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Abstract. Geopolymers can be transformed into ceramics upon sintering. This paper reports the 

effect of temperature on the physical, mechanical properties and characteristics of kaolin 

geopolymer ceramic. The nepheline ceramic was fabricated through geopolymerization. The 

geopolymer samples were exposed to temperature from 900 °C up to 1200 °C. Kaolin geopolymer 

undergo shrinkage upon temperature exposure. Unheated kaolin geopolymer appeared to be 

amorphous and crystalline nepheline was the major phase after sintered to high temperatures as 

depicted by XRD analysis. Microstructural analysis showed formation of denser structure as the 

temperature increased. The maximum flexural strength of 86 MPa is achieved at temperatures of 

1200 °C. 

1. Introduction 

Geopolymers are synthetic alkali aluminosilicate material produced through a reaction 

between aluminosilicate materials with alkali or alkali silicates under highly alkaline conditions [1-

3]. The commonly used aluminoslicate materials are fly ash  [4, 5], volcanic ash [6] [7], metakaolin 

[8] and natural minerals [9] containing Si and Al can be used to form geopolymers with superior 

physical and mechanical properties. Alkaline solution aids in the dissolution process of raw 

material. The most common alkaline activator used is a mixture of hydroxide (NaOH or KOH) and 

liquid silicates (Na2SiO3 or K2SiO3). 

Geopolymerization occured by putting the aluminosilicate materials in contact with the 

alkaline activator solution which gives as a result, the presence of the polymeric chain of Si-O-Al-O 

bonds. Geopolymer synthesis involves dissolution, hydrolysis and condensation of aluminate and 

silicate species to form geopolymeric structure [9, 10] which occurs at room temperature. Water 

was expelled from the reaction during the curing process and extended drying periods. This gives 

benefits to the performance of geopolymers as the water leaves behind nano-pore structure in the 

matrix [11]. Hence, geopolymers often regarded as cementitous materials. However, at high 

temperature crystalline phases are formed and sintering reactions result in the formation of ceramic 

products [12].  
Geopolymerization has emerged as an alternative way to ceramic formation by using clay 

based material such as kaolin. Huge effort has been done in converting this high strength monolith 

of Si/Al ≤ 2 into ceramics. Generally, geopolymers are amorphous to semi-crystalline [13] and 

comprise of cross-linked AlO4 and SiO4 tetrahedra, where charge balance is supplied by hydrated 

alkali metal cations. The amorphous to semi-crystalline behavior of geopolymer will change into 
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crystalline ceramic phases upon heating [14]. The shaped green body is heated to a temperature that 

is typically 0.5 - 0.9 % of the melting point. Formation of liquid phase produces joining of the 

particles and reduction of the porosity [15]. The behavior of geopolymers at high temperature 

exposure is dependent entirely on the chemical composition of the binder. The type of alkali ion, 

Si/Al ratio and crystal structure themselves are the important factors included [16-18].  

Kaolin is used as the aluminosilicate source in this study. The selection of kaolin offers a 

few advantages towards the common source materials used in geopolymer such as metakaolin. 

Dehydroxylation is a reaction of decomposition of kaolinite crystals to a partially disordered 

structure to produce metakaolin. This reaction requires calcining of kaolin at temperatures between 

500 to 900 °C [19, 20]. Calcining kaolin limits the commercial application of metakaolin due to the 

added cost and consume much energy. Previous work done by He, et al. [21] has been produced 

metakaolin based geopolymer and obtained flexural strength of 70 MPa. This study has come to be 

crucial in order to produce kaolin based geopolymers with excellent properties as to metakaolin 

based geopolymers. 

The aim of this work was to prepare powder pressed geopolymer ceramic using kaolin with 

various sodium hydroxide concentrations and then sintered at 900, 1000, 1100 and 1200 °C. The 

effects of sintering temperature on the physical, mechanical properties and characteristics of kaolin 

geopolymer ceramic are studied comprehensively.  

2. Experimental method 

2.1 Materials 

Kaolin used in this study was supplied by Associated Kaolin Industries Malaysia as Si-Al 

sources materials. The chemical composition of kaolin was determined by X-ray fluorescence 

shown in Table 1. The particle size distribution of aluminosilicate materials was obtained using a 

Malvern particle size analyzer as follows: d (0.1) = 2.836 µm, d (0.5) = 9.465 µm and d (0.9) = 25.697 

µm. Sodium hydroxide (NaOH) powder used to be of caustic soda micropearls, 99% purity with 

brand name of Formosoda-P made in Taiwan. Sodium silicate (Na2SiO3) solution was supplied by 

South Pacific Chemicals Industries Sdn. Bhd. Malaysia with a chemical composition of 30.1% 

SiO2, 9.4% Na2O and 60.5% H2O.  

 

2.3 Sample Preparation 

The ratio of kaolin to alkaline activator used is 1.0 with Na2SiO3 /NaOH ratio of 0.24. The 

details of the mixtures involved were presented in Table 2. The mixture then were mixed well for a 

few minutes and were cured at 80 °C for 24 h. To obtain fine powder, kaolin geopolymer were 

crushed using mechanical. In order to produce geopolymer ceramic, the sieved powders were then 

compacted using a 12-mm-diameter cylindrical stainless steel die at 5 ton for 2 min. The final green 

body was sintered in a high temperature furnace to 900 °C - 1200 °C with 3 h soaking time and a 

cooling and heating rate of 5 °C/ min.   

Table 1: Chemical composition of kaolin as determined by XRF 

Chemical Wt. (%) 

SiO2 

Al2O3 

Fe2O3 

TiO2 

ZrO2 

K2O 

MnO2 

LOI 

54.0 

31.7 

4.89 

1.41 

0.10 

6.05 

0.11 

1.74 
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Table 2: Mix design details 

NaOH 

molarity 

Na2SiO3/ 

NaOH 

Kaolin 

(g) 

Na2SiO3 

(g) 

NaOH 

(g) 

Total molar ratio 

Na2O/ 

SiO2 

SiO2/ 

Al2O3 

H2O/ 

Na2O 

6 0.24 300 58.06 241.94 0.2428 3.2022 18.2024 

8 0.24 300 58.06 241.94 0.2951 3.2022 15.1505 

10 0.24 300 58.06 241.94 0.3472 3.2022 13.0288 

12 0.24 300 58.06 241.94 0.3950 3.2022 11.5730 

2.4 Tests and Analysis Method 

X-ray fluorescence spectroscopy is used for the determination of bulk elemental 

composition. XRF spectroscopy of the powders in this study was conducted by a commercial 

laboratory (Ultra Trace Geoanalytical Laboratories). The samples were fused in a silicate glass disc 

(method code XRF 202) and analyzed on a Philips PW 2404 x-ray spectrometer with a 4 kW 

rhodium tube. Results were reported as oxides. Flexural strength measurements of kaolin 

geopolymer ceramics were conducted on specimens (7 mm x 5 mm x 52 mm) using a three-point-

bending fixture on an instron-500  tester, with a span length of 30 mm at a crosshead speed of 0.3 

mm/min. A minimum of five samples for each group was subjected to flexural strength testing in 

accordance with ASTM C1161-02c [22]. The effect of sintering temperature on the microstructure 

of sintered samples was investigated using scanning electron microscopy (SEM) on polished 

surfaces. Polishing was conducting using a Struers polishing machine with a magnetic disk system. 

Since geopolymers are non-conductive materials, samples were coated with platinum as a 

conductive layer to obtain better quality of SEM images. XRD patterns were collected using XRD 

6000, SHIMADZU diffractometer with Cu-Kα radiation. The diffraction scans were performed 

from 10° to 80° 2θ at a rate of 2°/min, with a step size of 0.02°. 

3. Results and discussion 

3.1 Shrinkage 

This work studies the effect of sintering on the physical, mechanical properties and 

characteristics of kaolin geopolymer ceramic. During sintering, geopolymer undergo some 

transformations which are removal of water and newborn of crystalline phase growth. As shown in 

Fig. 1, green kaolin geopolymer body shows reduction in size after sintering. This is because during 

sintering process, the surface energy decreases due to the cohering together of incoherent particles. 

Thus, reducing the total surface area. Further increment of sintering temperature to 1250 °C caused 

the samples to melt because it exceeds the melting point of the kaolin geopolymer.  

 

900 °C 1100 °C 1000 °C 1200 °C 

Key Engineering Materials Vol. 700 5



  

Fig. 1: Effect of sintering on the shrinkage of the kaolin geopolymer ceramic.  

3.2 Flexural strength 

The flexural strength of kaolin geopolymer ceramic with various NaOH concentrations 

sintered at 900 °C up to 1200 °C is shown in Fig. 2. Table 2 concludes the mechanical properties of 

12M0.24 kaolin geopolymer ceramic at different sintering temperature. The flexural strength 

increased with increasing sintering temperature and NaOH concentration. The flexural strength at 6 

M is expected to be the lowest among the other NaOH concentration due to lower alkalinity. This 

might contribute to the excess mixing water for a lower NaOH concentration. Hence, this showed 

that water plays an important part in transporting the ions during geopolymerization process [23].  

 

Fig. 2: Flexural strength of kaolin geopolymer ceramic of 6 M to 12 M with 0.24 Na2SiO3/NaOH at 

elevated temperature. 

 

0

10

20

30

40

50

60

70

80

90

100

6M0.24 8M0.24 10M0.24 12M0.24

Fl
ex

u
ra

l s
tr

en
gt

h
 (

M
P

a)
 

NaOH concentrations 

900 °C

1000 °C

1100 °C

1200 °C

1250 °C 

6 Innovative Materials and Technologies



Table 2: Mechanical properties of 12M0.24 kaolin geopolymer ceramic at different temperatures 

Sintering temperatures 

(°C) 

Density 

(g/cm
3
) 

Flexural strength 

(MPa) 

900 2.67 40.35 

1000 2.50 48.46 

1100 2.39 50.68 

1200 2.13 86.83 

The maximum flexural strength of 86 MPa was achieved at 1200 °C using 12 M kaolin 

geopolymer. It proved that higher temperature (up to 1200 °C) does help to enhance the mechanical 

properties.  Further sintering at 1250 °C leads to melting of the geopolymer body. Thus, the flexural 

strength cannot be measured. The increasing strength at elevated temperature might be contributed 

by the low diffusion coefficient of alkali metal used which result in higher melting temperature of 

the geopolymer [24]. Geopolymer body contains portions of unreacted particles remained from the 

dissolution process. Exposure to temperature caused the sintering of these particles which leads to 

increasing strength by forming stronger bonds and countering the thermal damage at elevated 

temperatures [25]. Daniel L.Y. Kong [26] has reported that the strength increment in geopolymer 

might be attributed by the combination of polymerization and sintering. This high temperature was 

also sufficient to consolidate the sample and for the crystallization to occur which later enhance the 

mechanical properties [27]. 

3.3 X-ray diffraction analysis 

Generally, kaolin consists of kaolinite as main mineral. From the Figure 3, kaolinite showed 

strong diffraction peaks at 2Ɵ value of 24.9° and less strong peaks at 12.5°, 19.9°, 20.4°, 21.4°, 

24.9°, 31.9°, 36.0°, 37.8°, 38.5°, 43.8°, 50.2°, 56.7°, 60.1°, 62.1°, 68.4° and 70.3°. Other than 

kaolinite, quartz also can be found in kaolin at 2Ɵ value of 26.7°, 38.5°, 45.6° and 51.2°. Illite 

peaks were also present at 2Ɵ value of 17.89° and 70.29°. Dickite phase present at 2Ɵ value of 

23.17°, 28.59°, 36.04°, 39.37° and 56.75°. The presence of only kaolinite and quartz suggested that 

kaolin used in this study is a pure phase as it is predominantly kaolinite. 

The transformation of amorphous state of kaolin geopolymer to crystalline phase upon 

heating were determined by XRD is shown in Fig. 4. A broad peak of the amorphous range from 

10º to 40 º can be depicted from the unheated kaolin geopolymer pattern. Formation of zeolites in 

unheated geopolymer originated from the hydrothermal setting conditions [3] whereas the kaolinite 

and quartz peak were remained from the original kaolin (Fig. 3). The broad hump of amorphous 

phase disappeared when geopolymer undergoes heat treatment as sharp diffraction peaks appeared. 

On heating to higher temperatures (900 – 1200 ºC), the zeolites peak were reestablished and 

rearranged into nepheline structure [28]. All of the samples heated to 900 – 1200 ºC shows the 

appearance of the same nepheline peak but with increasing intensity. The increasing intensity of 

nepheline resulted in the increased flexural strength of the sample. Crystalline nepheline is typical 

to occur in sodium aluminosilicate for glass- ceramics [29]. The crystalline product formed is to 

show a relationship with the sodium-based activator used to produce the sample in this study.  
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Fig. 3: XRD diffractogram of kaolin 

 
Fig. 4: XRD diffractogram of unheated and geopolymer sintered at 1200 °C 

3.4 Scanning electron microscopy analysis 
 

Sintering in ceramics is known to have a direct relationship with microstructure. SEM 

micrographs for unheated and heated kaolin geopolymer were shown in Fig. 5. Unheated kaolin 

geopolymer has plate-like structure which originates from the kaolin used in this study. The 

temperature exposure causes the appearance of pores and voids (Figure 6) in the microstructure due 

to the binding of the particles. The appearance of small pores throughout the sample denotes the 

transformation of amorphous to nepheline crystalline ceramic [12]. After treating to higher 

temperature, the structure experienced advanced growth where the grains of clay minerals coalesce 

and the joining of particles [30]. The pore size increase significantly due to the fact that high 

temperatures transformed the liquid water present in the material to water vapour which tended to 

escape, generating pressure on the pore walls and growing inter-pore connections to the loss of 

smaller pores. The formation of voids which lowered the density is due to the evolution of gas 

originates from the chemical composition and structural water of the geopolymer [31]. 
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Fig. 5: SEM micrographs of kaolin geopolymer and kaolin geoplymer ceramic sintered at 1200 °C 

   

Fig. 6: SEM micrographs showing voids in geopolymer as temperature increases 

4. Conclusion  

The effects of sintering temperature on the physical, mechanical properties and 

characterization of kaolin geopolymer ceramic are studied comprehensively. This study concludes 

that the flexural strength of 6 to 12 M NaOH concentration increases with sintering temperature. 

The result reveals that the maximum flexural strength of 86 MPa is achieved at 1200 °C. Upon 

heating to high temperatures, amorphous geopolymer transform to crystalline nepheline ceramic. 

Microstructural analysis of samples with the highest strength depicted that higher temperature aids 

in increasing the consolidation and facilitating a fairly uniform microstructure. This study showed 

that geopolymer can be used as a precursor to ceramic forming.  
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