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7ABSTRACT

ABSTRACT
This work deals with computational models in architecture, with the 
ambition of accomplishing three objectives:
1	 To position the established computational models in architecture 

within the broader context of mathematical and computational 
modelling.

2	 To challenge computational models in architecture with contem-
porary modelling approaches, in which computation is regarded 
from the perspective of communication between different 
domains of a problem.

3	 To show how within the paradigm of communication, it is possi-
ble to computationally address architectural questions that can-
not be adequately addressed within the current computational 
paradigm.

The first part of the work begins in the 19th century, delves into the body 
of thinking from which computation emerged and traces two general at-
titudes towards mathematical modelling, which will each eventually lead 
to different interpretations of computation. The first one, described as 
the logicist tradition, saw the potential of formal, mechanised reasoning 
in the possibility of constructing the absolute foundation of mathemat-
ics, its means of explanation and proof. The second one, the algebraist 
tradition, regarded formalisation within a larger scope of model-theoret-
ic procedures, characterised by creatively applying abstraction towards 
a certain goal. The second attitude proved to be a fertile ground for the 
redefinition of both mathematics and science, thus paving a way for 
contemporary physics and information technology. On the basis of the 
two traditions, this dissertation identified a discrepancy between the 
computational models in architecture, following the first tradition, and 
those commonly used in information technology, following the second.

The Internet revolution, initiated by the development of search 
engines and social media, is recognised as indicative of the changing 
role of computers, from “computing machinery” towards the generic 
infrastructure for communication. In this respect, three contemporary 
models of communication, proponents of the algebraic tradition, are 
presented in detail in the second part of the work. As a result, the self-
organizing model is introduced as the concrete implementation of the 
ideas appropriated from communication models.

In the last part of the work, the self-organizing model is applied 
to the problem of similarity between spaces, on the basis of their archi-
tectural representation. By applying partition and generalisation proce-
dures of the self-organizing model to a large number of floor plan images, 
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a finite collection of elementary geometric expressions was extracted, 
and a symbol attached to each instance. This collection of symbols is re-
garded as the alphabet, by means of which any plan created by the same 
conventions can be described as the writing of that alphabet. Finally, 
each floor plan is represented as a chain of probabilities, based upon its 
individual alphabetic expression of a written language, and its values 
used to compute similarities between plans.
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PREFACE
Some might find this doctoral thesis unconventionally written. Instead 
of circumscribing its scope and concentrating its efforts on accomplish-
ing a single objective within that scope, it engages with an unusually 
extensive body of knowledge with the aim of providing additional angles 
to its principal research domain: computational models in architecture. 
This body of knowledge involves early analytic philosophy, computabil-
ity and probability theory, formal logic, quantum physics, abstract alge-
bra, computer-aided design, computer graphics, glossematics, machine 
learning and architecture. However, the reason for such a comprehen-
sive approach and perhaps radical gesture is not to claim any expertise 
nor mastery over the aforementioned fields of knowledge. To the con-
trary, it is a matter of methodology, aiming to operate in a more archi-
tectural manner, without losing the necessary rigour and consistency 
required of an academic work. An architect’s effort towards creating a 
masterful work, whether it is a building or a theory, always involves the 
integration of a wide variety of aspects laying outside of his/her own 
area of expertise. I see this apparent difficulty as a potential to enrich 
my work, and as a source of inspiration towards finding new, unexplored 
research perspectives. One more reason in favour of such approach can 
be justified by the very theories cited within this work, especially the 
concept of communication. To communicate with someone or some-
thing involves a responsive spectrum of frequencies on both sides, and 
tuning oneself to become sensitive to the potential resonances. The 
wider and richer this spectrum is, the more meaningful communication 
becomes. In this sense, the aim of this work is to make the spectrum of 
the research as resonant as possible, hoping to establish a more satisfy-
ing communication with the field of computational models in architec-
ture, as well as with the reader.

Nikola Marinčić, Spring 2019
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Architecture and information technology… two species similar 
in kind, neither of them being in the least disciplinal: both affect 
everything, both are arts of gathering things. The one, 2,500 years 
old and dignified, and the other, just fifty years of age and impatient.

L. Hovestadt, “Cultivating the Generic” (2014: 9)

What today seems to be a passionate love affair between architecture and 
information technology, is in fact quite a delicate relationship, full of mis-
understandings. The first “universal machines,” built in the 1940s, emerged 
as a side effect of the resolution of the 19th century attempt to ground all 
formalized, mathematical knowledge in logic. 1 Soon, computation was seen 
essentially as the mechanised treatment of logic. 2 Nevertheless, computers 
quickly got the attention of almost every field of human endeavour, including 
architecture. 3 With a certain amount of scepticism, acquired in the long tra-
dition built upon mastership, architecture did not embrace its new potential 
“partner” very easily. Early researchers saw a lot of promise in computation, 
but for the large majority of practitioners, it seemed to be in poor taste 4 to 
simply embrace “logic” as a means to mechanise their articulations with the 
promise of greater efficiency and formal clarity. However, with the expansion 
of personal computers and intuitive computer-aided design software, the re-
sistance became futile. An architecture was born out of generic drafting and 
modelling solutions, which employed computation to mimic the established 
modes of design. 5 While information technology started exploring new ideas, 
architectural research remained on the path of the “logicist” tradition.

Today we live in a different world. Computers are omnipresent in 
our existence, and are no longer about logic. As the old identities slowly 
dissolve, new ideas are emerging on what computers are all about. These 
new ideas come from a higher level of abstraction and offer new unexpect-
ed vistas. 6 In this chapter, I will give an account of both old and new, with 
a hope that architecture might just find a very good partner in information 
technology, and hopefully reinvent itself in the digital.

1	 Turing, “On Computable Numbers, with an Application to the Entscheidungsproblem.” 
Turing’s seminal paper on computability comes as an answer to Hilbert’s decision prob-
lem (Entscheidungsproblem) but it starts with providing a mechanically constructed 
arithmetic of “computable” numbers.

2	 “Kurt Gödel has reduced mathematical logic to computation theory by showing that the 
fundamental notions of logic … are essentially recursive. Recursive functions are those 
functions which can be computed on Turing machines, and so mathematical logic may 
be treated from the point of view of automata.” Burks, editor’s introduction to Theory 
of Self-Reproducing Automata, 25.

3	 Mitchell, foreword to Architecture’s New Media, xi.
4	 “Computational methods to support the synthesis of design solutions have fascinated 

architectural researchers and horrified the practitioners.” Kalay, Architecture’s New 
Media, 237.

5	 Kalay, 181.
6	 See: Hovestadt, “Elements of Digital Architecture,” 28–116.
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I	 background: a quest for coherence

Necessity or contingency?

The story of symbolic computation emerged out of a peculiar state of 
affairs that started in the 19th century and got its epilogue in the first 
half of the 20th century. Before that time, mathematics appeared to be 
intimately linked to our physical reality, a phenomenon that Erich Reck 
described with the metaphor of an umbilical cord. 7 Geometry was safely 
grounded in Euclid’s axiomatic method, dating from around 300 BC. This 
method consisted of three parts: Axioms, or postulates are statements 
which are accepted without proof, and act as foundations of a theory; 
theorems are statements that are derived from the axioms and act as a su-
perstructure (of knowledge) built upon the foundations; logic is a formal 
apparatus used to deduce theorems from axioms. Logic was established 
in antiquity and can be traced back to Plato and Aristotle. Aristotelian 
logic introduced three laws of reasoning in the natural language: laws of 
identity, contradiction and the excluded middle. 8 The interesting thing 
about logic was that it preserved the truthfulness of the statements it 
derived from axioms. It was believed that if the axioms were true, every-
thing that was logically deducible from the axioms necessarily needed to 
be true as well. In fact, geometry and logic were so stable that their link 
to physical reality was not questioned for thousands of years. 9

It was not recognised for a long time that the truthfulness of axi-
oms of logic and geometry was in fact accepted on the basis of intuition, 
which could only confirm that such statements are in fact self-evident. 10 
An example of such evident truths were Euclid’s four postulates of pla-
nar geometry, which seemed to conceptualise our experience of space:
1	 Let it have been postulated to draw a straight-line from any point 

to any point.
2	 And to produce a finite straight-line continuously in a straight-line.
3	 And to draw a circle with any centre and radius.
4	 And that all right-angles are equal to one another. 11

Euclid’s fifth postulate about parallel lines in two-dimensional geom-
etry seems to be of a different kind than the previous four:

7	 “With this first conception, geometry is firmly attached to physical reality—the 
umbilical cord between them is still in place.” Reck, “Frege, Natural Numbers, and 
Arithmetic’s Umbilical Cord,” 431.

8	 Encyclopædia Britannica, s.v. “Laws of thought,” accessed September 1, 2017, https://
www.britannica.com/topic/laws-of-thought.

9	 “As late as 1787, the German philosopher Immanuel Kant was able to say that since 
Aristotle formal logic ‘has not been able to advance a single step, and is to all appear-
ances a closed and completed body of doctrine.’” Nagel and Newman, Gödel’s Proof, 30.

10	 Burge, “Frege on Knowing the Third Realm,” 1.
11	 Euclid, Elements of Geometry, 7.
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5	 And that if a straight-line falling across two (other) straight-
lines makes internal angles on the same side (of itself whose 
sum is) less than two right-angles, then the two (other) straight-
lines, being produced to infinity, meet on that side (of the origi-
nal straight-line) that the (sum of the internal angles) is less 
than two right-angles (and do not meet on the other side). 12

This postulate is logically equivalent to the assumption that only one 
parallel can be drawn through a point outside a given line. 13 The fifth 
postulate introduced a great deal of problems to mathematicians, as it 
is neither self-evident, nor can be proved within Euclid’s axiomatic sys-
tem. 14 Nevertheless, it somehow appears to be a correct statement. Such 
incoherencies were something that science and mathematics of the 19th 
century were determined to eradicate.

Unlike other branches of mathematics, geometry was considered 
to be the most stable due to its axiomatic method. It seemed natural to 
ask whether such a secure axiomatic system could also be established 
elsewhere. Soon, many branches of mathematics were supplied with 
“what appeared to be adequate sets of axioms.” 15 It was of the utmost 
importance to establish an adequate axiomatic system of arithmetic, as 
it would securely ground other branches of mathematics on top of it. 16 
In an attempt to use algebra to ground infinitesimal calculus, Cantor, 
Cauchy, Weierstrass, Dedekind, and others, showed how different no-
tions in analysis could be defined in arithmetical terms. 17 The promise 
of axiomatisation was great: For each area of inquiry, having such a set 
of axioms would yield endless amounts of true propositions.

In the mid 19th century, the work of Lobachevsky, Bolyai, 
Gauss and Riemann 18 began to challenge Euclid’s axiomatic system. In 
1829, Lobachevsky developed a “geometry” by appropriating the first 
four axioms of Euclid, asserting that in his geometry the famous fifth 

12	 Euclid, 7.
13	 Nagel and Newman, Gödel’s Proof, 6.
14	 “The chief reason for this alleged lack of self-evidence seems to have been the fact that 

the parallel axiom makes an assertion about infinitely remote regions of space. Euclid 
defines parallel lines as straight lines in a plane that, “being produced indefinitely in 
both directions,” do not meet. Accordingly, to say that two lines are parallel is to make 
the claim that the two lines will not meet even ‘at infinity’.” Nagel and Newman, 6.

15	 Nagel and Newman, 3.
16	 Nagel and Newman, 3.
17	 For example: “instead of accepting the imaginary number ‘−1’ as a somewhat mysterious 

“entity,” it came to be defined as an ordered pair of integers (0, 1) upon which certain 
operations of “addition” and “multiplication” are performed. Similarly, the irrational 
number √2 was defined as a certain class of rational numbers—namely, the class of 
rationals whose square is less than 2.” Nagel and Newman, Gödel’s Proof, 32. See also: 
Gauthier, Towards an Arithmetical Logic, 1.

18	 “However, the geometric starting point of Riemann was not the non-Euclidean ge-
ometry, of which Riemann apparently had not even taken note, but rather the theory 
of surfaces developed by Carl Friedrich Gauss.” Jost, historical introduction to On the 
Hypotheses Which Lie at the Bases of Geometry, 26.
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postulate was not a true statement. This will become known as Bolyai–
Lobachevskian geometry. Compared to Euclidean geometry, which 
was considered to mirror physical reality 19, the hyperbolic geometry 
of Lobachevsky and Bolyai was radically different. This geometry was 
able to describe a world that could not be observed empirically, while at 
the same time remaining a perfectly valid mathematical construction. 
Finally, in 1868, Beltrami demonstrated the independence of the fifth 
postulate from the other axioms. Implications of these events shook the 
very idea of mathematical foundations. If the validity of mathematical 
statements could not be guaranteed by the truthfulness of the axioms, as 
they need not be self-evident or mirror reality anymore, what remains 
of the ideas of grounding and validation? Moreover, if mathematics is 
not about the truths of our world, then what it is about? Gradually, it 
became clear that the position of necessity within mathematics was to 
be shifted from the truthfulness of its axioms to the validity of the in-
ferences it employed. 20 Mathematics became abstract and stripped of 
meaning, as illustrated by the famous quote from Russell:

… mathematics may be defined as the subject in which we never know 
what we are talking about, nor whether what we are saying is true. 21

What replaced the method of validating a system of premises on the 
basis on its truthfulness, was a new idea of internal coherence, known 
as consistency. If an axiomatic system was to be consistent, it needed 
to guarantee that no mutually contradictory theorems can be deduced 
from the postulates. 22 With that requirement, an important question 
begged to be asked: Are even the axioms of Euclid’s system consistent? 
There was no single approach to the idea of creating a consistent system, 
and the interest in this question by two equally rigorous but ideologi-
cally quite distinct schools of thought warrants attention. The approach 
of the first group of mathematicians, including George Boole, Richard 
Dedekind and David Hilbert, among others, can be characterised as an 
algebraic approach to the idea of consistency. On the other side, Gottlob 
Frege, Bertrand Russell and their school of thought established an ap-
proach based on formal logic.

19	 “Against Leibniz and Wolff, Kant thus emphasises and elaborates the axiomatic nature 
of geometry, i.e., that geometry has real axioms and that the propositions of geometry 
cannot be obtained analytically from definitions.” Jost, 28.

20	 “We repeat that the sole question confronting the pure mathematician (as distinct from 
the scientist who employs mathematics in investigating a special subject matter) is not 
whether the postulates he assumes or the conclusions he deduces from them are true, 
but whether the alleged conclusions are in fact the necessary logical consequences of 
the initial assumptions.” Nagel and Newman, Gödel’s Proof, 8.

21	 Russell, Mysticism and Logic, 58.
22	 Nagel and Newman, Gödel’s Proof, 10.
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Algebraist tradition The ‘algebraist’ approach heavily relied 
on abstraction as the operative means to create coherent but contingent 
frameworks that did not offer a unifying consensual definition of the 
basis. The objectivity which they sought to establish within algebra was 
not something they considered as already given, but rather something 
that needed to be produced.

George Boole was the first to revolutionise the study of logic 
after Aristotle. In his 1847 book The mathematical analysis of Logic, 
he established the study of logic on a purely algebraic basis. His alge-
bra of logic provided a precise notation “for handling more general and 
more varied types of deduction than were covered by traditional logical 
principles.” 23 In 1854, he published his second monograph on algebraic 
logic, known as An Investigation of the Laws of Thought. The most im-
portant invention in his work was the equational treatment of logical 
statements, which allowed him to assess the validity of logical problems, 
and to extend their scope. In his book, he demonstrated how to trans-
form any logical problem into an operative algebraic equation. By solv-
ing the algebraic equation, the logical problem was able to be resolved. 24

One of the most misunderstood algebraists of the time was the 
mathematician Richard Dedekind. 25 His approach to the problem of 
mathematical foundations was to arithmetise mathematics, but without 
appealing to numbers and the operations on them as naturally given. For 
Dedekind, natural numbers were a free creation of the human mind and 
abstraction was a tool to think with. In his essay “On Continuity and 
Irrational Numbers” (1872), he attempted to rigorously define the notion 
of a continuous magnitude, which at the time rested upon geometrical in-
tuitions. 26 His method, known today as the Dedekind cut, constructed ir-
rational and real numbers by freeing them from any content. 27 Dedekind 
considered the application of ordinal numbers as central, which allowed 
him to identify numbers structurally. He defined the cut as a separa-
tion which possesses one property, namely that it separates the domain 

23	 Nagel and Newman, 31.
24	 Boole, An Investigation of the Laws of Thought, 24–38.
25	 “… great philosophers, such as Cantor and Dedekind, are treated as philosophical naïfs, 

however creative, whose work provides, at best, fodder for philosophical chewing. Not 
only have we inherited from Frege a poor regard for his contemporaries, but, taking 
the critical parts of his Grundlagen as a model, we in the Anglo-American tradition of 
analytic philosophy have inherited a poor vision of what philosophy is.” Tait, “Frege 
Versus Cantor and Dedekind: on the Concept of Number,” 215.

26	 “The statement is so frequently made that the differential calculus deals with continu-
ous magnitude, and yet an explanation of this continuity is nowhere given; even the 
most rigorous expositions of the differential calculus do not base their proofs upon 
continuity but, with more or less consciousness of the fact, they either appeal to geo-
metric notions or those suggested by geometry, or depend upon theorems which are 
never established in a purely arithmetic manner.” Dedekind, Essays on the Theory of 
Numbers, 2.

27	 Tait, “Frege Versus Cantor and Dedekind: on the Concept of Number,” 222.
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of rational numbers into two classes A1 and A2, where every number a1
belonging to A1, is smaller than every number a2 from A2.
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His construction of natural numbers goes “beyond logic because it 
appeals to entities which, although created by the intellect, are nev-
ertheless objectively available to it.” 29  In the chapter “Architectonics 
of Communication: How Diff erent Natures Communicate,” we will in-
vestigate the mathematical framework of category theory in the light 
of Dedekind’s legacy of free creation of numbers, and his attention to 
structural properties.

 David Hilbert’s early work was greatly inspired by the ad-
vances in the axiomatic treatment of geometry. In The Foundations of 
Geometry (1899) 30, Hilbert devised a set of twenty axioms as a founda-
tion of Euclidean geometry. 31 Unlike Euclid’s system, Hilbert’s axioms 
are not about the physical space, but “rather, they are taken to form the 
defi nition or characterisation of a certain abstract structure.” 32 In oth-
er words, Hilbert’s axioms are not self-evident truths, but contingent 
truths, which employ algebra to construct their consistency. 33 Since 
the algebraic characterisation cannot be “accommodated within any 
one ideal and elemental order,” 34 Hilbert provided the contingent basis 
as the source of consistency. 35 Some of the approaches to establish con-
sistency required an infi nite number of elements; others simply shifted 

28 Dedekind, Essays on the Theory of Numbers, 12–13.
29 Potter, Reason’s Nearest Kin, 282.
30 The original title is Grundlagen der Geometrie.
31 Hilbert, The Foundations of Geometry, 2–16.
32 Reck, “Frege, Natural Numbers, and Arithmetic’s Umbilical Cord,” 431.
33 “The geometric statement that two distinct points uniquely determine a straight line is 

then transformed into the algebraic truth that two distinct pairs of numbers uniquely 
determine a linear relation; the geometric theorem that a straight line intersects a circle 
in at most two points, into the algebraic theorem that a pair of simultaneous equations 
in two unknowns (one of which is linear and the other quadratic of a certain type) 
determine at most two pairs of real numbers.” Nagel and Newman, Gödel’s Proof, 15.

34 Bühlmann, “Continuing the Dedekind Legacy Today,” 6.
35 Riemann’s “…idea is that if the metric properties of the space do not necessarily follow 

from its structure, then the space can carry several possible metrics, and the math-
ematician then can specify any such hypothetical relations and examine the resulting 
structures and distinguish them with regard to their characteristics. Hilbert will then 
raise this as the axiomatic method to a systematic program.” Jost, presentation of the 
text On the Hypotheses Which Lie at the Bases of Geometry 46.

fig. 1
Dedekind cut 
(Hyacinth, 2015)
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the problem of consistency of one system, by placing the responsibility 
on another system used as its base. Hilbert found these approaches un-
satisfactory. In the next twenty years, he became obsessed with the idea 
of proving the absolute consistency of an axiomatic system, which led to 
the development known as Hilbert’s program. 36

Logicist tradition The ‘logicist’ approach to consistency emerged 
into a dominant paradigm whose followers appropriated computation as a 
child of their own tradition. Its proponents wished to encapsulate an ulti-
mate objectivity within a system of foundations, upon which the whole of 
mathematics could rest. The implementation of this idea required ground-
ing all of mathematics in logic. The objective was to construct an ideal, fool-
proof reasoning apparatus on the logical basis, which could, ideally, (in)
validate any logical statement.

The most prominent member of the logicist party was Gottlob 
Frege. If Boole’s idea was to ground logic within mathematics by means of 
algebra, Frege’s idea was quite the opposite. He wished to ground the whole 
of mathematics in arithmetic by means of the powerful deductive logic. 
Frege claimed that all the axioms of arithmetic could be “deduced from a 
small number of basic propositions certifiable as purely logical truths.” 37 
In Begriffsschrift (1879), Frege invented quantification theory, which was 
a first step towards a precise notion of purely logical deduction. 38 The 
“conceptual notation” he defined allowed him to represent mathematical 
statements involving, for example, an infinite number of prime numbers. 39 
In 1884, in The Foundations of Arithmetic 40, Frege introduced his own 
number theory, made to emulate formal logic. 41 He wished to show that 
arithmetic could be reduced to logical fundamentals, without any basis 
in intuition. Moreover, he regarded arithmetic as a completely objective 
“realm.” His central claim in The Foundations was that:

In arithmetic, we are not concerned with objects which we come 
to know as something alien from without through the medium of 
the senses, but with objects given directly to our reason and, as 
its nearest kin, utterly transparent to it. 42

Today, we can more easily recognise the alarming implications of such 
a statement. By regarding mathematics as a transparent, objective 

36	 Nagel and Newman, Gödel’s Proof, 25.
37	 Nagel and Newman, 32.
38	 Tait, “Frege Versus Cantor and Dedekind: on the Concept of Number,” 213.
39	 Tait, 217. However, he did so by utilising cardinal numbers, which was the misunder-

standing of the notion of infinity introduced by Cantor.
40	 Originally published as Die Grundlagen der Arithmetik.
41	 Gauthier reformulates Frege’s question into: “How far can we go into arithmetic with 

deductive logic alone?” Gauthier, Towards an Arithmetical Logic, 1.
42	 Frege, The Foundations of Arithmetic, §105:115.
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reality, 43 which was simply to be accessed by reason, Frege diminished 
the role of human creativity and invention. His statement completely 
rejects the possibility of the creative abstraction that Dedekind was 
fighting for. 44 Despite all this, Frege is considered to be the founder and 
the “hero” of abstraction until this day. 45

Very soon, a complete new set of problems had emerged out of 
Frege’s program. In 1901, Bertrand Russell showed that Frege’s logical 
axioms were inconsistent. 46 He discovered that Frege’s approach could 
lead to the construction of paradoxical sets, which was named Russell’s 
paradox. 47 The source of Frege’s inconsistencies lied in its self-referen-
tiality. The logicists sought to remain within the same paradigm, while 
avoiding self-reference at all costs. In the period from 1910 to 1913, 
Russell and Whitehead wrote Principia Mathematica, a cornerstone of 
the logicist paradigm. It was a three-volume work of mathematical foun-
dations that attempted to establish a set of axioms and rules powerful 
enough to prove all mathematical truths. It was meticulously designed 
to keep the inconsistencies out “in a most staunch and watertight 
manner.” 48 Principia Mathematica also appeared to be the final solution 
for the problem of consistency, as it reduced the problem of consistency 
of arithmetic to the problem of the consistency of formal logic itself. 49

This was the moment where Russell and Whitehead’s work be-
came closely intertwined with Hilbert’s search for absolute consistency, 
which consisted in the complete formalisation of a deductive system 
by “draining” it from any meaning, as described by Nagel and Newman:

The postulates and theorems of a completely formalised system 
are “strings” (or finitely long sequences) of meaningless marks, 
constructed according to rules for combining the elementary 
signs of the system into larger wholes. Moreover, when a system 
has been completely formalised, the derivation of theorems from 
postulates is nothing more than the transformation (pursuant 
to rule) of one set of such “strings” into another set of strings. 50

43	 Burge, “Frege on Knowing the Third Realm,” 2. He called it “The third realm.”
44	 Bühlmann, “Continuing the Dedekind Legacy Today,” 8.
45	 “However, more important to me in this paper than the question of Frege’s own im-

portance in philosophy is the tendency in the literature on philosophy to contrast the 
superior clarity of thought and powers of conceptual analysis that Frege brought to bear 
on the foundations of arithmetic, especially in the Grundlagen, with the conceptual 
confusion of his predecessors and contemporaries on this topic.” Tait, “Frege Versus 
Cantor and Dedekind: on the Concept of Number,” 215.

46	 Irvine and Deutsch, “Russell’s Paradox.”
47	 Irvine and Deutsch, “Russell’s Paradox.” famous “set of all sets that are not members of 

themselves.”
48	 Hofstadter, preface to Gödel, Escher, Bach, 4.
49	 Nagel and Newman, Gödel’s Proof, 33.
50	 Nagel and Newman, 20.
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The defining trait of formal systems lies in their simplicity. They include 
a limited number of signs, a grammar which defines how to create well-
formed strings, a set of strings taken as axioms, and a set of transfor-
mation rules. 51 This introduces two levels from which a formal system 
can be considered: The first, “lower” level consists of the “meaningless 
marks” that are produced mechanically; the second accommodates high-
level reasoning about the processes of the lower level. Hilbert defined 
the higher level as a meta-language. His goal was to a find method that 
could prove the absolute consistency of a system. He believed that the 
solution lied on the “lower” level and was interested in demonstrating 
the “impossibility of deriving certain contradictory formulas” 52 within 
it. In other words, Hilbert’s hope was that a purely formal language 
could be used to prove its own consistency.

The main achievement of Principia Mathematica, was that it pro-
vided “a remarkably comprehensive system of notation, with the help of 
which all statements of pure mathematics (and of arithmetic in particu-
lar) can be codified in a standard manner.” 53 The book’s notation and 
deductive system presented themselves to Hilbert as a perfect medium 
for establishing an absolute proof of consistency. His work seemed to be 
on the right track until 1931, when Gödel’s theorems proved that neither 
Principia, nor any other system of that kind, could ever achieve this goal.

linguistic turn

The philosophy of the early 20th century experienced a crisis similar to the 
one of mathematics. The accounts that held philosophy as the fundamen-
tal discipline responsible for the questions of foundations and knowledge, 
started to lose appeal in the light of the clarity and the precision dem-
onstrated by modern logic. An idea began to emerge that philosophical 
facts do not exist per se, but that they are above all language articulations. 
Accordingly, philosophy should have been dealing with clarification of 
thoughts on a logical basis by analysing the logical form of propositions. 54 
As a consequence, the attention of philosophy turned to language as an 
operative medium for thought, and to grammar as an apparatus for coher-
ent thinking. Within the relation between philosophy and language, an-
other current emerged that was interested in the relation between gram-
mar and logic. This interest introduced two schools of thought: The first 
one was established by the Austrian philosopher Ludwig Wittgenstein; 
the second by Rudolph Carnap and the Vienna Circle. 55

51	 Hofstadter, Gödel, Escher, Bach, 35.
52	 Nagel and Newman, Gödel’s Proof, 27.
53	 Nagel and Newman, 33.
54	 Wittgenstein, Tractatus Logico-Philosophicus, 45 (4.12).
55	 Potter, Reason’s Nearest Kin, 18.
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Wittgenstein, an associate of Russell and a young admirer of Frege’s 
work, is considered to be one of the progenitors of the linguistic turn. 
In 1921, he wrote Tractatus Logico-Philosophicus, which conveyed the 
idea that philosophical problems arise from an inconsistent nature of 
the language that is used to construct philosophical statements. 56 In the 
preface of the Tractatus, he summed up his argument as the following:

What can be said at all can be said clearly; and whereof one can-
not speak thereof one must be silent. 57

Tractatus was the first philosophical work putting the language at the 
centre of its inquiry, boldly stating that “the limits of my language mean 
the limits of my world.” 58 This non-intuitive position was in strong 
contrast to most of the Western philosophical tradition. To free phi-
losophy from incoherence, Wittgenstein required an ideal language for 
philosophical analysis, as “ordinary” language was full of ambiguities. 
Wittgenstein’s conception of a language was not simply an instrument 
of logic. If this were the case, the argumentation would need to be set up 
so that it leads to an argument or a proof. It was a philosophical gram-
mar, designed to draw a line separating valid philosophical language 
from nonsense. 59 By creating a philosophical system as an application 
of his rigorous grammar consisting of atomic facts, propositions and 
operators, Wittgenstein believed to have eliminated all philosophical 
problems. However, in all of his self-proclaimed success, he also realised 
“how little has been done when these problems have been solved.” 60

Decisive for the linguistic turn in the humanities were the works of 
yet another tradition, namely the structuralism of Ferdinand de Saussure 
and the ensuing movement of poststructuralism. 61 Saussure’s general com-
plaint was directed at the lack of systematicity in the study of language. 62 
In his university lectures, collected and published only later by his students 
in Course in General Linguistics (1916), 63 Saussure referred to a number of 
approaches for studying language, finding them all inadequate. 64 For him, 
grammar was detached from language and too dependent upon (and limi
ted by) logic, having the sole purpose of distinguishing between correct 

56	 Wittgenstein, preface to Tractatus Logico-Philosophicus, 23.
57	 Wittgenstein, 23.
58	 Wittgenstein, 74.
59	 Wittgenstein, 23.
60	 Wittgenstein, 24.
61	 Wikipedia, s.v. “Linguistic turn,” last modified March 24, 2017, 15:55, https://

en.wikipedia.org/wiki/Linguistic_turn.
62	 Saussure, Course in General Linguistics, 3–4.
63	 Originally published as Saussure, Ferdinand de. Cours de linguistique générale. Publ. 

par Charles Bailly et Albert Sechehaye avec la collaboration de Albert Riedlinger. 
Lausanne: Pavot, 1916.

64	 “At the same time scholars realised how erroneous and insufficient were the notions of 
philology and comparative philology. Still, in spite of the services that they rendered, 
the neogrammarians did not illuminate the whole question, and the fundamental prob-
lems of general linguistics still await solution.” Saussure, 5.
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and incorrect forms. He found that philology was not about language at 
all, but about the interpretation of texts “as a means to literary and his-
torical insight.” 65 He recognised some potential in comparative philology, 
and in its task of finding similarities and differences between languages. 66 
Saussure’s vision of linguistics was that it should be able:
•	 to describe and trace the history of all observable languages, which 

amounts to tracing the history of families of languages and recon-
structing as far as possible the mother language of each family;

•	 to determine the forces that are permanently and universally at 
work in all languages and to deduce the general laws to which all 
specific historical phenomena can be reduced; and

•	 to delimit and define itself. 67

For Saussure, language was a “system of signs that express ideas” 68 and 
was part of a larger whole, of a “science that studies the life of signs 
within society,” 69 which he termed semiology. 70 His concept of a sign 
challenged the traditional view, which considered words as mere labels 
attached to concepts. He defined sign as an entity that united a con-
cept of a thing, the signified, and its sound image, the signifier. Since 
there cannot be a concept without it being named, the signified and the 
signifier necessarily exist as a pair. For Saussure, language was about 
symbolic manipulation, thus the “real things” did not play any role in the 
constitution of a sign. Another crucial view that he held was that signs 
possess differential, not natural, identity. In other words, a sign is being 
a sign only by the virtue of not being any other sign:

… the concepts are purely differential and defined! Not by their 
positive content but negatively by their relations with the other 
terms of the system. Their most precise characteristic is in being 
what the others are not. 71

mechanisation of articulation

The advent of digital computers was rapid, overwhelming, and its de-
velopment is still underway. There is no room here to mention every 
important contributor. For the purposes of this dissertation, the focus 
will be on the figures who have established the main computational 
paradigms and on those whose work has had the biggest influence on 
computer-aided architectural design.

65	 Saussure, 1.
66	 Saussure, 4–5.
67	 Saussure, 6.
68	 Saussure, 16.
69	 Saussure, 16.
70	 Saussure, 16.
71	 Saussure, 117.
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Recursion and computability In the 1920’s, Hilbert’s program 
crystallised the main expectations of formal systems for the purpose of 
axiomatization, most notably ideas of:
•	 Consistency: No mutually contradictory theorems should be de-

ducible from the axioms.
•	 Completeness: Axioms of a deductive system are “complete” if 

every true statement that can be expressed in the system is for-
mally deducible from the axiom. 72

At an international conference in 1928, Hilbert introduced a famous 
challenge that illustrated his hope of the potential of formal systems, 
what he referred to as the Entscheidungsproblem 73 (decision problem). 
He asked whether an algorithm could be made that takes two inputs: (i) 
a description of a formal language (for example Principia Mathematica 
(PM)) and (ii) a statement expressed in that language (for example, a 
theorem of PM), and outputs either true or false, depending whether 
the statement ii is provable within the formal language i. All that re-
mained to settle the question of foundations once and for all was to 
solve the problem.

Unfortunately for Hilbert, the complete opposite happened. 
In his 1931 paper “On formally undecidable propositions of Principia 
Mathematica and related systems,” Austrian logician Kurt Gödel 
proved that Hilbert’s requirements of consistency and completeness 
could not both be achieved in a formal system. Moreover, he exposed 
the fundamental limitations of all axiomatic systems, including those of 
arithmetic and logic. 74 The pinnacle of Gödel’s paper are the two theo-
rems known as Gödel’s incompleteness theorems, which he proved in 
an ingenious way. The first theorem states that any system of a certain 
complexity—in which, for example, arithmetic can be developed—is 
essentially incomplete. In other words, true statements that cannot be 
derived from the axioms could be expressed in such a system. The sec-
ond theorem shattered Hilbert’s hope of achieving absolute consistency 
by showing that a formal system alone cannot be used to prove its own 
consistency. In his proof, Gödel applied the idea of recursive enumer-
ability, and demonstrated how arithmetic, defined by recursive func-
tions, could be made to emulate logic.

72	 Nagel and Newman, Gödel’s Proof, 73.
73	 German for “decision problem.”
74	 “What is more, he (Gödel) proved that it is impossible to establish the internal logi-

cal consistency of a very large class of deductive systems— elementary arithmetic, 
for example—unless one adopts principles of reasoning so complex that their internal 
consistency is as open to doubt as that of the systems themselves.” Nagel and Newman, 
Gödel’s Proof, 3.
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Wir definieren nun nach dem Rekursionsschema (2) eine 
Funktion | (x,h) folgendermaßen:

                           | (0,h) = 0

              | (n +1, h) = (n +1) $ a +| (n, h) $ a (a)

wobei    a = a [a (t (0, h))] $ a [| (n, h)]

In 1936 and 1937, only five years after Gödel’s paper, Alan Turing 
and Alonzo Church delivered another blow to Hilbert’s hope that the 
Entscheidungsproblem could be solved. Both mathematicians proved 
that Hilbert’s question cannot be positively answered. 75 In order to make 
Hilbert’s notion of the algorithm operative, and its operations explicit, 
Turing conducted an experiment involving a hypothetical machine which 
operated with “empty” symbols mechanically. By mechanical means, 
the machine could automate the operations of finitistic formal systems. 
Like Gödel, Turing attempted to solve the Entscheidungsproblem within 
arithmetic, and in doing so introduced a novel constitution of arithme-
tic, utterly different from one based on deductive logic.

Turing introduced his paper with the notion of a computable number:
According to my definition, a number is computable if its deci-
mal can be written down by a machine. 76

The ‘computable’ numbers may be described briefly as the real num-
bers whose expressions as a decimal are calculable by finite means. 77

The computing machine consisted of an infinite tape divided into a 
number of discrete elements called “squares.” Each square could be 
empty but was also capable of bearing a symbol, for example 0 or 1. 
The machine could carry out only four actions: read the symbol from 
the square, write the symbol to the square, erase the symbol from the 
square, or move the tape one step left or right. Like Hilbert’s formal 
system, such a machine was completely described by a finite number 
of conditions that he defined as “m-configuration.” 78 Depending upon 
the symbol that was read from the square, the configuration assigned 
actions to be taken. For example, one such m-configuration c1 would 
instruct the machine to write a symbol to the current square, move one 
step to the left and change its current configuration to c2. Such simple 
procedures were to be repeated indefinitely. At any moment the ma-
chine was “directly aware” only of one symbol: the “scanned symbol” 
from the “scanned square.” But the tape is what allowed the machine to 

75	 In other words, it is impossible to decide algorithmically whether statements in a finit-
istic formal system are true or false according to the description of the formal system.

76	 Turing, 230.
77	 Turing, “On Computable Numbers, with an Application to the Entscheidungsproblem,” 

230.
78	 Turing, 231.

Fig. 2 
A recursive 
definition from 
Gödel’s famous 
paper. (Gödel, 1931)
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“effectively remember some of the symbols which it had seen (scanned) 
previously,” thus serving as its memory. 79 It was shown later that such 
a simple mechanical machine could in fact emulate any possible formal 
system, but was prone to the same limitations discovered by Gödel. 80

By explicating the machine’s capabilities, Turing had effectively 
reduced the class of real numbers to the class of computable numbers, 
a class whose sole property was that it could accommodate for a finite 
mechanical calculation of all of its members. He showed that large class-
es of numbers were in fact computable, but not all numbers. 81 Those 
that were computable, were also necessarily enumerable 82, which was 
proved by Gödel. The same holds true for computable sequences. By 
instrumentalising them, however, Turing turned what appeared to be 
an inherent limitation into a new perspective:

It is possible to invent a single machine which can be used to 
compute any computable sentence. 83

With this statement, Turing turned the attention from the necessity 
implied in the limits of mechanically computing numbers, towards the 
contingency implied in the infinity of possible sequences. He implic-
itly pointed out that limitations are inherent to any formal system, but 
not to the creativity of an individual having such a system at his or her 
disposal. His statement transcended the computable machine into the 
universal or any-machine.

Digital computers and algorithms According to Turing, the 
first mechanical computers, namely Babbage’s difference and analytical 
engine were invented as early as the beginning of 19th century but failed 
to surpass the prototypical stage. 84 Inspired by Turing’s early work, the first 
digital computers 85 came to existence in the 1940s. Hungarian-American 
polymath John von Neumann was one of the pioneers who streamlined the 

79	 Turing, 231. Or what we would call today—stored program.
80	 “In short, it has become quite evident, both to the nominalists like Hilbert and to the 

intuitionists like Weyl, that the development of a mathematico-logical theory is subject 
to the same sort of restrictions as those that limit the performance of a computing 
machine.” Wiener, Cybernetics, 13.

81	 “Computable numbers include all numbers which could naturally be regarded 
as computable.” - large classes of numbers are computable including PI, e, etc. 
“The computable numbers do not, however, include all definable numbers, and an ex-
ample is given of a definable number which is not computable.” Turing, “On Computable 
Numbers, with an Application to the Entscheidungsproblem,” 230.

82	 “…able to be counted by one-to-one correspondence with the set of all positive inte-
gers.” Turing, 230.

83	 Turing, 241.
84	 Turing, “Computing Machinery and Intelligence,” 439.
85	 Burks, editor’s introduction to Theory of Self-Reproducing Automata, 6–10. For ex-

ample, ENIAC (1943–45) and EDVAC (1945).
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design of digital computers 86 and wrote the first successful algorithms. 87 
For him, computation was part of a larger umbrella of automation–theory 
that seeks “general principles of organisation, structure, language, informa-
tion and control.” 88 Such theory was meant to explain the processes inher-
ent to natural systems by means of both analogue (natural automata) and 
digital computers 89 (artificial automata). However, Turing’s construction 
in which arithmetic (thus logic) could be reduced to computation inspired 
von Neumann to think of them as one and the same thing. He introduced 
logic at the heart of the theory of automata, often referring to it as a “logical 
theory of automata.” 90 Arthur Burks illustrated this point in his introduc-
tion to von Neumann’s book Theory of Self-Reproducing Automata:

To conclude, von Neumann thought that the mathematics of autom-
ata theory should start with mathematical logic and move toward 
analysis, probability theory, and thermodynamics. When it is devel-
oped, the theory of automata will enable us to understand automata 
of great complexity, in particular, the human nervous system. 91

The early work of Claude Shannon has firmly established the technical 
foundation of digital computers in logic. In his famous 1937 master’s 
thesis named “A Symbolic Analysis of Relay and Switching Circuits,” 
he investigated the correspondence between Boolean algebra and elec-
trical relays, which were the building blocks of electrical components 
of the time. He advanced the design of electrical switches by propos-
ing that they be implemented as binary switches. 92 The logical basis of 
electrical switches became the cornerstone for the design of electronic 
digital computers 93, but its further development to transistors and com-
puter chips was made possible only with development of quantum phys-
ics. In 1948, Shannon published his paper “A Mathematical Theory of 
Communication,” which is considered to be the founding work of infor-
mation theory. In this paper, Shannon defined entropy as the quantita-
tive measure of information within the set-theoretical paradigm (which 
will be discussed and challenged in the part II).

86	 …by separating data from instructions, analogous to the Turing’s tape, so that “by chang-
ing the program, the same device can perform different tasks.” Kalay, Architecture’s 
New Media, 28.

87	 “He devised algorithms and wrote programs for computations ranging from the cal-
culation of elementary functions to the integration of non-linear partial differential 
equations and the solutions of games.” Burks, editor’s introduction to Theory of Self-
Reproducing Automata, 5.

88	 Burks, 21.
89	 Burks, 21.
90	 Burks, 25.
91	 Burks, 28.
92	 Shannon, “A Symbolic Analysis of Relay and Switching Circuits,” 3–4.
93	 “In other words, the structure of the machine is that of a bank of relays, capable each 

of two conditions, say “on” and “off”; while at each stage the relays assume each a posi-
tion dictated by the positions of some or all the relays of the bank at a previous stage of 
operation.” Wiener, Cybernetics, 119.
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German mathematician Norbert Wiener pushed the idea of automation fur-
ther within an emerging thermodynamic understanding of the world, which, 
as he wrote, operated on the principles of conservation (and degradation) 
of energy 94, information and control. 95 Within such a paradigm, the distinct 
processes of both natural (animal) and artificial (machine) entities could be 
addressed from the perspective of energy and information exchange. Since 
the input and the output of each component of the system were necessarily 
interconnected, each event affected the state of the whole environment.

Wiener used the example of patients suffering from ataxia, whose 
muscles were completely healthy, but their brain was not able to establish 
control over their actions. 96 His hypothesis was that the brain was not 
simply an organ that gives orders to other organs, but also a monitoring 
device, that continuously, and in real time, adjusts its “outputs” according 
to the “inputs” it receives from the senses. Such a continuously adapting 
control process he called the chain of feedback 97, and named the entire 
field of “control and communication theory, whether in the machine or 
in the animal,” cybernetics. 98 Accordingly, every system conceived upon 
the principle of feedback chains, is a cybernetic system.

For Wiener, the basis of a feedback chain lies in the anatomy of 
the brain. He considers neurons to be the elements of the human com-
putation system “which are ideally suited to act as relays.” 99 If the brain 
was using computation to control its own feedback chain, then digital 
computers had potential for controlling any system:

It has long been clear to me that the modern ultra-rapid computing 
machine was in principle an ideal central nervous system to an appa-
ratus for automatic control; and that its input and output need not be 
in the form of numbers or diagrams but might very well be, respec-
tively, the readings of artificial sense organs, such as photoelectric 
cells or thermometers, and the performance of motors or solenoids. 100

Wiener did not stop at defining the program for cybernetics, but rather 
developed it into a mathematical model that could be computationally 
implemented. He saw an enormous potential for the optimal governance 
of systems, going as far as proposing its use by psychopathologists for 
the control of physiological diseases. 101

94	 “The living organism is above all a heat engine, burning glucose or glycogen or starch, 
fats, and proteins into carbon dioxide, water, and urea. It is the metabolic balance which 
is the center of attention.” Wiener, 41.

95	 “the present time is the age of communication and control.” Wiener, 39. 
“…the present age is as truly the age of servomechanisms as the nineteenth century was 
the age of the steam engine or the eighteenth century the age of the clock.” Wiener, 43.

96	 Wiener, 8.
97	 Wiener, 96.
98	 Wiener, 11.
99	 Wiener, 120.
100	 Wiener, 26.
101	 In the chapter: “Cybernetics and Psychopathology” Wiener, 144–154.
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Wiener’s work has greatly influenced computer science, with his neu-
ron model as a precursor to the neural network perspective to machine 
learning. 102 However, it is important to remember that cybernetics is 
primarily a control paradigm that models the world as a closed thermo-
dynamic system. Its constitution, once it is set up, is, in principle, fixed. 
The social parallel to such a paradigm appears today as a tyrannical form 
of governance and care should be taken in proposing its application to 
systems more complex than a thermostat.

Computation and language Around forty years after the 
Principia Mathematica and the peak of Hilbert’s programme, research-
ers began to consider natural language from the perspective of formal 
systems. The most prominent figure in this respect was Noam Chomsky, 
whose most important work on the topic is Syntactic Structures (1957). 
Chomsky’s interest in language was purely formal and pragmatic, focus-
ing on two elementary notions:
•	 Syntax: “the study of the principles and processes by which sen-

tences are constructed in particular languages.” 103

•	 Grammar: “device of some sort” for producing sentences of such 
a language. 104

For Chomsky, grammar plays the role of a mechanical “judge,” making 
efficient binary decisions whether a given sentence is correct or not, 
independent of any semantics. He gave a famous example:

Sentences (1) and (2) are equally nonsensical, but any speaker 
of English will recognize that only the former is grammatical.

(1)	 Colorless green ideas sleep furiously.
(2)	 Furiously sleep ideas green colorless. 105

Before presenting his generative model, Chomsky described two models 
that he considered incapable of dealing with the complexity of grammar: 
the Markov model, and the phase structure model. The fact that Chomsky 
dismissed the Markov model, which later became the de facto standard 
for machine translation (as well as search engine technology) well illus-
trates his misunderstanding of and disregard for mathematics. 106

Chomsky presented his own generative transformational model 
as the most adequate and “natural” model for addressing linguistic struc-
tures. The model consists of three stages where simple transformations 
of strings are applied in succession. In the first stage, Chomsky applied 

102	 Wikipedia, s.v. “Cybernetics,” last modified August 30, 2017, 17:55, https://en.wikipedia.
org/wiki/Cybernetics.

103	 Chomsky, Syntactic Structures, 11.
104	 Chomsky, 11.
105	 Chomsky, 15.
106	 “I think that we are forced to conclude that grammar is autonomous and independent of 

meaning, and that probabilistic models give no particular insight into some of the basic 
problems of syntactic structure.” Chomsky, 33.


