a weighted sum of a sine wave and a cosine
wave of the same frequency without phase constant:

x HtL = n=1
¶ HBn sinHnwtL + Cn cosHnwtLL

with Bn = cosHfnL and Cn = sinHfnL
 
The calculation of the coefficients An  (or Bn  and Cn) in the formula above can be carried out
exactly  and  without  computer  only  in  simple  cases,  like  that  of  the  square  wave.  There  are,
however, programs that can calculate the spectrum of a given sound using the so-called Fast
Fourier Transform (cf. 3.2.2.5) and show the spectrum graphically. In this book, we will use
the Fourier function in Mathematica to evaluate the spectrum of a list of values representing a
waveform.  In  the  following  example,  we  calculate  a  square  wave  of  4  Hz  and  store  1000
points of this function in a list list1. Mathematica then evaluates the spectrum of the list.

list1=Table[Sign[Sin[w*t/1000]]...]
ListPlot[list1]

500 1000
t @msD

-1

1

x

ListPlot[Fourier[list1]]

0 20 40 60 80 100

There  are  only  odd  partials  (4,  12,  20,  28,  36,  44  Hz  ...)  whose  amplitudes  are  inversely
proportional to their frequencies.

In  Chapter  2.2.2.4  a  pulse  train  was  approximated  by  adding  several  harmonic  cosine  func-
tions of the same amplitude. To produce ideal pulses, infinitely many partials would have to
be summed. In this case, the waveform of the pulse train and its spectrum would be identical.

etc.

1 2 3 4 5 6 7 8
f

A

2.2   Vibration and Waves 19



2.2.3   Aperiodic Oscillation

2.2.3.1   Non-harmonic Partials

If we add two sine waves the ratio of whose frequencies is irrational, the resulting oscillation
will  not  contain  any  periods.  In  the  following  example,  two  sine  waves  with  the  frequency
ratio  of  the  golden ratio  1  :  1.61803 ...  (10.3.2)  are  combined.  Although the  resulting wave-
form looks simple  and sounds smooth,  in  fact  no section of  it,  taken at  any order  of  magni-
tude, is ever repeated.

Plot[Sin[w*t]+Sin[1.61803*w*t]

t

x

The  spectrum  does  not  indicate  that  the  oscillation  is  aperiodic,  because  one  cannot  tell
whether the frequency ratio is rational or irrational.

1 2 3
f

1
A

If we change the second example of Chapter 2.2.2.3 so that the ratio of frequency variation to
the sine wave’s nominal frequency is irrational, an aperiodic oscillation results.

w=437.32171*2*p;w2=100*2*p;
Plot[Sin[w*t+3.5*Cos[w2*t+p]],...]

t

-1

1
x

2.2.3.2   Noise

Random oscillation yields noise. The waveform in the illustration below was generated using
a list (sequence) of random numbers between –1 and 1. 

l=RandomReal[{-1,1},100];

t

-1

1
x

The following figure shows two spectra, the first of a list of 200 random numbers, the second
of  a  list  of  2000  random  numbers.  Clearly,  the  first  series  will  have  a  maximum  of  100
oscillations, the second of 1000 oscillations. The spectra show partials in all frequency ranges.
The amplitudes of the partials are randomly scattered around a certain mean value. In the case
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of light, this superposition of frequencies corresponds to the superposition of all the colors of
the  spectrum  and  gives  rise  to  white  light.  Noise  having  these  spectral  characteristics  is
therefore known as white noise.

0 20 40 60 80 100

0 200 400 600 800 1000

The spectrum of ideal white noise is a straight line.

f

A

If  some  frequencies  are  more  strongly  represented  than  others,  one  speaks  of  colored  noise
(5.3.2.1). White noise contains as much high-frequency as low-frequency energy, which is not
the case for most natural sounds. Noise whose spectrum decreases exponentially with frequen-
cy is generally felt to be more natural. It is called pink noise and is often found in commercial
synthesis devices.

2.2.3.3   Pulses

In Chapter 2.2.2.5 we saw how pulse trains can be made by summing cosine functions whose
frequencies are multiples of a fundamental frequency. A single pulse can be considered to be
the sum of cosine functions of all frequencies, since the functions A·cos(wt) all take the value
A  at  time  t  =  0,  while  at  time  t   0  they  have  different  values  and  cancel  each  other  in  the
limit.  The  spectrum  can  be  explained  as  follows.  The  spectrum  of  a  pulse  train  is  a  line
spectrum of infinitely many components of equal amplitude, separated by the frequency of the
pulse  train.  As  the  pulse  train’s  frequency  decreases  (and  hence  the  length  of  its  period
increases),  the  spectral  lines  move  closer  to  one  another,  blending  together  to  form a  single
rectangle  when  the  period  T  becomes  infinitely  long.  Thus  a  single  pulse  has  the  same
spectrum as does white noise.

etc.
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2.2.3.4   Quasi-periodic Oscillation 

Various  kinds  of  oscillation  exist  which  are  not  strictly  periodic  but  can  be  described  as
slowly  varying  or  mildly  perturbed  oscillation.  Beats,  for  instance,  can  be  characterized  as
periodic  oscillation  with  slowly  varying  amplitude,  particularly  when  the  ratio  of  the  beat
frequency  to  the  oscillation’s  frequency  is  small  (2.2.1.4).  Whistle  tones  have  a  small  noise
component which makes them quasi-periodic, but to the ear they have a clearly defined pitch.
The quasi-periodicity is easily recognizable in the waveform of a whistle tone below, and the
tone’s spectrum shows a frequency line which is only slightly broadened.

t

x

f

A

2.2.3.5   Variable Frequencies 

The multiplier w in the function sin(wt) should not be confused with the frequency if it is not
constant,  i.e.,  if  w  =  w(t).  Using  the  Mathematica  command  below,  we  produce  a  function
w(t) which begins at 2·2p, goes in one second to 4·2p and remains at 4·2p for another second.

Plot[Sin[If[t<1,(2+2*t)*2p*t,4*2p*t]]...]

t

At the end of the glissando, that is in the middle of the depicted waveform, the frequency is
noticeably higher than 4 Hz. ( Ø Sound Example)

Using  the  formula  above,  one  can  only  produce  tones  of  constant  frequency  correctly.
Because  the  frequency  corresponds  to  the  velocity  of  the  changing  argument  of  the  sine
function,  that  is,  the  phase,  the  instantaneous  frequency  is  defined  as  the  derivative  of  the
phase  with  respect  to  time.  When  the  argument  c  of  sin(c)  is  constant,  the  frequency  is
dc/dt = 0; the function sin(wt) has the constant frequency d(wt)/dt = w. We calculate the phase
by integrating the instantaneous time-dependent frequency w(t). Thus in the first example, we
have for the phase, instead of (2 + 2t)·2pt = 4pt + 4pt2, the functionŸ H2 + 2*tL*2 p „t = 4 p t + 2 p t2

PlotASinAIfAt < 1, 4 p t + 2 p t2, 4*2 p *tEE ...E
t

Often the frequency w(t) cannot be integrated analytically,  or else the variation of frequency
is not known. In such cases, integration has to be done numerically during the calculation of
the waveform. ( Ø Sound Example) ( Ø Variable Frequency.maxpat)

22 2   Fundamentals of Acoustics



2.2.4   Waves

2.2.4.1   Definition and Examples

The word “wave” originally referred to changes on the surface of a liquid. More generally, a
wave is the propagation of a physical state through a medium. In an undisturbed medium, all
parts of the medium are at rest. If one particle of the medium is moved out of its rest position
by excitation, interaction among neighboring particles causes the excitation to be transmitted
through the medium, forming a wave. One distinguishes between transverse waves, where the
displacement of the particles is perpendicular to the direction of propagation, and longitudinal
waves, where the displacement is in the same direction as the wave’s propagation. The phase
of a wave refers to its position in the vibration cycle. Points on a wave having the same phase
form a wave front. 

The  first  example  shows  a  one-dimensional  transverse  wave  caused  by  excitation  at  x  =  0.
One speaks of a sine wave  or an harmonic wave  if the waveform can be described by a sine
function.  Note  that  the  horizontal  axis  in  the  graphic  represents  a  spatial  dimension  and  not
time. Therefore, the following figures do not represent, as in case of oscillation, behavior over
time. Rather,  they are snapshots of instantaneous states.  To illustrate the behavior of a wave
over  time,  an  animation  can  be  made  or  several  successive  snapshots  can  be  presented.  The
figure below shows three images from an animation. Considering two neighboring points, one
can  see  that  they  go  through  the  same  motion  at  different  times.  Hence,  a  wave  can  be
described as a set of coordinated oscillations of points in space. In the propagation of waves,
no particle of the medium itself is transported. ( Ø Animation)
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x
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In  the  two-dimensional  wave  below,  circular  wavefronts  move  away  from  the  point  of
excitation. Their amplitude diminishes with the distance from the excitation because the total
energy is distributed over an ever-larger circle. ( Ø Animation)
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If the excitation takes place along a straight line instead of at a single point, two-dimensional
waves  with  straight  wavefronts  result.  Waves  excited  at  a  single  point  also  exhibit  nearly
straight wavefronts at considerable distance from the point of excitation. ( Ø Animation)

Longitudinal  waves  are  more  difficult  to  imagine  and  visualize.  Experimentation  with  spiral
springs  can  help  the  imagination  here.  In  the  following  animation  a  longitudinal  wave  is
created by a sinusoidal excitation in the direction of the wave’s propagation. ( Ø Animation)

Three-dimensional waves cannot be illustrated even with animations. Sound waves are three-
dimensional  longitudinal  waves  of  changing  air  pressure  which  propagate  in  all  directions
away  from the  sound  source,  giving  rise  to  spherical  wavefronts.  All  points  on  a  wavefront
have the same air pressure.

2.2.4.2   Mathematical Description

The displacement y(t, x) of the oscillating particles of a wave depends on time t and position x
of the particle. It is meaningful, for one-dimensional undamped waves, to speak of the wave’s
amplitude  and  frequency,  because  the  oscillations  of  all  the  particles  always  have  the  same
frequency  and  amplitude.  The  distance  between  the  nearest  particles  of  different  fronts
oscillating  with  the  same  phase  is  called  the  wavelength  l.  The  wavelength  must  not  be
confused with the period of an oscillation, which corresponds to the reciprocal of the frequen-
cy. The period is a duration in time, the wavelength a distance. The wave number k indicates
the number of waves per unit of length, hence k = 1/l and l = 1/k. The speed with which an
excitation propagates in a medium is known as the wave velocity c (or more usually the phase
velocity,  referred  to  a  specific  phase  of  the  wave).  In  acoustics,  one  speaks  of  the  speed  of
sound.  At  the  frequency  f,  a  wavefront  covers  a  distance  of  fl  in  one  second.  For  the  wave
velocity we write: c = fl = l/T, where T is the wave’s period.

Px1

P0 x1

l

x

y

To  derive  the  mathematical  description  of  a  wave,  we  begin  by  considering  the  point  P0  at
x = 0. Its movement is described by the sinusoidal oscillation y = A·sin(wt). Any point on the
wave oscillates with the same amplitude and frequency but with a time delay dependent upon
its distance from P0 and upon the wave velocity c. This difference of phase is equal to 2p/l·x.
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Hence,  the  equation  for  the  harmonic  wave  giving  the  displacement  of  the  particles  as  a
function of their positions and of time is

y = A ÿsin Iwt - 2 p

l
xM or

y = A ÿsin I2 p t

T
- 2 p x

l
M or

y = A ÿsin I2 p I t

T
- x

l
MM

Here y = displacement, A = amplitude, T = period of the oscillation, l = wavelength, t = time,
x = distance from the origin x = 0.
If t is made constant, then a = t/T is also constant, and the equation for the waveform becomes
y(x) = A·sin(2p(a – x/l)). If x is made constant, then b = x/l is also constant, and the equation
for the oscillation of the point Px becomes y(t) = A·sin(2p(t/T – b)).

2.2.4.3   The Superposition of Waves

The  superposition  of  waves  is  given  by  adding  their  instantaneous  displacements.  If  two
waves of  the same vibration direction and of  equal  frequency are  superposed,  one speaks of
interference.  The following figure shows two sine waves with the origins Z1  and Z2  and the
wave resulting from the superposition of the two. The distance between the two origins Dx is
called the phase difference.

x

y

Z1 Z2

Dx

The equations for the two waves are     

y1 = A·sinI2 pI t

T
- x

l
MM and y2 = A·sinI2 pI t

T
- x + Dx

l
MM.

Their sum is

y = y1 + y2 = A·sinI2 pI t

T
- x

l
MM + A·sinI2 pI t

T
- x + Dx

l
MM

         = AIsinI2 pI t

T
– x

l
MM + sinI2 p I t

T
– x + Dx

l
MMM

         
         = 2A·cosIp Dx

l
M·sinI2 pI t

T
- x

l
M - p Dx

l
M (see 2.2.1.3)

         = 2A·cosIp Dx

l
M·sinI2 pI t

T
- x + Dxê2

l
MM.

Only the term sin(...) depends on t  and x,  and so this equation describes a sinusoidal oscilla-
tion  having  the  frequency of  the  two waves  and the  constant  amplitude  2A·cos(p·Dx/l).  The
amplitude  depends  on  the  phase  difference.  If  the  phase  difference  is  a  multiple  of  the
wavelength,  the  amplitude  of  the  sum  is  maximal,  if  the  ratio  of  phase  difference  to  wave-
length is 0.5, 1.5, 2.5, etc., the amplitude is minimal.
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When circular waves are superposed, there are areas where the waves amplify each other and
areas  where  they  cancel  each  other.  To  calculate  the  points  where  the  waves  amplify  each
other maximally, the distance between the two origins Z1 and Z2 is called d, the distances of a
point P(x, y) to the two origins are called s1 and s2, and the difference between these distances
Ds.

                                          

s1

s2

Ds

Z1 Z2d

PHx,yL

x

y

The greatest amplification occurs where Ds  is a multiple of the wavelength l.  If  we take the
origin Z1 as the origin of our coordinate system, we have

x2 + y2  – Hx - dL2 + y2  = n + l.

We solve the equation and show the solutions for n = 1, n = 2 and n = 3 graphically (l = 0.41,
d  = 1).  Here we solve the equation for x,  because, as the figure below shows, the curves for
n = 1 and n = 2 can only be written as unique functions in terms of y.

SolveB x2 + y2 - Hx - dL2 + y2 == l, xF        Ø 
d3 - d l2 l d2-l2 d2+4 y2-l2

2 d2-2 l2

2

-2

2

n = 1

n = 2

n = 3

The following figure shows a snapshot of a corresponding animation. 
( Ø Animation)  ( Ø Interference.maxpat)

                            

When two waves of the same frequency meet each other traveling in exactly opposite direc-
tions, a phenomenon occurs which is of particular importance for understanding the behavior
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of  strings  and  air  columns.  The  superposition  creates  points  (in  one-dimensional  waves)  or
lines (in two-dimensional waves) where the waves’ displacements are cancelled and points or
lines where they are amplified.  This phenomenon gives rise to standing waves,  which corre-
spond to  the  natural  oscillations  of  strings  and air  columns.  The  following excerpts  from an
animation show two waves meeting each other head-on (dashed lines) and the resulting wave
(bold line). ( Ø Animation)

x

x

x

x

x

2.2.4.4   The Propagation of Waves

Many  features  of  the  behavior  of  waves  can  be  explained  by  the  Principle  of  Huyghens,
named  after  the  Dutch  mathematician,  astronomer  and  physicist  Christiaan  Huyghens
(1629–1695).  The  Principle  states  that  at  any  instant  the  wavefront  of  a  propagating  wave
corresponds to the envelope of the spherical so-called wavelets or elementary waves emanat-
ing  from  every  point  on  the  wavefront  at  the  prior  instant.  In  the  figures  below,  the  inside
(figure  left)  and  the  lower  (figure  right)  lines  show the  prior  wavefront  and  the  outside  and
upper lines show the present wavefront as the envelope of the more finely drawn wavelets.

From the Principle of Huyghens we can derive the law of reflection, which says that the angle
with  which  an  incident  wave  strikes  a  reflective  surface  is  the  same  as  that  of  the  reflected
wave.  The  following  figure  shows  a  straight  wavefront  coming  from  the  upper  left  (heavy
dashed line) which is reflected on a horizontal surface. Four so-called normals, a, b, c, and d,
are  drawn  perpendicular  to  the  incident  wavefront,  meeting  the  surface  at  A,  B,  C  and  D
respectively. By the time the wave reaches D, it has already reached A, B and C and provoked
the  wavelets  Ka,  Kb  and  Kc.  The  envelope  of  the  wavelets  is  the  straight  line  (heavy  line)
which includes the same angle to the surface as the incident wavefront. That the angles are the
same  can  be  seen  from  the  normal  b,  which  provokes  the  wavelet  Kb  at  B,  whose  current
radius is the same length as the normal from the incident wavefront to the point B.
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The displacement of reflected waves either keep their original direction or they are multiplied
by –1. A wave in a wire which is fixed at one end turns negative when reflected at the fixed
end and remains positive when reflected at the loose end (8.2.2.2).

In  the  discussion  of  reflection  above,  it  may  seem  that  the  Principle  of  Huyghens  offers  a
complicated  description  of  a  simple  situation,  but  it  provides  a  very  elegant  explanation  for
the  phenomenon  of  refraction.  Refraction  is  familiar  from  the  change  in  direction  of  light
when it passes from air to water. However, waves are always refracted when they pass from
one medium to another having a different wave velocity. In the following figures the horizon-
tal line represents the boundary between two media. At the bounding surface part of the wave
is reflected, while another part continues in the new medium but in a different direction. In the
example below, the phase velocity of the lower medium is lower than in the upper medium,
hence  the  radius  of  the  wavelet  Kb  is  smaller  than  the  length  of  the  normal  b  between  the
wavefront  (dashed  line)  and  the  point  B.  The  simplified  figure  to  the  right  will  make  the
calculation of the relationship between the angle of the incident wave and that of the refracted
wave  easier.  During  time  t  the  incident  wave  passes  through  the  first  medium  with  phase
velocity  c1  from  A2  to  B2.  During  the  same  time,  the  refracted  wave  moves  through  the
second medium with phase velocity c2 from A1 to B1. From the illustration it follows that

sinHaL
sinHbL  = 

c1 têd
c2 têd  = 

c1

c2
.

Ka

Kb

Kc

a

b

c

d

A B C D

c2t

c1t

A1

A2

B1

B2a
b

d

Refraction  occurs  not  only  at  bounding  surfaces  but  happens  continuously  in  non-homoge-
nous media. Sound waves, for instance, are skewed towards the ground when the air near the
ground is colder than the air above, lowering the speed of sound close to the ground. 

If a wavefront strikes a surface with a slit-like aperture, new circular waves, corresponding to
the wavelets described above, propagate behind the aperture (figure left). By the same reason,
there  are  no  sharp  shadows  behind  an  obstacle  struck  by  a  wave:  part  of  the  wave  is  bent
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around the obstacle (figure right). This bending is called diffraction; its degree depends on the
size of the obstacle and on the wavelength. The sound waves of low tones are more strongly
diffracted than those of high tones.

The  propagation  speed  of  certain  waves  depends  on  their  wavelength.  The  small  ripples
caused  by  the  wind  on  the  surface  of  water,  for  instance,  move  more  slowly  than  the  bow
wave  of  a  ship.  The  dependence  of  the  propagation  speed  of  a  wave  on  its  wavelength  is
known  as  dispersion.  Non-sinusoidal  waves  suffer  from  dispersion,  because  the  various
spectral components have different wave velocities.

In the passage from one medium to another, but also in the propagation of waves in a homoge-
neous  medium,  energy  is  lost  because  of  absorption.  Absorption  at  bounding  surfaces  plays
an  important  role  in  room  acoustics,  because  the  reverberation  of  a  room  depends  on  the
absorptivity  (9.2.1.2).  Absorption  by  a  medium not  only  contributes  to  a  decrease  of  ampli-
tude  in  circular  and  spherical  waves  but  also  causes  a  frequency-dependent  change  of  spec-
trum  (9.1.2.1).  The  decrease  of  energy  caused  by  absorption  is  exponential:  W  =  W0·‰-kx,
where W  is the wave’s energy after traversing the distance x,  W0  is the energy at the wave’s
origin (x = 0) and k  is the absorption coefficient,  which is dependent on the properties of the
medium, the kind of wave and its frequency.

2.2.4.5   The Doppler Effect

If  a  sound  source  and  a  listener  move  relative  to  one  another,  the  frequency  of  the  sound
generated  and  the  frequency  of  the  sound  heard  will  not  be  the  same.  The  heard  frequency
will  be  higher  than  the  generated  frequency  when  source  and  listener  approach  each  other,
lower when they move apart. The figure below illustrates the so-called Doppler-Effect (named
after the Austrian physicist Christian Doppler, who described it in 1842) with the example of
a  moving  sound  source  S  and  two  stationary  listeners  H1  and  H2.  At  time  t  =  0,  the  sound
source was halfway between the two listeners and then began moving to the right. The circles
represent  the  sound  waves  produced  at  different  times,  the  dots  indicate  the  position  of  the
source at those times. The wavelength of the waves arriving at listener H1  is greater than that
produced  by  the  source,  and  the  perceived  frequency  is  correspondingly  lower.  Conversely,
the  wavelength  of  the  waves  arriving  at  listener  H2  is  smaller  than  that  produced  by  the
source, and the perceived frequency is correspondingly higher. 

t=0 t=1 t=2 t=3 t=4

H1 H2
S
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Let the speed of sound c = 340 m/s and the frequency f0 be that of a sound source. Then there
are f0 cycles of sound distributed along a distance of 340 m = c·1 s. If the sound source moves
with a velocity vs  towards the listener, the cycles of sound will be distributed along (c – v)·1 s
meters. The wavelength of the compressed wave is therefore

 l = c - vs

f0
, 

 
and since c = l·f, the resulting frequency is

f = c

l
 = 

c
c - vs

f0

 = 
cf0

c - vs
 = 

f0
c - vs

c

 = 
f0

1 - vsêc .

If the sound source moves away from the listener, its velocity is negative. If we consider the
case  of  a  stationary  source  and  a  moving  listener,  we  will  see  that  f  =  f0(1  ±  ve/c).  These
formulas can be summarized as

f = f0
1 veêc
1° vsêc

Here f0 represents the original frequency of the source, vs the velocity of the source and ve the
velocity of the listener.

Chapter 9.1.3.1 shows how the Doppler effect can easily be simulated, even when the sound
source  is  not  moving  straight  in  the  direction  of  the  listener.  (  Ø  Doppler-Effect.maxpat,
doppler_effect.pde)

2.3   Sound and Hearing

Further Reading: Musical Acoustics by Donald E. Hall [20], Music Cognition and Computer-
ized  Sound  by  Perry  R.  Cook  (including  a  CD),  Spatial  Hearing  –  The  Psychophysics  of
Human Sound Localization by Jens Blauert [45].

2.3.1   Pitch

2.3.1.1   Frequency Range and Octaves

Human beings perceive vibrations with frequencies between about 20 and 20,000 Hz as tones.
The doubling of the frequency of a tone raises its perceived pitch by an octave. That is why an
exponential increase of frequency means a linear increase in pitch. In Sound Example 2-3-1a
one hears the frequencies 250, 500, 1000, 2000, 4000, 8000 and 16,000 Hz. 

Frequency
Pitch

Conversely, halving a tone’s frequency makes its pitch drop by an octave. In Sound Example
2-3-1b,  we hear  the  frequencies  800,  400,  200,  100,  50,  25,  12.5  and 6.25  Hz.  The  last  two
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frequencies  are  not  audible,  but  they can be  made visible  by holding a  flame in  front  of  the
loudspeaker.  If  we  generate  sequences  of  periodic  impulses  instead  of  sine  waves  (Sound
Example 2-3-1c), the tone does not just become softer and finally disappear: even at less than
20  Hz,  the  impulses  remain  audible.  The  frequency  at  which  single  events  are  perceived  as
fusing into continuity is  similar for audition and vision.  The individual images of a film can
be perceived singly only up to a frequency of about 20 images per second.

2.3.1.2   The Harmonic Series and Pure Intervals

In Sound Example 2-3-1d, one hears a sequence of many tones. The frequency of each tone is
100 Hz higher than that of the preceding one (100, 200, 300, 400, ... 4000 Hz). The distances
between  the  tones  in  perceived  pitch  become  smaller.  A  linear  increase  in  frequency  corre-
sponds to a logarithmic increase in pitch.

Frequency
Pitch

This succession of tones is called the harmonic series, or in a more general sense, an overtone
or  partial  series.  The  first  (lowest)  tone  is  called  the  fundamental,  the  following  tones  the
first,  second,  etc.  overtone,  or,  rather  confusingly,  since  the  fundamental  is  considered  the
first  partial  tone,  the second,  third,  etc.  partial  tone.  Hence,  the first  overtone corresponds to
the second partial tone, the second overtone to the third partial tone, etc. Starting from C1  (or
Pedal C, ca. 32.7 Hz), we have the following harmonic series (the seventh, 11th and 14 partial
tones  are  noticeably  lower  than  BŸ3,  F¤4  and  BŸ4,  and  the  13th  partial  is  noticeably  higher
than AŸ4)

      
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C1 C2 G2 C3 E3 G3 BŸ3 C4 D4 E4 F¤4 G4 AŸ4 BŸ4 B4 C5

    
The distance between two tones, known as an interval in music, is defined by the relationship
of the frequencies of the tones. Those intervals appearing in the harmonic series are known as
pure  intervals,  because  they  correspond  to  simple  frequency  relationships.  From  the  table
above we can read out the frequency relationships of the following pure intervals: octave 2:1,
fifth 3:2, fourth 4:3, major third 5:4, minor third 6:5, major second or whole tone (major tone)
9:8,  and  the  major  second  or  whole  tone  (minor  tone)  10:9.  In  Sound  Example  2-3-1e,  we
hear  tones  having  the  frequencies  200,  400,  600,  ...  3200  Hz.  Notice  the  pure  intervals,  the
two  different  major  seconds  (major  and  minor  tone)  and  the  tones  we  do  not  use  in  our
musical system corresponding to the seventh and 11th partial tones.

              
Just
Intervals

Octave Fifth Fourth Major
Third

Minor
Third

Just
Major Tone

Just
Minor Tone

Frequency Ratio 1 : 2 2 : 3 3 : 4 4 : 5 5 : 6 8 : 9 9 : 10

    
The  significance  of  the  harmonic  series  lies  in  the  fact  that  a  tone’s  or  a  pitched  sound’s
timbre is mainly determined by the relative strengths of fundamental and partials (2.3.2). The
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harmonic  series  is  also  the  basis  for  many  elements  of  traditional  music  theory,  like  octave
identity,  the major triad,  etc.  The harmonics of  string instruments and the intervals  in which
wind instruments can be overblown correspond to the intervals of the harmonic series. 
( Ø Harmonic_Series.maxpat)

2.3.1.3   Intervals

Because intervals are defined as frequency ratios, we add them by multiplying their ratios and
subtract them by dividing their ratios. If we add a fifth and a fourth, we get the frequency ratio
2/1 from the product of 3/2·4/3. If we subtract a minor third from an octave, we get the major
sixth 2/(6/5) = 5/3. If one tries to construct a circle of fifths using pure fifths, the circle does
not quite close, because 12 pure fifths are a little more than seven octaves. This difference is
called the Pythagorean comma.  Twelve fifths,  e.g.  C1-G1-D2-...-B¤4 make an interval equal
to  H3 ê2L12,  seven octaves  make an interval  equal  to  27.  The difference  in  pitch  between B¤4
and C5 is H3 ê2L12/27  = 129.746 : 128 = 1.013643... Nor do three just major thirds give a just
octave: H5 ê4L3  = 1.95313. This discrepancy is called a diesis. Neither six major tones nor six
minor tones give an octave. The difference between the just major and the just minor tone is
known as the syntonic comma and corresponds to a frequency ratio of (9/8)/(10/9) = (81/80),
or  about  1/4  semitone.  These  discrepancies  are  the  reason  for  the  centuries-old  search  for  a
“good”  tuning  of  the  musical  intervals.  The  discrepancies  should  be  so  distributed  that  they
either are not noticeable or have a specific effect on the music played. Sound Example 2-3-1f
shows that it is impossible to tune all the intervals even in a single key purely. After playing
the degrees I–VI–II–V–I (5/3·2/3·4/3·2/3 = 81/80), we reach a note a syntonic comma below
the  beginning  note.  In  so-called  equal  temperament,  in  which  the  octave  is  divided  into  12
semitones  of  equal  size,  no  interval  except  the  octave  is  pure  but  rather  all  are  defined  by
irrational ratios. If we call the frequency ratio of the equal tempered semitone x, then x12 must
be equal to 2, which gives a frequency ratio of 21ê12  = 1.05946... Then we have for the major
third 21ê3  = 1.25992..., for the whole tone 21ê6  = 1.12246... and for the fifth (seven semitones)
27ê12  = 1.49831. Small intervals are often indicated by cents. One cent is 1/100 of a tempered
semitone and corresponds to the frequency ratio 21ê1200 = 1.00057779... The size of an interval
in cents can be calculated from its frequency ratio using the following formula:

x HcentsL = 1200 log2
f1
f2

= 1200

log2
log

f1
f2

Whether or not the pitches of two tones can be discriminated depends not only on the ratio of
their frequencies, but also on the frequency range in which they occur and on the ability of the
listener. This ability can be trained to some degree. Under ideal circumstances, most wind and
string players can distinguish between tones whose frequencies vary by only a few cents. The
literature indicates that the smallest Just Noticeable Difference JND for an average listener at
frequencies around 100 Hz is  3% (50 cents)  and is  .8% around 2000 Hz (8.6 cents)  (see [2]
p. 33).  Another  representation  (see  [20]  p.  113)  shows  a  JND  of  ca.  1  Hz  for  frequencies
below  1000  Hz  (17  cents  at  100  Hz,  1.7  cents  at  1000  Hz)  with  a  relatively  rapid  increase
above 1000 Hz.

The  frequencies  of  the  chromatic  scale  can  be  calculated  by  using  a  pitch  reference  from
which to start. Beginning with A = 440 Hz, we get the frequencies listed in Table B.1. 

( Ø Sound Examples) ( Ø Intervals_1.maxpat, Intervals_2.maxpat)
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2.3.2   Timbre

Timbre is considerably more difficult to define than pitch or loudness. That is because timbre
is determined by physical attributes which cannot be measured with a simple scale,  as is the
case for pitch and loudness. By the same token, there is no vocabulary in everyday language
for  timbre;  depending on the sound in question,  words for  timbre can be borrowed from the
visual  world,  like  shrill  or  dull,  or  words  with  tactile  associations  are  used,  like  rough  or
smooth.

Further Reading: Daniel Muzzulini, Genealogie der Klangfarbe [77].

2.3.2.1   Periodic Vibration

We  saw  in  Chapter  2.2.2  that  every  strictly  periodic  oscillation  can  be  described  by  its
spectrum. In Sound Example 2-3-2a, overtones are gradually added to a fundamental. As each
overtone enters, one first hears it as a separate sound, but it soon blends with the fundamental,
enriching the tone’s timbre. In Sound Example 2-3-2b, only the odd overtones are added, so
that the result  gradually approaches a square wave (2.2.2.5).  The following figure shows the
waveform  of  this  example  in  four  snapshots  (fundamental  alone,  fundamental  and  third
partial, fundamental, third and fifth partial, and fundamental with third, fifth, ninth, 11th and
13th partials).
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The next Sound Example shows that the phase constant hardly plays an important role for the
timbre.  The  sound  consists  of  the  same  odd  partials  at  equal  relative  strength  as  before,  but
here  every other  partial  has  negative amplitude.  Subtracting a  partial  is  equivalent  to  adding
that partial with a phase constant of p: sin(a + p) = –sin(a) (Sound Example 2-3-2c). The four
figures below show the same combination of partials as above.
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As  the  example  shows,  it  is  difficult  to  make  predictions  about  how a  given  waveform will
sound.  Often  it  is  not  even  possible  to  know  whether  the  sounds  corresponding  to  two
different waveforms will have the same timbre. That is why sounds are usually described by
their  spectra  and  not  by  their  waveforms.  But  even  the  spectrum  permits  one  to  draw  only
fairly general conclusions about a sound’s timbre. Sounds with many partials are in principle
brighter and brilliant, sounds with few partials are flat and dull, sounds with only odd partials
are hollow and have a nasal character, etc. ( Ø Timbre_and_Spectrum.maxpat)

2.3.2.2   Formants

Various studies indicate, especially for the vowels of speech, that timbre is not determined by
the relationship of the strengths of  individual  partials,  but  rather by so-called formants  (B2),
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regions  of  frequency  in  which  the  partials  are  particularly  strong.  We  notice  especially  that
slowing  down  or  speeding  up  the  playback  of  a  recording  of  the  human  voice  not  only
changes the voice’s pitch but also its timbre, although the spectral relationships are the same
as for the original recording. In Sound Example 2-3-2d, a recording of the sung vowel “a” is
played back first sped up and then slowed down, both times by a factor of 1.5, transposing it
up  and  down  respectively  by  a  fifth.  Conversely,  the  analysis  of  a  vowel  sung  at  various
pitches shows the regions of strong partials essentially fixed at the same frequencies, regard-
less of the fundamental. This means that the relationships between the strengths of the partials
differ at every pitch. If one draws a line connecting the amplitudes of the partials, one obtains
an  envelope  that  for  a  given  timbre  remains  about  the  same  for  various  fundamentals.  The
amplitudes of the partials in the first sound shown below have the relationships .85 : .65 : .19 :
.16 : .38 ..., those in the second .87 : .32 : .16 : .41 : .17.

f

A

f

A

Sounds  having  the  same  spectral  envelope  arise  from  vibrations  radiated  by  the  same  res-
onators. The shape of the spectral envelope reproduces the resonances of the sounding body.
It  is  often  possible  to  indicate  which  formant  was  produced  by  a  particular  part  of  the  res-
onator.  Our  audition  tries  to  draw  conclusions  about  the  object  producing  a  sound  from the
sound’s timbre. ( Ø Formants.maxpat)

2.3.2.3   Spectra of Natural Sounds

The properties of natural sounds are usually not constant, but rather are in constant flux. Even
in  sounds  that  seem  to  be  held  without  change,  loudness,  frequency  and  spectrum  change
slightly.  The  changes  are  especially  noticeable  during  the  sound’s  attack  (which  can  be
between  a  few  milliseconds  and  about  0.2  second  long)  and  its  release.  Normally  we  can
identify  sounds  within  a  fraction  of  a  second,  because  the  attack  contains  considerable
information about how the sound was produced. Even the simplest models for the synthesis of
instrumental  sounds  take  into  account  the  physical  behavior  of  the  sounding  medium  by
distinguishing  for  amplitude  and  spectrum,  at  a  minimum,  the  phases  attack,  sustain  and
decay.

Attack Sustain Decay
t

A

Attack SustainDecay Release
t

A

An evolving spectrum can be  shown by displaying spectral  snapshots  made at  regular  inter-
vals  so  that  a  three-dimensional  image results,  graphing the  change  in  the  amplitudes  of  the
partials against time. The following figure shows typical behavior of the spectrum during the
attack phase (t = 0 to t = .12).
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If one looks at this figure perpendicularly to the time-amplitude plane, one has a two-dimen-
sional representation:
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A temporal cross-section gives the spectrum at a specific moment (below t = .02 and t = .05).
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If one looks at the original figure from above, one has a spectrogram (or sonogram), in which
the amplitudes of the of the partials can be estimated by the width or color of the lines. 
( Ø figure from above)

2.3.2.4   Non-Harmonic Spectra

Even the simplest bodies, like strings and air columns, produce sounds whose spectra are only
approximately harmonic. For example, the frequencies of the upper partials of a loudly played
string  are  somewhat  high  because  of  the  string’s  stiffness.  In  pipes,  the  frequencies  of  the
partials are not quite in integral relationships to each other because the length of the actually
vibrating air column is not quite the same as the length of the pipe itself and is not quite the
same  for  all  partials.  Objects  in  which  vibrations  can  propagate  in  any  direction,  like  plates
and bells,  have natural  resonances whose frequencies can be in arbitrary proportions to each
other.
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2.3.2.5   Fusion

Whether  or  not  sine  waves  fuse  into  one  sound,  depends  on  many  factors.  Although  the
audition  essentially  makes  a  Fourier  analysis  of  the  sounds  it  hears,  as  a  rule  it  cannot  per-
ceive  the  individual  partials  of  natural  sounds.  On  the  other  hand,  even  the  smallest  differ-
ences in temporal patterns of sounds, or the smallest distance between sound sources, suffice
to let us distinguish very similar sounds, for instance two violins playing in unison. Therefore,
in the real world, we rarely have to ask which tones belong to which sounds. In electroacous-
tic music, especially when the sounds are relatively static, the situation is not always so clear.

The  more  isolated  a  partial  is,  the  more  likely  it  will  be  heard  as  a  separate  tone.  In  Sound
Example  2-3-2e,  we  first  hear  the  fundamental  with  amplitude  200  and  then  the  eleventh
partial with amplitude 12. Then other partials enter corresponding to the pattern in the figure
below right. The eleventh partial only fuses with the fundamental when it becomes part of an
amplitude envelope.
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Normally the partials  occur simultaneously,  and changes of timbre are caused by changes in
the envelope and not by changes in the strength of individual partials.  That is why in Sound
Example  2-3-2c  in  Chapter  2.3.2.1  the  new  tones  are  heard  separately  and  only  fuse  when
other  new  tones  enter.  If  one  interrupts  playback  for  a  moment  and  then  resumes  it,  all  the
tones  sound  simultaneously,  and  it  is  considerably  more  difficult  to  hear  the  most  recent
partial. (See Chapter 5.2.1.3 for further examples.) ( Ø Timbre_and_Spectrum.maxpat)

2.3.2.6   Missing Fundamentals and Residue Pitch

When sine waves sound whose frequencies are multiples of a missing fundamental of frequen-
cy f, we perceive a tone with the frequency f, the so-called residue pitch, and we perceive the
tones  which  actually  sound  as  its  overtones.  In  Sound  Example  2-3-2f  we  first  hear  four
equally strong tones with the frequencies 1600, 1800, 2000 and 2200 Hz, and then six tones
with the frequencies 1200, 1400, 1600, 1800, 2000 and 2200 Hz and the amplitudes 1 : 2 : 3 :
3  :  2  :  1.  The  following  figure  shows  the  waveforms  of  the  two  sounds.  It  is  easy  to  see  a
period in both waveforms which corresponds to the least  common multiple of the individual
period durations.
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In the example above, it is difficult to decide whether the tone one hears is a phantom funda-
mental or a difference tone generated by the partials, because the frequency of the difference
tone  of  two  successive  partials  is  also  200  Hz.  Important  features  of  combination  tones  are
missing,  however.  In  the  first  place,  the  fundamental  can  be  heard  even  at  low  amplitudes,
and  in  the  second,  there  is  no  sensation  of  slight  pressure  in  the  ear  (2.3.4.3).  In  Sound
Example  2-3-2g  we  hear  three  tones  with  glissando  (1600-1630  Hz,  1800-1830  Hz,  and
2000-2030  Hz).  The  difference  tones  of  the  successive  partials  remain  constant  (200  Hz),
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while  the  missing  fundamental  rises  slightly  (from  200  to  approximately  204  Hz),  even
though the frequencies are no longer integer multiples of the fundamental. If one listens to the
example softly, one hears principally the slightly rising missing fundamental. If one increases
the volume, the combination tones get louder and may even beat with the missing fundamen-
tal (see [20]). ( Ø Timbre_and_Spectrum.maxpat) 

2.3.3   Loudness

2.3.3.1   Sound Power and Sound Intensity

Sound waves  carry  energy.  The total  energy radiated  from a  sound source  per  second is  the
source’s  sound  power  or  acoustic  power.  It  is  measured  in  watts  (W).  The  sound  power  of
speaking is about .00001 W, that of a violin playing very loudly about .001 W and that of a
grand piano playing loudly about 2 W. This relatively small amount of energy is dispersed in
space  so  that  very  little  of  it  actually  reaches  the  listener’s  ear.  The  flow  of  sound  power
through  a  surface  perpendicular  to  the  flow  is  sound  intensity.  It  is  measured  in  watts  per
square meter, or more usually in watts per square centimeter. Even as small a sound intensity
as 10-16 W/cm2 can elicit in humans an auditory response. The threshold of pain is 1013 times
higher at .001 W/cm2.
Sound  intensity  is  proportional  to  the  square  of  the  sound’s  amplitude.  Doubling  a  sound’s
amplitude increases its sound intensity by a factor of four. The energy per surface (the sound
intensity) carried by a spherical  wave decreases inversely proportionally to the square of the
distance  traveled,  because  the  sphere’s  surface  increases  with  the  square  of  its  radius.  Since
the  energy  is  proportional  to  the  square  of  the  amplitude,  the  amplitude  decreases  inversely
proportionally to distance.

2.3.3.2   Decibels

When speaking about sound intensity, one is usually interested in comparing values. Because
the comparisons can involve both very large and very small numbers, one uses a logarithmic
unit  of  measure,  the  decibel  (dB).  The  decibel  measurement  of  the  relationship  between  a
given  sound  intensity  J  and  a  reference  value  J0  is  called  the  sound  intensity  level  L  and  is
derived from the following formula:

L = 10 log10 J J

J0
N dB

For the proportion J:J0 = 1000 we get L = 10·log10(1000) dB = 10·log10(103) dB = 30 dB. For

the proportion J:J0 = 1/1000 we get L = 10·log10(1/1000) dB = 10·log10(10-3) dB = –30 dB.

    
J ê J0 ... 1 ê1000 1 ê1000 1 ê100 1 ê10 1 10 100 1000 1000 ...

L in dB ... -40 -30 -20 -10 0 10 20 30 40 ...

 
Doubling the sound intensity raises the sound intensity level by 10·log10(2) dB = 3.0103... dB.
Since  the  sound  intensity  is  proportional  to  the  square  of  the  amplitude,  a  doubling  of  the
amplitude raises the sound intensity level by 10·log10(22) dB = 10·2·log10(2) dB = 6.02... dB.

L = 20 log10 J A

A0
N dB
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