
books booksbooks

Technical M
odeling w

ith O
penSC

A
D

 • Tam
 H

anna

Tam Hanna

Technical Modeling
with OpenSCAD

Create Models for 3D Printing, CNC Milling,
Process Communication and Documentation Tam Hanna has been

programming microcontrollers
and microprocessors systems for
over 15 years aimed at different
areas. Besides his consulting
activities he gives lectures
congresses, writes specialist
articles for various magazines
and tutors. His popular Instagram
channel supplies background
information on measurement
technology and electronics.

Engineers dread designing 3D models using traditional modeling software.
OpenSCAD takes a refreshing and completely different approach. Create
your models by arranging geometric solids in a JavaScript-like language,
and use them with your 3D printer, CNC mill, or process communication.

OpenSCAD differs from other design systems in that it uses programmatical
modeling. Your model is made up of primitives that are invoked using a C-,
Java- or Python-like language. This approach to model design is close to
the “mechanical work” done in the real world and appeals to engineers
and others who are not a member of the traditional creative class.

OpenSCAD also provides a wide variety of comfort functions that break the
1:1 relationship between code and geometry. This book demonstrates the
various features of the programming language using practical examples
such as a replacement knob for a LeCroy oscilloscope, a wardrobe hanger,
a container for soap dispensers, and various other real-life examples.

Written by an engineer with over 15 years of experience, this book is
intended for Linux and Windows users alike. If you have programming
experience in any language, this book will have you producing practical
three-dimensional objects in short order!

Elektor International Media BV
www.elektor.com

Technical Modeling
with OpenSCAD
Create Models for 3D Printing, CNC Milling,
Process Communication and Documentation

ISBN 978-1-907920-99-8

Technical Modeling
with OpenSCAD

Create Models for 3D Printing, CNC Milling,
Process Communication and Documentation

●

Tam HANNA

Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro
engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops
and delivers high-quality content - via a variety of media channels (including magazines, video, digital media, and social
media) in several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

SHAREDESIGNLEARN

● This is an Elektor Publication. Elektor is the media brand of

Elektor International Media B.V.

PO Box 11

NL-6114-ZG Susteren, The Netherlands

Phone: +31 46 4389444

● All rights reserved. No part of this book may be reproduced in any material form, including

photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally

to some other use of this publication, without the written permission of the copyright holder except in

accordance with the provisions of the Copyright Designs and Patents Act 1988 or under the terms of a

licence issued by the Copyright Licencing Agency Ltd., 90 Tottenham Court Road, London, England W1P

9HE. Applications for the copyright holder's permission to reproduce any part of the publication should be

addressed to the publishers.

● British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-1-907920-99-8

EBOOK 978-3-89576-394-6

EPUB 978-3-89576-395-3

© Copyright 2020: Elektor International Media B.V.

Prepress Production: D-Vision, Julian van den Berg

﻿

● 5

Chapter 1 • Why OpenSCAD? . 9

1.1 What do we need? . 12

1.2 Who am I? . 13

Chapter 2 • Installing OpenSCAD . 15

2.1 Installing OpenSCAD: Linux, compiled package . 15

2.2 Installing OpenSCAD: Linux, compilation. 16

2.3 Installing OpenSCAD: Windows, finished binary . 22

2.4 Excursus: Nightlies . 23

2.5 Conclusion . 24

Chapter 3 • User interface and first experiments. 25

3.1 OpenSCAD start screen . 25

3.2 Manipulating the Viewport . 29

3.3 More Settings . 31

3.4 Conclusion . 32

Chapter 4 • Create, combine and move 3D objects . . 33

4.1 Hands hovering over the building surface . 33

4.2 Create cuboids: data types and more. 36

4.3 Sphere and cylinder . 39

4.4 Translation operators move objects . 42

4.5 Rotation operators rotate objects . 44

4.6 Color parts of objects . 47

4.7 Linking translation and rotation . 49

4.8 Combine 3D objects smartly . 51

4.9 Outlook: Realisations, polyhedra, and projections . 54

Chapter 5 • Realize and understand (round) objects . 55

5.1 Edges and corners . 55

5.2 Antipattern: Construct with $fn . 58

5.3 Excursus: 3D print pipeline . 58

5.4 3D printing models . 60

5.5 Holes, for the first . 60

5.6 Conclusion . 63

Chapter 6 • OpenSCAD as 2D modeling tool . 64

Contents

Technical Modeling with OpenSCAD

● 6

6.1 Theory of construction in the two-dimensional domain . 66

6.2 Creating Ellipses . 68

6.3 Linear extrusion . 70

6.4 Worked Example: Coat rack a la Tam . 71

6.5 linear_extrude with advanced parameterization . 74

6.6 Create rotationally symmetrical objects . 78

6.7 Fully parametric construction from point clouds . 81

6.7 Holes in polygons . 85

6.8 Worked Example: Board holder . 86

6.9 What next? . 91

Chapter 7 • �OpenSCAD as a dynamically reconfigurable modeling system 92

7.1 Variable in OpenSCAD . 92

7.2 Modules create geometry . 96

7.3 Selections react to parameter states . 101

7.4 Selections, modules, children . 102

7.5 Reject parameters with Assert . 103

7.6 Duplicate geometry with "for . 105

7.7 Functions and calculations . 110

7.8 Processing lists . 111

7.9 Tools for troubleshooting . 115

7.10 Conclusion . 119

Chapter 8 • Texts, projections and bump mapping . . 120

8.1 Render texts . 120

8.2 A question of alignment . 122

8.3 Add and manage fonts . 124

8.4 Exporting 2D Snapshots . 125

8.5 Import geometry item maps . 129

8.6 Conclusion . 134

Chapter 9 • Advanced 3D objects . 135

9.1 Create three-dimensional polygons . 135

9.2 Excursus: Soap Dispenser, Part 1 . 138

9.3 Polygon alignment in three-dimensional space . 141

﻿

● 7

9.4 Combination with Minkowski . 143

9.5 Effect of the Minkowski operator on boreholes . 148

9.6 Excursus: Soap dispenser, part 2 . 150

9.7 The Hull operator . 152

9.8 Conclusion . 155

Chapter 10 • MCAD - technical primitives for OpenSCAD 156

10.1 Providing the library . 156

10.2 Generation of gears, analysis of the library structure. 157

10.3 Conjuring screws and nuts . 158

10.4 Lego emulation . 161

10.5 Generate outlines of stepper motors . 162

10.6 Conclusion . 164

Chapter 11 • Value-added OpenSCAD . 165

11.1 Model to measure . 165

11.2 Controls of the Customizer . 171

11.3 Custom model, second . 172

11.4 OpenSCAD without App . 174

11.5 OpenSCAD meets Python . 176

11.6 Conclusion . 180

Appendix • Quo vadis? . 181

Contact the development team . 181

Contact the author . 182

Read more . 183

Index . 183

Contents

Technical Modeling with OpenSCAD

● 8

● 9

Chapter 1 • Why OpenSCAD?

Chapter 1 • Why OpenSCAD?

When you think of a 3D design program, you instinctively think of AutoCAD, Rhino, Google
SketchUp, or - for the oldies - 3D Studio Max. There’s no question that great designs have
been and will be created with all these products.

But there is no question that designers and coders have radically different thinking process-
es - the best proof for this is the definition of the Coder Colors shown in figure one, which
stands for such an ugly color scheme that it can only come from the brain of a software
developer.

Figure 1-1. The definition of the (now somewhat forgotten) term Coder Colors is not very

charming. (Picture source: http://www.pouet.net/topic.php?which=5540&page=1)

Funnily enough, the engineering way of thinking is not exclusively found among computer
scientists. The author works as a technical consultant for the American fashion company Icy
Beats LLC (see http://www.bopsync.com/), and had a similar experience with the owner.
The lady is an excellent and experienced fashion designer but doesn’t get along with 3-D
modeling software any more than the author does.

The reason for this is that both the fashion designer and the engineer "work with their
hands" and therefore naturally think in hand movements and hand actions.

OpenSCAD differs from the systems mentioned in the introduction in that it uses a "step-
by-step" approach. Since a picture often says more than 1000 words, figure two shows a
"cut out" cuboid next to the source code intended for its generation. Please do not analyze
the subtleties of the code at this point - the only important thing to note is that the cuboid
is created by "subtracting" two cuboids.

http://www.pouet.net/topic.php?which=5540&page=1
http://www.bopsync.com/

Technical Modeling with OpenSCAD

● 10

Figure 1-2. A picture is worth a thousand words.

In addition to the engineer-friendly approach, OpenSCAD benefits from the fact that the
language implements a kind of object orientation. The best examples of this are shown
in figures three, four, and five – they show real parts of the underground habitat of yours
truly.

The bottom part of the "brackets" holding the dispenser in place was taken from identical
code. The only difference between the two parts was that they were parameterized differ-
ently – OpenSCAD took care of generating the rest.

Figure 1-3. No bunker is complete if its users lack soap and lotion dispensers.

● 11

Chapter 1 • Why OpenSCAD?

Figure 1-4. Naturally, this also applies to the bathroom.

Figure 1-5. ...sadly, black and white dispensers were only available in different sizes.

If you always wanted to design "engineering" parts, you will find OpenSCAD a great mod-
eling system. This textbook will introduce you to the basics and advanced application sce-
narios. I will focus on the actual work with OpenSCAD, and peripherally on interacting with
3D printers. I explicitly do not want to give an introduction to "mechanical engineering - if
you are looking for that, find a list of books on different competence levels in the appendix.

Technical Modeling with OpenSCAD

● 12

1.1 What do we need?
The author demands little from the esteemed reader - spatial awareness is helpful. Safe
handling of a caliper gauge is recommended; those who are familiar with a cordless screw-
driver and/or a drilling station also have an easier life. Knowledge of electronics is explicitly
not required!

From a technical point of view, we do not need much either. OpenSCAD is not demanding,
the program works on slow and fast computers. The author illustrates how to set up the
program under Windows and Linux; under MacOS, analogous work can be done.
If you don’t want to go through the effort of compiling the program yourself, older versions
are available as ready-made packages.

If you buy a workstation explicitly for OpenSCAD, pay attention to extremely high sin-
gle-thread performance. Figure 1-6 shows that the majority of the author’s eight-core
workstation is bored when working with OpenSCAD, while one core is under full steam.

Figure 1-6. OpenSCAD no speak parallelisation.

So back to the human factors: OpenSCAD is a programming language. The author of these
lines assumes that you have worked with C, Java, Javascript, or Pascal - other languages,
whether object-oriented or not, are also suitable.

Otherwise, all you need is a desire to design - the author asks you to at least "skim" the
work as a whole to get a grip on the functions contained in OpenSCAD. Learning the syntax
by heart is not very useful outside the academic world - there is no reason why you should
not use templates, this book, and the cheat sheet (https://www.openscad.org/cheatsheet/)
when working with OpenSCAD.

https://www.openscad.org/cheatsheet/

● 13

Chapter 1 • Why OpenSCAD?

If you can do one, it’s easier to learn another
Experience has shown that a person who is familiar with a programming language can
familiarize himself with (most) others relatively quickly. The author can also confirm this
from his life experience - he started his career with Pascal, then learned C on the side
and has had no major problems with more exotic languages like Python.

If you find yourself confronted with an older version of OpenSCAD, the situation is not too
bad. The OpenSCAD developer team was close to a political party that will certainly not be
given significant governmental responsibility in Austria for the next ten years and therefore
does not have a great deal of money to distribute. As a result - logically, but also somehow,
fortunately - a very slow development of the language means that the ecosystem is stable.
Harder wars are fought over the question of which 3D printer is suited to the needs of a
company or individual. The author of these lines uses two Renkforce RF100 V2 - a small,
compact, ready-made device that can be purchased from Conrad for about 175 euros -
which (especially with retrofitted component cooling, see the author’s YouTube channel)
works well and produces parts up to 12 × 12 × 12 cm in size.

If you have another 3D printer and can handle it with confidence, this is no obstacle. We
conduct our experiments with CURA because the author always uses CURA. If you use a
different slicer and can already handle it, this is not a problem.

If you don’t have a 3D printer and you can’t find the space (and maintenance time) for
such a hangar queen, use the services of model joineries instead. Almost every shop which
sells 3D printers accepts print orders and - assuming a friendly approach - is very happy to
perform "mercenary printing services" for paying customers.

1.2 Who am I?
Many moons ago, yours truly took to electrical engineering as a way to improve his life.
Since then, technical progress gave rich gifts – digital oscilloscopes and 32-bit processors
were once unaffordable, but now can be bought even on a limited budget. Colour displays
are now so inexpensive that yours truly‘s firm installs them in humidors (!!!) to the delight
of all (see picture).

Technical Modeling with OpenSCAD

● 14

Figure 1-7. A color display in the cigar box: accessible for everyone, thanks to HygroSage.

While advances in all areas of technology solved the electronics problem, the question of
realizing custom "in-house" mechanical parts remained open - a wonderful control system
for a drone is of no use, even in the presence of civil war and buyers, if you cannot build
the actual drone based on it.

When the author was still on active duty, each part required a long and bumpy journey in a
ZAZ-965 Zaporizhzhets of the motor pool to talk to the model joinery. A small spar evolved
into a task that demanded highly qualified technical personnel.

3D printers have meanwhile answered the "technical" part of this question - you can get
admittedly small, but problem-free devices as mentioned in the introduction for less than
200 Euro while in Germany. Imports from China can severely undercut this price.

Sadly, the question of the theoretical design part remained open even as 3D printers be-
came better and cheaper. If you are looking for a way to design mechanical parts, be it
housings or brackets, you will find OpenSCAD convenient. Yours truly wouldn’t want to do
without it anymore - whether furnishing his property, preparing proof of concepts for court
hearings, or designing a replacement button for the beloved LeCroy oscilloscope of a French
electronics engineer: OpenSCAD is a product that gives pleasure time and time again.

Enough talk: let’s now get going in this spirit! And may your designs - whether civil or mil-
itary - always work to your (and their end user's) utmost satisfaction.

● 15

Chapter 2 • Installing OpenSCAD

Chapter 2 • Installing OpenSCAD

Given that you are still reading, yours truly is free to assume that you are sufficiently
convinced of the benefits of OpenSCAD. To start our experiments, we need a version of the
software.

OpenSCAD is open source like many other "novel" engineering programs. This means that
you can view the product’s source code and correct any errors found yourself. On the other
hand, however, this also means that there are several ways to get our hands onto a run-
nable binary.

This chapter looks at the deployment under Windows and Linux. For those who want to
work under macOS, there are various instructions on the Internet about both compilation
and use of provided packages.

2.1 Installing OpenSCAD: Linux, compiled package
Anyone who has spent some time with Linux will certainly know commands like apt-get.
They query "package source servers" for a package, and proceed to download and install
it afterwards.

Since most distributors perform extensive checks on the packages listed in their package
sources, the packages contained there are often not particularly up-to-date - in the case
of Ubuntu, for example, the server will provide you with an OpenSCAD version dated from
2015. Quarrels between the OpenSCAD and Ubuntu teams ensure that some releases of
Ubuntu have to make do without precompiled binaries.

If you want to work with a reasonably up-to-date OpenSCAD, the first step is to visit the
URL https://www.openscad.org/downloads.html. There, scroll down to the Other Linux sec-
tion. Then click on the link shown in figure one to download a file of about 35 MB.

https://www.openscad.org/downloads.html

Technical Modeling with OpenSCAD

● 16

Figure 2-1. This link leads to happiness.

Please note that "finished" OpenSCAD packages for Linux are only available for 64-bit ver-
sions of the operating system. If you absolutely must or want to work with a 32-bit system,
you have to do a manual compilation as discussed below.

AppImage files are a "new type of" packaging program which packages Linux applications
and the libraries belonging to them. OpenSCAD is started by entering the following two
commands:

tamhan@TAMHAN18:~/Downloads$ chmod +x OpenSCAD-2019.05-x86_64.AppImage
tamhan@TAMHAN18:~/Downloads$ sudo ./OpenSCAD-2019.05-x86_64.AppImage
QStandardPaths: XDG_RUNTIME_DIR not set, defaulting to ‘/tmp/runtime-root’
. . .

The first call adds the executable attribute to the file, while the subsequent command in-
structs to start OpenSCAD. The program reacts by displaying the OpenSCAD start screen.
Depending on the distribution, there is the possibility of integrating the pre-built Open-
SCAD binary into the program starter - as yours truly prefers to work on the command line
level and as distributions change permanently, please refer to the documentation of the
respective system. Alternatively, you can also work through the compilation instructions
discussed in the following step, which integrate OpenSCAD "completely" into your system.

2.2 Installing OpenSCAD: Linux, compilation.
OpenSCAD version 2019.05, which we downloaded as a finished package, was functional,
but is not particularly up-to-date. If you compile OpenSCAD from source, you firstly get the
latest version, and secondly can instruct the compiler to provide an experimental version
of the OpenSCAD language. This lets you benefit from additional features that cannot be
accessed "as is". Annoyingly, OpenSCAD consists of a whole group of components, which is
why compilation requires a little work.

● 17

The component zoo
If you always wanted to know which libraries work in the background of OpenSCAD,
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Building_OpenSCAD_from_
Sources is a highly recommended source.

Like almost all other open-source projects of "larger" dimensions, OpenSCAD development
is managed using the git version control system. Our first task is to make sure that git is
installed on your workstation:

tamhan@TAMHAN18:~/Downloads$ sudo apt-get install git

The next step makes the git utility download the latest version of the source code from the
repository. Don’t be surprised that the author enters this command in the home directory -
virtually all git repositories create a new directory during the download process:

tamhan@TAMHAN18:~$ cd ~/
tamhan@TAMHAN18:~$ git clone https://github.com/openscad/openscad.git
Cloning into ‘openscad’...
. . .
Receiving objects: 100% (64355/64355), 62.52 MiB | 5.11 MiB/s, done.
Resolving deltas: 100% (45989/45989), done.

The command downloads the most recent version - this is "disadvantageous" in that during
development, non-working or non-compilable versions are sometimes uploaded. In this
case, it is recommendable to delete the created directory and then use the branch function
to download one of the releases available at https://github.com/openscad/openscad/tree/
master/releases.

Be that as it may, the next step is to return to the OpenSCAD working directory:

tamhan@TAMHAN18:~$ cd openscad/

Git repositories have long been capable of mapping relationships between repositories – if a
component is based on a library, the component developer can set up a symbolic link to the
library‘s Git repository. This is disadvantageous for us in that the following two commands
must be entered within the OpenSCAD folder to provide a fully-fledged source code envi-
ronment:

tamhan@TAMHAN18:~/openscad$ git submodule init
Submodule ‘libraries/MCAD’ (https://github.com/openscad/MCAD.git) registered
for path ‘libraries/MCAD’
tamhan@TAMHAN18:~/openscad$ git submodule update
. . .
Cloning into ‘/home/tamhan/openscad/libraries/MCAD’...
Submodule path ‘libraries/MCAD’: checked out
‘a7be3d623669d635b7249a327cfce5796ea200b3’

Chapter 2 • Installing OpenSCAD

https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Building_OpenSCAD_from_Sources
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Building_OpenSCAD_from_Sources
https://github.com/openscad/openscad/tree/master/releases
https://github.com/openscad/openscad/tree/master/releases

Technical Modeling with OpenSCAD

● 18

The explicit reference to the nested relationships in git repositories is important because
git refuseniks like to use the download button shown in Figure 2-2. Unfortunately, its use
is not appropriate because the archive it provides does not include the linked repositories.

Figure 2-2. Git Refugees, beware: this button promises disaster.

The next step provides additional dependencies:

tamhan@TAMHAN18:~/openscad$ sudo ./scripts/uni-get-dependencies.sh
. . .
Use ‘sudo apt autoremove’ to remove them.
0 upgraded, 0 newly installed, 0 to remove and 5 not upgraded.
installed qt5-default to enable qmake

The OpenSCAD development team supports us with a script which automatically downloads
the necessary elements using package managers and other tools on somewhat current
releases of Ubuntu. If problems occur during this process, you can find help at https://
en.wikibooks.org/wiki/OpenSCAD_User_Manual/Building_on_Linux/UNIX#Installing_de-
pendencies.

At this point, a reboot of the system is recommended. Afterwards, the existence of the
necessary prerequisites can be checked by the following command:

tamhan@TAMHAN18:~/openscad$./scripts/check-dependencies.sh

	

https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Building_on_Linux/UNIX#Installing_dependencies
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Building_on_Linux/UNIX#Installing_dependencies
https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Building_on_Linux/UNIX#Installing_dependencies

● 19

On the author’s workstation, its processing leads to the result shown in Figure 2-3.

Figure 2-3. The necessary dependencies are ready for compilation.

Be that as it may, the next step is to run the qmake command-line tool. Its task is to bring
the source code into a structure that is "processable" by the compiler and provide various
script files and other elements that the compiler will use during its work. If you wish to
compile a "normal" version of OpenSCAD, the following input is sufficient:

tamhan@TAMHAN18:~/openscad$ qmake
Info: creating stash file /home/tamhan/openscad/.qmake.stash
Project MESSAGE: If you‘re building a development binary, consider adding
CONFIG+=experimental
. . .
to the PKG_CONFIG_PATH environment variable
No package ‚lib3MF‘ found
Project MESSAGE: 3MF Import/Export disabled

Don‘t be surprised if the tool throws a group of status outputs during the processing of the
qmake command, referring to the absence of various import/export libraries. Unless qmake
throws a really serious error, everything will work fine.

If you compile OpenSCAD to take advantage of modern or experimental features, the call to
qmake will look slightly different. In this case, you have to provide an additional attribute,
which is added via the config command line parameter:

tamhan@TAMHAN18:~/openscad$ qmake CONFIG+=experimental
. . .

Be that as it may, we can instruct a compilation of our application at this point. Passing
the -B parameter instructs make to eliminate all existing Makefiles. This is important if you
switch between compiling a normal and an experimental version of OpenSCAD:

Chapter 2 • Installing OpenSCAD

Technical Modeling with OpenSCAD

● 20

tamhan@TAMHAN18:~/openscad$ make -B
. . .

Due to the considerable codebase, it is recommended to parallelise the actual compilation
triggered by make as much as possible. To do this, you have to pass the parameter -j –
when sitting on an eight-core workstation, enter the following command:

tamhan@TAMHAN18:~/openscad$ make -B -j 8
. . .
418 translated messages, 24 fuzzy translations, 7 untranslated messages.
itstool missing, won’t apply translations to openscad.appdata.xml
tamhan@TAMHAN18:~/openscad$

As shown in Figure 2-4, make sometimes throws errors during execution, indicating prob-
lems with the translation files. However, these are irrelevant to the functioning of Open-
SCAD.

BILD 2-4. The make run is quite communicative.

Why qmake and make?
OpenSCAD is based on the C++ cross-platform framework QT. It not only offers devel-
opers libraries and a GUI stack, but also extends the C++ language with functions such
as a signal slot system.

To be able to process applications equipped with these attributes with the usual compiler
of the operating system, an additional step is required. qmake takes care of building
the Makefiles in a way that instructs Qt‘s helper infrastructure to be activated. After the
qmake command has been processed, a Makefile is found in the project directory, which
is responsible for the actual compilation using the operating system‘s compiler.

