€ lektorbooks

Mastering the Language
and the Development Platform

something went wrong

urce, File destination) throws I
source + "\n\nto:\n\n" + destina
BSREhe source a directory?
BREFECtory in the destination p
ERRRBISE(); // List of directory
Entry.length; i++) { '
ry[il;

it(String.valueof(

:' e/ Debug info

RN Recursively copy all sour
BEY))S // ... to the estinatio

(Slektor

[Bernhard Steppan]

[Getting Started With Java Using Eclipse]
[Mastering the Language and the Development Platform]

[Bernhard Steppan]

[Getting Started
With Java Using
Eclipse]

[Mastering the Language and
the Development Platform]

This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.

PO Box 11, NL-6144-ZG, Susteren, The Netherlands.
Telephone: +31 46 4389444

All information, procedures and illustrations contained in this book have been prepared to the
best of our knowledge and tested with care. Nevertheless, errors cannot be completely ruled
out. For this reason, the information contained in this book is not associated with any
obligation or guarantee of any kind. Consequently, the authors and publishers assume no
responsibility and will not accept any liability, consequential or otherwise, arising in any way
from the use of this program material - or any part thereof. Likewise, authors and publishers do
not guarantee that described procedures etc. are free of third party intellectual property rights.
The reproduction of common names, trade names, product designations, etc. in this work
does not justify the assumption that such names are to be considered free in the sense of
trademark and brand protection legislation and may therefore be used by anyone, even
without special identification.

British Cataloguing in Publication Data
A catalogue record for this book is available at the British library.

Print: ISBN 978-3-89576-561-2
E-book: ISBN 978-3-89576-562-9

This work is protected by copyright.

All rights reserved, including those of translation, reprint and reproduction of the book or
parts thereof. No part of this work may be reproduced in any form (photocopy, microfilm or
any other process), not even for the purpose of teaching - with the exception of the special
cases mentioned in §§ 53, 54 URG -, or processed, copied or distributed using electronic
systems without the written permission of the publisher.

© Copyright 2023: Elektor International Media B.V., www.elektor.com
Prepress Production: Bernard Steppan
Editors: Alina Neacsu; Jan Buiting

Contents

Preface ... XXI
Part] BasiCS..........cccoiiiiiiiiiiiii 1
1 Programming BasiCs.............ccooiiiiiiiiiiiiiii 3
1.1 INrOAUCHON c.eueeit et 3
1.2 The Language of the Machine World...............coooiiiiiiiiiiiiiiiiiens 4
1.3 High-Level Programming Languagesc..cooevieiiiiiiiieiiiiiiniinnenneann.. 5
1.4 Development ENVIFONMENTo.uvtiitiititinti e neeieeeeaees 7
14T CompPiler. ... 7
B 21 1 (o) 7
1.4.3 Project Management............o.oiiuiiiiiiiiiiiiiiiiiii i 7
1.5 Runtime ENVIrONmMentcooueiiiiiiiii i 8
1.6 SUIMIMATY ..ottt ettt et e aeeeas 8
1.7 LITETATULC. ...ttt 9
1.8 EXEICISES ..ottt e e e 9
2 Technology OVEIVIEWcouiiuiiiiiiiieie et e aes 11
2.1 INTEOAUCHION .o vttt e e 11
2.2 OVEIVIEW ..ottt 12
2.2.1 TheEarlyDays of Javacc.ccoeiiiiiiiiiiiii e 12
2.2.2 The Growth Period of Java............ccoiiiiiiiiiiiiiiiiiiiiiene 13
2.2.3 ThePresence And Future of Java.............ccooeviiiiiiiiiiiiiiiinn.. 14
2.3 WRY JAVA? Lttt e 15
231 EasytORead........coeiiiiiiiiiiii i 15
2.3.2 ODbject-Orientedcovuiiitiiiii i 15

2.3.3 Safe ANA RODUSE ... e 15

Vi

Contents
234 VeryPowerfuloiiiiii 16
2.3.5 Universally Useablec.ccooiiiiiiiiiiiii e 16
236 Free of Chargecoouiiiiiuiiiiii e 16
0 T A 0 0 =) o BN 10 01 (ol 16
2.3.8 EasilyPortableooeiiiiiiiii e 16
239 EasilyExpandable..........coooiiiiiiii e 17
2.3.10 Easy to Develop ANd Test......couevutiitintiniiieiia e 17
24 WhatBelongs toJavaZco.eiuiiiiiitii i 18
2.4.1 JavaProgramming Languagecoooiiiiiiiiiiiiiiiiiii e 18
2.4.2 JavaVirtual Machine...........coooiiiiiiiiiiiiiiiii e 18
243 JavaClass Libraries........o.ovueviiiiiiiiii e 20
2.4.4 JavaDevelopment TOOIS.......cooueiiiiiiiiiiii e 20
2.5 JAVAVEISIONS . .o utttiti ettt ettt e 21
2.6 JAVA EAIIONS .. ueetette et e e 21
2.6.1 Java Standard Editioncooeiiiiiiiiiiiiiii e 21
2.6.2 Java Enterprise EAitionccoiiiiiiiiii 21
2.6.3 Java Micro Edition........oouiiuiiniiii i 21
20BN 11 0 00 1 2 P 22
PR T B 1<) L1 (T P 22
RS B &) (o 1 22
3 Object-Oriented Programmingccoceiiiiiiiiiiiiiiiiiceeceenn, 23
K70 I 01 0o 1617 [) o 1 S 23
IS 0 O)/ T4 1< 24
K70 T 0] o) 1 N 25
R 20 O b T S 26
341 PrOPeItieS. ..ottt 26
342 Methods «..onniiniiiii e 28
3.5 ADSITACHION . .etutitttt ettt e e 30
3.6 INNETILANCEneintit e 31
3.6.1 BaSE ClasSSeS ...ttt e 32
3.6.2 Derived ClasSeseuuenueiutetitt ettt 33
3.6.3 Multiple INheritanceovueiiiiiii e 33
3.7 ACCESS PrOtECHION .. .ueeet et e 34
3.8 RelationShipso 36
3.8.1 Relationships Without Inheritancec..cooviiiiiiiiiinn... 36
3.8.2 Inheritance Relationships..........c.ocoiuiiiiiiiiiiiiiiiiiieea 38

3.9

DesigN FIAWS ...ttt 40

Contents Vil

3,10 RefactOring ...c..ooveiniitiiii i e 41
311 MOAEING .. e ettt et 41
312 PeISISTEIICE .. uvuuitt ittt ittt ettt 41
3.13 POlymMOTPRISIN . . c.ettiitit it e 41
3.13.1 Static PolymorphiSmi........co.oviiiiiiiii i 42
3.13.2 Dynamic PolymorphiSmcccoieiiiiiiiiiiiiiiiiiiicieeeee 42
314 DeSIGN RUIES ...ttt e 43
3.15 SUMIMATY . .onii 43
316 LIEIAtUT......ouiiniiniit it 44
3.17 EXEICISES uviuiintiitiiitit i 44
4 Development Environment.................ccooviiiiiiiiiiiiii e, 45
4.1 INtrodUCtON .. .ouvuiiii i 45
4.2 Installation.......ocouieiniit i 46
4.2.1 Operating SYSTEIMueuuttittta et e eaeeaae 46
4.2.2 InstallJava.....co.oouiiiiiiii 47
4.2.3 INStaAll ECLIPSE . ..vnnetiie i 50
4.2.4 Install Sample Programs...........coviieiiiiiiiiiiiiiiieaeeene, 55
425 Installation Checkoooiiiiiiiiiiiii i 58
4.3 Eclipse INtrodUCtionoiiuuiii i 60
431 OVEIVIEW. ..ttt e 60
432 WOrkbenchcooiiiiiiiiiii 60
4.3.3 Perspectives, Views and EitOrsooiiiiiiiiiiiiiiiiiiieanne, 61
4.3.4 Package EXplOrercocoiuiiiiiiiiii i 62
435 JavaEditor..........ocooiiiiiiiiii 63
436 CodeFOIMAatler ...c.vuuinitiit ittt et 66
437 BUild SYStem ...o.vuitiiit i 68
4.3.8 DEDUGZET ..o.neitiitie e 68
4.3.9 Modular StHUCIULIEuitititie it 69
4.3.10 Eclipse WOTKSPACEcuvineitiiiitii i 70
4.3.11 SOftware UpPdate.......coueinuieiint et e 72
4.3.12 Help SYSTEIM .ottt e e 73
0 N 11 000 1 2 74
RS B 1<) - LD 4 N 74

F I 5 () (o1 £ =1 PP 75

Vil Contents

Partll JavalLanguage...............cooiiiiiiiiiiiiiiii e 79
5 Program Structureooiiiiiiiii e 81
LS T8 B 01 0o L6178 [) o I S 81
STV 0 <3 7 1= 82
5.3 Language EleIMeNtS.cuiteintitiit ittt 83
ST 70 B 010) 110311 1<) o L F S 84
5.3.2 PaCKAGES «.entnit et 84
5.3.3 LSS tuutttitt ettt 84
534 MethOods ..oueiniiiii 85
5.3.5 SEAtEIMENTS ..ottt et 86
5.4 Structure of the Programe..........c..cooiuiiiiiiiiii e 88
5.5 Program FlOW..........coooiiiiiiiiii 89
5.6 ReSErved KEYWOIdSueuuinteitiiitiit it 90
LTI 11 4 00 1 2 P 91
5.8 TULOTIAL ...t e 92
5.9 EXEICISES ..oiuiiniiiiiiii i 92
6 Variables...........c.oiiiiiiiiii 93
(S 70 BN ' 14 (06 L0 1o7 5 (o) s W 93
6.2 OVEIVIEW ...ttt e 94
6.2.1 Variable PUIPOSEc.uiuuitiiiiit e 94
6.2.2 Variable TYPES ...uuenuiiniitiit i e 94
6.2.3 Variable Usagecoeiiuiiuiiiiiiiiiii i 95
6.3 L0ocal Variablesouuitiitiii i 97
6.4 ParammeterS......coiuuiiiiiititiiii e 98
6.5 Instance Variablesooueiiiiiiiii i 99
6.5.1 Individual Instance Variables..............ccoooiiiiiiiiiiiiiiiiii 99
6.5.2 Instance Variable »this«.........c..cooooiiiiiiiiii i 100
6.6 Class Variablesc..oiuiiuiiiii i 102
(A 0] s] -1 s | S 104
6.8 SUIMMATIY.....oiiiii 105
LR I 1 (3 2 1 D) (T PP 106
(ST 0T A0 () o T | 106

(S B R 5 (S (o3 1< S U 107

Contents IX

7 Statements............ooiiii 109
7.1 INrOAUCHON .t 109
T2 OVEIVIBW .ttt e e e et 110
7.2.1 Statement PUIPOSEoovuuiiiii i 110
7.2.2 Statement TYPES ...oeinniii it s 111
7.3 DeClarationcouiuitiniit i 111
T4 ASSIGNIMENT ..ottt e e e 113
7.4.1 Java AsSIgNMeNnt StIUCTUTEouueiuueittente et eeie et eaieeanaens 113
7.4.2 Java Assignments Are Not Equal to Mathematical Equations............. 113
743 IsX=YEqQUAltO Y = X? oottt 114
7.4.4 Combination of Declaration and Value Assignment 115
7.5 BIOCK. ..o 116
7.6 Variable Callc.oiiiiii i 119
7.7 Method Call.....oouoinii i 120
7.8 SUIMIMATY ...ttt e 121
A I B 1 <11 | (T PRSPPI 122
710 TULOTIAL .. neeit et e e 122
488 R 25 G55 (0 1T 122
8 Primitive Data TYPesooviiiiiiii e 123
8.1 INErOAUCHON ..ttt e 123
8.2 OVEIVIBW .ttt e 124
8.2.1 Purpose of Primitive Data TYPescouevuiiiiiiiiniiiiiiiniineneanne, 124
8.2.2 Types of Primitive Data TYPES «...c.vvvuirriiniiiiniiiiiiieneeeeeane, 124
8.2.3 Use of Primitive Data TYPeS.......ouuitiitiiniiiiniineiiiienieneneenes 124
8.3 Integer Data TyPes....coviuiiiiiiiii i 128
8.3.1 Data TyPe »hYLEQ. .ttt ittt 128
8.3.2 Data Type »ShOTt«uutiitiit it 129
8.3.3 DataType »inteoooiiiiiiiiii 130
8.3.4 DataType »lOoNgq ..oouviuiiiiiii it 131
8.4 Floating Point Data TYPEScouviutiitiieiiiiit i 131
8.4.1 Data Type »floate ...oueuiieiiei it 132
8.4.2 DataType »double«oouiiiiiiiiiiii 133
8.5 Character Data TYPE.....ouueuiint ittt e 134
8.6 B00lean Data TYPE....c.uiuuettint ittt et et e 134
8.7 SUIMIMIATY ..ttt ettt ettt e ettt ettt e e e aae e 135
8.8 LILEIATUTC.....ouviniiniit ittt 136
8.9 TULOTIAL ..ottt 136

LT L 5 G o <X 137

X Contents

9 Classesand Objectsccoviiiiiiiiii 139
LS 28 B 01 (06 L0167 8 (o) o O N 139
9.2 OVETVIBW ettt ettt et e ettt e e e ettt e 140
9.2.1 Purpose of @ Classoouiiuiiniiiiiiiii i 140
9.2.2 TYPES OF ClaSSeS. . ..uuenneintiteett et 141
9.2.3 Definition Of ClaSSESouuiutiieiiititin i 141
9.2.4 USE Of ClaSSES . nueiittttte et 142
9.3 ANONYMOUS CIaSSESuvntintettet ettt ettt e eeeaeen 144
9.3.1 Definition of Concrete ClasSeso.evueeutirtinierneeiieniinienneannn. 144
9.3.2 Creation of Objects of a Concrete Classcoevueveininuiinninnnn.. 146
9.3.3 INNET ClASSES « . uventetteie ettt et 147
ST T S U0o Yoz | O] T s 149
9.3.5 Anonymous Classes.........couivuiiiiiiiiiiiiiiiiii e 150
9.3.6 INNETItANCEotitiit i 152
9.4 ADSITACE CLASSES .. v e eeenteet ettt ettt et e et et e 157
9.5 INEETEACES . ouneneite ettt e e e 158
S T €S o 1<) o (o1 162
9.6.1 Definition of Generic ClasSescoevuiviiniiniereiiiiniineneann.. 162
9.6.2 Creation of Generic ObJECtSccviuiiiiiiiiiiiiii i, 163
LSRRI 0101 00T oy 167
SR T B 1) L TP 167
9.9 TULOTIAL ..t e ettt 167
S8 L 2l (o R 168
10 ENUMErationS........ccoooiiiiiiiiii e 169
10.1 INErOAUCHON .. ettt e e e e 169
10.2 OVEIVIBW ..ottt ettt ettt et et et et e e e 170
10.2.1 Purpose Of EIUINS ...ttt 170
10.2.2 Definition And Declaration of ENUMScooeviiiiiiiiiininn.... 171
10.2.3 Usage Of ENUIMSvuuintiitiitii e 172
10.3 ENUIM CLASSES . ¢ ..t ueentetttte ettt ettt et e e et ettt e e e aenaeeaeen 173
O 70 B 0] s 11 4 1 161 10) (PN 174
10.3.2 Method »Value ()« . .vvneieee e e 174
10.3.3 Separate Simple Enum Classcc.eveiiiiiiiiiininiiiiiinianenne. 174
10.3.4 Separate Extended Enum Classccoveiiiiiiiiiiiiiiiiniininnenn.. 176
10.3.5 Inner Extended ENum Classcooiiiiiiiiiiiiiiiiiiiiiiiie e 177
0T 1 000 178
B 0T T L =) - L (P 178
106 TULOTIAL . .. et e e et e e 179

B =5] o3 (] 179

Contents Xi

A AT AY S .o e 181
D0 N 00N (oY LD T o) o N N 181
11,2 OVEIVIBW ..ottt ettt e ettt ettt et e eee e 182
11.2.1 PUIPOSE Of AITAYS ... uettintitet ettt eeaeaen 182
B IV Y o ISR o) N § | S S 182
11.2.3 USAZE OF ATTAYS ...uvntintiitiiit ettt e 183
B0 T 000 P 187
B 010 5 - 188
115 EXEICISES ..ttt et e e e et 188
12 Methods.... ..o 189
B D20 B s i (e T L8 Uot (o) o NP 189
12.2 OVEIVIBW ..ottt ettt et et et e e ettt et et et e eae e 190
12.2.1 MethOd PUIPOSE .. .vineetiteitee e 190
12.2.2 MethOd TYPES « v tveneinitet et e 191
12.2.3 Method Definitioncoueiiiiiiiiii e 192
12.2.4 Method USAgevvnuiniiiiiii i e 195
B DS T 000} 4 1] 0 41 101 10) o S PP 197
12.3.1 Default CoONStIUCTOTS. .. .uuteittette e ae e 198
12.3.2 Constructors Without Parameterscoveveiiiiiiiniineneann.. 199
12.3.3 Constructors With Parametersccoeiiiiiiiiiiiiiiiinennnn.. 200
) DR B L] 4 4 (1 0] o N 202
12.5 OPEIAtIONS ... ettt ettt ettt e e 204
12.6 Getter Methods. . ..oouueei i e 205
12.6.1 DEfINItiON . ..ttt 205
12.6.2 USAZE....ouviniiiiit i 207
12.7 Setter MEthOASeeneieiet e e 208
12.7.1 Definition...ooueeeie i 208
12.7.2 0 USAZE ...ttt 209
BRSNS U1 40100 | 210
LD I B 1 (=) 211 D) (T PN 211
12,10 TULOTIAL . . e et e e e e e 211
L D B 25) (o3 (L N 211
L T o =T - 1 (o] 213
13,1 INETOAUCHION . ettt et et eeaaes 213
13.2 OVEIVIBW ..ottt et e e et e ettt ettt e 214
13.2.1 Operator TYPESoouviiiiiii i 214

13.2.2 Operator PrECEdENCEcvuuineitiieiiit e 214

Xi

Contents
13.3 Arithmetic OPerators......o.evuuiutit ittt 215
13.3.1 Unary Plus OPeratorcoueueiuiititeieeeit e aeeeaeene 215
13.3.2 Unary Minus OPerator.......cooueeiuteitiinieit e eaeae e naeanns 216
13.3.3 Addition OPerator.......covueeintie i 217
13.3.4 Subtraction OPeratorevuuiitiiternii i 218
13.3.5 Multiplication OPeratorc.uiiuiitereeitiiin e neeiennes 219
13.3.6 DiViSION OPEIAtOT ...cuuueinnt ettt et e e e e aaeenas 219
13.3.7 Remainder OPeratorcouueeiuueittiie e 220
13.3.8 Pre-increment OPeratoro.vviuutinntiiiiiiteiiie e it eieeiaeenas 220
13.4 Relational OPETatorscueuteueenttnt ettt et et et e e eeeaienaeeaaen 223
13.4.1 »EQUAl t0« OPEIatOr . .uuuittttetie et v et 224
13.4.2 »Not Equal to« Operator..........ovuueiiiiiiiiiiii i 224
13.4.3 »Less Than« OPerator........ovueeueiieiiter i 225
13.4.4 »Less Than or Equal to« Operator..........c.cvvviiueiiiniiniiiiennennnnn.. 225
13.4.5 »Greater Than« OPeratore.uiuitirit it et eieeieaeeaenes 226
13.4.6 »Greater Than Or Equal To« Operatorccoeviiiiiiiiiiinninnnnn.. 226
13.4.7 Type CompariSOn OPeratorc..c.evureiiuneiitiiaieiieeaeeieenneenns 227
13.5 LOGICAl OPETALOTS .. .uvneeteentet ettt ettt ettt enaeaaeen 230
13.5.1 Logical Complement OPeratorcoevuiueireneinineenenneneineneanens 230
13.5.2 AND OPerator.......oiiuiiiitiiii it 230
13.5.3 OR OPEIALOT....etnitt ittt et e 232
13.5.4 Ternary OPETator ...co.ueenneeinte ettt et e e eaeenaeenas 232
13.6 BitWise OPETAtOrSuennteitt ettt et ettt et aee e aaas 233
13.7 AsSIgNMeENt OPETATOIScouutinitiititt ettt ettt eaeeeaeeaas 233
13.8 NEW OPEIALOT ...ttt ettt e et et et et et et et e aee e enas 234
IS TR I O 1 0 0153 - 1 0 o N 235
13.10 ACCESS OPCTATOTS e nuetttetttt et ettt ettt e e et e ettt e et e e aee e e aaeeenas 237
13.10.1 DOt OPEIAtOT ...ttt ettt 237
13.10.2 Lambda OPeratorc.ueueiuiintintit ittt e e eeaneenes 239
13,11 SUIMIMATY .o oottt ettt ettt e e et e e enas 240
13 T2 LITETATULC. ..ottt et et ettt 240
1313 TULOTIAL ... e 240
1314 EXEICISES tuvnviniiiiitiit it 240
14 Conditional Statements ... 241
14.1 INtrodUCHON ...ttt 241
B O) 7 N 242

14.3 »If Then Else« StateIment....o...uiiirii ittt eeie e eieeens 242

Contents Xl

14.4 Ternary OPerator..........covuiiuiiiuiiuiiii i 243
14.5 SWItCh StAtEIMENT ...uettttt et 245

14.5.1 Switch Statement at the Level of Java6...........c.ccoveiiiiiiiiniiinn... 245

14.5.2 Switch Statement at the Level of Java 7...........c.coooiiiiiiiiiiinnan.., 246

14.5.3 Yield Statement........co.ovuiintiitii i 247

14.5.4 Lambda EXPressionceueeutiiuintiritiiiine i eineeeeeeaees 248
J4.6 SUINIMATY .. oottt ettt ettt ettt e e eeeenas 249
) A B 1 (=) 211 D) (T PN 249
14.8 TULOTIAl .. neeee e 249
149 EXEICISES .. eunnttnttit ettt e ettt e 249
1T e o o 251
15.1 INEIOAUCHON . etee ettt ettt 251
15.2 OVEIVIBW ..ttt ittt et e ettt e ettt et et e ae e e 252

15.2.1 PUrpoSE Of LOOPS .. e uentettittet ettt et 252

15.2.2 TyPeS Of LOOPS . euvvneitiiiie e 252
15.3 WHIle LOOP . ¢ttt e e 253
154 DO LOOD - vttt 254
15.5 SIMPLE FOT LOOP . ¢ utnttttette e et 255
15.6 Extended FOr LOODoouuiinniii i e 256
ST 111000 F: | o PP 257
158 LITETATUTE. ... uutttt ettt et ettt et et ettt et ettt e eee e e 257
15.9 TULOTIAL .. nee e e e 258
15,10 EXEICISES ettt ettt et et ettt 258
16 Packages and Modules................cc.ooiiiiiiiiiiiiiiice e 259
16.1 INEIOAUCTION . eeeeeee ettt e e et e eeeaaes 259
16.2 OVEIVIEW ..ttt et e e ettt et ettt e e e et e e e eeenas 260
16.3 PACKAZES . vttt ettt et e e e e 260

16.3.1 ClasS IMPOTIt. ...ttt e eeeaees 260
16.4 MOAUIES ... ettt e e et 264
BCTRSTINT 01001 00 F: 1 oy 267
16.6 TULOTIAL .. neenette e e e 267
16.7 EXEICISES .. eunnttntt ittt et e 267
17 Exception Handling...............cooooiiiiiiiiii e 269
D0 T Do N0 (oo LD (01 d (o) o N N 269
17.2 OVEIVIBW ..ttt ettt et et ettt ettt et et e eae e 270

L %% Y (015 172 Vi (o} D 270

Xiv

Contents
1722 TYPES Of BITOIS «.veteie it 270
17.2.3 Use of Exception Handling............coceviiiiiiiiiiniiiiiiieene, 270
17.3 Base Class »Throwable«oiuiiiiii e 273
174 Class PEITOTC .. c ettt 274
17.4.1 Subclass »OutOfMemMOTYEITOTC . ..uuvuteetiiiiiiiieniiee e 275
17.4.2 Subclass »StackOVerflowEITOT«.ooueiiiiiiiiiiiiiiieea 277
17.5 Class »EXCEPLIONK ... uuititt e e 278
17.5.1 Subclass »RUNtIMEEXCEPLIONCvuuitireiiiiiiieie e 278
17.5.2 Subclass »"TOEXCEPHONK «.uuutnutntititeii et 278
17.5.3 Self-Programmed EXCeptions...............ccoooiiiiiiiiiiiiiiiin, 279
176 SUIMIMATY ..ottt ettt et ettt et et e nee e enas 282
B B 1 (=) - L (P 282
B T 010 & - 283
179 EXEICISES .. ennetett ittt et et ettt e 283
18 Documentationooiiiiiiiiiiii 285
D70 B 0N (oo LD (014 o) o NP N 285
18.2 OVEIVIBW ..ttt et et e e e et et 286
18.3 Line COMIMEINTS . .ununttttttt ettt ettt et e e e aeeenas 286
18.4 BIOCK COMIMENESttt ettt ettt et et e e et e e aaeaaeeaeeaeen 287
18.5 Documentation COMIMENTSeuuutenntetttenteat ettt et eneeaaeanns 287
18.6 SUIMIMATY....viniiit it 288
B T B 1 =) L6 (T 289
18.8 TULOTIAL .. ueeeee e e 289
189 EXEICISES ..ottt ettt et ettt 290
19 ANNOtations ..ot 291
19.1 INErOAUCHON ..ttt e e et et et e 291
19.2 OVEIVIBW ..ottt ettt ettt ettt ettt e 292
19.2.1 Annotation PUIPOSESc..ueiutiiiiiiiit i 292
19.2.2 Annotation TYPeS........ooiiiiiiiiii i 292
19.2.3 Predefined ANNOTAtIONSovueiniiieiit i 293
19.2.4 Use Of ANNOTALIONS .. .vueieeeteet et 294
19.3 Compiler Control ANNOTAtIONS.uueenutei i 296
19.3.1 Annotations »Deprecated«uvvuiitiriiiiiiiii e 296
19.3.2 Annotations »SuppressWarnings«eeeeeeieeineiniieineennneanns 298
19.3.3 Annotation »OVeIrTide«.ooueiieiii i 304
194 SUIMIMATY ..o nett et ettt et e et et e e e e 307
B TR T 1 =) L (P 307
19.6 TULOTIAL . ..t e 307

19.7

Contents XV

Partlll Java Technologycooiiiiiiiiiiii e, 309
20 Development ProCeSSEeSocovuiiniiiiiiiiiiiiiieii e 311
20.1 INEFOAUCTION .. ueetee ettt ettt et et e e ettt et eeeaees 311
20.2 OVEIVIBW ..ttt ettt ettt et e e ettt ettt et e e et e e e e aaas 312
20.2.1 Correlation Between Phases And Activities.........c..cooevveiniinennen... 313
20.2.2 ACHVITIES .. ettt ettt et et e ettt 314
20.2.3 TOOIS. ettt e 315
20.3 Planning Phaseoouoiuiiniiiii i 315
20.3.1 Order Clarificationoeviiiiiiii e 315
20.3.2 Requirements Capture..........ooueeruueiiueemteiteenieaaeenneanneenneens 315
20.4 ConsStruCtion Phase.........oueiiiiii i e 316
20.4.1 ANALYSIS ¢ ueneit e 316
20.4.2 DeSIGI. . uuiitii e 317
20.4.3 TmpPlementationooueieeintiti e 318
2044 TeST wuuine it 330
20.5 Operating Phasecouiuiiuiiitiii i 335
ORI B B1510) () 7401 =) o | P 335
20.5.2 MaAINIENANCEuvetititt ettt e e 337
20.6 SUIMIMIATY .. ettt ettt ettt ettt e e et e e et e et et e aeeeneenas 337
R B 1 U] -1 (T 338
20.8 EXEICISES .. nutttnttttt ettt e e 338
21 Runtime Environment.............c.ooiiiiiiiiiiiiii 339
b2 B I 010 (016 L0178 (o) o A S 339
21,2 OVEIVIBW .ttt ettt et e ettt et et et et 340
D B) oo Y [S 341
21.4 JavaVirtual Machineo i 344
21.4.1 Artificial COMPULET.uiuteeettet e 344
21.4.2 INErpreter MOAEvuueiutie ettt e eeeaaes 345
21.4.3 JIT compiler MOdEc.uinuineiiiit i 346
21.4.4 HOtSPOtMOAE. . uuenntee ittt e 346
21.4.5 Garbage ColleCtOruvuiuiitiit it 347
215 LIDTATIES ...ttt e e e e 347
21.5.1 Native Librariescoviiiiii 347
21.5.2 Class LIDIATIeseueineititeite e 348
21.5.3 Resources And Property Files..............cooooiiiiiii, 348
21.6 POTtADIIILY .o ettt 349

21.6.1 Binary Compatible Bytecodecocoviiiiiiiiiiiiiiiiiiiiiiene, 349

XVi

Contents
21.6.2 Porting Prerequisites...........cooiiiiiiiiiiiiiiiiiiiiiiii e 349
21.7 Program SEATT.......ocuoinnetitt ittt e 350
P22 B BN < B o3 o 1 o] SO S 350
21.7.2 NatiVe WIAPPET ...ttt e e 351
21.8 JVM Configuration........oouieueineit ittt e 353
P2 BRS04 0 00 - 1 2P 353
b B L0 1) L P 354
A B 25) (o R 355
22 Class Librariesc.occoviiiiiiiiiiiiiii e 357
D270 T 01 (016 L0167 [0) o PO S 357
b O) 4 U= P 358
22.2.1 Areas of Application.........co.evuiiiiiiiiiiiii i 359
2222 REUSE ...ttt e 359
22.2.3 DOCUMENTATION ... e uttttt ettt et ee e eaaeens 359
22.2.4 Language EXtension.............c.oooiiiiiiiiiiiiiiiiiiiiiii 359
22.2.5 Types of Class Libraries........cooeveiiiiiiiiiiiiiiii i 359
22.3 Java Standard Editioncoueiiniiiiitiiiiii e 359
22.3.1 BASE CLASSES .. uueentettettetet ettt et e 360
22.3.2 ClasS »SYSTEITIC ..t uuetteit ettt ettt e ettt ettt 368
22.3.3 TRIAAS «..eueiitit ettt 371
22.314 SHT@AIMS ...ttt ettt 372
22.3.5 PrOPEITIES. ..ttt et 374
22.3.6 Container ClaSSESouueeuteitei et 376
22.3.7 Abstract Windowing Toolkitcooeiiiiiiiiiiiiiiiiiiiieene, 377
22.3.8 ST .ttt e 386
22.3.9 JavaBeansS..........iiiiii s 389
22.3.10 APPLOTS et 390
22.3.11 Java Database Connectivity (JDBC)......c.evueiuiiiiiniinniiiiiiienninnenne. 390
22.3.12 Java Native INterfacec.oveiiiiiiiiiii e 391
22.3.13 Remote Method Invocation.............c.ooiiiiiiiiiiiiiiiiiiiii e, 392
22.4 Java Enterprise EAition.........coooiiuiiiiiiiiii e 393
2241 Entity BeansS........coouiiiiiiiiii i 394
2242 SeSSION BEANSciueiit i 394
2243 Message DrivenBeans..............oooooiiiiiiiiiiiiii 394
2244 TNEEITACES . ..uee it 394
22.5 Java MiCro EdtiOno.uouuitiitiit i 395

22.6 External Class LiDIariesoviiuuiiiiiii it eiie et eeaas 396

Contents XVII

22.6.1 Apache Software Foundationc..cooviiiiiiiiiiiiiiiiiiniinan.. 396
22.6.2 Eclipse COMMUINILY ..uvintiteitiitiit e 396
22.6.3 SOUICEFOTEEouuiiii i 396
22.6.4 Other Open-Source SOftWarecvueviiiiiiiiniiiiiiianineeeannes 396
22.6.5 Commercial SOftWarecooviiuiiiiiiiii e 397
227 SUIMIMIATY ..ttt et 397
B T B L =) L 398
22.9 EXEICISES ...uuuiiiiiti it 398
23 RUIES ... o, 399
DS 20 T 1014 (016 L0167 (o) o H S 399
23.2 OVEIVIEW .ttt ettt ettt et ettt e ettt e et e e et e e e e aaas 400
23.3 Writing CONVENTIONSutnittinttett ettt et et e aeeeeeenas 401
23.4 ACCeSS PTOTECHION ...uviniti it 402
23.4.1 Four Levels of Access Protectioncooeveiiiiiiiiiiiiiiiniinnnn., 402
23.4.2 Access Level »Privateao.evueeuiitiitiitiiitei i 403
23.4.3 Access Level ndefaulteoooiiiiiiiiiiiiiiiiii 403
23.4.4 Access Level »protected ...oo.eeuueueinuinniii i 403
23.4.5 Access Level »publicaooueiiiiiiiii 403
23.4.6 CaSE STUAY ... ettt et et e 403
23.4.7 Scope of Variablesc.ovueiiiiiiii e 409
23.5 Evaluation Order.........couiuiiuiniititi it 413
23.5.1 DotBefore Dashoouiiuiiiiiiiii i 414
23.5.2 DotBefore Dot......c.ccoiviiiiiiiiii i 415
23.6 TYPE CONVEISION ...nuuentttttt ettt et et eee e e 417
23.6.1 Implicit CONVEISIONuiutittittit ittt 417
23.6.2 EXPlicit CONVETSIONuiutieiitiit i 419
23.7 PolymOIPRISINL. ...ttt 422
23.7.1 Method Overloading...........coueiviiiiiiiiiiniiiii i 422
23.7.2 Method OVerriding........o.ovueiuiiiiiiii e 424
23.8 SUMIMATY...oouiiiiii e 428
ST I B 1 =) L 428
2310 EXCICISES ..onnniii ittt 429
24 AIgOrithms ... 431
24.1 INTrOAUCHION .o .venteit et e 431
24.2 OVEIVIBW ..tnttttt ettt et ettt et et et 432
24.2.1 Developing AIgOrithImscouvuiiiiiiiiiiiiiii e 432

24.2.2 Types of Algorithmscoeiiiiiiii e 433

XVII Contents

24.2.3 Useof Algorithms ... 433
24.3 Develop AIGOTItRIMSiuuiitii e 433
24.3.1 Sorting AIOTItRIMSottt e 433
24.3.2 Graphics Algorithmsccocoiiiiiiiiiiiii 434
24.4 AlgOrithm USAZE ..e.uvnntintiitii e 442
24.4.1 Sorting AIOTItRIMSuiuit it 442
24.4.2 Search AlgOTIthmSoiuiiii e 444
24.5 SUIMIMATY ...ttt e 445
24.6 LITETatUIe.......ociiuiiniiiiii i 445
24.7 EXEICISES .otutiniitiiit ittt 446
Part IV Java Projects............ccooviiiiiiiiiiiiiic e 447
25 SWING Programsccooiiiiiiiiiiiii e, 449
25.1 INTrOAUCHION .o vttt e e 449
25.2 REQUITEIMEIILS ...ttt ettt et ettt et e e e e eaaes 450
25.3 Analysis and DeSIZIouuitiiniiii e e 450
25.3.1 UserInterfaceccoevuiiiiiiiiiiiiiii i 451
25.3.2 Program LOGICcouviuiiiiiiiiiiii i 451
25.4 TMPlementation........oo.uuiuti et 454
25.4.1 Start Eclipse With the Workspace »EXercises«cooeeevuinnn.. 454
25.4.2 Create New Java project »Swing Programs«............ccoevveiiineinne... 455
25.4.3 Create New class »CourseStatiStiCSAPP« «.euuveeureinniiiiiiiiiiaieanneen. 455
25.4.4 TImplement Class »CourseStatiStiCSAPP« «e.vveueeueinrerneeieniiniennennne. 455
25.4.5 Create New Class »MainWindow«.........oooviiiiiiiiiiiniiiiiiiiin.. 456
25.4.6 Implementing Class »MainWindow«c..coouviiiviiiiiiniinenenn... 457
25.4.7 Implementing Class »CSVPAISeI«........o.vvuiiuiiiiiiniriiiiniiniennenn.. 468
25.4.8 Implementing the Class »TableFilter«ccoooiiiiiii.. 469
25.5 TSt et 472
25.6 DEPIOYINENT ..ovnititit it 472
PZZSTATARIS 0101 40T oy 474
Part V. APPENIX.... ..ottt 475
26 FreqUeNnt ErrOrScooiniiiiiii e 477
26.1 INErOdUCHON .. vttt e 477
26.2 JAVAEITOTSoiiiiiiii 477

26.2.1 Cannot Make a Static Reference To The Non-Static Field 477

Contents XIX

26.2.2 Outputofarnull«Valueooiiiiiiiiiiiiiii e 478
26.2.3 NullPointerEXCePHiOn . ..ouvuueniitiiteite et 479
26.2.4 Missing Break in Case Statement............ocevvevuirieiiiiieniineneann.. 481
26.2.5 Incorrect COMPATiSONeuutinntei e 482
26.2.6 Unhandled EXCEPLIONSoouuiinniiiiiiiie i 485
26.2.7 NoClassDefFOUNAEITOL...........ooviiiiiiiiiiiiiiiiiii e 486
26.2.8 ClassNOtFOUNAEXCEPHIONeuiintiiiteit i 486
26.3 ECHPSE EITOTSttt e 486
26.3.1 Eclipse Could NotBe Startedcooevieiiiiiiiiiiiiniaeieenne, 486
26.3.2 Chaotic Eclipse Perspective..........co.evueviiiiiniineiiiiienineneannen 486
26.3.3 MisSINg WINAOWuiniinitiiit it 487
26,4 SUIMIMATY . .ontitt et 487
26.5 LITEratUIe......ccciiuiiniiniiniiitii e 487
27 GlOSSANY ...iiiiiiiitiii e 489

Preface

Java is currently undisputedly the most important programming language. Therefore,
many would like to learn Java. Unfortunately, getting started is not easy, because program-
ming with Java requires at least two things: mastering the programming language and
mastering a development environment. This is the reason why this book was written. With
the help of many examples, it shows how the language is structured. In addition, the book
uses the example of the Eclipse development environment to teach you how to develop
Java programs with this tool.

Oh dear,
five parts with 28 chapters
and over 500 pages —
at the end readers still think

they can program me!

(0)(©)

(ONOND)

(©)O)NO)E)

Robert from the machine world accompanies you through the book.

The first part »Basics« gives you the Java and Eclipse basic knowledge. This part lays the
programming foundations, gives you an overview of Java technology, and shows you what
is special about object-oriented programming. A chapter about the Eclipse development
environment completes this part.

In the second part »Java Language« everything revolves around the subtleties of the Java
language. This is where the first small Java applications are created. This part offers a
mixture of knowledge part and practical exercises. At the end of each chapter, you will find
tasks that you can do on your own. With the solutions to the tasks at the end of this book
you check the learning success.

XXl Preface

Java technology is the focus of the third part »Java Technology«. Additionally, this part in-
troduces you to the rules you must observe when programming, what class libraries are
and what advantages they have. In addition, you will learn how to test programs, what
algorithms are and how to program them.

Alarger Java project is the focus of the fourth part. Here you will apply all the elements from
the previous parts on an application with a graphical user interface. The project shows how
to develop a larger application piece by piece with the Eclipse development environment.

The fifth part, »Appendix«, concludes this book with solutions to the tasks, with basics of
information processing and a chapter on the most common mistakes that can occur when
working with Eclipse.

The Plot

As aplot, I based the book on the (fictional) programming course »Java with Eclipse« taught
by Professor Roth to four students. The programming course is accompanied by the robot
named »Robert« and — among many others — mainly by these five characters throughout
the book:

We accompany
you with many programming
examples around this programming
course through this book and
wish you already
a lot of fun!

The programming course with Lukas, Anna, Professor Roth, Julia and Florian

Preface XX

Who is the book for?

This book is aimed at active readers. You don’t want ready-made solutions, you want to
program yourself. Without actively programming yourself and staying on the ball until your
self-written program runs, you will not learn Java. The book contains a tempting number
of ready programmed examples that you can run at the click of a button. Only reach for
the sample solutions if you get stuck. First, try to enter the programs yourself and learn
from the mistakes. Only by actively programming will you master Java and the Eclipse
development environment.

Bonus Material

The book contains plenty of examples that can be easily imported into the Eclipse environ-
ment as solutions. You can easily download them from the Elektor publishing company
homepage www.elektor.com/books/programming. Among these downloads, you will also
find a bonus chapter, which is not printed due to space limitations. It explains the
programming of so-called terminal programs.

Font Conventions

Various parts of the text are highlighted as follows for better readability:

Data types in body text Person

Data types in headlines »Person«
Keywords in body text implements
Keywords in headlines »implements«
Variables in body text roland
Variables in headlines »roland«

Window (graphical user interface)

GUI element (graphical user interface)
Menu (graphical user interface)

Menu command (graphical user interface)
Files

Directory paths

Listing (source code from sample programs)

Program output
URL
(...)

EcLipse IDE LAUNCHER

FiNISH

FiLE

MeNU — FiLE — NEW — JAVA PROJECT
Samples.zip
C:/Programs/Eclipse

1 package programmingcourse;
2 public class Robot {
3(...)

4}

Result = true
http://eclipse.org

Due to space limitations part of the source
code is missing

XXIV Preface

Acknowledgements

I'would like to thank everyone who supported me in writing this book: the Elektor publish-
ing company and my editor Ferdinand te Walvaart for his trust in my work and his great
patience. I would like to thank the Hanser publishing company who has given permission
to translate the original German manuscript.

As always, my wife Christiane has been very supportive of this project. Many thanks for
your help! T would also like to thank Alina Neacsu, who cleaned my book manuscript of
spelling mistakes. Many thanks also to Valeriy Kachaev (Studiostoks), from whom the tem-
plates of the robot cartoons come.

How to Contact Us

Despite the greatest care, it is not always possible to avoid overlooking one or another error
in a book. If you find errors, have suggestions for improvement, or questions, just send me
an e-mail at java-eclipse@steppan.net. 1 will answer your questions as soon as possible
and try to include your suggestions for improvement in upcoming editions. You can find
the most recent additions and further information at http://www.programmingcourse.net.
Now I hope you enjoy reading and developing your Java programs with Eclipse!

Bernhard Steppan Wiesbaden, March 2023

To be able to develop computer programs, you need to master the basics. Chapter »Pro-
gramming Basics« lays the groundwork for programming Java applications. In chapter 2,
»Technology Overviews, you will learn what Java has in common with other programming
languages and how Java differs from other languages.

Did you know that Java
is slang for coffee? And that Java
is not just a programming
language?

Figure 1: To develop computer programs, you need to master the basics.

Afterwards, it continues with the chapter »Object-Oriented Programming«. It shows what is
special about object-oriented programming and how object-oriented programs are struc-
tured. The chapter »Development Environment« concludes this part of the book with the
installation of the development environment and introduction to »Eclipse«.

Programming Basics

B 1.1 Introduction

Programming means writing computer programs. Computer programs consist of one or
more commands in a programming language. The robot named Robert presents a simple
Java program to the students in Professor Roth’s programming course (Figure 1.1).

class Hello {

public static void main(String[] args) {
System.out.print("Hello!");
}

This simple
Java program outputs
the greeting »Hello!« on
the screen. The text of the
program »class Hello ..«
is called source code.

}

Figure 1.1: Robert from the machine world is the expert for machine programs.

4 1 Programming Basics

The students of the programming course think that there are a lot of instructions for such a
simple program. Anna would like to know from Professor Roth whether it could be simpler:

Why do
computers have to be
programmed in such a complicated
way? Why can't you just tell
them what you want, like

Alexa and Siri?

Figure 1.2: Is it really still appropriate today to type in programs?

»Even Alexa, Cortana and Siri«, says Professor Roth, »are just computer programs.« These
programs were developed so that humans can control computers via speech. But Alexa
& Co. can only do the few tasks for which they were specially programmed. If you want
the computer to perform other tasks, such as word processing, you have to write a special
program for it. These programs can be developed in Java, for example.

B 1.2 The Language of the Machine World

When we speak of computers today, we always mean digital computers. These machines
understand only their digital machine language. Digital means that the computer uses
binary code for all information. Therefore, the computer’s machine language consists only
of a sequence of zeros and ones.

However, the computer’s machine language, with its sequences of zeros and ones, is ex-
tremely difficult for humans to understand. To program computers directly in machine
code would therefore be completely absurd. It would take a very long time and the proba-
bility of errors would be high.

If you want to program the computer close to the machine, you use an auxiliary language.
This auxiliary language is called assembler language or assembler for short. Professor Roth
presents a simple example to his programming class. Like the Java program before, it sim-
ply outputs the character string »Hello!« on the screen (Figure 1.3).

Professor Roth’s programming course finds the assembly language program quite difficult
to understand. How could only programmers learn such a terrible language? The answer
is simple, because, in the early days of computers there were no high-level languages like

1.3 High-Level Programming Languages

Java. Programmers had to pay close attention to the computer’s processors when they pro-
grammed the machine in assembly language.

org 100h
start:
An assembler mov dx,hallo
program is specific mov ah,09h

to the hardware of a computer.\ int 21h
It is therefore difficult to transfer] mov al, 0
from one type of computer mov ah,4Ch
to another. int 21h

section .data
hallo: db 'Hello!', 13, 10, 'S’

Figure 1.3: This assembler program also outputs »Hello!«.

Assembler programs are much longer compared to functionally equivalent Java programs.
They consist of many small-part commands which, taken alone, do little. Therefore, one
needs many of these commands to write a larger program. This program is written specifi-
cally for one type of computer. It is difficult to transfer to another type of computer.

Besides the high cost of developing such programs, a major disadvantage of the assembly
language is that it is difficult to transfer from one type of computer to another. However,
the small-part instructions do not have only disadvantages. They have the advantage that
a good programmer can use them to create very lean and fast machine programs. They
also often require far less main memory than comparable programs written in a high-level
language.

B 1.3 High-Level Programming Languages

It seems to be somehow bewitched: Computers only understand their specific machine
language. We, on the other hand, without special programming training, understand only

5

(3 1 Programming Basics

our native language and maybe one or two foreign languages. How can we bridge this huge
gap between the machine world and the human world?

We can either develop even more powerful programs like Alexa, Cortana and Siri, so that
the computers execute everything we want. Or we can learn the computer’s language if we
want to develop special programs for tasks that Alexa & Co. can’'t do — no, those aren't the
only options, because there is, fortunately, a third way.

Programming a complex program in assembler is no longer up-to-date. That's why people
started very early to develop programming languages like Java. These languages form a
bridge between the (for most humans) difficult to understand machine language and the
(for most machines) difficult to understand human language. These languages are called
high-level programming languages or high-level languages for short.

I am so
glad that there are
high-level programming
languages ...

010101001101110
000111110101101110111
1111001110100001110
0011101010111011

Figure 1.4: High-level programming languages are mediators between humans and machines.

High-level programming languages are much easier for a human to learn and understand
than the language of the machine world. But how does it work? How do you translate a
high-level language into the language of the machine world? For this purpose, a trick has
been thought of. This trick is a special program that translates the source code of a high-
level language like Java into the language of the machine world. This program is called a
compiler and is part of a development environment.

1.4 Development Environment

B 1.4 Development Environment

1.4.1 Compiler

The compiler is one of the core components of a development environment like Eclipse. It
transfers the source code of a Java program into the language of the machine world. The
source code is the text that was seen in figures 1.1 and 1.3.

1.4.2 Editor

In the editor you enter the source code of a program as in a word processor. An editor also
provides program development support, such as advice on how to fix the errors that are
displayed.

Menus @ Eclipse File Edit Source Refactor Navigate Search Project Run Window Help
[XN) - | _Basics - java - Eclipse IDE
Toolbar 4 %0 @ Qw6 i@ 9+ -1 CP e Qi@
[% Package Explorer 53 = B [J] Hellojava 5% = B g outline 52 = 5
= 1 a s .
) % & 3 public class Hello € éz ‘eﬁ‘ &R
v EHello : 3= public static void main(String[] args) [v O, Helo
> m\ JRE System Library [JavaSE- 4 System.out.print(“Hello!"); @ ° main(String[]) :
H v @Bsrc 5
Project 3 (default package) 6}
Management | 7 Bl
Editor with
source code
[0 Problems @ Javadoc [Declaration‘ B console 53 ‘ = |
X% HEREE = -0
i Hello [Java Application] /Library/JavalJavaVi i 13.0.2 infiava (12.0
Hello!|
Console
Mo
DI 7O

Figure 1.5: Editor, compiler and project management of the Eclipse development environment.

1.4.3 Project Management

Java programs usually consist of a large number of files. So that you do not lose the
overview, the Java development environment has a project management. It shows which
files belong to a project.

7

8 1 Programming Basics

B 1.5 Runtime Environment

Java programs require a special runtime environment. In other words: Java programs only
run with an additional program on your computer. You don't notice this at first, because the
Eclipse development environment calls this runtime environment in the background when
you run a Java program. To understand what this runtime environment is all about, turn to
the next chapter. It shows you how Java has evolved and why a Java runtime environment
is necessary at all.

B 1.6 Summary

Programming means writing computer programs. Computer programs consist of one or
more commands in a programming language. These commands are written in the form of
a text. In programming, this text is called source code. Computers expect the commands
in machine language. We, on the other hand, speak in our human language. To bridge this
gap, computer scientists have developed high-level languages. Java is one of these high-
level languages.

Computer
programs consist
of one or more commands.
You can program these commands
conveniently in Java — instead
of in the difficult to understand
machine language.

class JavaProgram {
public static void main(String[] args) {
System.out.print("My name is Robert!");
}
}

Figure 1.6: Computer programs consist of commands of a programming language.

To translate a high-level language program into machine language so that the computer
can execute it, you need an additional program. This translation program is called a com-
piler. The compiler is part of the development environment. This consists (among other
things) still of an editor and project management. With the help of the editor, you write the
source code of a program. The project administration administers the different files, which
belong to a project.

1.7 Literature 9

M 1.7 Literature

Bernhard Steppan: »A Brief History of Programming Languages«;
https://www.programmingcourse.net/articles/a_brief_history_of_programming_languages

B 1.8 Exercises

To deepen your knowledge, please go to https://www.programmingcourse.net/books/java._
with_eclipse/programming basics and work on the exercises listed there. There you will
also find the solutions to the exercises.

Technology Overview

B 2.1 Introduction

Java is more than a successful programming language. Java is a technology. This chapter
gives you an overview of the components of this technology and shows you what makes
Java stand out from other programming languages and technologies.

Java 18/19
Today, Java is

the most successful
programming language. The
development began over
20 years ago. In this chapter
you will learn what makes
Java special.

Figure 2.1: Anna gives you an overview of the Java technology.

12

2 Technology Overview

B 2.2 Overview

2.2.1 The Early Days of Java

The history of Java began when some programmers from the Californian company Sun Mi-
crosystems were asked to develop an object-oriented programming language called Oak
(Object Application Kernel) for programming household appliances in 1991. Household
appliances are mostly not very powerful. Therefore, Oak programs should be compact so
that they can run quickly. Since home appliances use different software and hardware,
Oak programs should be as easy as possible to transfer from one appliance to another. It
turned out that these requirements were also an ideal fit for implementing Internet pro-
grams. Without further ado, the Oak team was given the task of developing the first Internet
browser for Oak programs.

Java 1.1
504 classes

Oak Java 1.0 Java 1.2 Java 1.4
212 classes 1520 classes 2991 classes

Figure 2.2: The early days of Java.

About a year later, the new browser could display small programs (applets) on HTML pages.
It saw the light of day as »HotJava« with the programming language Java' in 1995. Java 1.0
followed in 1996 and was replaced by Java 1.1 in the same year. Java programs were still very
slow at that time. In addition, programming graphical user interfaces (GUIs) was difficult
at the beginning. This only ended with Java 1.2. This version brought a new GUI class
library called Swing. The increased performance of Java was also expressed in the size of
the Java class libraries. The number of classes increased explosively to over 1500 classes —
Java became a technology.

In 2000, Java 1.3 appeared with the so-called hotspot optimization. It translated frequently
used parts of a program (hotspots) directly into native machine code. This led to Java pro-
grams running significantly faster for the first time. The successor Java 1.4 brought some
language extensions and the introduction of Java Webstart. Java Webstart updates a Java
program automatically at program start, provided that updates are available for this pro-
gram.

1 Javais a slang expression for coffee. According to an anecdote, the team that developed Java named the new

programming language after a type of coffee.

2.2 Overview 13

2.2.2 The Growth Period of Java

With the successor Java 5, the extent of the class libraries did not increase as strongly as
with Java 1.4. The changes to the programming language had it however in itself: Java 5
was characterized by so many serious changes, as there were before only with Java 1.2. Sun
Microsystems has thoroughly improved the Java language with version 5. In addition, the
Java inventor introduced the product number - the leading one was omitted. Among other
things, the product number is supposed to indicate the maturity and stability of the Java
version. Internally, Java 5 continues to be referred to as version 1.5. Also all following Java
versions carry internally still the old version designations.

Java 6 in the year 2006 brought above all again a further improvement of the execution
speed. A further caesura was that Sun Microsystems split off the later OpenJDK from this
version (JDK = Java Development Kit).

Java 5 Java 7 Java 9 Java 11
3279 classes 4024 classes 6005 classes 4410 classes

Java 8 Java 10
4240 classes 6002 classes

Figure 2.3 The growth period of Java

In 2010 Oracle took over the Java inventor Sun Microsystems. This brought a lot of turmoil
to the Californian company, stalling the progress of Java development. It was not until the
summer of 2011 that the Java developers reported back with the new version 7. One of
the biggest innovations of this version was the integration of the GUI class library JavaFX.
Sun Microsystems introduced this class library earlier as an alternative to the GUI class
library Swing. The integration of the new library and other classes resulted in the number
of classes shipped with Java breaking the sound barrier of 4000 for the first time.

With Java 8 came further language improvements and the so-called LTS version. LTS stands
for »Long Term Support«. This is a version with support from the Java manufacturer for a
longer period of time. This is especially important for companies that use Java and need
support in case of errors for their business-critical Java programs. Another innovation in
Java 8 was the integration of a JavaScript Runtime Environment. This made it possible to
execute JavaScript directly in Java applications.

The successor Java 9 appeared with considerable delays in 2017. The reason was long-
lasting discussions about the new module system with the code name Jigsaw. The module
system should allow the same classes to be integrated in different versions in a Java appli-
cation. Java Webstart was marked as »obsolete« in this version. A class or function that was

14

2 Technology Overview

marked as »obsolete« could be removed from the Java base at any time. Otherwise, the size
of the class libraries increased again by over 1700 classes.

With Java 10 Oracle changed its Java course and began to »clean up« the Java class libraries
somewhat. In addition, Oracle began to publish two Java versions every year with version
10. With version 11, Oracle again offers a version with Long Term Support (LTS). The Java
manufacturer cleaned up the successor version Java 11 even more extensively. This had
the consequence that Applets, Java Webstart and unfortunately also the GUI library JavaFX
disappeared from the Java base. These huge changes to the last Java versions meant that
many companies did not introduce these newer Java versions.

2.2.3 The Presence And Future of Java

Java 12 brought among other things switch expressions as preview. They extend the previ-
ous switch statements and are a fixed part of the language from Java 14. Java 15 introduced,
among other things, so-called sealed classes and interfaces as a preview. Sealed classes and
interfaces restrict other class to implement or extend them.

Java 14/15 Java 18/19

Java 12/13 Java 16/17

Java 20/21
Under development

Expected in
2025

Java 24/25

Figure 2.4 The presence and future of Java

Java 16 brought a number of internal changes. This affected for example the source code of
the JDK, which is written in C++. With Java 16 it is allowed to use C++ 14 language features.
With Java 17, Oracle again offered a version with Long Term Support. Another important
innovation of this version was the support for Apple’s new computer architecture. For this
there is a so-called MacOS/AArch64 port of the JDK.

With Java 18, Oracle introduced UTF-8 as the default character set for the standard Java
APIs. At the time this book went to press, Java 19 had been released. With this version a
port of the JDK for Linux/RISC-V will be available. Another important innovation of this
Java version is virtual threads. They allow a programmer to develop systems that require
comparatively few resources from the operating system even under heavy load.

2.3 Why Java? 15

B 2.3 Why Java?

Java is one of the most successful programming technologies today: it is used at many
universities and companies. Many private users also program in Java. The reasons lie in
the features of the Java technology.

There are
a lot of positive features
associated with Java — this
is certainly one reason for the
great success of this
programming
technology.

Java {

e Easy to read
Object-oriented
Safe and robust
Very powerful
Universally usable
Free of charge
Open Source
Easily portable
Easily expandable
Easy to develop and test

e o o o o o o o

Figure 2.5: The features of Java technology.

2.3.1 Easy to Read

The simple syntax of Java has the advantage that you can learn the language comparatively
easily and read Java programs easily. The simple syntax also means that you can more
easily understand the structure and meaning of Java programs that you have not developed
yourself.

2.3.2 Object-Oriented

The fact that Java programs are easy to read is not only due to the syntax of the program-
ming language, but also because they are structured in an object-oriented way. Object ori-
entation is one of the most important reasons for the clear structure of Java programs. In
the chapter 3, »Object-Oriented Programming«, you will learn everything about the topic.

2.3.3 Safe And Robust

One of the most important features of the Java programming language is that it supports
the development of safe and robust programs. Java programs owe part of their robustness

16 2 Technology Overview

to their object orientation. To make Java programs run more stably than object-oriented
C++ programs, the developers of the Java language have removed error-prone C++ con-
structs. This has ensured that Java programs generally run much more safely and do not
crash very easily, as some poorly developed and tested C++ programs do.

2.3.4 Very Powerful

The Java programming language helps you develop programs that can meet the most de-
manding requirements for commercial applications. With such professionally developed
Java programs, thousands of users can work efficiently in parallel, safely and without inter-
ruption.

2.3.5 Universally Useable

There are programming languages specifically for scientists, others specifically for busi-
ness people. Some are designed specifically for programming graphical interfaces, others
specifically for database queries. Java is so successful because the language can be used
universally. The spectrum of Java begins with small programs for private use, continues
with tools such as the Eclipse development environment and extends to web applications
for large companies. Java can even be used for such exotic programs as controlling Lego
robots.

2.3.6 Free of Charge

Another advantage of Java is that the technology has been free of charge since its begin-
nings. Even professional Java programs can be developed for free.

2.3.7 Open Source

The Java inventor Sun Microsystems has made Java open as OpenJDK (JDK = Java Devel-
opment Kit). This means that the source code and thus the know-how of the JDK is public.
The technical term for this is open source. This ensures that the Java programming plat-
form can be transferred to other operating systems independently of a specific manufac-
turer. Java programs can therefore be run on (almost) any computer system.

2.3.8 Easily Portable

Forget if you have read or heard somewhere that Java is platform independent. The well-
known saying »Write once, run anywhere« is a nice fairy tale that Sun Microsystems came
up with to help Java succeed. Large sections of IT management, many specialist authors
and journalists still believe this story today.

2.3 Why Java? 17

The truth is: Java programs are comparatively easy to transfer (port) from one operating
system to another. This is because Java programs can rely on finding almost the same con-
ditions on other operating systems as on the operating system on which they were devel-
oped.

Table 2.1: Operating systems currently supported by Java (64 bit).

Operating system

Java 13 Linux x64, MacOS x64, Windows x64

Java 14 Linux x64, MacOS x64, Windows x64

Java 15 Linux AArch64, Linux x64, MacOS x64, Windows x64

Java 16 Linux AArch64, Linux x64, MacOS x64, Windows x64

Java 17 Linux AArch64, Linux x64, MacOS AArch64, MacOS x64, Windows x64
Java 18 Linux AArch64, Linux x64, MacOS AArch64, MacOS x64, Windows x64
Java 19 Linux AArch64, Linux x64, MacOS AArch64, MacOS x64, Windows x64

Java programs are extremely easy to port under two conditions: The first prerequisite is
that the developers of a Java program have not used any specialties of an operating system
that are not covered by Java. The second prerequisite is that a Java version suitable for the
program exists for the target operating system. The first requirement is very easy to fulfill.
The second prerequisite is usually given by the fact that Java is open source.

2.3.9 Easily Expandable

The term Java class library has come up several times before, without me explaining it in
more detail: Java class libraries are pre-built program parts that your program can easily
use. If you research on the Internet whether a certain problem is solved by a Java class
library, you will be amazed how large the offer is.

One of the reasons why Java is so successful is because of the variety of Java class libraries.
You do not have to develop all program parts yourself. Instead, you can draw from the pool
of prefabricated and proven solutions. And the best thing is: like Java, many of these class
libraries are open source and free of charge.

2.3.10 Easy to Develop And Test

In the early days of Java, developing Java programs was painstaking. There were simply no
professional development and testing tools. That has changed dramatically. Part of Java’s
success is certainly due to the fact that there are hardly any other programming languages
with as many professional development environments as Eclipse IDE or Intelli] IDEA. The
fact that many professional tools are also free of charge was another plus point for many
companies.

18 2 Technology Overview

B 2.4 What Belongs to Java?

On the previous pages the term "Java technology" was mentioned several times. I
wanted to make clear with it that Java is far more than only a programming language in
comparison with the predecessor languages C and C++. But what does Java technology
consist of? It provides a uniform basis for the development, execution and operation of
programs. Java technology is based on the pillars »Java Programming Language«, »Java
Virtual Machineg,

»Java Class Libraries« and »Java Development Tools« (Figure 2.6).
If Java is your first programming language, you may be confused by the many new terms
and abbreviations in this section. Be patient. You don’t need to memorize everything, be-

cause throughout the book the terms are repeated with many examples. And after the first
program examples, the meaning of the terms will become much clearer to you.

Figure 2.6: The Java technology rests on four pillars.

2.4.1 Java Programming Language

The Java programming language is the core of the Java technology. Like any programming
language, Java has a special syntax to write a program. The developers of the Java program-
ming language based their syntax on C++ to make the transition to Java easier. However,
some elements, which I will discuss in more detail later, were greatly improved, resulting
in the ease of reading and robustness of Java.

2.4.2 Java Virtual Machine

Java programs are not stored as executable files on Windows, for example. Therefore, you
(usually) need a virtual machine to run the Java program. Behind the mysterious name
»virtual machine« is a special program. This program executes Java programs. In the case
of Java, the program is called »Java Virtual Machine«. Since the term is so long, it is usually
abbreviated as Java VM or simply JVM.

2.4 What Belongs to Java?

This Java VM must be specially adapted for operating systems such as Windows, Linux or
MacOS. In other words, there is a special Java VM for Windows, one for Linux and one for
MacOS. This special Java VM is one of the prerequisites for easily transferring Java programs
from one operating system such as Windows to another such as Linux (Figure 2.7).

So if you take it very strictly, Java programs are not platform-independent at all, as often
claimed. On the contrary: they are platform-dependent. To be more precise: They are
dependent on the Java platform together with the Java VM contained therein. So that Java
programs can be transferred easily from one operating system to another, the Java inventor
Sun Microsystems resorted to a trick. He simply developed a Java platform for each desired
target operating system.

Java program

| | |

{
{
{

Windows Linux MacOS

Figure 2.7: Java programs run on various operating systems using the Java VM.

This Java platform protects each Java program from the special peculiarities of each op-
erating system. Now you may ask: Who develops this Java platform? In the early days
of Java, the Java inventor Sun Microsystems did it themselves. Since Sun Microsystems
was bought by Oracle, primarily Oracle takes care of these different Java ports. Since Java
is open source, the further development of Java is increasingly taken care of by the open
source community of programmers in addition to Oracle.

Only if a Java platform exists for a certain operating system environment, Java programs
can be executed on this environment. This is also the reason why you have to install Java
(and therefore a Java VM) on your computer operating system. Chapter 4, section 4.2.2,
»Install Java«, shows you exactly how to do this.

19

20 2 Technology Overview

2.4.3 Java Class Libraries

This term also came up several times before, without me explaining it in detail. Class
libraries are prefabricated programming parts consisting of Java classes. What the term
»class« means exactly, I will come back to later. Just this much at this point: class libraries
make programming easier for you, because you can fall back on prefabricated program
parts.

When you install Java, the most important Java class libraries are already included. These
libraries are therefore included in the Java standard. Together with the Java VM, the class
libraries form the Java runtime environment (Figure 2.8). Java runtime environment is ab-
breviated JRE.

Java

Java Development Kit (JDK)

Java Runtime Environment (TRE)

; e Java
ava Class Development
Java VM Libraries Tools

Figure 2.8: The Java Development Kit consists of tools and the runtime environment.

2.4.4 Java Development Tools

Java development tools form the fourth important pillar of the Java technology. The devel-
opment tools provided with Java can be used to compile Java programs so that they can be
executed by the Java Runtime Environment (JRE). In addition, there are other tools to test
and deliver programs. Together with the JRE, the development tools form the Java Devel-
opment Kit (JDK).

2.5 Java Versions 21

B 2.5 Java Versions

In the early days of Java, it took a relatively long time for a new Java version to be released
(section 2.2, »Overview«). Meanwhile, new Java versions are released every six months. At
the time this book went to press, Java 17 was just available, so this book is based on that Java
version. However, most of the information in this book also applies to older Java versions
back to Java 8 and — with high probability — to newer versions as well.

B 2.6 Java Editions

Java inventor Sun Microsystems originally released three editions of the Java platform. For
this book only the Java Standard Edition (Java SE) is important. For the sake of complete-
ness, however, I would like to present all three editions here in a comparative way.

2.6.1 Java Standard Edition

The simplest edition is the Java Standard Edition (Java SE or JSE). With this edition you can
develop simple Java programs as presented in this book. You can equate this edition with
the Java Development Kit (JDK) in a simplified way.

2.6.2 Java Enterprise Edition

Java Enterprise Edition (Java EE or JEE) is an extension of the Java Standard Edition. Java
creator Sun Microsystems released this edition to better support enterprise application de-
velopment using Java. JEE, however, is not a product like the JDK that can be downloaded
anywhere, but rather »just« a set of specifications from the Java inventor. Open source de-
velopers can use these specifications to program class libraries for enterprise applications.
Of course, you can download them again if you plan to develop such an application.

2.6.3 Java Micro Edition

This Java Micro Edition (Java ME or JME) has its roots in the origins of Java. As you may
recall, Java was intended to be developed to better program household appliances. Since
these devices are not very powerful, Sun Microsystems developed a particularly small edi-
tion of the Java programming platform. Since every smartphone today is so much more
powerful than the household appliances of that time, this edition has become more or less
obsolete.

22

2 Technology Overview

B 2.7 Summary

Java originated in 1995 as the Oak programming language for home appliances. The fol-
lowing year, 1996, Sun Microsystems released the first version of Java. Sun Microsystems
designed Java as a technology. This Java technology consists of the Java programming lan-
guage, the Java class libraries, the Java Runtime Environment (JRE) and the various devel-
opment tools.

Java is today one
of the most mature technologies
for software development. Java programs

are portable and very robust. For Java
there are also very many professional
tools for the software
development.

Java Programming Technology {

Java Programming Language
Java Class Libraries
Java Runtime Environment

L]
L]
L]
e Java Development Tools

Figure 2.9 Java programs are easily portable and very robust.

The Java Runtime Environment runs Java programs. It consists of the Java Virtual Machine
(JVM) and the Java class libraries. Each operating system requires its own runtime envi-
ronment. Java programs can be developed and tested with the Java development tools.
The Java Runtime Environment and the Java development tools together are called Java
Development Kit (JDK).

B 2.8 Literature

Bernhard Steppan: »Oracle Slims Down Java 11¢;
https://www.programmingcourse.net/publications/articles/oracle- slims-down-java- 11 Sup-
ported operating systems and processors: https://jdk.java.net/archive

B 2.9 Exercises

When you have finished this chapter, please go the exercises to deepen your knowledge:
https://lwww.programmingcourse.net/books/ java_with_eclipse/technology_overview
There you will also find the solutions to the exercises.

Object-Oriented
Programming

B 3.1 Introduction

Java is an object-oriented programming language. Therefore, it is important to understand
exactly how object-oriented programming works. This chapter is all about objects and
classes, attributes and methods, and how objects can be protected from encroachment by
other hostile objects. You'll also learn why object orientation came into being and what’s
so special about it.

Javais an
object-oriented language.
This chapter shows why object-
oriented programming came into being

and what is so special about it. You
will get to know classes and
objects as well as attributes
and methods.

Figure 3.1: Florian explains what is special about object-oriented programming.

24

3 Object-Oriented Programming

B 3.2 Overview

How did it all come about? It all started in the mid-60s of the 20th century. At that time,
there was a software crisis. It was triggered by the increased demands on computer pro-
grams. As a result, the software became more complex and more buggy. At congresses,
experts discussed the causes of the crisis and the reasons for the increased error rate.

A part of the software experts came to the conclusion that the software crisis could not be
mastered with the conventional programming languages. They criticized at the conven-
tional programming languages above all that the natural world could be represented so
far only inadequately. They therefore began to develop a generation of new programming
languages.

Alan Kay,
the inventor of the
programming language »Smalltalk«,
has set up these six basic features
for object-oriented
languages.

Object-Oriented Programming {
1. Everything is an object
2. Objects communicate by sending and
receiving messages

3. Objects have their own memory

4. Every object is an instance of a class

5. The class holds the shared behavior for
its instances

6. To eval a program list, control is passed
to the first object and the remainder is
treated as its message

Figure 3.2: Features of object-oriented languages.

The experts began to use natural terms from the form theory of classical Greek philoso-
phy for the new programming languages. They transformed these terms for programming
(Figure 3.2). Since everything revolved around the notion of object, they called the new
generation of languages »object-oriented«.

3.3 Object 25

B 3.3 Object

Objects are to a Java program what cells are to an organism: A Java program is composed
of these smallest units. If you look at a set of similar objects, you will notice that their basic
appearance is common. In object-oriented programming, such objects are often referred
to as instances of a class.

As an example again the programming course of professor Roth is to serve. Anna, Julia,
Lukas and Florian take part in the programming course. Let us first pick out only the stu-
dents Anna and Julia. Both students are objects with many similarities. For example, they
have in common that they are women, attend the same programming course and are en-
rolled at the same university.

| don't think
we look similar at all.

Properties (Attributes)

S Name e
<«—— Hair Color —
«—— Height —

/

Figure 3.3: The »objects« Anna and Julia are similar.

From the point of view of object-oriented programming, this means that these two objects
are similar. The differences between these objects result from the different value of their
attributes. For example, both female students have a different name and different hair color
as well as size (Figure 3.3).

Thus, similar objects have only their principle shape and certain capabilities in common.
Everything else is individual. The common shape and the common capabilities of objects
are determined by the building plan of the objects. This blueprint is called class in object-
oriented programming.

26

3 Object-Oriented Programming

B 3.4 Class

It is the class that shapes the principal form and capabilities of objects like the two female
students. A class relates to an object as the blueprint of a human being relates to a real
human being. The class gives an upper hand to different objects of the same kind. It is also
said that a class classifies its objects — hence the name.

Person

Name
Hair Color

Class Height

Student

Obje cts Properties (Attributes)

(Instances)
«— Name —

<«—— Hair Color —
« Height ——
<«—— Student ——>

/

Figure 3.4: The class »Person« provides the blueprint for the »objects« Anna and Julia.

3.4.1 Properties

Our new class Person should get the attributes name, hair color, height and additionally
student. Attributes are also called properties. You use these properties to specify the char-
acteristics of an object. When new person objects are created from this class, all instances
have an individual name, an individual hair color, an individual height, and an individual
value for the student property (Figure 3.4).

3.4 Class 27

Constants and Variables

For example, Annashould have the following properties: name = Anna, hair color = blonde,
height = 1.71 m. Her girl friend from the programming class is named Julia, has hair col-
or = brown, and is 1.72 m tall. Although both persons have been created according to the
same blueprint (class), two clearly individual objects have been created: Both have dif-
ferent names, have different hair color, and are both different heights. Some properties,
such as height, could be considered invariant, others more mutable. A special form of the
variable property of an object is its state.

States

Some properties of the two individuals have been assigned fixed values, while others have
been assigned variable values. Unlike the fixed properties, the flexible properties describe
the state of the object. For example, the student property describes whether a person is
currently enrolled at a university. The state of an object can change over time.

programmingcourse

Person

Identifier

(Special Constant) —_ | ekt el D

Name
Height Properties (Attributes)

State Hair Color
(Special Variable) — | Student

Figure 3.5: Constants, variables, states, and identifiers are properties of a class.

3.4.1.1 Identifier

What would happen if you created the objects Anna and Julia so that they had the same
size, the same hair color, and the same state student? How could they be distinguished
then? In this case, both objects have been given individual values for their attributes, but
they happen to be the same. Thus, objects in a program are also alike, like identical twins.

So in order to distinguish objects better, you need something like a genetic fingerprint. In
programming, the developer assigns a so-called identifier. This identifier is an additional
attribute for which care is taken that it is unique. Only the identifier of an object ensures
that the program can distinguish different copies even if their attributes happen to have
the same values.

