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Chapter 1 • Why OpenSCAD?

Chapter 1 • Why OpenSCAD?
 
When you think of a 3D design program, you instinctively think of AutoCAD, Rhino, Google 
SketchUp, or - for the oldies - 3D Studio Max. There’s no question that great designs have 
been and will be created with all these products.
 
But there is no question that designers and coders have radically different thinking process-
es - the best proof for this is the definition of the Coder Colors shown in figure one, which 
stands for such an ugly color scheme that it can only come from the brain of a software 
developer.

 
Figure 1-1. The definition of the (now somewhat forgotten) term Coder Colors is not very 

charming. (Picture source: http://www.pouet.net/topic.php?which=5540&page=1)
 
Funnily enough, the engineering way of thinking is not exclusively found among computer 
scientists. The author works as a technical consultant for the American fashion company Icy 
Beats LLC (see http://www.bopsync.com/), and had a similar experience with the owner. 
The lady is an excellent and experienced fashion designer but doesn’t get along with 3-D 
modeling software any more than the author does.
 
The reason for this is that both the fashion designer and the engineer "work with their 
hands" and therefore naturally think in hand movements and hand actions.
 
OpenSCAD differs from the systems mentioned in the introduction in that it uses a "step-
by-step" approach. Since a picture often says more than 1000 words, figure two shows a 
"cut out" cuboid next to the source code intended for its generation. Please do not analyze 
the subtleties of the code at this point - the only important thing to note is that the cuboid 
is created by "subtracting" two cuboids.

http://www.pouet.net/topic.php?which=5540&page=1
http://www.bopsync.com/
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Figure 1-2. A picture is worth a thousand words.

 
In addition to the engineer-friendly approach, OpenSCAD benefits from the fact that the 
language implements a kind of object orientation. The best examples of this are shown 
in figures three, four, and five – they show real parts of the underground habitat of yours 
truly.
 
The bottom part of the "brackets" holding the dispenser in place was taken from identical 
code. The only difference between the two parts was that they were parameterized differ-
ently – OpenSCAD took care of generating the rest.

 
Figure 1-3. No bunker is complete if its users lack soap and lotion dispensers.
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Figure 1-4. Naturally, this also applies to the bathroom.

 
Figure 1-5. ...sadly, black and white dispensers were only available in different sizes.

 
If you always wanted to design "engineering" parts, you will find OpenSCAD a great mod-
eling system. This textbook will introduce you to the basics and advanced application sce-
narios. I will focus on the actual work with OpenSCAD, and peripherally on interacting with 
3D printers. I explicitly do not want to give an introduction to "mechanical engineering - if 
you are looking for that, find a list of books on different competence levels in the appendix.
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1.1 What do we need?
The author demands little from the esteemed reader - spatial awareness is helpful. Safe 
handling of a caliper gauge is recommended; those who are familiar with a cordless screw-
driver and/or a drilling station also have an easier life. Knowledge of electronics is explicitly 
not required!
 
From a technical point of view, we do not need much either. OpenSCAD is not demanding, 
the program works on slow and fast computers. The author illustrates how to set up the 
program under Windows and Linux; under MacOS, analogous work can be done.
If you don’t want to go through the effort of compiling the program yourself, older versions 
are available as ready-made packages.
 
If you buy a workstation explicitly for OpenSCAD, pay attention to extremely high sin-
gle-thread performance. Figure 1-6 shows that the majority of the author’s eight-core 
workstation is bored when working with OpenSCAD, while one core is under full steam.

 
Figure 1-6. OpenSCAD no speak parallelisation.

So back to the human factors: OpenSCAD is a programming language. The author of these 
lines assumes that you have worked with C, Java, Javascript, or Pascal - other languages, 
whether object-oriented or not, are also suitable.
 
Otherwise, all you need is a desire to design - the author asks you to at least "skim" the 
work as a whole to get a grip on the functions contained in OpenSCAD. Learning the syntax 
by heart is not very useful outside the academic world - there is no reason why you should 
not use templates, this book, and the cheat sheet (https://www.openscad.org/cheatsheet/) 
when working with OpenSCAD.

https://www.openscad.org/cheatsheet/
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If you can do one, it’s easier to learn another
Experience has shown that a person who is familiar with a programming language can 
familiarize himself with (most) others relatively quickly. The author can also confirm this 
from his life experience - he started his career with Pascal, then learned C on the side 
and has had no major problems with more exotic languages like Python.

 
If you find yourself confronted with an older version of OpenSCAD, the situation is not too 
bad. The OpenSCAD developer team was close to a political party that will certainly not be 
given significant governmental responsibility in Austria for the next ten years and therefore 
does not have a great deal of money to distribute. As a result - logically, but also somehow, 
fortunately - a very slow development of the language means that the ecosystem is stable.
Harder wars are fought over the question of which 3D printer is suited to the needs of a 
company or individual. The author of these lines uses two Renkforce RF100 V2 - a small, 
compact, ready-made device that can be purchased from Conrad for about 175 euros - 
which (especially with retrofitted component cooling, see the author’s YouTube channel) 
works well and produces parts up to 12 × 12 × 12 cm in size.
 
If you have another 3D printer and can handle it with confidence, this is no obstacle. We 
conduct our experiments with CURA because the author always uses CURA. If you use a 
different slicer and can already handle it, this is not a problem.
 
If you don’t have a 3D printer and you can’t find the space (and maintenance time) for 
such a hangar queen, use the services of model joineries instead. Almost every shop which 
sells 3D printers accepts print orders and - assuming a friendly approach - is very happy to 
perform "mercenary printing services" for paying customers.

1.2 Who am I?
Many moons ago, yours truly took to electrical engineering as a way to improve his life. 
Since then, technical progress gave rich gifts – digital oscilloscopes and 32-bit processors 
were once unaffordable, but now can be bought even on a limited budget. Colour displays 
are now so inexpensive that yours truly‘s firm installs them in humidors (!!!) to the delight 
of all (see picture).
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Figure 1-7. A color display in the cigar box: accessible for everyone, thanks to HygroSage.

While advances in all areas of technology solved the electronics problem, the question of 
realizing custom "in-house" mechanical parts remained open - a wonderful control system 
for a drone is of no use, even in the presence of civil war and buyers, if you cannot build 
the actual drone based on it.
 
When the author was still on active duty, each part required a long and bumpy journey in a 
ZAZ-965 Zaporizhzhets of the motor pool to talk to the model joinery. A small spar evolved 
into a task that demanded highly qualified technical personnel.
 
3D printers have meanwhile answered the "technical" part of this question - you can get 
admittedly small, but problem-free devices as mentioned in the introduction for less than 
200 Euro while in Germany. Imports from China can severely undercut this price.
 
Sadly, the question of the theoretical design part remained open even as 3D printers be-
came better and cheaper. If you are looking for a way to design mechanical parts, be it 
housings or brackets, you will find OpenSCAD convenient. Yours truly wouldn’t want to do 
without it anymore - whether furnishing his property, preparing proof of concepts for court 
hearings, or designing a replacement button for the beloved LeCroy oscilloscope of a French 
electronics engineer: OpenSCAD is a product that gives pleasure time and time again.
 
Enough talk: let’s now get going in this spirit! And may your designs - whether civil or mil-
itary - always work to your (and their end user's) utmost satisfaction.
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Given that you are still reading, yours truly is free to assume that you are sufficiently 
convinced of the benefits of OpenSCAD. To start our experiments, we need a version of the 
software.
 
OpenSCAD is open source like many other "novel" engineering programs. This means that 
you can view the product’s source code and correct any errors found yourself. On the other 
hand, however, this also means that there are several ways to get our hands onto a run-
nable binary.
 
This chapter looks at the deployment under Windows and Linux. For those who want to 
work under macOS, there are various instructions on the Internet about both compilation 
and use of provided packages.

2.1 Installing OpenSCAD: Linux, compiled package
Anyone who has spent some time with Linux will certainly know commands like apt-get. 
They query "package source servers" for a package, and proceed to download and install 
it afterwards.
 
Since most distributors perform extensive checks on the packages listed in their package 
sources, the packages contained there are often not particularly up-to-date - in the case 
of Ubuntu, for example, the server will provide you with an OpenSCAD version dated from 
2015. Quarrels between the OpenSCAD and Ubuntu teams ensure that some releases of 
Ubuntu have to make do without precompiled binaries.
 
If you want to work with a reasonably up-to-date OpenSCAD, the first step is to visit the 
URL https://www.openscad.org/downloads.html. There, scroll down to the Other Linux sec-
tion. Then click on the link shown in figure one to download a file of about 35 MB.

 

https://www.openscad.org/downloads.html
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Figure 2-1. This link leads to happiness.

Please note that "finished" OpenSCAD packages for Linux are only available for 64-bit ver-
sions of the operating system. If you absolutely must or want to work with a 32-bit system, 
you have to do a manual compilation as discussed below.
 
AppImage files are a "new type of" packaging program which packages Linux applications 
and the libraries belonging to them. OpenSCAD is started by entering the following two 
commands:

 
tamhan@TAMHAN18:~/Downloads$ chmod +x OpenSCAD-2019.05-x86_64.AppImage
tamhan@TAMHAN18:~/Downloads$ sudo ./OpenSCAD-2019.05-x86_64.AppImage
QStandardPaths: XDG_RUNTIME_DIR not set, defaulting to ‘/tmp/runtime-root’
. . .

 
The first call adds the executable attribute to the file, while the subsequent command in-
structs to start OpenSCAD. The program reacts by displaying the OpenSCAD start screen.
Depending on the distribution, there is the possibility of integrating the pre-built Open-
SCAD binary into the program starter - as yours truly prefers to work on the command line 
level and as distributions change permanently, please refer to the documentation of the 
respective system. Alternatively, you can also work through the compilation instructions 
discussed in the following step, which integrate OpenSCAD "completely" into your system.

2.2 Installing OpenSCAD: Linux, compilation.
OpenSCAD version 2019.05, which we downloaded as a finished package, was functional, 
but is not particularly up-to-date. If you compile OpenSCAD from source, you firstly get the 
latest version, and secondly can instruct the compiler to provide an experimental version 
of the OpenSCAD language. This lets you benefit from additional features that cannot be 
accessed "as is". Annoyingly, OpenSCAD consists of a whole group of components, which is 
why compilation requires a little work.
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The component zoo
If you always wanted to know which libraries work in the background of OpenSCAD, 
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Building_OpenSCAD_from_
Sources is a highly recommended source.

 
Like almost all other open-source projects of "larger" dimensions, OpenSCAD development 
is managed using the git version control system. Our first task is to make sure that git is 
installed on your workstation:

 
tamhan@TAMHAN18:~/Downloads$ sudo apt-get install git

The next step makes the git utility download the latest version of the source code from the 
repository. Don’t be surprised that the author enters this command in the home directory - 
virtually all git repositories create a new directory during the download process:

 
tamhan@TAMHAN18:~$ cd ~/
tamhan@TAMHAN18:~$ git clone https://github.com/openscad/openscad.git
Cloning into ‘openscad’...
. . .
Receiving objects: 100% (64355/64355), 62.52 MiB | 5.11 MiB/s, done.
Resolving deltas: 100% (45989/45989), done.

The command downloads the most recent version - this is "disadvantageous" in that during 
development, non-working or non-compilable versions are sometimes uploaded. In this 
case, it is recommendable to delete the created directory and then use the branch function 
to download one of the releases available at https://github.com/openscad/openscad/tree/
master/releases.
 
Be that as it may, the next step is to return to the OpenSCAD working directory:

 
tamhan@TAMHAN18:~$ cd openscad/

Git repositories have long been capable of mapping relationships between repositories – if a 
component is based on a library, the component developer can set up a symbolic link to the 
library‘s Git repository. This is disadvantageous for us in that the following two commands
must be entered within the OpenSCAD folder to provide a fully-fledged source code envi-
ronment:

 
tamhan@TAMHAN18:~/openscad$ git submodule init
Submodule ‘libraries/MCAD’ (https://github.com/openscad/MCAD.git) registered 
for path ‘libraries/MCAD’
tamhan@TAMHAN18:~/openscad$ git submodule update
. . .
Cloning into ‘/home/tamhan/openscad/libraries/MCAD’...
Submodule path ‘libraries/MCAD’: checked out 
‘a7be3d623669d635b7249a327cfce5796ea200b3’
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The explicit reference to the nested relationships in git repositories is important because 
git refuseniks like to use the download button shown in Figure 2-2. Unfortunately, its use 
is not appropriate because the archive it provides does not include the linked repositories.

 
Figure 2-2. Git Refugees, beware: this button promises disaster.

The next step provides additional dependencies:
 
tamhan@TAMHAN18:~/openscad$ sudo ./scripts/uni-get-dependencies.sh
. . .
Use ‘sudo apt autoremove’ to remove them.
0 upgraded, 0 newly installed, 0 to remove and 5 not upgraded.
installed qt5-default to enable qmake

The OpenSCAD development team supports us with a script which automatically downloads 
the necessary elements using package managers and other tools on somewhat current 
releases of Ubuntu. If problems occur during this process, you can find help at https://
en.wikibooks.org/wiki/OpenSCAD_User_Manual/Building_on_Linux/UNIX#Installing_de-
pendencies.
 
At this point, a reboot of the system is recommended. Afterwards, the existence of the 
necessary prerequisites can be checked by the following command:

 
tamhan@TAMHAN18:~/openscad$ ./scripts/check-dependencies.sh

 

	
 

https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Building_on_Linux/UNIX#Installing_dependencies
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Building_on_Linux/UNIX#Installing_dependencies
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Building_on_Linux/UNIX#Installing_dependencies
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On the author’s workstation, its processing leads to the result shown in Figure 2-3.

 
Figure 2-3. The necessary dependencies are ready for compilation.

Be that as it may, the next step is to run the qmake command-line tool. Its task is to bring 
the source code into a structure that is "processable" by the compiler and provide various 
script files and other elements that the compiler will use during its work. If you wish to 
compile a "normal" version of OpenSCAD, the following input is sufficient:

 
tamhan@TAMHAN18:~/openscad$ qmake
Info: creating stash file /home/tamhan/openscad/.qmake.stash
Project MESSAGE: If you‘re building a development binary, consider adding 
CONFIG+=experimental
. . .
to the PKG_CONFIG_PATH environment variable
No package ‚lib3MF‘ found
Project MESSAGE: 3MF Import/Export disabled

Don‘t be surprised if the tool throws a group of status outputs during the processing of the 
qmake command, referring to the absence of various import/export libraries. Unless qmake 
throws a really serious error, everything will work fine.
 
If you compile OpenSCAD to take advantage of modern or experimental features, the call to 
qmake will look slightly different. In this case, you have to provide an additional attribute, 
which is added via the config command line parameter:

 
tamhan@TAMHAN18:~/openscad$ qmake CONFIG+=experimental
. . .

 
Be that as it may, we can instruct a compilation of our application at this point. Passing 
the -B parameter instructs make to eliminate all existing Makefiles. This is important if you 
switch between compiling a normal and an experimental version of OpenSCAD:
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tamhan@TAMHAN18:~/openscad$ make -B
. . .

Due to the considerable codebase, it is recommended to parallelise the actual compilation 
triggered by make as much as possible. To do this, you have to pass the parameter -j – 
when sitting on an eight-core workstation, enter the following command:

 
tamhan@TAMHAN18:~/openscad$ make -B -j 8
. . .
418 translated messages, 24 fuzzy translations, 7 untranslated messages.
itstool missing, won’t apply translations to openscad.appdata.xml
tamhan@TAMHAN18:~/openscad$

 
As shown in Figure 2-4, make sometimes throws errors during execution, indicating prob-
lems with the translation files. However, these are irrelevant to the functioning of Open-
SCAD.

 
BILD 2-4. The make run is quite communicative.

Why qmake and make?
OpenSCAD is based on the C++ cross-platform framework QT. It not only offers devel-
opers libraries and a GUI stack, but also extends the C++ language with functions such 
as a signal slot system.
 
To be able to process applications equipped with these attributes with the usual compiler 
of the operating system, an additional step is required. qmake takes care of building 
the Makefiles in a way that instructs Qt‘s helper infrastructure to be activated. After the 
qmake command has been processed, a Makefile is found in the project directory, which 
is responsible for the actual compilation using the operating system‘s compiler.

 
 


