
books booksbooks

M
icroPython for M

icrocontrollers  •  G
ünter Spanner

Günter Spanner

MicroPython for 
Microcontrollers

Projects with Thonny-IDE, uPyCraft-IDE, and ESP32
Günter Spanner
The author has been active in the 
field of electronics development 
and technology management for 
various large corporations for over 
25 years.
In addition to his work as a 
lecturer, he has successfully 
published technical articles and 
books on the topics of electronics, 
microcontrollers, and sensor 
technology, as well as courses and 
learning packages.
Furthermore, he is known to a 
wide audience through acclaimed 
specialist lectures and webinars.

The “Python” programming language has enjoyed an enormous upswing in 
recent years. Not least, various single-board systems such as the Raspberry 
Pi have contributed to its popularity. But Python has also found widespread 
use in other fields, such as artificial intelligence (AI) or machine learning 
(ML). It is obvious, therefore, to use Python or the “MicroPython” variant 
for use in SoCs (Systems on Chip) as well.

Powerful controllers such as the ESP32 from Espressif Systems offer 
excellent performance as well as Wi-Fi and Bluetooth functionality at an 
affordable price. With these features, the Maker scene has been taken 
by storm. Compared to other controllers, the ESP32 has a significantly 
larger flash and SRAM memory, as well as a much higher CPU speed. 
Due to these characteristics, the chip is not only suitable for classic C 
applications, but also for programming with MicroPython.

This book introduces the application of modern one-chip systems. In 
addition to the technical background, the focus is on MicroPython itself. 
After the introduction to the language, the programming skills learned are 
immediately put into practice. The individual projects are suitable for use 
in the laboratory as well as for everyday applications. So, in addition to 
the actual learning effect, the focus is also on the joy of building complete 
and useful devices. By using laboratory breadboards, circuits of all kinds 
can be realized with little effort, turning the testing and debugging of the 
100% homebrew projects into an instructive pleasure.

The various applications, such as weather stations, digital voltmeters, 
ultrasound range finders, RFID card readers or function generators, make 
the projects presented ideally suited for practical courses or subject and 
study work in the natural sciences, or in science and technology classes.

Elektor International Media BV
www.elektor.com

MicroPython for 
Microcontrollers
Projects with Thonny-IDE,  
uPyCraft-IDE, and ESP32

ISBN 978-3-89576-436-3



MicroPython for Microcontrollers
Projects with Thonny-IDE, uPyCraft-IDE, and ESP32

●

Dr Günter Spanner



● 4

● This is an Elektor Publication. Elektor is the media brand of  
Elektor International Media B.V. 
PO Box 11, NL-6114-ZG  Susteren, The Netherlands 
Phone: +31 46 4389444

● All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or 
storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this 
publication, without the written permission of the copyright holder except in accordance with the provisions of the 
Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency 
Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to 
reproduce any part of the publication should be addressed to the publishers.

● Declaration
The Author and the Publisher have used their best efforts in ensuring the correctness of the information contained 
in this book. They do not assume, and hereby disclaim, any liability to any party for any loss or damage caused by 
errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other 
cause.

● British Library Cataloguing in Publication Data 
A catalogue record for this book is available from the British Library

●  ISBN 978-3-89576-436-3 Print 
ISBN 978-3-89576-437-0 eBook 
ISBN 978-3-89576-438-7 ePub

●  © Copyright 2021: Elektor International Media B.V. 
Translation: Carmen Jacquemijns 
Editor: Jan Buiting 
Prepress Production: D-Vision, Julian van den Berg 

Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro 

engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops 

and delivers high-quality content - via a variety of media channels (including magazines, video, digital media, and social 

media) in several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

http://www.elektormagazine.com


 

● 5

Notices and Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Demo Programs Download Archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Chapter 1 • Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

1.1 Python, C, or Arduino? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2 • A Variety of ESP Boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

2.1 Commissioning and function test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 ESP32 on battery power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3 •  Programming and Development Environments . . . . . . . . . . . . . . . . . .19

3.1 Installing the uPyCraft IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 MicroPython for the ESP32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 "Hello World" for the controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 For professionals: Working with esptool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Thonny — a Python-IDE for beginners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Working with Thonny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Working with files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Troubleshooting tips for the Thonny IDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4 • First Steps in Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

4.1 Never without: Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 The Print() statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Indentations and blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 The hardware under control: digital inputs and outputs . . . . . . . . . . . . . . . . . . . . 45

4.5 Time control and sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Important values: variables and constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Numbers and types of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Converting number types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 Little Big Data: Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.10 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.11 With format, please: appealing text and data output . . . . . . . . . . . . . . . . . . . . . . 55

4.12 Characters in chains: strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5 • The Controller in Practical Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

5.1 LED flasher as alarm system simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Content



MicroPython for Microcontrollers

● 6

5.2 Useful in an emergency: automatic SOS signal . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 6 • Program Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

6.1 Conditions and loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Running lights and airport lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Electronic rainbow: RGB LED in use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 SOS compact-style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5 Trial and error: try and except . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Chapter 7 • Analogue-Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

7.1 Pulsewidth modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 For romantic evenings: heartbeat simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3 Light alarm clock for a relaxed wake-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.4 Mood-Light with multicolour LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.5 Clean and smooth: analogue values from the DAC. . . . . . . . . . . . . . . . . . . . . . . . 76

7.6 Output of time-dependent voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.7 For interesting curves: An arbitrary function generator . . . . . . . . . . . . . . . . . . . . 78

Chapter 8 • Interrupts and Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

8.1 Disruption wanted: Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.2 Automatic night light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.3 Masters of Time: Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.4 A multifunctional flashing light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 9 • Using Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

9.1 Acquisition of measurement and sensor values . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.2 Precise recording of voltages: a DIY voltmeter . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.3 Linearity correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.4 Linearization by limitation of the value range . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.5 Linearization of the ADC input by means of compensation polynomial . . . . . . . . . . 97

9.6 Voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.7 Cross-interferences: side effects in sensor technology . . . . . . . . . . . . . . . . . . . . 101

9.8 Touching permitted: capacitive touch sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.9 Well chilled or overheated: temperature sensors provide clarity . . . . . . . . . . . . . 105

9.10 Digital temperature recording for error-free data transmission . . . . . . . . . . . . . 108

9.11 The DS18×20 One-Wire sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



 

● 7

9.12 Data power: multi-sensor array with the DS18x20 thermal sensor. . . . . . . . . . . 110

9.13 In full view: optical sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.14 For film and photo professionals: electronic luxmeter . . . . . . . . . . . . . . . . . . . . 113

9.15 Electronic bats: distance measurement with ultrasound . . . . . . . . . . . . . . . . . . 115

9.16 No more dents and scratches: distance warning device for garages . . . . . . . . . . 119

9.17 Optimum indoor climate for flora and fauna . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.18 "Trust me ...": sensor comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.19 Air pressure and altitude measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.20 Detecting magnetic fields with the Hall sensor. . . . . . . . . . . . . . . . . . . . . . . . . 129

9.21 Alarm detectors monitor door and gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

Chapter 10 • Display Technology and Small-Size Screens . . . . . . . . . . . . . . . . . . .132

10.1 Graphical representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10.2 OLED display as data plotter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10.3 The exact time please: digital clock with OLED display . . . . . . . . . . . . . . . . . . . 140

10.4 Not just for athletes: a stopwatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.5 Just touch: stop watch with sensor keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.6 Great climate with the BME280 sensor! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chapter 11 • LED Matrices and Large Displays . . . . . . . . . . . . . . . . . . . . . . . . . . .150

11.1 LED matrix in action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

11.2 Running scripts and animated graphics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Chapter 12 •  Physical Computing: Servos Bring Movement into Play . . . . . . . . . .155

12.1 A servo tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

12.2 Mega-display servo thermometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Chapter 13 • RFID and Wireless Data Transmission . . . . . . . . . . . . . . . . . . . . . . .161

13.1 Reading cards and chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

13.2 Contactless and secure: RFID lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Chapter 14 •  MicroPython and the Internet of Things (IoT) . . . . . . . . . . . . . . . . .167

14.1 For modern detectives: a network scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

14.2 Connected but no cables: WLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

14.3 Switch and control with the web server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

14.4 The WLAN web server in action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

14.5 Reading out sensor data via WLAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Content



MicroPython for Microcontrollers

● 8

14.6 Recording environmental parameters: WLAN Thermo/Hygrometer. . . . . . . . . . . 179

Chapter 15 • Simple and Good: The MQTT Protocol . . . . . . . . . . . . . . . . . . . . . . . .183

15.1 MQTT via ThingSpeak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Chapter 16 •  Sending Data to the Internet via ThingSpeak . . . . . . . . . . . . . . . . .190

16.1 Rain or storm? Virtual weather station available worldwide . . . . . . . . . . . . . . . . 190

16.2 Graphical representation of data in ThingSpeak. . . . . . . . . . . . . . . . . . . . . . . . 194

16.3 Data for the smartphone with the ThingView app. . . . . . . . . . . . . . . . . . . . . . . 195

16.4 Against unwanted visitors: Optical room surveillance . . . . . . . . . . . . . . . . . . . . 196

Chapter 17 • Micropower Techniques and Sleep Modes . . . . . . . . . . . . . . . . . . . .199

17.1 Saving power protects the environment: low-power technologies . . . . . . . . . . . 199

17.2 Disabling unnecessary consumers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

17.3 Weather station with battery or solar operation . . . . . . . . . . . . . . . . . . . . . . . . 201

Chapter 18 • Bus Systems for Efficient Communication . . . . . . . . . . . . . . . . . . . .202

18.1 Basics and applications of the I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

18.2 The SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

18.3 The members of the SPI family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

18.4 Controlling SD and µSD cards via SPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Chapter 19 • Building Circuits with Components and Breadboards. . . . . . . . . . . .212

19.1 Breadboards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

19.2 Wire jumpers and jumper cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

19.3 Resistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

19.4 Light-emitting diodes (LEDs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

19.5 Capacitors and electrolytic capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Chapter 20 • Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

Chapter 21 • Hardware Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220

Chapter 22 • List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221

Chapter 23 • Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226



● 9

Notices and Disclaimers

Notices and Disclaimers

1. The circuits in this book are for educational purposes only.

2. The circuits in this book may only be operated with batteries and/or tested, dou-
ble insulated safety power supplies. Insulation faults of a simple power supply 
unit can lead to life-threatening voltages on non-insulated components.

3. Powerful LEDs can cause eye damage. Never look directly into an LED!

4. Neither the Author or the Publisher accept any liability for damage resulting from 
the construction of the described projects, or attempts to do so.

5. Electronic circuits can emit electromagnetic interference radiation. Since neither 
the Publisher or the Author have any influence on the user's skills in assembling, 
operating, and controlling electronic circuits, the user alone is responsible for 
compliance with the relevant emission limit values.



MicroPython for Microcontrollers

● 10

Demo Programs Download Archive

The demo programs mentioned in this book can downloaded free of charge as a single ar-
chive file (.zip) from the book resources web page:

www.elektor.com/micropython-for-microcontrollers

If a program from the download archive file appears to differ from the version described in 
the book, the downloaded version should be used as it may reflect updates made by the 
author since printing the book.

http://www.elektor.com/micropython-for-microcontrollers


● 11

Chapter 1 • Introduction

Chapter 1 • Introduction

The introduction of the ESP32 chip from Espressif Systems marks a new generation of 
microcontrollers, which offer excellent performance, Wi-Fi, and Bluetooth functionality at 
an unrivalled price. These features have taken the maker scene by storm. The most diverse 
applications and projects in the areas of Internet of Things (IoT) and home automation can 
be implemented easily and cost-effectively. The ESP32 is as easy to program as the classic 
Arduino boards. In comparison, however, the ESP32 also offers, among other things:

• Larger flash and SRAM memory
• Much higher CPU speed
• Integrated Wi-Fi / WLAN
• Bluetooth functionality
• More GPIO pins
• Extensive interface functionality
• Analogue/digital converter with higher resolution
• Digital/analogue converter
• Security and encryption functions

For these reasons, it can be considered the most promising successor to Arduino. The term 
"Arduino killer" is often used in this context.

This book introduces the programming of modern single-chip systems (Systems on Chip — 
SoCs). In addition to the technical background, the focus is on the programming language 
Python, especially in its variant "MicroPython". Basic relationships between electronics and 
electrical engineering will only be dealt with to the extent that it is essential for the design of 
the circuits and experiments.

The "hardware" for getting started can be kept very simple anyway. At first, only a controller 
board and some light emitting diodes as well as suitable series resistors are required. The 
PC or laptop required for programming the chip should be available in every household. The 
appropriate programming environment can be downloaded free of charge from the internet. 
When working with a MicroPython programming environment, however, the first problems 
quickly arise. A good introduction can therefore lead to excellent performances.

Python has experienced an enormous upswing in recent years. Various single-board systems 
like the Raspberry Pi have especially contributed to its popularity. But Python has also found 
widespread use in other areas such as artificial intelligence or machine learning. Hence it 
is a logical choice to use Python or the variant MicroPython for the application in SoCs, too.

However, we will not restrict ourselves to a mere introduction to the programming lan-
guage. In many cases, the learned programming skills are put into practice together 
with electronic circuitry. The fully described projects are all suitable for use in laborato-
ries or in everyday life. In addition to the educational effect, the pleasure of assembling 
complete and useful devices is therefore also in the foreground. Through the use of lab-
oratory plug-in boards, circuits of all kinds can be realised with little effort. The testing 



MicroPython for Microcontrollers

● 12

and trial of applications thus becomes an educational pleasure.

Due to the various applications such as weather stations, digital voltmeters and function 
generators, the presented projects are also ideally suited for internships or study courses in 
the natural sciences or in science and technology lessons.

1.1 Python, C, or Arduino?
For beginners, the Arduino programming environment is one of the easiest places to pro-
gram the ESP32. Behind this interface is the Arduino version of C, as well as C++. These 
two programming languages have been popular for years for the development of embedded 
systems. The Arduino version of C made it even easier to get started. In addition, one of the 
largest technology communities in the world developed for this purpose. With new libraries, 
software fixes and board support, problems could usually be solved quickly. However, the 
restriction that Arduino-C only works in its designated environment is not insignificant. Es-
pecially for the development of more extensive projects, useful and important functions are 
missing. Therefore, Arduino-C remained mostly limited to hobby and beginner projects.

MicroPython is relatively new. The user community is growing, and more and more platforms 
are supported. MicroPython is essentially a slim version of Python, one of the most popular 
programming languages in the world. Therefore, specific problems can be dealt with not only 
in MicroPython communities. In fact, general Python forums are increasingly contributing to 
solving MicroPython issues.

In addition to community support, MicroPython also has certain features that put it well 
above the class of the Arduino. One of these features is the so-called REPL function. REPL 
stands for "Read-Evaluate-Print Loop". This allows programs and code sections to be execut-
ed quickly. Compiling or uploading is not necessary. In this way, parts of a code can be tested 
quickly and efficiently during development.

MicroPython contains a very compact implementation of the Python interpreter. It requires 
only 256 KB flash memory and 16 KB RAM. Nevertheless the interpreter is designed for max-
imum compatibility with the standard Python. Syntax and language range correspond largely 
to Python version 3.4, so experienced Python programmers should be able to find their way 
around immediately. In addition, a few language elements beyond the standard are defined, 
which keep the memory requirements low and increase the execution speed.

1.2 Requirements
In order to work successfully with this book, the following requirements should be met:

• Secure handling of the Windows operating system;
• Basic knowledge of any programming language such as C, Java or similar;
• Basic knowledge in the field of electronics, especially in the area of "current — 

voltage — resistance" is assumed.

For specialized knowledge in the field of electronics, please refer to the extensive technical 
literature, especially from Elektor, through their books, magazines, and kits. The hardware 



● 13

Chapter 1 • Introduction

structure was deliberately kept simple, as the focus should be on programming with MicroPy-
thon. Nevertheless, different components and parts are required. Explanations can be found 
in the individual chapters in which the components are used first. In addition, the last sec-
tions of the book explain some basic components such as resistors or light emitting diodes. 
You can consult these if there are any unclarities concerning individual components.

Further requirements are

• a PC or laptop with USB interface,
• the Windows 10 operating system,
• internet access.

It is also useful to employ an active USB hub between the computer and the controller. This 
has the advantage that it guarantees a certain protection for the PC. The hub should have 
its own 5 V power supply through a separate power supply unit. Then the PC or laptop is best 
protected against short-circuits behind the hub, as it is very unlikely that a short circuit will 
"blow through" an active hub to the USB port of the computer.



MicroPython for Microcontrollers

● 14

Chapter 2 • A Variety of ESP Boards

The ESP32 is a modern and extremely powerful microcontroller. In addition to a high clock 
frequency and the extensive internal functional units, the chip has integrated Wi-Fi and 
Bluetooth. The controller was developed by Espressif Systems, a Chinese company based 
in Shanghai, and is enjoying increasing popularity. The performance features of the ESP far 
exceed the well-known Arduino boards in terms of price and performance.

As the ESP32 is only available as an SMD chip, a so-called break-out board (BoB) or devel-
opment board is required if the controller is to be used in a non-professional environment. 
In the meantime, a virtually unmanageable variety of different versions is available on the 
market. The best-known versions are:

Board   Pins   Buttons  LiPo Charger

ESP32-PICO-KIT 34 EN and BOOT no

JOY-iT NodeMCU 30 EN and BOOT no

ESP32 DEV KIT DOIT 30/36 EN and BOOT no

Adafruit HUZZAH32 28 RESET yes

ESP32 Thing 40 EN and BOOT yes

LOLIN32 40 EN and BOOT no

Node-ESP-Board 38 EN and BOOT no

The following image shows just three different versions:

Figure 2.1: ESP32 boards (PICO-KIT, Node-ESP and NodeMCU).

These boards have the necessary prerequisites to operate the ESP controller on a solderless 
plug-in board or breadboard. Frequently, in addition to the controller, other components 
such as pushbuttons, a Li-ion battery charger, or various LEDs are mounted on the boards 



● 15

Chapter 2 • A Variety of ESP Boards

available. This means that initial tests and experiments can be carried out without external 
circuitry.

The following section summarizes the most important data about ESP32. The overview 
should only provide a first impression. A deeper understanding of the individual features 
and functions is then provided in the relevant sections in the book.

Processor:  160 / 240 MHz Tensilica LX6 dual-core microprocessor 
Memory:  520 KByte SRAM / 16 MByte Flash memory
Power supply:  2.2 V to 3.6 V
Power consumption: Standard: approx. 50 - 70 mA
   Wi-Fi mode: approx. 80 - 170 mA
   Deep sleep mode: approx. 2.5 µA
Ambient temperature: –40 °C to +125 °C
Inputs/Outputs (GPIOs):  32 general purpose ports with PWM 

Function and timer logic
Wi-Fi:   802.11 b/g/n/e/i
Network throughput: 135 MBit/s (via UDP protocol)
Receiver sensitivity: –98 dBm
Bluetooth:  V4.2 BR/EDR and BLE
Bluetooth functionality: Classic and Bluetooth Low Energy (with integrated antenna)
Sensors:   Hall sensor 

10× capacitive touch sensor
Interfaces:   3× UART with flow control via hardware 3x SPI interfaces 

CAN bus 2.0 controller 
2× I2S and 2xI2C interfaces 
18 analogue inputs with 12-bit analogue-to-digital converters 
2 analogue outputs with 10-bit digital-to-analogue converters 
Infrared (IR) (TX/RX) 
Motor PWM 
LED-PWM with up to 16 channels 
Interface for external SPI flash memory for up to 16 MB 
SD card hardware

Security:   Wi-Fi: WFA, WPA/WPA2 and WAPI Secure Boot 
Flash Encryption 
Cryptographic Hardware Acceleration Elliptic Curve Cryptogra-
phy (ECC) 
Random Number Generator (RNG)

The ESP32-PICO-KIT is usually employed for the application examples in this book. Alter-
natively the ESP32 DEV KIT or another board can be used. The variant used is mentioned 
explicitly in each case. In principle, however, the various boards are largely compatible. They 
differ mainly in size and in pin arrangement order. Figure 2.2. shows the PICO-KIT with its 
functional units and connections.



MicroPython for Microcontrollers

● 16

Figure 2.2: ESP32 PICO-KIT board.

The breakout boards are best suited as experimental and development boards. Via the port 
connections, electronic components such as LEDs, temperature sensors or even smaller ac-
tuators such as R/C model servos can be connected directly. The Pico Kit board has the fol-
lowing features, among others:

• ESP controller with two 32-bit cores
• Fast Wi-Fi and WLAN interface (up to 150 MBit/s)
• ADC & DAC functionality
• Touch Sensor Unit
• Host Controller for SD/SDIO/MMC
• SDIO/SPI Controller
• EMAC and PWM unit for controlling LEDs and motors
• UART, SPI, I²C and I²S interfaces
• Infrared remote-control controller
• GPIO Interface
• Bluetooth/Bluetooth LE (4.2)
• USB-to-Serial-Chip for access via USB interface

2.1 Commissioning and function test
As soon as a board is available, it should be subjected to an initial functional test. For this 
purpose, a USB cable is connected to a PC or laptop and the micro-USB socket of the board. 
If present, a USB hub should already be connected in between.

On most boards, an LED will light up when connected to a powered USB port. If, contrary to 
expectations, this so-called "power-on" LED does not light up, the USB connection should be 
disconnected immediately. In this way you can prevent a possible short circuit from causing 
major damage. For further troubleshooting, helpful hints are given in the corresponding 
chapter at the end of the book.

ESP boards should always be operated in a solderless plug-in board (see Figure 2.3). How-
ever, if you do work without a breadboard, make sure that the base used is not conductive, 



● 17

otherwise short circuits between the pins may occur. Next to the ESP board itself, this can 
even destroy the USB port of the PC.

Figure 2.3: ESP board plugged into a breadboard.

2.2 ESP32 on battery power
In most cases, an ESP board is supplied with power via the Micro-USB socket. Since the con-
troller is connected to a PC or laptop during program creation anyway, no additional power 
supply is required.

If a direct data exchange with the PC is no longer necessary, the board can also be supplied 
by a USB power supply. This should be able to supply at least 1,000 mA (1 A; 1 amp) of 
current output to avoid unwanted voltage drops. In addition, there is a certain amount of 
reserve power to operate some LEDs, displays or sensors.

Even without a USB connection, the board can send and receive data via Wi-Fi and Blue-
tooth. In order to achieve complete independence from power and data cables, the module 
then only needs to be powered by (rechargeable) batteries.

Some boards have a Lithium-Ion (Li-Ion) battery connector for this purpose (see Figure 2.4). 
There, suitable cells can be connected directly via the standard plug. An internal voltage 
regulation then ensures that the controllers are optimally supplied. In addition, a connected 
battery is charged as soon as the board is connected to a live USB socket.

For this application, cells with a capacity of about 1,500 mAh or more are suitable. Smaller 
batteries below 300 mAh should not be used, as they could be overcharged by the integrated 
charge controller.

With a typical power consumption of approx. 50 mA, the 1,500 mAh variant can achieve an 
operating time of around 30 hours, i.e. just over a day. When using the controller's sleep 
functions, even considerably longer operating times can be achieved.

 

Chapter 2 • A Variety of ESP Boards



MicroPython for Microcontrollers

● 18

Single cell LiPo (Lithium Polymer) or Lithium-Ion batteries provide sufficient power for the 
ESP32. However, their voltage of 3.7 to 4.2 V, depending on the state of charge, is too high 
for the ESP32. It is therefore regulated down via an internal module.

As working with Li-ion batteries is always associated with a certain degree of danger, the 
following information should not be omitted:

• Lithium-Ion batteries react sensitively to incorrect charging currents or voltag-
es. Under certain circumstances there is even a risk of fire or explosion.

• Each user is responsible for their own construction and operation of the project.
• Neither the Publisher nor the Author assumes any liability.

Figure 2.4: NodeESP board in battery mode.

 



● 19

Chapter 3 •  Programming and Development  
Environments

Unlike the situation with, say, an Arduino system, there are several Integrated Developing 
Environments (IDEs) available for working with MicroPython. In principle, you can write pro-
grams with all IDEs and load them onto the controller. The two most widespread program-
ming environments are currently:

• µPyCraft
• Thonny

Both have their own specific advantages and disadvantages. The differences lie mainly in the 
different procedures for developing and managing program code for the application projects.

The first variant called µPyCraft offers a comparatively simple interface for MicroPython 
development on the ESP32 controller. It works with simple graphic elements and resembles 
text-oriented operating systems. The handling of the individual functions is easy to under-
stand and working with the different menus is easy to learn.

Thonny, on the other hand, has a fully graphical interface in Windows style. The IDE is very 
popular among makers, especially because it is available under the Raspbian operating sys-
tem on the Raspberry Pi. Many Raspberry Pi users are therefore already very familiar with 
Thonny.

The IDEs stand for the most important operating systems such as

• Windows PC
• Mac OS X
• Linux Ubuntu

which are available free of charge on the internet.

If problems occur during installation or use of either system, the other version can be used 
as an alternative programming system. The version to choose depends of course on the 
personal inclinations and habits of the user.

3.1 Installing the uPyCraft IDE
Before installing uPyCraft IDE, the latest version of Python 3.7.X should be installed on the 
computer you are using. If it is not, the installation can be done according to the following 
instructions:

1. Download the installation file from the Python download page at:  
 
    www.python.org/downloads

Chapter 3 • Programming and Development  Environments

http://www.python.org/downloads


MicroPython for Microcontrollers

● 20

2. After the download operation, a file named

python-3.7.X.exe

should reside on your computer. Double-clicking on the file starts the 
installation.

3. Select "Add Python 3.7 to PATH" and click the "Install Now" button.

4. The installation process is completed after a few seconds and the message 
"Setup was successful" is displayed. The window can then be closed.

Now the uPyCraft IDE for Windows can be downloaded from

https://github.com/DFRobot/uPyCraft

as a file called uPyCraft_V1.x.exe. After clicking on this .exe file, the uPyCraft-IDE will open:

Figure 3.1: uPyCraft-IDE

After the IDE is installed on the computer, the ESP32 firmware can be loaded onto the chip. 
The current version of the MicroPython firmware for the ESP32 can be found at

http://micropython.org/download#esp32

There you scroll to the section "ESP32 modules". After clicking the link to "Generic ESP32 
module" you will get to the download page of the ESP32-BIN file. This will look as follows:

esp32-idf3-20191220-v1.12.bin

Now you can start the uPyCraft-IDE. Under

Tools -> Serial

https://github.com/DFRobot/uPyCraft


● 21

select the ESP32-COM port, here as COM5:

Figure 3.2: Selecting the port.

If the ESP32 board is connected to the computer but the ESP32 port does not appear in the 
uPyCraft IDE, the appropriate USB driver may be missing. In this case, the driver must be 
reinstalled. A corresponding driver can be found under

https://www.silabs.com/products/development-tools/software/usb-to-uart-
bridge-vcp-drivers

Afterwards you can follow

Tools -> Board

Next, the option "esp32" must be selected:

Figure 3.3: Selecting the board type

Now the MycroPython interpreter can be written onto the ESP32 using

Extras -> Burn Firmware

 

Chapter 3 • Programming and Development Environments 

http://www.silabs.com/products/development-tools/software/usb-to-uart-


MicroPython for Microcontrollers

● 22

The appropriate options are:

• board: esp32
• burn_addr: 0x1000
• erase_flash: yes
• com: COMX (here COM5, see above)

Under "USERS", select the downloaded ESP32-BIN file, as shown in Figure 3.4.

Figure 3.4: The parameters for flashing the firmware

If all settings are correctly selected, the "BOOT / FLASH" button on the ESP32 board must 
be pressed on some board variants. As soon as the "EraseFlash" process begins, the key can 
be released. After a few seconds, the firmware should have flashed onto the ESP32 board. 
However, in many cases the download will start without pressing the buttons.

If the "EraseFlash" display does not start or an error message is displayed, repeat the steps 
described above. Also press the "BOOT / FLASH" key again to ensure that ESP32 enters the 
flash mode.

3.2 MicroPython for the ESP32
With a few exceptions, all features and functions of Python are also available in MicroPython. 
The biggest difference is that the micro version was designed for use on single-chip systems 
and therefore the classic routines required only for the PC are missing.

For this reason MicroPython does not contain the complete standard library, but only the 
parts relevant for microcontrollers. Therefore, all modules required for accessing the used 
hardware are available. With the corresponding libraries you can therefore easily access 
the GPIO pins. Especially for the ESP32 there are also modules available to support network 
connections (Wi-Fi) and Bluetooth. In particular, the following boards are supported:

• ESP32
• ESP8266
• PyBoard
• Teensy 3.X
• WiPy - Pycom



Chapter 3 • Programming and Development Environments 

● 23

Although not all functions of the ESP controller are fully available in MicroPython as of yet, 
the libraries contain the most important commands and routines. Therefore many projects 
and applications can be implemented smoothly. In addition, the implementation of the miss-
ing features is progressing rapidly, so that even this small beauty flaw will be quickly elim-
inated.

Once the MicroPython firmware has been installed on the ESP32, you can also easily return 
to the Arduino IDE, for example. To do this, simply load the new C code with the IDE onto 
the controller. A special deletion procedure is not necessary. However, if you want to use 
MicroPython again afterwards, the MicroPython firmware must be flashed again.

3.3 "Hello World" for the controller
Unlike AVR controllers, such as those used in the Arduino system, the ESP32 can accommo-
date a complete file system. The first generations of controllers were programmed in either 
Assembler or C. The program code was therefore created and compiled in a development 
environment. Then only the finished "machine code" was transferred to the controller. The 
memory of the target system therefore always contained exactly one program.

In contrast, when programming in MicroPython, several programs can be stored on the 
ESP32 chip. These can then be processed directly by the interpreter that is also available on 
the system. The file system can be managed directly with the uPyCraft-IDE. It is therefore 
advisable to familiarise yourself with the IDE a little more closely before loading the first 
application program onto the ESP. The development environment contains, similar to many 
other programming tools, the following components (see also Figure 3.1)

1. Folders and files
2. Editor
3. MicroPython Shell / Terminal
4. Tools

In the left sub-window ("Folders and files"), the files currently stored on the ESP board are 
visible in the device folder ("device"). As soon as the board is connected to uPyCraft-IDE via a 
serial connection, all saved files will be loaded when opening the device folder. Directly after 
the installation of the Python interpreter only a "boot.py" file is visible here. To execute the 
application code, a main.py file should also be created. You can create a main.py file using:

file → new

This creates a new file ("untitled"). Through the floppy disk icon in the "Tools" window this 
file can be saved locally under the name "main.py" on the ESP chip.

 



MicroPython for Microcontrollers

● 24

Figure 3.5: Creating a new file "main.py".

The following two files are now in the device folder:
• boot.py: executed every time the board is rebooted
• main.py: main script for the application code

The SD folder follows under the device folder. This folder is intended for accessing files stored 
on an SD card. Some ESP-32 boards have an SD card slot. If a µSD card is inserted here, the 
files on the card appear in the "sd" folder.

The uPy_lib folder follows below. Here the integrated IDE library files are shown. Here you 
can find different files directly after the installation of the MicroPython interpreter. These are 
provided as standard libraries.

Figure 3.6: Standard libraries in the uPy_lib folder.

The last folder contains the so-called "workSpace". This is a directory for saving application 
files. The files displayed here are stored on the computer connected via the interface. All 
active files should be stored there.

When uPycraft is used for the first time, it is therefore recommended that a suitable working 
directory called "workSpace" be created and then used consistently for working with the 
controller.

In the Editor area (2) the code for the .py application programs is created. The Editor opens 
a new tab for each file.


