

Fred Böker

Formelsammlung für Wirtschaftswissenschaftler

Mathematik und Statistik

Fred Böker

Formelsammlung für Wirtschaftswissenschaftler

Mathematik und Statistik

ein İmprint von Pearson Education München • Boston • San Francisco • Harlow, England Don Mills, Ontario • Sydney • Mexico City Madrid • Amsterdam Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Die Informationen in diesem Buch werden ohne Rücksicht auf einen eventuellen Patentschutz veröffentlicht.

Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.

Bei der Zusammenstellung von Texten und Abbildungen wurde mit größter $\,$

Sorgfalt vorgegangen. Trotzdem können Fehler nicht ausgeschlossen werden.

Verlag, Herausgeber und Autoren können für fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch irgendeine Haftung übernehmen.

Für Verbesserungsvorschläge und Hinweise auf Fehler sind Verlag und Autor dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien.

Die gewerbliche Nutzung der in diesem Produkt gezeigten Modelle und Arbeiten ist nicht zulässig.

Es konnten nicht alle Rechteinhaber von Abbildungen ermittelt werden. Sollte dem Verlag gegenüber der Nachweis der Rechtsinhaberschaft geführt werden, wird das branchenübliche Honorar nachträglich gezahlt.

Fast alle Produktbezeichnungen und weitere Stichworte und sonstige Angaben, die in diesem Buch verwendet werden, sind als eingetragene Marken geschützt. Da es nicht möglich ist, in allen Fällen zeitnah zu ermitteln, ob ein Markenschutz besteht, wird das ®-Symbol in diesem Buch nicht verwendet.

Umwelthinweis:

Dieses Produkt wurde auf chlorfrei gebleichtem Papier gedruckt. Die Einschrumpffolie – zum Schutz vor Verschmutzung – ist aus umweltverträglichem und recyclingfähigem PE-Material.

10 9 8 7 6 5 4 3

11 10 09

ISBN 978-3-8273-7160-7

© 2009 Pearson Studium ein Imprint der Pearson Education Deutschland GmbH Martin-Kollar-Straße 10–12, D-81829 München/Germany Alle Rechte vorbehalten www.pearson-studium.de

Lektorat: Dennis Brunotte, dbrunotte@pearson.de

Christian Schneider, cschneider@pearson.de

Korrektorat: Barbara Decker, München

Einbandgestaltung: Thomas Arlt, tarlt@adesso21.net Herstellung: Elisabeth Prümm, epruemm@pearson.de

 $Satz\ und\ Layout\ mit\ \LaTeX: PTP-Berlin\ Protago-T_{\!E\!}X-Produktion\ GmbH\ (www.ptp-berlin.eu)$

Druck- und Verarbeitung: Kösel, Krugzell (www.KoeselBuch.de)

Printed in Germany

Inhaltsübersicht

Vorwort				
Teil I Mathematik				
Kapitel 1	Algebra	14		
Kapitel 2	Gleichungen	25		
Kapitel 3	Summen, Produkte, Logik, Mengen, Abbildungen	30		
Kapitel 4	Funktionen einer Variablen	47		
Kapitel 5	Differentialrechnung	83		
Kapitel 6	Univariate Optimierung	103		
Kapitel 7	Integration	108		
Kapitel 8	Finanzmathematik	123		
Kapitel 9	Funktionen mehrerer Variablen	138		
Kapitel 10	Multivariate Optimierung	151		
Kapitel 11	Matrizen und Vektoralgebra	163		
Kapitel 12	Lineare Programmierung	197		
Kapitel 13	Differenzengleichungen	203		
Kapitel 14	Differentialgleichungen	214		
Kapitel 15	Geometrie	237		
Teil II St	atistik	255		
Kapitel 1	Einführung	256		
Kapitel 2	Univariate beschreibende Statistik und explorative Darstellungen	258		
Kapitel 3	Multivariate beschreibende Statistik und explorative Darstellungen	273		

Kapitel 4	Wahrscheinlichkeitsrechnung	282
Kapitel 5	Diskrete Zufallsvariablen	287
Kapitel 6	Stetige Zufallsvariablen	292
Kapitel 7	Mehr über Zufallsvariablen und Verteilungen	296
Kapitel 8	Mehrdimensionale Zufallsvariablen	316
Kapitel 9	Parameterschätzung	325
Kapitel 10	Testen von Hypothesen	334
Kapitel 11	Regressionsanalyse	346
Kapitel 12	Varianzanalyse	356
Kapitel 13	Zeitreihen	361
Kapitel 14	Stochastische Prozesse und Zeitreihenmodelle	366
Tabellenanhang		374
Literatur		386
Register		387

Inhaltsverzeichnis

Vorwort			
Teil I	Mathematik	13	
Kapite	el 1 Algebra	14	
1.2 (1.3 1.4 1.5 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	Aufbau des Zahlensystems Ganzzahlige Potenzen Wichtige Regeln der Algebra Bruchrechnung Wurzeln und Potenzen mit gebrochenem Exponenten Reihenfolge der Rechenoperationen in R Ungleichungen Intervalle und Absolutbetrag	14 17 18 19 19 21 22 23	
Kapite	el 2 Gleichungen	25	
2.2 1 2.3 0 2.4 2	Lösen einer Gleichung Lineare Gleichungen Quadratische Gleichungen Zwei lineare Gleichungen mit zwei Unbekannten Nichtlineare Gleichungen	25 26 26 28 29	
Kapitel 3 Summen, Produkte, Logik, Mengen, Abbildungen 30			
3.2 3.3 13.4 13.5 13.6 2.3.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7	Summen Wichtige Summen und nützliche Formeln für Summen Doppelsummen Produkte Fakultäten und Binomialkoeffizienten Aussagenlogik Mathematische Beweise Mengen	30 31 33 34 35 37 40 41	
	Abbildungen, Relationen	45	

Kapit	el 4 Funktionen einer Variablen	47
4.1	Grundlegende Definitionen	47
4.2	Graph einer Funktion	48
4.3	Lineare Funktionen	49
4.4	Quadratische Funktionen	52
4.5	Polynome	55
4.6	Potenzfunktionen	58
4.7	Exponentialfunktionen	61
4.8	Logarithmusfunktionen	63
4.9	Trigonometrische Funktionen	65 75
4.10 4.11	Verschiebung von Graphen	75 76
4.11	Inverse Funktion	70 77
4.13	Graph einer Gleichung	78
4.14	Abstand in der Ebene, Kreise, Ellipsen und andere Kegelschnitte	78
1,11	Tibbland in der Ebene, idelbe, Empsen did didele Regelsenintee	70
Kapit	el 5 Differentialrechnung	83
5.1	Steigung von Kurven, Ableitung und Tangenten	83
5.2	Monoton wachsende und fallende Funktionen	84
5.3	Änderungsraten	84
5.4	Grenzwerte	85
5.5	Regeln der Differentiation	86
5.6	Ableitungen höherer Ordnung	88
5.7	Ableitung der Exponentialfunktionen	89
5.8	Ableitung der Logarithmus-Funktionen	89
5.9	Implizites Differenzieren	90
5.10 5.11	Differentiation der Inversen	90 91
5.11	Lineare Approximationen	91
5.13	Elastizitäten	94
5.14	Stetigkeit	95
5.15	Mehr über Grenzwerte	97
5.16	Zwischenwertsatz, Newton-Verfahren, Regula falsi	100
5.17	Unendliche Folgen	101
5.18	Unbestimmte Formen und Regeln von L'Hôspital	101
Kapit	el 6 Univariate Optimierung	103
	·	
6.1	Globale Extrempunkte	103
6.2 6.3	Extremwertsatz	104
6.4	Lokale Extrempunkte	105 106
0.4	weine-bankie	100

Kapit	tel 7 Integration	108
7.1 7.2	Unbestimmte Integrale	108 112
7.3	Integrationsmethoden	117
7.4	Multiple Integrale	119
7.5	Differentialgleichungen	122
Kapit	tel 8 Finanzmathematik	123
8.1	Zinsperioden und effektive Raten	123
8.2	Geometrische Reihen	130
8.3	Gesamtbarwert	131
8.4	Hypothekenrückzahlungen	133
8.5	Investitionsprojekte	135
8.6 8.7	Kapitalaufbau bzwabbau	136 136
0.7	Renten init verandernen Raten	130
Kapit	tel 9 Funktionen mehrerer Variablen	138
9.1	Funktionen von zwei Variablen, Ableitungen, Darstellungen	138
9.2	Flächen und Abstand	140
9.3	Funktionen von mehreren Variablen, Ableitungen	141
9.4	Partielle Elastizitäten	143
9.5	Kettenregel	144
9.6	Implizites Differenzieren	145
9.7	Substitutionselastizität	145
9.8	Homogene und homothetische Funktionen	146
9.9 9.10	Gleichungssysteme	149 150
9.10	Gielchungssysteme	130
Kapit	tel 10 Multivariate Optimierung	151
10.1	Zwei Variablen	151
10.2	Mehr Variablen	154
10.3	Komparative Statik und das Envelope-Theorem	156
10.4	Optimierung unter Nebenbedingungen	156
10.5	Komparative Statik	160
10.6	Nichtlineare Programmierung	161
Kapit	tel 11 Matrizen und Vektoralgebra	163
11.1	Systeme linearer Gleichungen	163
11.2	Matrizen und Matrizenoperationen	163
11.3	Matrizenmultiplikation	164

Die transponierte Matrix Gauß'sche Elimination Vektoren Geraden und Ebenen Determinanten Die Inverse einer Matrix Cramer'sche Regel Das Leontief-Modell Partitionierte Matrizen Lineare Unabhängigkeit Spur einer Matrix Eigenwerte und Eigenvektoren Quadratische Formen	167 168 170 174 176 181 183 184 184 187 190 191
el 12 Lineare Programmierung	197
Das allgemeine lineare Programmierungsproblem	197 198 200
el 13 Differenzengleichungen	203
Differenzengleichungen erster Ordnung Differenzengleichungen zweiter Ordnung Gleichungen höherer Ordnung Systeme von Differenzengleichungen Stabilität nichtlinearer Differenzengleichungen	203 206 209 211 213
el 14 Differentialgleichungen	214
Differentialgleichungen erster Ordnung in einer Variablen Differentialgleichungen zweiter Ordnung	214 218 226
cel 15 Geometrie	237
Dreiecke	237 243 247 248
	Gauß'sche Elimination Vektoren Geraden und Ebenen Determinanten Die Inverse einer Matrix Cramer'sche Regel Das Leontief-Modell Partitionierte Matrizen Lineare Unabhängigkeit Spur einer Matrix Eigenwerte und Eigenvektoren Quadratische Formen Rel 12 Lineare Programmierung Das allgemeine lineare Programmierungsproblem Dualitätstheorie Simplexverfahren Differenzengleichungen Differenzengleichungen zweiter Ordnung Gleichungen höherer Ordnung Systeme von Differenzengleichungen Stabilität nichtlinearer Differenzengleichungen Differentialgleichungen erster Ordnung in einer Variablen Differentialgleichungen zweiter Ordnung Differentialgleichungen zweiter Ordnung Differentialgleichungen erster Ordnung Differentialgleichungen böherer Ordnung

Kapitel 1 Einführung 256 1.1 Statistische Einheiten, Merkmale, Gesamtheiten 256 1.2 Merkmalstypen 256 1.3 Stichproben 257 Kapitel 2 Univariate beschreibende Statistik und explorative Darstellungen 258 2.1 Verteilungen und ihre Darstellungen 258 2.2 Beschreibung von Verteilungen 261 2.3 Dichtefunktionen und Normalverteilung 270 2.4 Kerndichteschätzer 271 Kapitel 3 Multivariate beschreibende Statistik und explorative Darstellungen 273 3.1 Zwei diskrete Merkmale, Kontingenztafeln 273 3.2 Graphische Darstellung quantitativer Merkmale 275 3.3 Zusammenfassende Kennzahlen 276 3.4 Regression 279 Kapitel 4 Wahrscheinlichkeiten 282 4.1 Wahrscheinlichkeitsrechnung 282 4.2 Zufallsstichproben und Kombinatorik 284 4.3 Bedingte Wahrscheinlichkeiten 284	Teil II Statistik 255				
1.2 Merkmalstypen	Kapi	itel 1 Einführung	256		
und explorative Darstellungen2582.1 Verteilungen und ihre Darstellungen2582.2 Beschreibung von Verteilungen2612.3 Dichtefunktionen und Normalverteilung2702.4 Kerndichteschätzer271Kapitel 3 Multivariate beschreibende Statistik und explorative Darstellungen2733.1 Zwei diskrete Merkmale, Kontingenztafeln2733.2 Graphische Darstellung quantitativer Merkmale2753.3 Zusammenfassende Kennzahlen2763.4 Regression279Kapitel 4 Wahrscheinlichkeitsrechnung2824.1 Wahrscheinlichkeiten2824.2 Zufallsstichproben und Kombinatorik2844.3 Bedingte Wahrscheinlichkeiten2844.4 Unabhängigkeit von Ereignissen2854.5 Totale Wahrscheinlichkeit und Satz von Bayes286Kapitel 5 Diskrete Zufallsvariablen2875.1 Grundlegende Definitionen2875.2 Wahrscheinlichkeits- und Verteilungsfunktion einer diskreten Zufallsvariablen2885.3 Unabhängigkeit von diskreten Zufallsvariablen2885.4 Erwartungswert einer diskreten Zufallsvariablen2885.5 Weitere Lageparameter299	1.2	Merkmalstypen	256		
2.2 Beschreibung von Verteilungen 261 2.3 Dichtefunktionen und Normalverteilung 270 2.4 Kerndichteschätzer 271 Kapitel 3 Multivariate beschreibende Statistik und explorative Darstellungen 273 3.1 Zwei diskrete Merkmale, Kontingenztafeln 273 3.2 Graphische Darstellung quantitativer Merkmale 275 3.3 Zusammenfassende Kennzahlen 276 3.4 Regression 279 Kapitel 4 Wahrscheinlichkeitsrechnung 282 4.1 Wahrscheinlichkeiten 282 4.2 Zufallsstichproben und Kombinatorik 284 4.3 Bedingte Wahrscheinlichkeiten 284 4.4 Unabhängigkeit von Ereignissen 285 4.5 Totale Wahrscheinlichkeit und Satz von Bayes 286 Kapitel 5 Diskrete Zufallsvariablen 287 5.1 Grundlegende Definitionen 287 5.2 Wahrscheinlichkeits- und Verteilungsfunktion einer diskreten Zufallsvariablen 288 5.3 Unabhängigkeit von diskreten Zufallsvariablen 288 5.4 Erwartungswert einer diskreten Zufallsvariab	Kapi		258		
und explorative Darstellungen2733.1 Zwei diskrete Merkmale, Kontingenztafeln2733.2 Graphische Darstellung quantitativer Merkmale2753.3 Zusammenfassende Kennzahlen2763.4 Regression279Kapitel 4 Wahrscheinlichkeitsrechnung2824.1 Wahrscheinlichkeiten2824.2 Zufallsstichproben und Kombinatorik2844.3 Bedingte Wahrscheinlichkeiten2844.4 Unabhängigkeit von Ereignissen2854.5 Totale Wahrscheinlichkeit und Satz von Bayes286Kapitel 5 Diskrete Zufallsvariablen2875.1 Grundlegende Definitionen2875.2 Wahrscheinlichkeits- und Verteilungsfunktion einer diskreten Zufallsvariablen2885.3 Unabhängigkeit von diskreten Zufallsvariablen2885.4 Erwartungswert einer diskreten Zufallsvariablen2895.5 Weitere Lageparameter290	2.2 2.3	Beschreibung von Verteilungen	261 270		
3.2Graphische Darstellung quantitativer Merkmale2753.3Zusammenfassende Kennzahlen2763.4Regression279Kapitel 4 Wahrscheinlichkeitsrechnung2824.1Wahrscheinlichkeiten2824.2Zufallsstichproben und Kombinatorik2844.3Bedingte Wahrscheinlichkeiten2844.4Unabhängigkeit von Ereignissen2854.5Totale Wahrscheinlichkeit und Satz von Bayes286Kapitel 5 Diskrete Zufallsvariablen5.2Wahrscheinlichkeits- und Verteilungsfunktion einer diskreten Zufallsvariablen2875.3Unabhängigkeit von diskreten Zufallsvariablen2885.4Erwartungswert einer diskreten Zufallsvariablen2895.5Weitere Lageparameter290	Kapi		273		
4.1Wahrscheinlichkeiten2824.2Zufallsstichproben und Kombinatorik2844.3Bedingte Wahrscheinlichkeiten2844.4Unabhängigkeit von Ereignissen2854.5Totale Wahrscheinlichkeit und Satz von Bayes286Kapitel 5 Diskrete Zufallsvariablen5.1Grundlegende Definitionen2875.2Wahrscheinlichkeits- und Verteilungsfunktion einer diskreten Zufallsvariablen2885.3Unabhängigkeit von diskreten Zufallsvariablen2885.4Erwartungswert einer diskreten Zufallsvariablen2895.5Weitere Lageparameter290	3.2	Graphische Darstellung quantitativer Merkmale Zusammenfassende Kennzahlen			
4.2Zufallsstichproben und Kombinatorik2844.3Bedingte Wahrscheinlichkeiten2844.4Unabhängigkeit von Ereignissen2854.5Totale Wahrscheinlichkeit und Satz von Bayes286Kapitel 5 Diskrete Zufallsvariablen5.1Grundlegende Definitionen2875.2Wahrscheinlichkeits- und Verteilungsfunktion einer diskreten Zufallsvariablen2885.3Unabhängigkeit von diskreten Zufallsvariablen2885.4Erwartungswert einer diskreten Zufallsvariablen2895.5Weitere Lageparameter290	Kapi	itel 4 Wahrscheinlichkeitsrechnung	282		
5.1 Grundlegende Definitionen	4.2 4.3 4.4	Zufallsstichproben und Kombinatorik	284 284 285		
5.2Wahrscheinlichkeits- und Verteilungsfunktion einer diskreten Zufallsvariablen2885.3Unabhängigkeit von diskreten Zufallsvariablen2885.4Erwartungswert einer diskreten Zufallsvariablen2895.5Weitere Lageparameter290	Kapi	itel 5 Diskrete Zufallsvariablen	287		
	5.2 5.3 5.4	Wahrscheinlichkeits- und Verteilungsfunktion einer diskreten Zufallsvariablen			

Kapi	tel 6 Stetige Zufallsvariablen	292	
6.1	Stetige Zufallsvariablen und Dichten	292	
6.2	Verteilungsfunktion einer stetigen Zufallsvariablen	292 293	
6.3 6.4	88		
0.4	Erwartungswert, varianz und andere Kennzame	293	
Kapit	tel 7 Mehr über Zufallsvariablen und Verteilungen	296	
7.1	Ergänzungen zu Zufallsvariablen und ihren Verteilungen	296	
7.2	Spezielle diskrete Verteilungsmodelle	300	
7.3	Spezielle stetige Verteilungsmodelle	304	
7.4 7.5	Grenzwertsätze	311 314	
7.3	Approximation von Verteilungen	314	
Kapit	tel 8 Mehrdimensionale Zufallsvariablen	316	
8.1	Zweidimensionale diskrete Zufallsvariablen	316	
8.2	Zweidimensionale stetige Zufallsvariablen	318	
8.3	Erwartungswerte, Kovarianz und Korrelation	319	
8.4	Verteilung von <i>n</i> Zufallsvariablen	321	
Kapit	tel 9 Parameterschätzung	325	
9.1	Punktschätzung	325	
9.1 9.2	Eigenschaften von Schätzstatistiken		
9.2 9.3	Eigenschaften von Schätzstatistiken	325 326 329	
9.2	Eigenschaften von Schätzstatistiken	325 326	
9.2 9.3 9.4	Eigenschaften von Schätzstatistiken	325 326 329	
9.2 9.3 9.4	Eigenschaften von Schätzstatistiken	325 326 329 332	
9.2 9.3 9.4 Kapit	Eigenschaften von Schätzstatistiken Konstruktion von Schätzfunktionen Intervallschätzung tel 10 Testen von Hypothesen Prinzipien des Testens Spezielle Testprobleme für den Ein-Stichprobenfall	325 326 329 332	
9.2 9.3 9.4 Kapit 10.1 10.2 10.3	Eigenschaften von Schätzstatistiken Konstruktion von Schätzfunktionen Intervallschätzung tel 10 Testen von Hypothesen Prinzipien des Testens Spezielle Testprobleme für den Ein-Stichprobenfall Vergleiche aus unabhängigen Stichproben	325 326 329 332 334 334 336 340	
9.2 9.3 9.4 Kapit 10.1 10.2 10.3 10.4	Eigenschaften von Schätzstatistiken Konstruktion von Schätzfunktionen Intervallschätzung tel 10 Testen von Hypothesen Prinzipien des Testens Spezielle Testprobleme für den Ein-Stichprobenfall Vergleiche aus unabhängigen Stichproben Verbundene Stichproben	325 326 329 332 334 334 336 340 343	
9.2 9.3 9.4 Kapit 10.1 10.2 10.3	Eigenschaften von Schätzstatistiken Konstruktion von Schätzfunktionen Intervallschätzung tel 10 Testen von Hypothesen Prinzipien des Testens Spezielle Testprobleme für den Ein-Stichprobenfall Vergleiche aus unabhängigen Stichproben	325 326 329 332 334 334 336 340	
9.2 9.3 9.4 Kapit 10.1 10.2 10.3 10.4 10.5	Eigenschaften von Schätzstatistiken Konstruktion von Schätzfunktionen Intervallschätzung tel 10 Testen von Hypothesen Prinzipien des Testens Spezielle Testprobleme für den Ein-Stichprobenfall Vergleiche aus unabhängigen Stichproben Verbundene Stichproben	325 326 329 332 334 334 336 340 343	
9.2 9.3 9.4 Kapit 10.1 10.2 10.3 10.4 10.5	Eigenschaften von Schätzstatistiken Konstruktion von Schätzfunktionen Intervallschätzung tel 10 Testen von Hypothesen Prinzipien des Testens Spezielle Testprobleme für den Ein-Stichprobenfall Vergleiche aus unabhängigen Stichproben Verbundene Stichproben Zusammenhangsanalyse	325 326 329 332 334 334 336 340 343 344	
9.2 9.3 9.4 Kapit 10.1 10.2 10.3 10.4 10.5	Eigenschaften von Schätzstatistiken Konstruktion von Schätzfunktionen Intervallschätzung tel 10 Testen von Hypothesen Prinzipien des Testens Spezielle Testprobleme für den Ein-Stichprobenfall Vergleiche aus unabhängigen Stichproben Verbundene Stichproben Zusammenhangsanalyse tel 11 Regressionsanalyse	325 326 329 332 334 334 340 343 344 346	

Kapi	tel 12 Varianzanalyse	356
12.1	Einfaktorielle Varianzanalyse	356
12.2	Zweifaktorielle Varianzanalyse mit festen Effekten	357
Kapı	tel 13 Zeitreihen	361
13.1	Indizes	361
13.2	Komponentenmodelle	362
13.3	Globale Regressionsansätze	363
13.4	Lokale Ansätze	364
13.5	Exponentielles Glätten	365
Kapi	tel 14 Stochastische Prozesse und Zeitreihenmodelle	366
Kapi 14.1	tel 14 Stochastische Prozesse und Zeitreihenmodelle Grundlegende Definitionen	366
14.1	Grundlegende Definitionen	366
14.1 14.2 14.3 14.4	Grundlegende Definitionen	366 368 369 372
14.1 14.2 14.3	Grundlegende Definitionen	366 368 369
14.1 14.2 14.3 14.4 14.5	Grundlegende Definitionen	366 368 369 372
14.1 14.2 14.3 14.4 14.5	Grundlegende Definitionen	366 368 369 372 372

Vorwort

"Eine mathematische Formelsammlung hilft auch nicht, wenn man nichts von Mathematik versteht." Dies war der Kommentar, den ich zu hören bekam, als ich zum ersten Mal meinen Gedanken äußerte, das Angebot des Verlages Pearson Studium anzunehmen, eine mathematische Formelsammlung für Wirtschaftswissenschaftler zu schreiben. Ich habe mich nicht entmutigen lassen. Denn ich pflege bei Diskussionen um schwierige Formeln, "die man sich ja auf keinen Fall im Kopf merken kann", zu antworten: "Man muss die nicht im Kopf haben, man muss wissen, wo die stehen." Und hier stehen jetzt eine ganze Reihe einfacher, schwieriger und schwerster Formeln gebündelt in einem Buch zusammen. Natürlich sollte jeder Anwender wissen (und insofern ist die obige Kritik berechtigt), was er berechnet und wie die Ergebnisse zu interpretieren sind. Diese Formelsammlung ersetzt also kein Lehrbuch und keine Vorlesung der Mathematik für Wirtschaftswissenschaftler. Das nötige Verständnis für Mathematik kann nur dort und durch ständiges Training, d.h. Rechnen von Übungsaufgaben erworben werden.

Natürlich haben einige Lehrbücher der Mathematik und Statistik für Wirtschaftswissenschaftler als Vorlage gedient zum Zusammentragen dieser Formelsammlung und z.T. sind auch die Notationen und Formulierungen aus diesen Büchern in die vorliegende Formelsammlung eingeflossen. Zu nennen sind hier *Mathematik für Wirtschaftswissenschaftler* von *Knut Sydsæter* und *Peter Hammond*, sowie *Statistik* von *Fahrmeir, Künstler, Pigeot* und *Tutz*. Im zweiten, dritten und vierten Durchlauf wurden dann weitere bekannte Lehrbücher der Mathematik und Statistik herangezogen, bis die Zahl der noch nicht aufgenommenen Formeln gegen Null konvergierte. Einige dieser Lehrbücher finden Sie im Literaturverzeichnis.

Ich wünsche, dass dieses Buch für viele Studierende während des Studiums und auch danach als Nachschlagewerk eine $\it Hilfe$ sein möge.

Es bleibt mir nur noch zu danken, den Lektoren des Verlages Pearson Studium, Dennis Brunotte und Christian Schneider, dass Sie das Vertrauen hatten, mich mit dieser Aufgabe zu betrauen, dass Sie mich fortwährend (zwar manchmal mit sanftem nötigen) Druck unterstützt und ermutigt haben. Ich danke beiden für die angenehme Zusammenarbeit. Ich danke Herrn Oleg Nenadic, der die Tabelle zum Wilcoxon-Rangsummen-Test erstellt hat.

Fred Böker

<u>TEIL I</u>

Mathematik

1	Algebra	14
2	Gleichungen	25
3	Summen, Produkte, Logik, Mengen, Abbildungen	30
4	Funktionen einer Variablen	47
5	Differentialrechnung	83
6	Univariate Optimierung	103
7	Integration	108
8	Finanzmathematik	123
9	Funktionen mehrerer Variablen	138
10	Multivariate Optimierung	151
11	Matrizen und Vektoralgebra	163
12	Lineare Programmierung	197
13	Differenzengleichungen	203
14	Differentialgleichungen	214
15	Geometrie	237

Kapitel 1 Algebra

Aufbau des Zahlensystems 1.1

Natürliche Zahlen

 $\mathbb{N} = \{1, 2, 3, 4, \ldots\}$ ist die Menge der natürlichen Zahlen oder **positiven ganzen Zah**len mit den Teilmengen:

$$\{2, 4, 6, 8, \ldots\}$$
 (Gerade Zahlen)

 $\{1, 3, 5, 7, \ldots\}$ (Ungerade Zahlen)

 $\mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0,1,2,3,4,\ldots\}$ ist die Menge der nichtnegativen ganzen Zahlen.

Ganze Zahlen

 $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots\}$ ist die Menge der ganzen Zahlen bestehend aus: $\{1, 2, 3, \ldots\}$ (positive ganze Zahlen), $\{-1, -2, -3, \ldots\}$ (negative ganze Zahlen) und 0 (Null)

Rationale Zahlen

 $\mathbb{Q} = \{a/b, \text{ wobei } a, b \in \mathbb{Z} \text{ mit } b \neq 0\}$ Menge der rationalen Zahlen

Äquivalente Definition: $\mathbb{Q} = \{a/b, \text{ wobei } a \in \mathbb{Z}, b \in \mathbb{N}\}$

Dezimaldarstellung

Mit den Ziffern $c_i \in \{0, 1, 2, \dots, 9\}$ gelten die folgenden Dezimaldarstellungen für

■ Natürliche Zahlen:
$$x = \sum_{i=0}^k c_i 10^i$$
 $k \in \mathbb{N}_0$, $c_k \neq 0$

■ Ganze Zahlen: $x = \pm \sum_{i=0}^k c_i 10^i$ $k \in \mathbb{N}_0$

■ Ganze Zahlen:
$$x = \pm \sum_{i=0}^{k} c_i 10^i$$
 $k \in \mathbb{N}_0$

1

■ Rationale Zahlen: $x = \sum_{i=-\infty}^k c_i 10^i$ $k \in \mathbb{Z}$, $c_k \neq 0$, wobei die Anzahl der Summanden (Dezimalstellen) entweder endlich ist (**endlicher Dezimalbruch**) oder sich eine endliche Folge von Ziffern unendlich oft wiederholt (**periodischer Dezimalbruch**).

Reelle Zahlen

 $\mathbb R$ ist die Menge der reellen Zahlen, d.h. aller endlichen oder unendlichen Dezimalbrüche

$$x = m.c_1c_2c_3\dots$$

mit $m \in \mathbb{Z}$ und $c_n \in \{0, 1, 2, ..., 9\}, n = 1, 2, ...$ mit den Teilmengen:

 $\mathbb{R}_+ = \{x \in \mathbb{R}: x > 0\}$ (nichtnegative Zahlen)

 $\mathbb{R}^* = \{x \in \mathbb{R}: x \neq 0\}$ (Zahlen ungleich Null)

 $\mathbb{R}_{+}^{*} = \{x \in \mathbb{R}_{+} : x \neq 0\} = \{x \in \mathbb{R} : x > 0\}$ (Zahlen größer als Null)

Alle Dezimalbrüche, die nicht endlich oder periodisch, d.h. nicht rational sind, bilden die Menge der **irrationalen Zahlen**.

Komplexe Zahlen

Grundlegende Definitionen

 $\mathbb{C} = \{z = a + bi : a, b \in \mathbb{R}\}$ ist die Menge der **komplexen Zahlen**, wobei $i = \sqrt{-1}$ die **imaginäre Einheit** ($i^2 = -1$), a der Realteil und b der Imaginärteil ist.

Die zu z = a + bi konjugiert komplexe Zahl ist definiert durch $\bar{z} = a - bi$.

Zwei komplexe Zahlen z = a + bi und w = c + di sind genau dann gleich, wenn a = c und b = d.

Der **Absolutbetrag** einer komplexen Zahl z = a + bi ist definiert durch:

$$|z| = \sqrt{a^2 + b^2} = \sqrt{z\bar{z}}$$

Rechenregeln für komplexe Zahlen

Für $z = a + bi \in \mathbb{C}$ und $w = c + di \in \mathbb{C}$ gilt:

$$z + w = (a+c) + (b+d)i$$

Addition

$$z - w = (a - c) + (b - d)i$$

Subtraktion

$$\lambda z = \lambda a + \lambda bi$$

Multiplikation mit einer reellen Zahl

$$z \cdot w = (ac - bd) + (ad + bc)i$$

Multiplikation

$$\frac{z}{w} = \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2}i$$
, falls $c^2 + d^2 > 0$

Division

Für das Rechnen mit Beträgen komplexer Zahlen gilt:

$$|z \cdot w| = |z| \cdot |w|$$
 $\left| \frac{z}{w} \right| = \frac{|z|}{|w|} (w \neq 0)$ $|\bar{z}| = |z|$

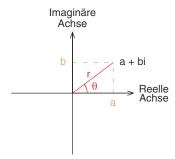


Abbildung 1.1. Polarkoordinaten

Darstellung komplexer Zahlen in Polarkoordinaten

Nach Abb. 1.1 ist $z = a + bi = r(\cos \theta + i \sin \theta) = re^{i\theta}$, wobei θ (das **Argument** der komplexen Zahl) der Winkel zwischen der positiven reellen Achse und dem Vektor von (0,0) nach (a,b) ist*. Es gilt:

$$a = r \cos \theta$$
 $b = r \sin \theta$ $r = \sqrt{a^2 + b^2} = |z|$

Für $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ und $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ gilt:

$$z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$$
 $\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2))$

Das Produkt zweier komplexer Zahlen ist die komplexe Zahl, deren Betrag das Produkt der Beträge und deren Argument die Summe der Argumente ist. Der Quotient zweier komplexer Zahlen ist die komplexe Zahl, deren Betrag der Quotient der Beträge ist und deren Argument die Differenz der Argumente ist.

^{*} Jeder Punkt (a, b) in der Ebene kann auch durch seine Polarkoordinaten (r, θ) dargestellt werden.

Nach der Formel von De Moivre

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta \quad (n = 1, 2, ...)$$

ist $n\theta$ das Argument der n-ten Potenz einer komplexen Zahl mit Argument θ .

1.2 Ganzzahlige Potenzen

Definition der n-ten Potenz

Für $a \in \mathbb{R}$ und $n \in \mathbb{N}$ ist

$$a^n = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{n \text{ Faktoren}}$$

die n-te Potenz von a mit der Basis a und dem Exponenten n.

$$a^0 = 1$$
 für $a \neq 0$ $a^{-n} = \frac{1}{a^n} = \left(\frac{1}{a}\right)^n$ für $a \neq 0$ und $n \in \mathbb{N}$

0° ist nicht definiert, jedoch wird es gelegentlich auch als 1 definiert!

Rechenregeln für Potenzen

Für $a, b, c, d \in \mathbb{R}^*$ und $r, s \in \mathbb{Z}$ gilt:

$$a^{r}a^{s} = a^{r+s}$$
 $(a^{r})^{s} = a^{rs} = (a^{s})^{r}$ $\frac{a^{r}}{a^{s}} = a^{r-s} = \frac{1}{a^{s-r}}$ $(ab)^{r} = a^{r}b^{r}$ $\left(\frac{a}{b}\right)^{r} = \frac{a^{r}}{b^{r}} = a^{r}b^{-r}$

$$(abcd)^r = a^r b^r c^r d^r$$
 $a^n a^{-n} = a^0 = 1$

Speziell für **Zehnerpotenzen** gilt: $10^0 = 1$ $10^n = 1 \underbrace{00 \dots 0}_{10^n = 1}$

$$10^{-n} = \underbrace{0.00\dots0}_{n \text{ Nullen}} 1 \quad (n \in \mathbb{N})$$

Achtung: $(a + b)^r \neq a^r + b^r$ im Allgemeinen.

1.3 Wichtige Regeln der Algebra

Grundlegende Gesetze

Für $a, b, c \in \mathbb{R}$ gilt: a + b = b + aKommutativgesetz der Addition (a + b) + c = a + (b + c) = a + b + cAssoziativgesetz der Addition a + 0 = 0 + a = aNull ist neutrales Element der Addition a + (-a) = 0-a ist invers zu a bezüglich Addition ab = baKommutativgesetz der Multiplikation (ab)c = a(bc) = abcAssoziativgesetz der Multiplikation $1 \cdot a = a \cdot 1 = a$ 1 ist neutrales Element der Multiplikation $aa^{-1} = a^{-1}a = \frac{a}{a} = 1$ für $a \neq 0$ a^{-1} ist invers zu a bezüglich Multiplikation $-a = (-1) \cdot a = a \cdot (-1)$ -(-a) = aRechnen mit Minuszeichen (-a)b = a(-b) = -(ab) = -ab (-a)(-b) = abRechnen mit Minuszeichen a(b+c) = ab + acDistributivgesetz oder Ausklammern (a+b)c = ac + bcDistributivgesetz $a \cdot 0 = 0 \cdot a = 0$ **Multiplikation mit Null** $a \cdot b = 0 \iff a = 0 \text{ oder } b = 0$ Produkt Null, wenn ein Faktor Null $a \neq 0 \implies \frac{0}{a} = 0$ Division der Null $\frac{a}{0}$ nicht definiert **Division durch Null nicht erlaubt** $\frac{a}{b} = 0 \iff a = 0 \text{ und } b \neq 0$ Quotient Null, wenn Zähler Null

Folgerungen

a(b-c)=ab-ac (a+b)(c+d)=ac+ad+bc+bd, d.h. jedes Glied der einen Klammer ist mit jedem Glied der anderen Klammer zu multiplizieren.

-(a+b-c+d) = -a-b+c-d, d.h. alle Vorzeichen sind zu ändern.

Quadratische Identitäten oder binomische Formeln

Für $a, b \in \mathbb{R}$ gilt:

$$(a+b)^2 = a^2 + 2ab + b^2$$
 $(a-b)^2 = a^2 - 2ab + b^2$ $(a+b)(a-b) = a^2 - b^2$

1.4 Bruchrechnung

Definition eines Bruches

 $\frac{a}{b} = a/b$ $a, b \in \mathbb{R}, b \neq 0$ ist ein Bruch mit dem **Zähler** a und dem **Nenner** b.

Rechenregeln für Brüche

Für $a, b, c, d \in \mathbb{R}$ gilt, wenn alle Nenner $\neq 0$ sind: $\frac{a}{b} = \frac{ac}{bc}$ $(c \neq 0)$ **Erweitern eines Bruches** $\frac{ac}{bc} = \frac{a}{b}$ Kürzen eines Bruches $\frac{-a}{-b} = \frac{(-1)a}{(-1)b} = \frac{a}{b}$ Vorzeichenregel $-\frac{a}{b} = (-1)\frac{a}{b} = \frac{(-1)a}{b} = \frac{-a}{b} = \frac{a}{-b} = \frac{(-1)(-a)}{-b}$ Vorzeichenregel $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$ Addition von Brüchen mit gleichem Nenner $\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$ Subtraktion von Brüchen mit gleichem Nenner $\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d}$ Addition von beliebigen Brüchen $\frac{a}{b} - \frac{c}{d} = \frac{a \cdot d - b \cdot c}{b \cdot d}$ Subtraktion von beliebigen Brüchen $a \pm \frac{b}{c} = \frac{ac \pm b}{c}$ Addition/Subtraktion eines Bruches zu einer Zahl $a \cdot \frac{b}{c} = \frac{a \cdot b}{c} = \frac{a}{c} \cdot b$ Multiplikation eines Bruches mit einer Zahl $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$ Multiplikation zweier Brüche $\frac{\frac{a}{b}}{\frac{c}{c}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}$ Division zweier Brüche = Multiplikation mit dem Kehrwert $\frac{\frac{a}{b}}{c} = (a/b)/c = a/(bc) = \frac{a}{bc}$ Division eines Bruches durch eine Zahl $\frac{a}{\frac{c}{c}} = a/(c/d) = a \cdot d/c = ad/c = \frac{ad}{c}$ Divsion einer Zahl durch einen Bruch

1.5 Wurzeln und Potenzen mit gebrochenem Exponenten

Definition der Quadratwurzel

Für $a \in \mathbb{R}_+$ ist $\sqrt{a} \ge 0$, die Quadratwurzel von a, definiert durch $\sqrt{a} \cdot \sqrt{a} = a$, d.h. $b = \sqrt{a} \iff b \ge 0$ und $b^2 = a$.

Ferner wird definiert $a^{1/2} = \sqrt{a}$, wobei \sqrt{a} die eindeutige nichtnegative Lösung der Gleichung $x^2 = a$.

Rechenregeln für Quadratwurzeln

Für $a, b \in \mathbb{R}_+$ gilt:

$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ $\sqrt{\frac{1}{b}} = \frac{1}{\sqrt{b}}$ $(b > 0)$

Achtung: $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$

Achtung: $x^2 = a \iff x = \pm \sqrt{a}$, aber $\sqrt{a^2} = |a| \ge 0$

Definition der n-ten Wurzel

Für $a>0, n\in\mathbb{N}$ ist $\sqrt[n]{a}$, die n-te Wurzel von a, definiert als die eindeutig bestimmte positive Lösung der Gleichung $x^n=a$, d.h. $b=\sqrt[n]{a}\iff b^n=a$.

Ferner wird definiert: $a^{1/n} = \sqrt[n]{a}$

Rechenregeln für n-te Wurzeln

Für $n, m \in \mathbb{N}$ und a, b > 0 gilt:

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b} \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \qquad \sqrt[n]{\frac{1}{b}} = \frac{1}{\sqrt[n]{b}} \qquad \sqrt[m]{\sqrt[n]{a}} = \sqrt[n]{\sqrt[m]{a}} = \sqrt[m-n]{a} = a^{1/(m-n)}$$

Potenzen mit gebrochenen Exponenten

Für $a > 0, p \in \mathbb{Z}, q \in \mathbb{N}$ ist:

$$a^{p/q} = (a^{1/q})^p = (\sqrt[q]{a})^p$$

Rechenregeln für Potenzen mit gebrochenen Exponenten

Für $a > 0, p \in \mathbb{Z}, q \in \mathbb{N}$ gilt:

$$a^{p/q} = (a^{1/q})^p = (\sqrt[q]{a})^p = (a^p)^{1/q} = \sqrt[q]{a^p}$$

Rechenregeln für Wurzeln aus Potenzen mit rationalem Exponenten

Für
$$a, b > 0$$
, $n, m \in \mathbb{N}$ $r, s \in \mathbb{Q}$ gilt:

$$\sqrt[n]{a^r} \cdot \sqrt[m]{a^s} = \sqrt[nm]{a^{rm+sn}} \qquad \qquad \sqrt[m]{\left(\sqrt[n]{a^r}\right)^s} = \sqrt[nm]{a^{rm}}$$

$$\sqrt[n]{a^r} \cdot \sqrt[n]{b^r} = \sqrt[n]{(ab)^r} \qquad \qquad \sqrt[n]{a^r}$$

$$\sqrt[n]{a^r} \cdot \sqrt[n]{b^r} = \sqrt[n]{(ab)^r}$$

Potenzen mit reellen Exponenten können als Grenzwerte von Potenzen mit rationalen Exponenten erklärt werden.

Rechenregeln für Potenzen mit reellen Exponenten

Für
$$a, b > 0$$
, $r, s \in \mathbb{R}$ gilt:

$$a^r a^s = a^{r+s} \quad (a^r)^s = a^{rs} = (a^s)^r \quad \frac{a^r}{a^s} = a^{r-s} = \frac{1}{a^{s-r}} \quad (ab)^r = a^r b^r$$

$$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r} = a^r b^{-r} \quad ab^r = a(b^r) \quad -a^r = -(a^r) \quad a^{b^r} = a^{(b^r)} = (a^b)^r$$

$$a^r = a^s \iff (r = s \text{ oder } a = 1) \qquad a^r = b^r \iff (a = b \text{ oder } r = 0) \qquad a^r > 0$$

1.6 Reihenfolge der Rechenoperationen in R

- 1) Klammern werden stets zuerst berechnet.
- Danach werden alle Potenzen berechnet, bei fehlenden Klammern von oben nach unten.
- Danach werden alle Punktoperationen (Multiplikation; Division) durchgeführt, bei fehlenden Klammern von links nach rechts.
- 4) Danach werden alle Strichoperationen (Addition, Subtraktion) durchgeführt, bei fehlenden Klammern von links nach rechts.

Klammern vor Potenz vor Punkt vor Strich.

4

1.7 Ungleichungen

Definition einer Größenrelation

Ist $a \in \mathbb{R}$ positiv, so schreiben wir a > 0, d.h. $a > 0 \iff a \in \mathbb{R}_+$ und $a \neq 0$.

Ist $a \in \mathbb{R}$ negativ, so schreiben wir a < 0, d.h. $a < 0 \iff a \notin \mathbb{R}_+$.

a ist größer als b (in Zeichen: a > b) oder b ist kleiner als a (in Zeichen: b < a) genau dann, wenn a - b > 0.

a ist größer oder gleich b (in Zeichen: $a \ge b$) oder b ist kleiner oder gleich a (in Zeichen: $b \le a$) genau dann, wenn a > b oder $a = b \iff a - b \ge 0$. In allen Fällen spricht man von Ungleichungen.

Rechenregeln für Ungleichungen

```
Für a, b, c \in \mathbb{R}, n \in \mathbb{N} gilt:
a > 0 und b > 0 \implies a + b > 0
                                                                      a \ge 0 \text{ und } b > 0 \implies a+b > 0
                                                                    a \ge 0 \text{ und } b > 0 \implies a \cdot b \ge 0
a > 0 und b > 0 \implies a \cdot b > 0
a > 0 und b < 0 \implies a \cdot b < 0
                                                                   a \ge 0 \text{ und } b < 0 \implies a \cdot b \le 0
a > b \iff a + c > b + c \quad \forall c
                                                                     a \ge b \iff a+c \ge b+c
a > b \iff a - c > b - c \quad \forall c
                                                                      a \ge b \iff a - c \ge b - c
a > b und b > c \implies a > c
                                                                    a \ge b \text{ und } b \ge c \implies a \ge c
                                                                a \ge b \text{ und } c \ge 0 \iff ac \ge bc
a > b und c > 0 \iff ac > bc
a > b und c > 0 \iff \frac{a}{c} > \frac{b}{c}
                                                                    a \ge b \text{ und } c > 0 \iff \frac{a}{c} \ge \frac{b}{c}
                                                              a \ge b \text{ und } c \le 0 \iff ac \le bc
a \ge b \text{ und } c < 0 \iff \frac{a}{C} \le \frac{b}{C}
a > b und c < 0 \iff ac < bc
a > b und c < 0 \iff \frac{a}{c} < \frac{b}{c}
a > b und c > d \implies a + c > b + d \qquad a \ge b und c \ge d \implies a + c \ge b + d
                                                              a \ge b \text{ und } c \ge d \implies ac \ge bd
a > b und c > d \implies ac > bd
                                                                       0 < a \le b \iff a^n \le b^n
\begin{array}{lll} 0 < a < b & \Longleftrightarrow & a^n < b^n \\ 0 < a < b & \Longleftrightarrow & \frac{1}{a} > \frac{1}{b} \\ 0 < a < b & \Longleftrightarrow & a^{-n} = \frac{1}{a^n} > \frac{1}{b^n} = b^{-n} \\ a < b < 0 & \Longleftrightarrow & \frac{1}{a} > \frac{1}{b} \end{array} \qquad \begin{array}{ll} 0 < a \le b & \Longleftrightarrow & \frac{1}{a} \ge \frac{1}{b} \\ 0 < a \le b & \Longleftrightarrow & a^{-n} = \frac{1}{a^n} \ge \frac{1}{b^n} = b^{-n} \\ a < b < 0 & \Longleftrightarrow & \frac{1}{a} \ge \frac{1}{b} \end{array}
0 < a < b \iff a^n < b^n
ab > 0 \iff (a > 0 \text{ und } b > 0) \text{ oder } (a < 0 \text{ und } b < 0)
\frac{a}{b} > 0 \iff (a > 0 \text{ und } b > 0) \text{ oder } (a < 0 \text{ und } b < 0)
ab < 0 \iff (a < 0 \text{ und } b > 0) \text{ oder } (a > 0 \text{ und } b < 0)
\frac{a}{b} < 0 \iff (a < 0 \text{ und } b > 0) \text{ oder } (a > 0 \text{ und } b < 0)
0 < a < b \iff \log_c a < \log_c b \quad (c > 1) 0 < a \le b \iff \log_c a \le \log_c b \quad (c > 1)
a < b \iff c^a < c^b \quad (c > 1) a \le b \iff c^a \le c^b \quad (c > 1)
a < b \iff c^{-a} = \frac{1}{c^a} > \frac{1}{c^b} = c^{-b} \quad (c > 1) \quad a \le b \iff c^{-a} = \frac{1}{c^a} \ge \frac{1}{c^b} = c^{-b} \quad (c > 1)
```

Doppelungleichung

Wir schreiben $a \le z < b \iff a \le z \text{ und } z < b \text{ und sprechen von einer Doppel-ungleichung. Ebenso: } a \le z \le b \iff a \le z \text{ und } z \le b.$

Achtung: Nicht zulässig: $a \le z > b$, d.h. erlaubt sind nur Ungleichungen in gleicher Richtung!

1.8 Intervalle und Absolutbetrag

Beschränkte Intervalle

Für $a, b \in \mathbb{R}$ ist

- \blacksquare $(a, b) = \{x: a < x < b\}$ das **offene** Intervall von a bis b
- \blacksquare $[a, b] = \{x: a \le x \le b\}$ das **abgeschlossene** Intervall von a bis b
- $(a, b] = \{x: a < x \le b\}$ das **halboffene** (links offene, rechts abgeschlossene) Intervall von a bis b
- $[a,b) = \{x: a \le x < b\}$ das **halboffene** (rechts abgeschlossene, links offene) Intervall von a bis b

Die **Länge** aller Intervalle ist b-a. Anstelle (a,b) schreibt man auch a,b.

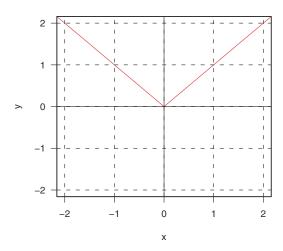
Das Symbol ∞

Wir benutzen das Symbol ∞ für Unendlich. Für jede reelle Zahl x ist $-\infty < x < \infty$.

Achtung: ∞ ist ein Symbol, keine Zahl.

Unbeschränkte Intervalle

Für $a, b \in \mathbb{R}$ ist:


- $\blacksquare [a, \infty) = \{x \in \mathbb{R} : a \le x < \infty\} = \{x \in \mathbb{R} : x \ge a\}$
- $(-\infty, b] = \{x \in \mathbb{R} : -\infty < x \le b\} = \{x \in \mathbb{R} : x \le b\}$
- **■** $(-\infty, b) = \{x \in \mathbb{R} : -\infty < x < b\} = \{x \in \mathbb{R} : x < b\}$

$$\mathbb{R} = (-\infty, \infty), \quad \mathbb{R}_+ = [0, \infty), \quad \mathbb{R}_+^* = (0, \infty)$$

Absolutbetrag

Für $x \in \mathbb{R}$ ist der Betrag oder Absolutbetrag von x definiert durch:

$$|x| = \begin{cases} x & \text{falls } x \ge 0 \\ -x & \text{falls } x < 0 \end{cases}$$

Abbildung 1.2. Graph der Funktion f(x) = |x|

Rechenregeln für Absolutbeträge

Für $a \in \mathbb{R}_+$, $x, y \in \mathbb{R}$ gilt:

$$\begin{array}{ll} |x| \geq 0 & |x| = a \iff x = a \text{ oder } x = -a & |x| = |-x| \\ |x| = 0 \iff x = 0 & |x \cdot y| = |x| \cdot |y| & \left|\frac{x}{y}\right| = \frac{|x|}{|y|} & |x - y| = |y - x| \end{array}$$

Dreiecksungleichungen:

$$|x+y| \le |x| + |y|$$
 (Gleichheit bei gleichen Vorzeichen von x und y) $|x| - |y| \le |x+y|$ (Gleichheit bei entgegengesetzten Vorzeichen von x und y)

Abstand zwischen zwei Zahlen

Der Abstand zwischen zwei Zahlen $x_1, x_2 \in \mathbb{R}$ ist definiert durch:

$$|x_1 - x_2| = |x_2 - x_1|$$

Rechenregeln für Abstände

Für $x \in \mathbb{R}$ ist |x| der Abstand zwischen x und Null auf der Zahlengeraden.

Für $x \in \mathbb{R}$, $a \in \mathbb{R}_+^*$, d.h. a > 0 gilt:

$$|x| < a \iff -a < x < a \iff x \in (-a, a)$$

 $|x| \le a \iff -a \le x \le a \iff x \in [-a, a]$

$$|x - c| < a \iff -a < x - c < a \iff c - a < x < c + a \iff x \in (c - a, c + a)$$
$$|x - c| \le a \iff -a \le x - c \le a \iff c - a \le x \le c + a \iff x \in [c - a, c + a]$$

Kapitel 2 Gleichungen

2.1 Lösen einer Gleichung

Allgemeine Definitionen im Zusammenhang mit Gleichungen und deren Lösung

Eine Gleichung ist die Verbindung zweier algebraischer Ausdrücke a und b durch ein Gleichheitszeichen: a=b, wobei in a und (oder) b im Allgemeinen Variablen auftreten. Zulässige Werte der Variablen sind diejenigen Werte, für die die algebraischen Ausdrücke definiert sind. Lösungsmenge L einer Gleichung ist die Menge aller Werte der Variablen in der Gleichung, die die Gleichung erfüllen. Unter dem Lösen einer Gleichung verstehen wir die Bestimmung der Lösungsmenge. Erlaubte Umformungen oder Äquivalenzumformungen einer Gleichung sind Umformungen der urprünglichen Gleichung in eine neue äquivalente Gleichung mit derselben Lösungsmenge. Definitionsmenge D_G der Gleichung ist die Menge aller Elemente der Grundmenge, bei deren Einsetzen anstelle der Variablen die Gleichung in eine (wahre oder falsche) Aussage übergeht.

Die Gleichung ist nicht lösbar, wenn $L = \emptyset$, lösbar, wenn $L \neq \emptyset$, allgemeingültig, wenn sie für alle Werte aus der Definitionsmenge D_G der Gleichung erfüllt ist.

Erlaubte Umformungen einer Gleichung

Es sei D_G die Definitionsmenge einer Gleichung und $c \in \mathbb{R}$ oder ein auf D_G definierter algebraischer Ausdruck. Dann gilt:

```
a = b \iff a + c = b + c
                                                      a = b \iff a - c = b - c
                                                     a = b \iff \frac{a}{c} = \frac{b}{c}
a = b \iff \frac{c}{a} = \frac{c}{b}
a = b \iff ac = bc
                                                                                                      c \neq 0
\begin{array}{l} a=b \iff \frac{1}{a}=\frac{1}{b} \\ a=b \iff d^a=d^b \end{array}
                                                                                                      a, b, c \neq 0
                                                     a = b \iff \exp(a) = \exp(b) d \in \mathbb{R}_+^* \setminus \{1\}
                                                   a = b \iff \ln a = \ln b
a = b \iff \log_d a = \log_d b
                                                                                                     d \in \mathbb{R}^*_+ \setminus \{1\}
                                                     a = b \iff \sqrt[n]{a} = \sqrt[n]{b}
a = b \iff a^n = b^n
                                                                                                      n \in \mathbb{N}, n ungerade
a = b \iff a^c = b^c
                                                                                                      c \in \mathbb{R} \setminus \{0\}, a, b > 0
a^n = b^n \iff a = b \text{ oder } a = -b
                                                                                                      n \in \mathbb{N}, n gerade
Wenn a = a^* und b = b^* allgemeingültig sind, so gilt a = b \iff a^* = b^*.
a \cdot b = 0 \iff a = 0 \lor b = 0
                                                      a_1 \cdot a_2 \cdot \ldots \cdot a_n = 0 \iff a_1 = 0 \lor a_2 = 0 \lor \ldots \lor a_n = 0
```

2.2 Lineare Gleichungen

Definition

Für $a, b \in \mathbb{R}$ ist die allgemeine lineare Gleichung gegeben durch:

$$ax + b = 0$$

Lösung der linearen Gleichung

Für $a, b, c, d \in \mathbb{R}$ gilt:

$$a \neq 0$$
: $ax + b = 0 \iff ax = -b \iff x = -\frac{b}{a}$

$$a = 0, b = 0$$
: $ax + b = 0$ für alle $x \in \mathbb{R}$

$$a = 0, b \neq 0$$
: $ax + b = 0$ ist nicht lösbar.

$$a \neq c$$
: $ax + b = cx + d \iff (a - c)x = d - b \iff x = \frac{d - b}{d - c}$

2.3 Quadratische Gleichungen

Definition

Für $a, b, c, p, q \in \mathbb{R}, a \neq 0$ ist

$$ax^2 + bx + c = 0$$

die allgemeine Form der quadratischen Gleichung, während

$$x^2 + px + q = 0$$

die Normalform der quadratischen Gleichung ist.

Überführen der allgemeinen Form in Normalform

$$ax^{2} + bx + c = 0 \iff x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$$
, d.h. $p = \frac{b}{a}$, $q = \frac{c}{a}$

Lösungen der quadratischen Gleichung

Die allgemeine Form der quadratischen Gleichung $ax^2 + bx + c = 0$ mit $a \neq 0$ ist genau dann für $x \in \mathbb{R}$ lösbar, wenn $b^2 - 4ac \geq 0$:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Es gilt: $x_1 = x_2 \iff b^2 - 4ac = 0$. Für $b^2 - 4ac < 0$ gibt es keine Lösung in \mathbb{R} . Dabei heißt $D = b^2 - 4ac$ die **Diskriminante**.

Die Normalform der quadratischen Gleichung $x^2+px+q=0$ ist genau dann für $x\in\mathbb{R}$ lösbar, wenn $\frac{p^2}{4}-q\geq 0$:

$$x_{1,2} = \frac{-p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$

Es gilt: $x_1 = x_2 \iff \frac{p^2}{4} - q = 0$. Für $\frac{p^2}{4} - q < 0$ gibt es keine Lösung in \mathbb{R} .

Zwei Spezialfälle:

Für c = 0 gilt: $ax^2 + bx = 0 \iff x = 0$ oder $x = -\frac{b}{a}$

Für b=0 gilt: $ax^2+c=0\iff x=\pm\sqrt{-\frac{c}{a}}$, falls $\frac{c}{a}\leq 0$, andernfalls gibt es keine Lösung in \mathbb{R} .

Eigenschaften der Lösungen

Es seien x_1 , x_2 Lösungen von $ax^2 + bx + c = 0$ bzw. $x^2 + px + q = 0$. Dann gilt:

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$
 $x^{2} + px + q = (x - x_{1})(x - x_{2})$

$$x_1 + x_2 = -\frac{b}{a}$$
 $x_1 x_2 = \frac{c}{a}$ $x_1 + x_2 = -p$ $x_1 x_2 = q$

Methode der quadratischen Ergänzung

$$x^{2} + 2bx = c \iff x^{2} + 2bx + b^{2} = c + b^{2} \iff (x + b)^{2} = c + b^{2}$$

$$x^{2} + bx = c \iff x^{2} + bx + \frac{b^{2}}{4} = c + \frac{b^{2}}{4} \iff \left(x + \frac{b}{2}\right)^{2} = c + \frac{b^{2}}{4}$$

 b^2 bzw. $\frac{b^2}{4}$ ist die quadratische Ergänzung zu x^2+2bx bzw. x^2+bx .

2.4 Zwei lineare Gleichungen mit zwei Unbekannten

Definition

Für $a,b,c,d,e,f \in \mathbb{R}$, $a,b,d,e \neq 0$ ist ein lineares Gleichungssysten mit zwei Ungleichungen und zwei Unbekannten gegeben durch:

$$ax + by = c$$

 $dx + ey = f$

Erlaubte Umformungen oder Äquivalenzumformungen

Eine Gleichung darf mit einer Zahl $k \neq 0$ multipliziert werden.

Zu einer Gleichung darf ein beliebiges Vielfaches der anderen Gleichung addiert werden.

Allgemeine Lösungsmethoden

Einsetzungs- oder Substitutionsmethode: Auflösen einer Gleichung nach einer Variablen ergibt z.B. y = f(x), Einsetzen in die andere Gleichung ergibt Gleichung mit einer Variablen, hier mit x. Auflösen nach dieser Variablen ergibt Lösung für x, Einsetzen in y = f(x) ergibt Lösung für y.

Gleichsetzungsverfahren: Beide Gleichungen werden nach derselben Variablen aufgelöst und die Ausdrücke werden gleichgesetzt. Dies ergibt eine Gleichung mit einer (der anderen) Variablen. Auflösen nach dieser Variablen ergibt Lösung für diese, Einsetzen in einen der beiden Ausdrücke für die andere Variable ergibt Lösung für diese.

Eliminationsmethode: Addition oder Subtraktion eines geeigneten Vielfachen einer Gleichung zur anderen führt zu einer Gleichung mit einer Variablen und ergibt eine Lösung für diese Variable. Einsetzen dieser Lösung in eine der Originalgleichungen führt zur Lösung für die andere Variable.

Lösungsformel

Falls $ae - bd \neq 0$, gilt:

$$x = \frac{ce - bf}{ae - bd} \qquad \qquad y = \frac{af - cd}{ae - bd}$$

2.5 Nichtlineare Gleichungen

Lösungshinweise

Ein Produkt von zwei oder mehr Faktoren ist genau dann gleich Null, wenn wenigstens einer der Faktoren Null ist:

```
a \cdot b = 0 \iff a = 0 \text{ oder } b = 0

a_1 \cdot a_2 \cdot \ldots \cdot a_n = 0 \iff a_1 = 0 \text{ oder } a_2 = 0 \text{ oder } \ldots \text{ oder } a_n = 0

ab = ac \iff a = 0 \text{ oder } b = c
```

Eine **Bruchgleichung** ist eine Gleichung, in der die gesuchte Variable mindestens einmal im Nenner auftaucht. Man multipliziere die Gleichung mit dem Hauptnenner.

Eine **Wurzelgleichung** ist eine Gleichung, in der die gesuchte Variable mindestens einmal im Radikanden einer Wurzel auftaucht. Man versuche die Wurzel zu isolieren, d.h. allein auf eine Seite zu bringen, und wende dann die entsprechende Umkehroperation an (z.B. *n*-te Potenz bei *n*-ter Wurzel). Eine Probe ist unerlässlich!

Eine Exponentialgleichung ist eine Gleichung, in der die gesuchte Variable mindestens einmal im Exponenten einer Potenz oder einer Wurzel auftaucht. Tritt die Variable nur im Exponenten auf, isoliere man diesen Ausdruck und wende die entsprechende Umkehroperation an, d.h. Logarithmieren oder Potenzieren, wobei die Gesetze des Logarithmierens anzuwenden sind. Es ist eine Probe erforderlich!

$$a^{x} = b \iff x \ln a = \ln b \iff x = \frac{\ln b}{\ln a} \iff x = \log_{a} b \quad (a, b > 0, a \neq 1)$$

Eine Logarithmengleichung ist eine Gleichung, in der die gesuchte Variable mindestens einmal im Argument eines Logarithmus auftaucht. Man versuche die Gleichung durch Potenzieren mit der Basis des vorkommenden Logarithmus (entlogarithmieren) zu lösen.

Kapitel 3 Summen, Produkte, Logik, Mengen, Abbildungen

3.1 Summen

Definition des Summenzeichens

Für $n \in \mathbb{N}$, q > p, $p, q \in \mathbb{Z}$ und $a_i \in \mathbb{R}$ ist

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \ldots + a_n \qquad \sum_{i=p}^{q} a_i = a_p + a_{p+1} + \ldots + a_q$$

Rechenregeln für Summen

Für $n, k \in \mathbb{N}, q > p, p, q \in \mathbb{Z}, a_i, b_i, c \in \mathbb{R}$ gilt:

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \qquad \sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i$$
 Additivität

$$\sum_{i=1}^{n} ca_{i} = c \sum_{i=1}^{n} a_{i}$$
 Homogenität

$$\sum_{i=1}^{n} c = nc$$

$$\sum_{i=p}^{q} c = (q - p + 1)c$$
 Summe über eine Konstante

$$\sum_{i=1}^{n} a_i = \sum_{i=0}^{n-1} a_{i+1} = \sum_{i=0}^{n+1} a_{i-1}$$
 Verschiebung des Summationsindex

$$\sum_{i=1}^{n+1} a_i = \left(\sum_{i=1}^{n} a_i\right) + a_{n+1} \qquad \sum_{i=1}^{1} a_i = a_1 \qquad \sum_{i=1}^{0} a_i = 0$$
 Rekursion

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} a_j = \sum_{k=1}^{n} a_k$$
 Unabhängigkeit von Bezeichnung des Index

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{k} a_i + \sum_{i=k+1}^{n} a_i \quad (1 \le k < n)$$
 Aufteilung in Teilsummen

3.2 Wichtige Summen und nützliche Formeln für Summen

Arithmetisches Mittel oder Mittelwert

Das arithmetische Mittel oder der Mittelwert der Zahlen x_1, x_2, \ldots, x_n ist

$$\mu_{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

Nützliche Rechenregeln

$$\sum_{i=1}^n (x_i - \mu_x) = 0$$
 Summe der Abweichungen vom Mittelwert ist Null
$$\sum_{i=1}^n (x_i - \mu_x)^2 = \sum_{i=1}^n x_i^2 - n\mu_x^2$$
 Summe der quadratischen Abweichungen vom Mittelwert
$$\frac{1}{n} \sum_{i=1}^n (x_i - \mu_x)^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \mu_x^2$$
 Mittlere quadratische Abweichung vom Mittelwert

Arithmetische Reihe

Definition

Die Folge $a_1 = a, a_2, a_3, \dots$ heißt eine arithmetische Reihe mit der **Differenz** d, wenn

$$a_n = a_{n-1} + d = a_1 + (n-1)d = a + (n-1)d$$

Summenformel

Die Summe der ersten n Glieder einer arithmetischen Reihe $a=a_1, a_2, a_3, \ldots, a_n=z$ mit Anfangsglied a und Schlussglied z ist

$$\sum_{i=1}^{n} a_i = \sum_{i=0}^{n-1} (a+id) = a + (a+d) + (a+2d) + \dots + (a+[n-1]d)$$

$$= na + \frac{n(n-1)d}{2} = \frac{n}{2} \left(a + \underbrace{(a+[n-1]d)}_{=:z} \right) = \frac{n}{2} \left(a+z \right)$$

Einige Summen spezieller arithmetischer Reihen

Für $n \in \mathbb{N}$ gilt:

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{1}{2}n(n+1)$$
Summe der Zahlen von 1 bis n

$$\sum_{i=1}^{n} (2i-1) = 1 + 3 + \ldots + (2n-1) = n^2$$
Summe der ersten n ungeraden Zahlen
$$\sum_{i=1}^{n} 2i = 2 + 4 + \ldots + 2n = n(n+1)$$
Summe der ersten n geraden Zahlen

Summe der Quadrat- und Kubikzahlen

Für $n \in \mathbb{N}$ gilt:

Für
$$n \in \mathbb{N}$$
 gilt:
$$\sum_{i=1}^n i^2 = 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$
 Summe der Quadrate
$$\sum_{i=1}^n (2i-1)^2 = 1^2 + 3^2 + 5^2 + \ldots + (2n-1)^2 = \frac{1}{3}n(4n^2-1)$$
 ungerade
$$\sum_{i=1}^n (2i)^2 = 2^2 + 4^2 + 6^2 + \ldots + (2n)^2 = \frac{2}{3}n(n+1)(2n+1)$$
 gerade
$$\sum_{i=1}^n i^3 = 1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{1}{4}n^2(n+1)^2$$
 Summe der Kubikzahlen
$$\sum_{i=1}^n (2i-1)^3 = 1^3 + 3^3 + 5^3 + \ldots + (2n-1)^3 = n^2(2n^2-1)$$
 ungerade
$$\sum_{i=1}^n (2i)^3 = 2^3 + 4^3 + 6^3 + \ldots + (2n)^3 = 2n^2(n+1)^2$$
 gerade

Geometrische Reihe

Definition

Die Folge a_0, a_1, a_2, \ldots heißt eine geometrische Reihe oder geometrische Folge mit dem Quotienten k, wenn

$$\frac{a_{n+1}}{a_n} = k$$

für alle $n \in \mathbb{N}_0$, d.h. $a_{n+1} = a_n \cdot k$ und $a_n = a_0 k^n$.

Summenformel*

Für eine geometrische Reihe mit dem Anfangsglied $a_0 = a$ und dem Quotienten k gilt:

$$\sum_{i=0}^{n-1} ak^{i} = a + ak + ak^{2} + \dots + ak^{n-1} = a\frac{k^{n} - 1}{k - 1} = a\frac{1 - k^{n}}{1 - k} \qquad (k \neq 1)$$

Speziell für $a_0 = 1$ gilt:

$$\sum_{i=0}^{n} k^{i} = 1 + k + k^{2} + \ldots + k^{n} = \frac{k^{n+1} - 1}{k - 1} \qquad (k \neq 1)$$

Summe aufeinanderfolgender Differenzen

Für
$$n \in \mathbb{N}$$
 und $a_k \in \mathbb{R}$ gilt:
$$\sum_{k=1}^{n} (a_{k+1} - a_k) = a_{n+1} - a_1$$

3.3 Doppelsummen

Annahmen

Gegeben seien $a_{ij} \in \mathbb{R}$ $1 \le i \le m; 1 \le j \le n$, geschrieben in rechteckiger Anordnung:

$$a_{11} \ a_{12} \ \cdots \ a_{1n}$$
 $a_{21} \ a_{22} \ \cdots \ a_{2n}$
 $\vdots \ \vdots \ a_{m1} \ a_{m2} \ \cdots \ a_{mn}$

Zeilen- und Spaltensummen

Für die obige Anordnung ist die Zeilensumme über die *i*-te Zeile: $\sum_{i=1}^{n} a_{ij}$

Die Spaltensumme über die *j*-te Spalte ist: $\sum_{i=1}^{m} a_{ij}$

^{*} Siehe auch S. 130

Summe der Zeilen- oder Spaltensummen

Die Summe über alle Zeilensummen ist

$$\sum_{j=1}^{n} a_{1j} + \sum_{j=1}^{n} a_{2j} + \ldots + \sum_{j=1}^{n} a_{mj} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \right) = (a_{11} + a_{12} + \ldots + a_{1n}) + (a_{21} + a_{22} + \ldots + a_{2n}) + \ldots + (a_{m1} + a_{m2} + \ldots + a_{mn})$$

Die Summe über alle Spaltensummen ist

$$\sum_{i=1}^{m} a_{i1} + \sum_{i=1}^{m} a_{i2} + \ldots + \sum_{i=1}^{m} a_{in} = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \right) = (a_{11} + a_{21} + \ldots + a_{m1}) + (a_{12} + a_{22} + \ldots + a_{m2}) + \ldots + (a_{1n} + a_{2n} + \ldots + a_{mn})$$

Unabhängigkeit von der Reihenfolge der Summation

Die Summe der Zeilensummen ist gleich der Summe der Spaltensummen, d.h.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij}$$

Definition einer Doppelsumme

Eine Summe der Gestalt $\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}$ heißt eine Doppelsumme.

3.4 Produkte

Definition des Produktzeichens

Für $n \in \mathbb{N}$, q > p, $p, q \in \mathbb{Z}$ und $a_i \in \mathbb{R}$ ist

$$\prod_{i=1}^{n} a_i = a_1 \cdot a_2 \cdot \ldots \cdot a_n \qquad \prod_{i=n}^{q} a_i = a_p \cdot a_{p+1} \cdot \ldots \cdot a_q$$

3

Rechenregeln für Produkte

Für $n, k \in \mathbb{N}, q > p, p, q \in \mathbb{Z}, a_i, b_i, c \in \mathbb{R}$ gilt:

$$\prod_{i=1}^n (a_i \cdot b_i) = \prod_{i=1}^n a_i \cdot \prod_{i=1}^n b_i$$

Multiplikativität

$$\prod_{i=1}^{n} \frac{a_i}{b_i} = \prod_{i=1}^{n} a_i$$

$$\prod_{i=1}^{n} b_i$$

$$(b_i \neq 0)$$

$$\prod_{i=1}^{n} (c \cdot a_i) = c^n \prod_{i=1}^{n} a_i$$

Homogenität vom Grad n

$$\prod_{i=1}^{n} (c \cdot a_i) = c^n \prod_{i=1}^{n} a_i$$

$$\prod_{i=1}^{n} c = c^n \qquad \prod_{i=p}^{q} c = c^{q-p+1}$$

Produkt über eine Konstante

$$\prod_{i=1}^{n} a_i = \prod_{i=0}^{n-1} a_{i+1} = \prod_{i=2}^{n+1} a_{i-1}$$

Verschiebung des Index

$$\prod_{i=1}^{n+1} a_i = \left(\prod_{i=1}^n a_i\right) \cdot a_{n+1} \qquad \prod_{i=1}^1 a_i = a_1$$

Rekursion

$$\prod_{i=1}^{n} a_i = \prod_{j=1}^{n} a_j = \prod_{k=1}^{n} a_k$$

Unabhängigkeit von Bezeichnung des Index

 $\prod_{i=1}^{n} a_{i} = \prod_{i=1}^{k} a_{i} \cdot \prod_{i=k+1}^{n} a_{i} \quad (1 \leq k < n)$

Aufteilung in Teilprodukte

Fakultäten und Binomialkoeffizienten 3.5

n Fakultät

Definition

Für $n \in \mathbb{N}$ ist n Fakultät definiert durch: $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1) \cdot n = \prod_{i=1}^{n} i$ 0! = 1

Eigenschaften

$$(n+1)! = n!(n+1)$$

 $n! \approx \sqrt{2\pi n} \cdot n^n \cdot e^{-n} = \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$

Stirlingsche Formel für große $n \in \mathbb{N}$

Binomialkoeffizient

Für $m, k \in \mathbb{N}_0$; $k \leq m$ ist der Binomialkoeffizient (gelesen als "m über k") definiert durch

 $\binom{m}{k} = \frac{m!}{(m-k)!k!}$

Äquivalente Definition

Für $k, m \in \mathbb{N}$ mit $k \leq m$ gilt die äquivalente Definition

$$\binom{m}{k} = \frac{m \cdot (m-1) \cdot \ldots \cdot (m-k+1)}{k!} = \frac{m \cdot (m-1) \cdot \ldots \cdot (m-k+1)}{k \cdot (k-1) \cdot \ldots \cdot 1}$$

Man merke sich: Im Zähler und Nenner stehen jeweils k Faktoren natürlicher Zahlen, um 1 absteigend, beginnend bei m im Zähler und k im Nenner!

Rechenregeln für Binomialkoeffizienten

Es gelten die folgenden Regeln, die am Pascal'schen Dreieck überprüfbar sind!

$$\binom{0}{0} = 1 \qquad \binom{m}{0} = 1 \qquad \binom{m}{1} = \binom{m}{m-1} = m \qquad \binom{m}{m} = 1$$

$$\binom{m}{k} = \binom{m}{m-k}$$
 Symmetrie

$$\binom{m+1}{k+1} = \binom{m}{k} + \binom{m}{k+1}$$
 Additionssatz

$$\binom{m+1}{k+1} = \binom{m}{k} + \binom{m-1}{k} + \ldots + \binom{k}{k}$$
 Additionssatz

$$\binom{m}{0} + \binom{m+1}{1} + \ldots + \binom{m+n}{n} = \binom{m+n+1}{n}$$
 Additions theoreme

$$\binom{n}{0}\binom{m}{k} + \binom{n}{1}\binom{m}{k-1} + \dots + \binom{n}{k}\binom{m}{0} = \binom{n+m}{k}$$

$$\binom{m}{0} + \binom{m}{1} + \ldots + \binom{m}{m} = 2^m$$

$$\binom{m}{0} + \binom{m}{2} + \binom{m}{4} + \dots = \binom{m}{1} + \binom{m}{3} + \binom{m}{5} + \dots = 2^{m-1}$$

$$\binom{m}{0} - \binom{m}{1} + \ldots + (-1)^m \binom{m}{m} = 0$$

$$\binom{m}{0}^2 + \binom{m}{1}^2 + \ldots + \binom{m}{m}^2 = \binom{2m}{m}$$

Pascal'sches Dreieck

Jede Zahl ist Summe der beiden Nachbarn links und rechts in der Zeile darüber.

Newtons Binomische Formeln

$$(a+b)^{1} = a+b$$

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

$$(a+b)^{m} = a^{m} + \binom{m}{1}a^{m-1}b + \ldots + \binom{m}{m-1}ab^{m-1} + \binom{m}{m}b^{m} = \sum_{k=0}^{m} \binom{m}{k}a^{m-k}b^{k}$$

3.6 Aussagenlogik

Aussage und Aussageform

Eine Aussage ist eine Behauptung (Satz) p, der (dem) eindeutig der Wahrheitswert wahr (W) oder falsch (F) zugeordnet werden kann.

Eine offene Aussage oder Aussageform ist eine Aussage p(x), in der eine Variable vorkommt. Erst nach Einsetzen des Variablenwertes kann über den Wahrheitswert entschieden werden.

Negation einer Aussage

Ist p eine Aussage, so ist $\neg p$ (Nicht p, gelegentlich auch \bar{p} oder $\sim p$) die Negation dieser Aussage mit den Wahrheitswerten $\begin{cases} W & \text{falls } p & \text{falsch} \\ F & \text{falls } p & \text{wahr} \end{cases}$

Verbindung zweier Aussagen

Zwischen zwei Aussagen p und q gibt es die folgenden Verbindungen oder Verknüpfungen:

Aussagenverbindung	Name	Notation
p und q	Konjunktion	$p \wedge q$
	Disjunktion	$p \lor q$
Wenn p , so q (Aus p folgt q)	Implikation (Subjunktion)	$p \rightarrow q$
p genau dann, wenn q (p äquivalent zu q)	Äquivalenz (Bijunktion)	$p \leftrightarrow q$

Sie werden durch die folgende Wahrheitstafel definiert:

p	q	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
W	W	W	W	W	W
W	F	F	W	F	F
F	W	F	W	W	F
F	F	F	F	W	W
	W W F	W WW FF W	W W W W F F F W F	$\begin{array}{c cccc} W & W & W & W \\ W & F & F & W \\ F & W & F & W \end{array}$	W W W W W W F F W F F W F W W

Notation: Statt $p \to q$ bzw. $p \leftrightarrow q$ findet man auch $p \Rightarrow q$ bzw. $p \Leftrightarrow q$

Tautologie

Definition

Eine Tautologie (Identität oder ein aussagenlogisches Gesetz) ist eine Aussagenverbindung, die stets wahr ist.

Gesetz vom ausgeschlossenen Dritten und vom Widerspruch

Die folgenden Aussagenverbindungen sind Tautologien:

$$\begin{array}{ll} p\vee\neg p & \text{Gesetz vom ausgeschlossenen Dritten} \\ \neg(p\wedge\neg p) & \text{Gesetz vom Widerspruch} \end{array}$$

Tautologische Äquivalenzen (⇔)

$$\neg (\neg p) \Leftrightarrow p \qquad p \land p \Leftrightarrow p \qquad \text{Idempotenz}$$

$$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r) \Leftrightarrow p \lor q \lor r \qquad \text{Assoziativität}$$

$$(p \land q) \land r \Leftrightarrow p \land (q \land r) \Leftrightarrow p \land q \land r \qquad \text{Assoziativität}$$

$$((p \leftrightarrow q) \land r) \Leftrightarrow (p \leftrightarrow (q \leftrightarrow r)) \Leftrightarrow p \leftrightarrow q \leftrightarrow r \qquad \text{Assoziativität}$$

$$((p \leftrightarrow q) \Leftrightarrow r) \Leftrightarrow (p \leftrightarrow (q \leftrightarrow r)) \Leftrightarrow p \leftrightarrow q \leftrightarrow r \qquad \text{Assoziativität}$$

$$p \lor q \Leftrightarrow q \lor p \qquad p \land q \Leftrightarrow q \land p \qquad (p \leftrightarrow q) \Leftrightarrow (q \leftrightarrow p) \qquad \text{Kommutativität}$$

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r) \qquad p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r) \qquad \text{Distributivität}$$

$$\neg (p \rightarrow q) \Leftrightarrow (p \land \neg q) \qquad p \land (q \lor r) \Leftrightarrow \neg p \land \neg q \qquad \text{de Morgansche Regeln}$$

$$(p \rightarrow q) \Leftrightarrow (\neg p \lor q) \qquad (p \rightarrow q) \Leftrightarrow (\neg p \lor q) \Leftrightarrow \neg p \land \neg q \qquad \text{de Morgansche Regeln}$$

$$(p \rightarrow q) \Leftrightarrow (\neg q \rightarrow \neg p) \qquad \text{Kontraposition}$$

$$\text{"entweder } p \text{ oder } q \Leftrightarrow (p \land \neg q) \lor (\neg p \land q)$$

$$p \lor (q \land \neg q) \Leftrightarrow p \qquad p \land (q \lor \neg q) \Leftrightarrow p \qquad p \land (q \lor \neg q) \Leftrightarrow p \qquad p \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r \qquad \neg (p \leftrightarrow q) \Leftrightarrow (p \leftrightarrow q) \rightarrow r \qquad \neg (p \leftrightarrow q) \Leftrightarrow (p \leftrightarrow q) \Rightarrow (p \leftrightarrow q) \Leftrightarrow ($$

Tautologische Implikationen: (⇒)

$$\begin{array}{lll} p \wedge q \Rightarrow p & p \wedge q \Rightarrow q & \text{Vereinfachung} \\ p \Rightarrow p \vee q & q \Rightarrow p \vee q & \text{Addition} \\ \neg p \Rightarrow (p \rightarrow q) & q \Rightarrow (p \rightarrow q) & \\ \neg (p \rightarrow q) \Rightarrow p & \neg (p \rightarrow q) \Rightarrow \neg q \\ \neg p \wedge (p \vee q) \Rightarrow q & \\ [(p \rightarrow q) \wedge (q \rightarrow r)] \Rightarrow (p \rightarrow r) & \text{Transitivität, Kettenschluss} \\ [p \wedge (p \rightarrow q)] \Rightarrow q & \text{Abtrennungsregel, direkter Schluss} \\ \neg q \wedge (p \rightarrow q) \Rightarrow \neg p & \\ [p \wedge (\neg q \rightarrow \neg p)] \Rightarrow q & \text{Indirekter Schluss} \\ [(p_1 \vee p_2) \wedge (p_1 \rightarrow q) \wedge (p_2 \rightarrow q)] \Rightarrow q & \text{Fallunterscheidung} \\ [(p \rightarrow q) \wedge (\neg p \rightarrow q)] \Rightarrow q & \text{Fallunterscheidung, Alternativschluss} \end{array}$$

Quantoren

Definition

Das Zeichen \forall heißt der **Allquantor** und ($\forall x$: p(x)) bedeutet: für alle x ist die Aussage p(x) wahr.

Das Zeichen \exists heißt der **Existenzquantor** und ($\exists x: p(x)$) bedeutet: Es gibt (existiert) ein x, für das p(x) wahr ist.

Rechenregeln für Quantoren

```
\forall x: p(x) \Leftrightarrow \neg \exists x: \neg p(x) \qquad \exists x: p(x) \Leftrightarrow \neg \forall x: \neg p(x)
                                                                                                                   Austausch der Quantoren
\forall x : p(x) \land q(x) \Leftrightarrow \forall x : p(x) \land \forall x : q(x)
                                                                                                                                   Distributivgesetz
\exists x: p(x) \lor q(x) \Leftrightarrow \exists x: p(x) \lor \exists x: q(x)
                                                                                                                                   Distributivgesetz
\forall x: (p \lor q(x)) \Leftrightarrow p \lor (\forall x: q(x)) \qquad \forall x: (p \land q(x)) \Leftrightarrow p \land (\forall x: q(x))
\exists x : (p \lor q(x)) \Leftrightarrow p \lor (\exists x : q(x)) \exists x : (p \land q(x)) \Leftrightarrow p \land (\exists x : q(x))
\forall x: p(x) \to q \Leftrightarrow \exists x: p(x) \to q
p \to \forall x : q(x) \Leftrightarrow \forall x : p \to q(x) p \to \exists x : q(x) \Leftrightarrow \exists x : p \to q(x)
(\forall x: p(x)) \lor (\forall x: q(x)) \Rightarrow \forall x: p(x) \lor q(x)
(\exists x: p(x) \land q(x)) \Rightarrow (\exists x: p(x)) \land (\exists x: q(x))
\forall x: \forall y: p(x, y) \Leftrightarrow \forall y: \forall x: p(x, y)
                                                                                                                                Kommutativgesetz
\exists x: \exists y: p(x, y) \Leftrightarrow \exists y: \exists x: p(x, y)
                                                                                                                                Kommutativgesetz
```

3.7 Mathematische Beweise

Mathematische Sätze als Implikationen

Mathematische Sätze (Theoreme) können als Implikationen $P\Rightarrow Q$ formuliert werden, wobei P und Q jeweils eine Aussage oder eine Reihe von Aussagen sind. Bedeutung: Wenn P wahr ist, so ist notwendig auch Q wahr. Andere Redeweisen für $P\Rightarrow Q$: P impliziert Q; wenn P, dann auch Q; Q ist eine Folgerung (folgt) aus P; Q, wenn P; P nur, wenn Q oder Q ist eine Implikation von P. Besonders wichtig sind die Formulierungen:

P ist eine **hinreichende Bedingung** für Q und Q ist eine **notwendige Bedingung** für P.

Direkter und indirekter Beweis

Bei einem direkten Beweis zeigt man ausgehend von P, dass Q wahr ist.